
u n i ve r s i t y  o f  co pe n h ag e n  

Towards Low-Latency Batched Stream Processing by Pre-Scheduling

Jin, Hai; Chen, Fei; Wu, Song; Yao, Yin; Liu, Zhiyi; Gu, Lin; Zhou, Yongluan

Published in:
IEEE Transactions on Parallel and Distributed Systems

DOI:
10.1109/TPDS.2018.2866581

Publication date:
2019

Document version
Peer reviewed version

Citation for published version (APA):
Jin, H., Chen, F., Wu, S., Yao, Y., Liu, Z., Gu, L., & Zhou, Y. (2019). Towards Low-Latency Batched Stream
Processing by Pre-Scheduling. IEEE Transactions on Parallel and Distributed Systems, 30(3), 710-722.
[8444732]. https://doi.org/10.1109/TPDS.2018.2866581

Download date: 09. okt.. 2020

https://doi.org/10.1109/TPDS.2018.2866581
https://curis.ku.dk/portal/da/persons/yongluan-zhou(1df964e4-bf9e-48a1-a965-d33c6515c0bb).html
https://curis.ku.dk/portal/da/publications/towards-lowlatency-batched-stream-processing-by-prescheduling(6367b584-385c-4557-98d6-9f05add181e2).html
https://curis.ku.dk/portal/da/publications/towards-lowlatency-batched-stream-processing-by-prescheduling(6367b584-385c-4557-98d6-9f05add181e2).html
https://doi.org/10.1109/TPDS.2018.2866581


1

Towards Low-Latency Batched Stream
Processing by Pre-Scheduling

Hai Jin, Senior Member, IEEE, Fei Chen, Song Wu, Member, IEEE,
Yin Yao, Zhiyi Liu, Lin Gu, and Yongluan Zhou

Abstract—Many stream processing frameworks have been developed to meet the requirements of real-time processing. Among them,
batched stream processing frameworks are widely advocated with the consideration of their fault-tolerance, high throughput and unified
runtime with batch processing. In batched stream processing frameworks, straggler, happened due to the uneven task execution time,
has been regarded as a major hurdle of latency-sensitive applications. Existing straggler mitigation techniques, operating in either
reactive or proactive manner, are all post-scheduling methods, and therefore inevitably result in high resource overhead or long job
completion time. We notice that batched stream processing jobs are usually recurring with predictable characteristics. By exploring
such a heuristic, we present a pre-scheduling straggler mitigation framework called Lever. Lever first identifies potential stragglers and
evaluates nodes’ capacity by analyzing execution information of historical jobs. Then, Lever carefully pre-schedules job input data to
each node before task scheduling so as to mitigate potential stragglers. We implement Lever and contribute it as an extension of
Apache Spark Streaming. Our experimental results show that Lever can reduce job completion time by 30.72% to 42.19% over Spark
Streaming, a widely adopted batched stream processing system and outperforms traditional techniques significantly.

Index Terms—stream processing; recurring jobs; straggler; scheduling; data assignment
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1 INTRODUCTION

With the vast involvement of streaming big data in many
applications (e.g., stock market data, sensor data, social network
data, etc.) [1] [2], quickly mining and analyzing such data is
becoming more and more important. There is a recent trend in
adapting batch processing systems, such as MapReduce [3] and
Spark [4], to handle streaming data by putting the streams into
micro-batches and treating the workloads as a continuous series
of small jobs. Examples of such systems include HOP [5], Comet
[6], HStreaming [7] and Spark Streaming [8]. Figure 1 illustrates
a simplified model of the data handling pipeline in such systems.
In this model, the batching module receives and divides data
streams into batches, which are then put into the batch queue.
The processing module schedules tasks for processing according
to the bulk synchronous parallel (BSP) model.
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Streaming
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Results
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Timeline

Pre-scheduling Post-scheduling

Fig. 1: A simplified data processing pipeline in a batched stream
processing system

Batched stream processing systems become popular because
not only they provide a unified programming model for processing
batch data and streaming data, but also they can leverage the fault
tolerance and high throughput properties of the batch processing
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frameworks [9]. However, in comparing to record-at-a-time stream
processing systems, such as Storm [10], and Naiad [11], batched
steam processing systems often suffer from high processing la-
tency. Therefore, the fundamental challenge of building a batched
stream processing system is to minimize the processing latency
of each micro-batch. This problem has recently attracted the
community’s interest, and some efforts, such as Drizzle [12],
have been focused on minimizing the coordination overhead of
processing the micro-batches, including the cost incurred by task
scheduling and barriers between different processing stages.

In this paper, we focus on an critical issue, namely the straggler
problem, where a subset of tasks straggling behind and signifi-
cantly affecting the job completion time. The straggler problem
is a well-known essential problem in parallel processing systems.
Stragglers can occur for many reasons, including hardware het-
erogeneity [13] [14], data skew [15] [16], hardware failures [17],
energy efficiency [18] [19], resource contention and various OS
effects. As reported in [20] and [21], in the production clusters
at Facebook and Microsoft Bing, straggler tasks are on average 8
times slower than the median task in the same job.

Although stragglers in batched stream processing systems have
the same definition with batch processing systems, they have
different characteristics such as latency sensitive and straggler
locality. In comparing to large batch processing, the straggler
problems in micro-batch processing are more severe and harder
to tackle. First of all, unlike processing large batches, where there
are multiple waves of tasks to be scheduled, the number of tasks of
each micro-batch processing is limited. Therefore, once a straggler
occurs, scheduler has little opportunity to amortize the influence
of straggler. Second, batch processing systems usually adopt the
well-known BSP model, where a barrier is placed at the end of
each processing stage and all the parallel tasks within the same
stage have to synchronize at the barrier. As a batched stream pro-
cessing system should handle many continuously arriving micro-
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batches, if the execution time of the straggling tasks exceed the
batch interval, it would affect not only the latency of the current
micro-batch, but also the queueing latency of the subsequent ones,
which can become unacceptably high. Furthermore, the actions of
handling stragglers have to be carried out very quickly so that the
total task (re-)scheduling and processing time should not exceed
the batch interval. This is especially challenging if we use small,
say sub-second, batch intervals. For example, the wait-speculate-
re-execute paradigm adopted in many existing solutions [3] [22]
[15] would be undesirable, because the processing time of the
micro-batches can be too short to afford the waiting time to detect
the stragglers, not to mention the additional latency incurred by
relocating the data and re-executing the straggling tasks.

We argue that the fundamental problem of using the existing
straggler mitigation solutions for micro-batch processing is that
they detect (or predict) stragglers and re-schedule stragglers too
late in the data handling pipeline, which is after the batching
module has already dispatched the data into the batch queue
and the processing module has started processing the data (recall
Figure 1). The re-scheduling actions are carried out during the task
execution period, hence it would inevitably increase the processing
time of the micro-batches. Furthermore, as the data has already
been dispatched, re-scheduling would inherently incur expensive
data relocation. Such overhead would become significant in micro-
batch processing due to the short processing time of each micro-
batch. We refer to this type of methods as post-scheduling tech-
niques.

To address the problem, we propose a new pre-scheduling
framework, called Lever, which predicts stragglers and makes
timely scheduling decisions to minimize processing latency. Lever
utilizes the historical processing statistics to predict the potential
stragglers in the current batch and makes proactive pre-scheduling
decisions to prevent stragglers. More importantly, Lever makes the
pre-scheduling decisions before the batching module dispatches
the data. Therefore, the pre-scheduling actions would not incur
any data relocation. As the scheduling is done while the data are
being batched, it would not increase the processing time of the
micro-batch.

We implemented Lever in Spark Streaming, which is con-
tributed to the open source community as an extension of Apache
Spark Streaming. In summary, this paper makes the following
technical contributions:

• We perform a thorough analysis of the behaviors of exist-
ing straggler mitigation methods and identify the problems
of applying them in batched stream processing systems.
We find that these methods are all post-scheduling meth-
ods and fall short when dealing with stragglers in micro-
batch jobs.

• To better mitigate stragglers when processing micro-
batches, we present Lever, a pre-scheduling framework for
handling straggler problems in batched stream processing
systems. Lever predicts and re-schedules straggling tasks
before the data dispatching and task processing to avoid
the latency incurred by the post-scheduling methods. Fur-
thermore, by mitigating the stragglers, Lever can signifi-
cantly reduce the processing latency of micro-batches.

• We propose various techniques to realize the new pre-
scheduling framework. We design a method to predict the
potential stragglers before the execution of the tasks by
using the historical statistics, which takes into account the

variations of data streaming rates. In addition, we adopt the
Iterative Learning Control model to estimate the capacity
of the computing nodes. Finally, we propose a capacity-
aware data assignment strategy to pre-schedule input data.

• We have implemented Lever on Spark Streaming, and
contributed it as an extension of Spark Streaming to the
open source community. Extensive experiments using both
real and synthetic data show that Lever can mitigate strag-
glers efficiently and improve the performance of stream
applications by 30.72% to 42.19% over Spark Streaming.

The rest of this paper is organized as follows. In Section II, we
introduce the background and analyze the straggler problems in
batched stream processing system. Section III describes the pre-
scheduling strategy and the design of Lever. Section IV presents
the implementation of Lever. We evaluate the performance of our
system in Section V. Section VI briefly surveys the related works.
Finally, Section VII concludes this paper.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of batched
stream processing and stragglers. Then we analyze in detail the
problems of using traditional straggler mitigation strategies in
batched stream processing. We also briefly analyze the character-
istics of the recurring batched stream jobs. Finally, we outline the
challenges in realizing the proposed pre-scheduling framework.

2.1 Background
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Fig. 2: Principles of batched stream processing system

Batched stream processing system treats a streaming computa-
tion as a series of deterministic batch computations on small time
intervals [8]. As shown in Figure 2, a batched stream processing
system receives input data and divides the continuous data streams
into a series of so-called micro-batches according to the specified
batch interval (a time interval set according to the application’s
latency requirements). A number of jobs are generated for each
batch, which would be periodically submitted to the batch process-
ing engine, such as MapReduce or Spark. Such a batched stream
processing system automatically inherits the advanced features of
the underlying batch processing systems, such as fault tolerance,
data-locality aware scheduling, load balancing, etc.

2.2 Problem Analysis

Existing methods for straggler mitigation are post-scheduling. In
the following, we analyze four representative approaches. They are
Speculative execution [3], SkewTune [15], Dolly [20] and Wran-
gler [21], on behalf of reactive approach with replication, reactive
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Fig. 3: Straggler mitigation under different strategies

approach without replication, proactive approach with replication
and proactive approach without replication respectively.

Speculative execution [3] is a widely used reactive approach
with replications. It employs a wait-speculate-re-execute mecha-
nism. Speculative execution marks slow running tasks as stragglers
and reacts by re-launching multiple copies of them. As soon as
one of these copies finishes execution, the rest are terminated.
Taking Figure 3(a) as an example, at tb, T1 is marked as stragglers.
Then speculative execution launches a copy of T1 on Node4. It
migrates the data block of Task T1 to Node4 and starts executing
it at te. As we can see, this approach incurs long idle time and
reactive scheduling time. It introduces inefficiency for micro-batch
jobs in two aspects: (1) a task must run for a significant amount
of time before it is identified as a straggler, leading to delayed
straggler detection; (2) the reactive procedure is time-consuming
in the context of small batch intervals.

SkewTune [15] is a reactive approach without replications.
Once one node has an available slot, SkewTune begins to detect
data skew and identify stragglers according to each task’s remain-
ing time. As shown in Figure 3(b), when task T4 is completed
at tb, SkewTune’s detection is triggered and T1 is identified as
straggler. Then, T1 is selected for skew mitigation due to its long
remaining progress. After that, SkewTune scans T1’s remaining
input data and repartitions its remaining workload into T1b, T1c
and T1d, which are migrated to nodesNode4,Node3 andNode2,
respectively. Before SkewTune begins its actions, task T1 has
been already slowed down. Therefore, SkewTune belongs also the
wait-and-speculate paradigm. Furthermore, the cost of reactive re-
scheduling would be too high for the short-running micro-batch
jobs.

Dolly [20] is a proactive strategy, which launches multiple
clones of each task and only uses the result of the clone that
finishes first. As shown in Figure 3(c), Dolly launches two clones

of Task T1 and T2 in Node1, Node3 and Node2, Node4 respec-
tively. After T1 and T2 complete, Dolly launches two clones of
T3 in Node3 and Node4 respectively. Although multiple clones
for each task are spawned, only one of them is effective, incurring
significant waste of resources.

Wrangler [21] is a proactive strategy without replication. It
predicts stragglers using machine learning models and makes
scheduling decisions based on prediction. For example, in Figure
3(d), Wrangler analyzes the statistics and makes a prediction about
stragglers at tb. Node1 and Node2 are identified as stragglers.
Then Wrangler re-schedules and migrates the unprocessed tasks,
i.e. T5 and T6, fromNode1 andNode2 toNode3 andNode4 re-
spectively. Although this approach can predict possible stragglers
earlier than the previous reactive approaches, it still needs to wait
until some nodes show some indications of straggling (e.g. high
cpu utilization, heavy memory access, network congestion). Note
that a micro-batch job often only consists of a limited number
of tasks, which leaves little room for Wrangler to do the re-
scheduling.

In summary, existing post-scheduling approaches for batch
processing systems fall short when processing short-running
micro-batch jobs. Reactive approaches act after stragglers have
occurred, i.e. when tasks have already been slowed down.
Replication-based proactive approaches incur extra resources and
increase the system load. Proactive approaches without replication
also need to migrate data block at runtime. Consequently, it is
necessary to design a straggler mitigation strategy for batched
stream processing systems that can act as early as possible, without
incurring much extra resource overhead.

2.3 Recurring Batched Stream Jobs

Batched stream jobs are periodic in nature, hence are typically
recurring with stable code and similar data features. Many char-
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acteristics, such as application logic, stragglers, and resource
utilization of the processing of a batch are statistically similar to
the execution of the previous batches of the same stream [23] [24]
[25]. In practice, the history of the prior runs of such recurring jobs
can be used to estimate the task durations and predict stragglers.
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Fig. 4: Task statistics in four continuous batches. If one executor
has straggler tasks in previous batch, there is a great probability
that this executor will produce straggler tasks again in the next
batch.

Figure 4 is a straggler statistical analysis which counts the
number of straggler tasks and normal tasks in each executor from
a real application in Tencent production clusters. This application
is a typical real-time stream application monitoring advertisement
click traffic based on Spark Streaming. It runs in a multi-tenant
environment with YARN(Hadoop-2.2.0) as the resource manage-
ment platform. The whole trace of this application can be accessed
at https://github.com/u2009cf/Tencent-Cluster-Trace. Figure 4(a),
(b), (c) and (d) are four continuous batches. From Figure 4, we
can see that if one executor has straggler tasks in previous batch,
there is a great probability that this executor will produce straggler
tasks again in the next batch. we draw a conclusion that stragglers
always occur in continuous batches in the same executor. We call
this phenomenon as straggler locality. By statistically analyzing
one day’s logs of the Tencent application, we can get the result
that the probability of which an executor which has straggler tasks
in this batch will produce straggler tasks in next batch is 83.21%.

Considering that stragglers can often be accurately predicted in
recurring jobs and job input data can be assigned in designated lo-
cations in advance, we can try to mitigate stragglers by performing
pre-scheduling, where data dispatching is carried out before task
execution by exploring the statistical similarity in short batched
stream jobs.

2.4 Challenges

To realize a pre-scheduling framework, we need to address the
following three challenges:

Challenge 1: How to identify potential stragglers?

Pre-scheduling needs to know which nodes will be the strag-
glers in the next batch. Unlike traditional post-scheduling ap-
proaches, which identify stragglers of a job based on the running
time of the tasks of this job, pre-scheduling takes actions in
the batching module without task execution information. Pre-
scheduling can only use the historical execution information of
recurring jobs. But only analyzing historical information is not
enough due to the runtime changes of streaming data. Increasing
the accuracy of identifying potential stragglers is a prerequisite
step.

Challenge 2: How to determine the node capacity?
Traditional post-scheduling methods monitor the resource uti-

lization at runtime and can re-schedule straggler tasks to those
nodes which have free slots. However, in pre-scheduling solutions,
this is not the case because we make pre-scheduling decisions
before running the tasks. We need to define a metric to estimate
the potential free slots of a node in the future and to determine
how much data we should pre-schedule to the targeted nodes.
How to determine a node’s capacity has a great influence on the
performance of pre-scheduling.

Challenges 3: How to conduct data reassignment efficiently?
To pre-schedule input load as evenly as possible to eliminate

stragglers, we need to conduct data reassignment to achieve load
balancing. However, batched stream processing system aggregates
stream data into a block for a fixed time interval called the
blockInterval. As the input rate varies over time, blocks may
be unequal in size, leading to imbalanced load. Furthermore,
current batched stream system assumes that the workload remains
constant over time and the executors all have equal processing
capacity. Data reassignment in pre-scheduling framework should
adjusts the block sizes and quantities to match each node’s
capacity.
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nodes’ 
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Fig. 5: Architecture of Lever

3 SYSTEM DESIGN

In this section, we present the design of Lever. Lever is API-
compatible with Spark Streaming, providing the migration trans-
parency and developer transparency. Considering the main objec-
tive is to minimize latency, Lever is designed to be lightweight and
to be able to make agile scheduling decisions. We begin with an
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overview of the system architecture, followed by further system
details.

3.1 System Overview
Figure 5 overviews the architecture of Lever. Lever periodically
collects and analyzes the historical job profiles of the recurring
micro-batch jobs. Based on such information, Lever pre-schedules
the data through three main steps, i.e. identify potential stragglers,
evaluate node capacity and reassign data being aware of capacity.
Firstly, by comparing each node’s task finish time in the previous
batch, Lever can determine the initial state of each node. Lever
also monitors the changes of the input rate. With these two pieces
of information, Lever conducts the state transition to predict which
nodes will behave as stragglers in next batch (for Challenge 1).
Secondly, based on the fact that micro-batch processing jobs
are repetitive and periodic, Lever adopts the Iterative Learning
Control (ILC [26]) model, which is designed for tracking control
of the systems working in a repetitive mode, to estimate node
capacities (for Challenge 2). Finally, Lever partitions the large
tasks in straggler nodes and adapts the block sizes and quantities
according to each node’s capacity (for Challenge 3).

We show the timing of Lever’s actions in Figure 6, where
we differentiate pre-scheduling and post-scheduling techniques
according to their scheduling timing. It can be seen that the
post-scheduling techniques, such as Dolly, Wrangler, Speculation
and SkewTune, take actions during task processing, which would
inevitably increase the task processing latency. On the contrary,
Lever takes its action before task execution. As shown in Figure
6, Lever collects the needed information of the previous micro-
batch’s execution during batch interval between t1 and t2. Then,
during t2 and t3, Lever dispatches the input data based on the
pre-scheduling plan, and tasks would be scheduled according to
data locality. In this way, Lever would not incur too much data
movement when processing tasks. We detail each step of Lever in
the following.

3.2 Potential Stragglers Identification
Lever predicts stragglers in the next batch according to the
historical information of the recurring jobs as well as the load
fluctuation of each node. The first step is to determine the initial
stragglers. When the tasks of the last batch are completed, Lever
collects and analyzes the statistics of the task execution in each
node. The node i’s finish time (NFTi) is defined as the time from
job submission to when the last task is completed in this node.
Then, Lever sorts node list according to NFTi in the descending
order. By following the experiences in previous work [3], we
classify nodes into three categories according to the locations
of the node list. Nodes before the first quartile are put into the
straggler group, while those after the third quartile are in the faster
group. The remaining nodes are categorized as the median group.
Nodes in faster group are those nodes which are eligible to provide
assistance. Nodes in straggler group are those nodes which need
to be helped. And nodes in median group will do nothing.

The classification identifies the stragglers in the last batch.
However, as data streaming rates vary over time and load can
change across different batches, the state of each node may change
between two consecutive batches. Therefore, we should carefully
derive the possible state transitions to accurately identify the
stragglers as follows. First, Lever calculates the median finish time
of the straggler group, median group and faster group respectively.

We denoted these values by tftos, tftom, tftof respectively.
Second, Lever uses two degradation ratios FTM and MTS. FTM
is defined as tftom

tftof
, which means that for node i in the faster

group, if NFTi has increased by FTM, it will be moved from the
faster group to the median group and vice versa. Similarly, MTS
is defined as tftos

tftom
, which means that for node i in the median

group, if NFTi has increased by MTS, it will be moved from
the median group to the straggler group and vice versa. We have
shown straggler’s state transition in Figure 7.

StragglerMedianFaster

#i batch

#i+1 batch�݊݋�ݐ��ݐݑ݌ ݁ݐ��ݐݑ݌݊�݀�݋݁ݐ��ݐݑ݌݊��݁݊=
③ ݋�ݐ��ݐݑ݌݊� > 1�்ௌ① ݋�ݐ��ݐݑ݌݊� < 1�்�∗�்ௌ�݊݋�ݐ��ݐݑ݌ ൒ 1�்�∗�்ௌ ݋�ݐ��ݐݑ݌݊� && ൑ 1�்ௌ

Degradation ratio: FTM

Degradation ratio: MTS

I will be behind again.
(I need help)

I will complete tasks quickly.
(I provide assistance)

I will catch up with others.
(I do nothing)

Fig. 7: An example for straggler’s state transition

Based on the transition graph in Figure 7, Lever takes the load
fluctuation observed on each node to predict state transition and
identify stragglers. Due to the load fluctuation, it is possible that
some stragglers in the last batch may receive less data and hence
become faster in the current batch. Similarly, the faster nodes may
possibly become stragglers in current batch. We use inputRatio,
defined as the ratio between the new input data rate of current
batch and the old one of the last batch, to evaluate the changes
of stream load. According to the transition graph, we define the
transition rules listed in Table 1. By applying these rules, Lever
finally identifies the state of each node for the current batch.

TABLE 1: Transition rules for identifying stragglers

Initial State Transition Conditions(inputRatio) Final State

Straggler

(1/MTS,+∞) Straggler

[1/(FTM*MTS),1/MTS] Median

(0,1/(FTM*MTS)) Faster

Median

(MTS,+∞) Straggler

[1/FTM,MTS] Median

(0,1/FTM) Faster

Faster

(FTM*MTS,+∞) Straggler

[FTM,FTM*MTS] Median

(0,FTM) Faster

3.3 Computational Capacity Determination
After predicting the state of each node according to the input data
characteristics, we next estimate computational capacity of each
node before we can conduct pre-scheduling.

The computational capacity of a node refers to the amount
of data that the node can process in one batch. Considering the
periodicity of the recurring micro-batch jobs, we estimate the
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computational capacity based on the Iterative Learning Control
(ILC [26]) model, which is designed to perform tracking control
of the systems working in a repetitive mode. Repetition allows
the system to improve the tracking accuracy through iterations.
This learning process uses information from previous repetitions
to improve the estimation and can achieve more accurate results it-
eratively. This scenario is similar to the batched stream processing
jobs.

#i batch #i+1 batch#i-1 batch

ILC 

Model

ILC 

Model

�� ��+1��−1 ��
Fig. 8: The principle of evaluating computational capacity with
ILC.

Figure 8 shows the principle of the ILC algorithm. Our
objective is to continuously approximate the real computational
capacity. The task finish time of each node and computational
capacity in the previous batch are passed to the ILC model as
the learning parameters. The ILC model is used to estimate the
computational capacity of the processing nodes for the next batch.
These actions repeat from one batch to the next. A model of
estimating the capacity of a node is of the following form:

Ci+1 = Ci +K ∗∆t (1)

∆t = tideal − ti (2)

where Ci is the capacity during the ith batch, ∆t is the
deviation between the node’s finish time and the ideal finish time
during the ith batch. K is a design parameter representing the
operations on ∆t. In Lever, K is set to Ci/ti. tideal is the ideal
finish time of the node in the ith batch and can be obtained by
computing the median node’s finish time. We repeat this process
for every batch.

3.4 Capacity-Aware Data Reassignment

After grouping the nodes into three groups, the nodes in the
faster group are eligible to act as helpers to fetch part of the
stragglers’ workload. Nodes in the straggler group are helpees
to whom helpers should provide assistance. After we figure out
node’s type(helper or helpee) along with each node’s capacity, we
can conduct capacity-aware data reassignment.

3.4.1 Choosing Helpers

First, Lever selects some nodes from faster group as candidate
helpers. Considering that candidate helpers will afford extra work
from stragglers, these helpers should have large computational
capacity in order to avoid the selected helpers being stragglers in
next batch again. So, Lever sorts the fasters’ list according to their
capacities by descending order and selects head r fasters to be
helpers. Parameter r are tune-able. In our experiments, when r is
set to 4 or higher, near-ideal performance is achieved.

3.4.2 Data Reassignment

Theoretical Data Assignment. In the ideal case, all the tasks
should be completed simultaneously. So, the system should in-
crease the amount of load in the faster nodes and reduce those in
the stragglers to minimize the makespan. Assume that there are n
nodes. Let Li and Ci denote the input load and the computational
capacity of the ith node respectively. Let L′i denote the input load
under Lever’s pre-scheduling plan. Let ti denotes the finish time
of ith node. We have:

ti = Li′/Ci (3)

n∑
i=1

Li =

n∑
i=1

Li′ (4)

In the ideal case, our optimization goal is δ2 = D(ti) = 0. So,
we have t1 = t2 = ... = tn. Then, we can get:

L1′
C1

=
L2′
C2

= ... =
Ln′
Cn

(5)
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Considering equation 4, we can derive:

L1′
C1

=
L2′
C2

= ... =
Ln′
Cn

=

∑n
i=1 Li′∑n
i=1 Ci

=

∑n
i=1 Li∑n
i=1 Ci

=
Li′
Ci

(6)
The load L′i can be denoted as:

Li′ =
∑n

i=1 Li∑n
i=1 Ci

∗ Ci (7)

So, the load we need to migrate to or from can be denoted as:

∆L = Li′ − Li =

∑n
i=1 Li∑n
i=1 Ci

∗ Ci − Li (8)

Capacity-Aware Reassignment Strategy. After we select
the candidate helpers, we can conduct capacity-aware data reas-
signment according to each node’s capacity. Figure 9 shows the
principle of capacity-aware data reassignment strategy. Assume
that we have n helpers, the node i is characterized by the vector
(Li,Ci). For each straggler, characterized by (Ls,Cs), its input
data is assigned to all the selected helpers according to their
capacity and load. According to Equation 8, the load share LsToj

which is dispatched to the jth helper can be denoted as:

LsToj =
Ls +

∑n
i=1 Li

Cs +
∑n

i=1 Ci
∗ Cj − Lj (9)

Worker1

( L1 , C1 )

…

Faster Group

Worker2

( L2 , C2 )

Workern-1

( Ln-1 , Cn-1 )

Workern

( Ln , Cn )

Straggler
( Ls , Cs ) Helpers

…

�� +  ௜=1� �௜�� +  ௜=1� �௜ ∗ �௝ − �௝

Fig. 9: Capacity-aware reassignment strategy.

Adapting Block Size. Lever adapts block size according
to capacity-aware data reassignment strategy. Batched stream
processing system aggregates input records into blocks. Several
blocks together make up a batch. These blocks then are scheduled
and distributed to executors for processing as so called tasks. In
order to prevent large task being straggler task in straggler node,
Lever splits large task’ block into several small sub-blocks and
then migrates some of them to helper nodes.

Figure 10 shows how Lever adjusts block size in batched
stream processing system. First, a receiver receives input stream
records and stores them into an array buffer in BlockGenerator.
Then, Lever splits the array buffer according to a split ratio which
has been decided by reassignment strategy. These array buffer
slices generate blocks and are pushed into block queue. After
that, every block will be dispatched to a node which has the
corresponding capacity with split ratio. Pre-schedule procedure is
done. When scheduling tasks, executors fetch local blocks firstly
by data locality for processing. The complete pseudo code of
the pre-scheduling algorithm is presented in Algorithm 1. Lines
1∼15 describes potential straggler identification. Lever transforms
node’s state according to initial state, FTM and MTS (lines 9∼13).
Lines 17∼23 describes how Lever leverage ILC model to evaluate
node capacity. Lines 27∼37 states the detailed procedure of
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ArrayBlockingQueue
[blockQueueSize]

Helper1
Node

Helper2
Node

Helper3
Node

Input Stream

Fig. 10: Adapt block size by splitting block array buffer.

capacity-aware data reassignment. How much load should we pre-
schedule from straggler to faster node is decided in lines 33∼35.

4 SYSTEM IMPLEMENTATION

We have implemented Lever based on Spark Streaming [27], a
popular open-source distributed batched stream processing sys-
tem, which is an extension of the cluster computing framework
Apache Spark [28]. We choose Spark Streaming because it is
a typical batched stream processing system based on Spark, a
fast and general engine for large-scale data processing which
powers a stack of libraries including SQL, machine learning,
graph processing and stream processing. Spark Streaming has
been widely adopted in both academia and industry, and has
also been deployed on production clusters of many corporations
[9]. In this section, we describe the detail of our system im-
plementation. The source code of our system can be found at
https://spark-packages.org/package/trueyao/spark-lever.

Worker Worker

Master

…Runtime 
Monitor

Partitioner

Runtime Analyzer

Scheduling Planner

Partitioner

Runtime 
Monitor

Reassignment plan

Dispatcher Dispatcher

Fig. 11: Implementation of Lever

Figure 11 provides an overview of the implementation of
Lever. We add two components (i.e., Runtime Analyzer and
Scheduling Planner) to the master, and three components (i.e.,
Runtime Monitor, Partitioner and Dispatcher) to the worker,
respectively. Runtime Monitor located on each worker period-
ically detects the worker’s runtime information such as load
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Algorithm 1 Pre-Scheduling Algorithm

Input: Historical job profiles in previous batches
Output: Scheduling decisions
1: Procedure Identify Potential Stragglers
2: Get the previous batches’ job execution information
3: Sort the nodes descending by their finish time
4: for each node N do
5: Intialize(node N’s state)
6: end for
7: Compute the input load’s gradient:

inputRatio = newInputRatio
oldInputRatio

8: Compute transition condition FTM and MTS
9: for each group G do

10: for each node N in group G do
11: transform(node N’s initial state, FTM, MTS)
12: end for
13: end for
14: Output final stragglers and fasters
15: End Procedure
16: Procedure Evaluate Computational Capacity
17: for each node do
18: Initial condition: C1 = Throughput
19: In ith batch, compute current batch’s deviation of node’s finish

time:
tideal = tmedian(i),∆t = tideal − ti

20: Compute (i+1)st batch’s capacity:
Ci+1 = Ci + Ci

ti
∗ ∆t

21: Assign corresponding load when receiving (i+1)st batch’s data
22: In (i+1)st batch, compute current batch’s deviation of node’s

finish time:
tideal = tmedian(i+1),∆t = tideal − ti+1

23: compute the next batch’s capacity:
Ci+2 = Ci+1 +

Ci+1

ti+1
∗ ∆t

24: end for
25: End Procedure
26: Procedure Capacity-Aware Data Reassignment
27: Sort faster nodes according to their capacities by descending order
28: Choose head n the nodes as helpers
29: Compute the sum of helpers’ capacity:

sumOfCapa =
∑n

i=1 Ci

30: Compute the sum of helpers’ load:
sumOfLoad =

∑n
i=1 Li

31: for each straggler node do
32: for each helper node do
33: Compute the allocated load share(split ratio):

Lstoi = Ls+sumOfLoad
Cs+sumOfCapa

× Ci − Li

34: Update each node’s (Ci, Li):
C′

i = Ci, L′
i = Li + Lstoi

35: end for
36: Invoke an interface splitBlockBuffer to split block array buffer

according to split ratio
37: Invoke blockTransferService to migrate the data block to cor-

responding nodes
38: end for
39: End Procedure

and processing speed, and then reports to Runtime Analyzer.
By analyzing such information together with the jobs’ detailed
execution information, Runtime Analyzer identifies the stragglers
and evaluates each node’s computational capacity. These results
will be passed to Scheduling Planner to make pre-scheduling
decisions. Scheduling Planner makes a reassignment plan about
how to partition and pre-schedule stragglers’ work to other nodes.
Partitioner is responsible for partitioning stragglers’ excess work
according to the specified proportion derived from Scheduling
Planner. Dispatcher distributes every piece of the partitioned work

in a straggler to the selected helpers. Further details of the main
components to implement Lever on Spark Streaming are described
below.

Runtime Monitor. A Runtime Monitor is located on each
worker and periodically detects the worker’s information. In order
to periodically detect the worker’s runtime information, we intro-
duce several data collection functions in the executor to collect the
needed information such as task finish time, and input data size.
We also add an accumulator in the worker. Once a task finishes,
its corresponding information is encapsulated into a message and
then sent to the accumulator, which gathers these messages and
reports to Runtime Analyzer through an asynchronous RPC based
on Akka.

Runtime Analyzer. Once a batch has finished, Runtime An-
alyzer begins to analyze the statistics information from Runtime
Monitor. We create a new component which maintains a table
(implemented using HashMap) in the master. This table is used
for recording and updating the workers’ information.

Scheduling Planner. This component receives messages from
Runtime Analyzer. It mainly includes a function responsible
for running our capacity-aware pre-scheduling algorithm and an
output table which records the pre-scheduling data assignment
plan. We also design callback functions in JobScheduler and
TaskScheduler in order to get scheduling information feedback
and adjust the task scheduling accordingly.

Partitioner. We modify BlockGenerator and ReceiverSupervi-
sorImpl which are basic modules of Spark Streaming to implement
the Partitioner. We implement a partition function splitBlockBuffer
to divide the receiving buffer into the specified data shares. These
fragments are delivered to BlockManager as block.

Dispatcher. This component carries out two tasks: (1) getting
the name of the host that a data block will be assigned to according
to the assignment plan, and (2) invoking the blockTransferService
to transfer the data block. We modify the system call upload-
BlockSync in Lever to implement the remote block assignment.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate Lever’s performance under various
workloads. First, we describe the experimental environment, and
then present the experimental results.

5.1 Experimental Setup and Workloads
Experimental Setup. Our evaluations are conducted on a hetero-
geneous cluster consisting of two types of machines with different
configurations. The first kind of machines is comprised of two
dual-core Intel Xeon E5-2670 2.6 GHz CPUs, 16GB memory,
and 210GB disks. The second kind of machines consists of two
dual-core 1.2 GHz Intel CPU, 4GB memory, and 210GB disks.
All computers are interconnected with 1Gbps Ethernet cards.
We use spark-1.3.0 as the distributed computing platform and
Redhat Enterprise Linux 6.2 with the kernel version 2.6.32 as
the OS. In multi-tenant environment, we use hadoop version
2.6.0 (a.k.a., YARN) as the resource management platform. In
standalone mode, only one executor is launched in each machine.
So, Spark executor can use all the resources of each node. In
YARN mode, considering that resources need to be shared with
other applications and jobs, we allocate 2 cores and 1GB memory
to Hadoop containers.

Workloads. Table 2 describes the benchmarks used in our
experiments. Similar to previous work [8], we choose three typical
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TABLE 2: Benchmarks

Benchmark Description Complexity Resource Preference Source

Identity Simply reads input and takes no operations on it Single Step None HiBench [29]

Sample Samples the input stream according to specified probability Single Step None HiBench [29]

Projection Extracts a certain field of the input Single Step Network Intensive HiBench [29]

Grep Checks if the input contains certain strings Single Step Network Intensive DStream [8]

WordCount counts the number of each word in input text Multi Step CPU Intensive DStream [8]

Topk Finds the k most frequent words over the specified window Multi Step CPU Intensive DStream [8]

Window Counts the number of each word in a sliding window Multi Batch CPU Intensive -

YSB Advertising using spark streaming in Yahoo streaming benchmark Multi Step CPU Intensive YSB [30]

applications i.e. Grep, WordCount, and TopK. In addition, we also
use the HiBench [29] benchmark including Identity, Sample and
Projection. We rewrite the HiBench benchmark based on receiver
model. Windowed WordCount (Window) and Yahoo streaming
benchmark(YSB) [30] for spark are also used to evaluate Lever’s
performance.

Other configurations. In all our experiments, we use the
Spark default data locality wait time (3s), therefore Delay Schedul-
ing [31] does not interfere with our experimental results. For
Speculative Execution, we set the speculation interval, speculation
quantile and speculation multiplier as 100ms, 0.5, 1 respectively.
These settings let Speculative Execution achieve the best perfor-
mance in our environment based on our tuning results. We imple-
mented Skewtune, Dolly and Wrangler’s prototypes. According to
[15] [20] [21], we make the following settings. We adopt local
scan for Skewtune and set the wait duration of delay assignment
ω as 200ms in Dolly. For Wrangler, we set the confidence measure
ρ as 0.7 and set the interval ∆, which decides the frequency of
node resource usage counters are collected, as one batch.

Unless specified otherwise, we set batch interval as 2 seconds
and input records as 100 bytes. For windowed wordcount, we set
window duration as 10 seconds and slide duration as 2 seconds.
All input data blocks only have one replica. We do not fetch the
final results until the results are stable after each benchmark runs
about 10 minutes. Each experiment is repeated five times and
we present the median numbers. The baseline is original spark
streaming with speculation closed.

5.2 Job Completion Time

We first test the improvements in job completion time using Lever
in two usage mode, i.e. standalone mode and YARN mode. Figure
12 reports the normalized job completion time when compared
with other strategies in two heterogeneous environments. Lever
can significantly improve performance when running Projection,
Grep, WordCount, Topk, Windowed WordCount and YSB. But
Lever improves a little for Identity and Sample relatively. This
is because the performance improvement depends on the type of
workloads. Identity and Sample are of simple execution logic.
Taking Identity for example, it just simply reads input data and
takes no operations on them, and then outputs these raw data.
Therefore, stragglers have little impact on these workloads.

First, we present the results in standalone mode. Compared to
baseline, Lever improves average job completion time by 32.31%,
30.72%, 37.54%, 42.19%, 48.17% and 44.64% for Projection,
Grep, WordCount, Topk, Windowed WordCount and YSB re-
spectively. Speculation and Skewtune work much worse in our
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Fig. 12: Normalized job completion time in two deploying modes

experiments because they need to spend a long time on detecting
stragglers and data skew. Lever pre-schedules input data before
task scheduling and avoids the detecting and migrating overhead.
As a result, Lever outperforms other strategies for the performance
of Projection (by up to 29.47%, 32.06%, 22.99% and 25.56%
compared to Speculation, Skewtune, Dolly and Wrangler), Grep
(by up to 28.87%, 29.11%, 18.82% and 25.81% compared to
Speculation, Skewtune, Dolly and Wrangler), WordCount (by up
to 33.33%, 37.37%, 31.11% and 28.74% compared to Speculation,
Skewtune, Dolly and Wrangler), Topk (by up to 34.48%, 41.24%,
34.48% and 31.33% compared to Speculation, Skewtune, Dolly
and Wrangler), Windowed WordCount (by up to 37.81%, 45.16%,
40.11% and 30.14% compared to Speculation, Skewtune, Dolly
and Wrangler) and YSB (by up to 36.78%, 42.71%, 34.52% and
27.63% compared to Speculation, Skewtune, Dolly and Wrangler)
in standalone mode.

Second, we present the results in YARN mode. We use Spark
Streaming running wordcount as the background job. Compared
to the baseline, Lever improves average job completion time
by 32.17%, 36.44%, 46.91%, 55.21%, 53.36% and 57.28% for
Projection, Grep, WordCount, Topk, Windowed WordCount and
YSB respectively. Speculation and Wrangler behaves much better
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than Skewtune and Dolly in YARN mode. Speculation detects
stragglers by being aware of task progress. The task progress is
affected by resource contention. Wrangler has a machine learn-
ing model to detect stragglers by collecting resource utilization
metrics of a node. That is to say, Speculation and Wrangler all
can be aware of the resource fluctuation. However, Skewtune
can only detect data skew and can not be aware of resource
contention. Dolly has not the ability to adapt to resource changes
and it clones tasks and increases 2x work. So Speculation and
Wrangler are more suitable for dealing with stragglers in resource-
sharing environments. Also Speculation and Wrangler can achieve
better performance in YARN mode than in standalone mode. As
a result, Lever outperforms other strategies for the performance
of Projection(by up to 12.99%, 33.24%, 22.99% and 21.18%
compared to Speculation, Skewtune, Dolly, Wrangler), Grep(by
up to 23.17%, 35.15%, 25.88% and 22.22% compared to Spec-
ulation, Skewtune, Dolly and Wrangler), WordCount(by up to
25.35%, 46.52%, 35.37% and 18.64% compared to Speculation,
Skewtune, Dolly and Wrangler), Topk(by up to 39.73%, 54.64%,
49.43% and 27.87% compared to Speculation, Skewtune, Dolly
and Wrangler), Windowed WordCount(by up to 32.35%, 50.54%,
47.13% and 13.21% compared to Speculation, Skewtune, Dolly
and Wrangler) and YSB(by up to 39.13%, 56.25%, 52.81% and
17.65% compared to Speculation, Skewtune, Dolly and Wrangler)
in YARN mode.

In summary, Lever behaves better in YARN mode than in
standalone mode. It is because Lever can adjust data reassignment
quickly by analyzing recurring jobs’ historical information. For
example, if resource competition is very severe on one node in
this batch, Lever is able to quickly detect resource fluctuation and
make proper pre-scheduling decisions next batch, thus avoiding
straggler tasks.

5.3 Stage MakeSpan

In order to understand how Lever improves the performance, in
this test we show a detailed analysis of stage makespan for every
executor. The stage makespan of a executor is defined as the time
from when the first task starts to when the last task finishes in the
executor.
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Fig. 13: Stage makespan in executors on Standalone Mode

Figure 13 presents the results when running WordCount on
Standalone mode in batch interval of 2 seconds. Makespan is
decided by the last task’s completion time. As we can see, load
unbalancing under Speculation, Skewtune and Wrangler are quite

remarkable. They need to spend much time on detection and
migration thus leading to lots of idle time in some executors. For
Speculation, Executor 1 is free for 1.436s of 1.891s’ JCT (Job
Completion Time). For Skewtune, Executor 1 is idle for 1.806s
of 1.997s’ JCT. For Wrangler, Executor 1 has nothing to do for
1.231s of 1.762s’ JCT. They can not response to stragglers quickly
and migrate them to free fast executors in such a short batch
interval. Although Dolly wastes less time and balances load very
evenly, it clones tasks, which means that it needs to complete 2x
amount of work. In the ideal case, all the nodes should complete
their tasks at almost the same time. Lever behaviors much better
because it pre-schedules data and adjusts task size when receiving
data. So when tasks are running, all nodes can progress at almost
the same rate. For Lever, Executor 1 is idle for 0.592s of 1.263s’
JCT. Figure 14 shows the results when running WordCount on
YARN mode.
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Fig. 14: Stage makespan in executors on YARN Mode

In summary, Lever can achieve much better load balancing
through capacity-aware data pre-scheduling, thus avoiding de-
tection, migration and cloning. As a result, Lever can minimize
makespan and improve the performance significantly.

5.4 CPU Utilization
In this section, we try to explain Lever’s improvements from
a perspective of CPU utilization. We test each executor’s CPU
utilization and average CPU utilization. Figure 15 presents the re-
sults when running WordCount on Standalone mode. We measure
each executor’s CPU utilization by reading the load average of
15 minutes printed by top command. We measure average CPU
utilization as follows. We sum up all tasks’ processing time called
total task time, i.e. CPU execution time. The total CPU time can
be computed as the number of cores multiply by job completion
time (JCT). The average CPU utilization can be expressed as:

AverageCPUUtilization =
TotalTaskT ime

Cores ∗ JCT
(10)

In batched stream systems, the average CPU utilization is higher
than average executor CPU utilization because there exists free
time between job completion time and batch interval. For brevity,
we show the results when running WordCount in baseline. Other
benchmarks have similar results.

Figure 15(a) shows each executor’s CPU utilization. From this
figure, we can see that Executor 13, 14, 15, 16 have high CPU
utilization up to 69.53% in Baseline. Obviously, these executors
are of heavy load. Actually, these executors are launched on slow



11

0 4 8 12 16

0.0

0.2

0.4

0.6

0.8

C
P

U
 U

 t
il
iz

a
ti
o
n

ExecutorID

 Baseline

 Lever

(a) Executor CPU Utilization

0.0

0.2

0.4

LeverA
v
e
ra

g
e
 C

P
U

 U
ti
liz

a
ti
o
n

Baseline

(b) Average CPU Utilization

Fig. 15: CPU Utilization on Standalone mode. Executor CPU
utilization reflects whether this executor is overloaded or under-
loaded. Average CPU utilization reveals whether CPU resources
are being utilized efficiently in one batch.

nodes. Executor 1, 2, 3, 4 have low CPU utilization up to 14.61%
in Baseline. These executors are deployed on fast nodes. Their
CPU resources can not be fully utilized. However, in Lever, load
of Executor 13, 14, 15, 16 can be migrated to Executor 1, 2, 3, 4
efficiently, leading to Executor 13, 14, 15, 16 with 27.37% CPU
utilization and Executor 1, 2, 3, 4 with 52.12% CPU utilization.
The average CPU utilization is 17.51% and 52.27% for Baseline
and Lever respectively. This is not only due to the reduction in
job completion time, but also because Lever reduces the total
task execution time. Figure 16 presents the results when running
WordCount on YARN mode.
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Fig. 16: CPU Utilization on YARN mode

In summary, Lever can decrease the CPU load of slow nodes
and improve CPU utilization of fast node. Lever can also improve
average CPU utilization from 17.52% to 52.23%.

5.5 Adaptability for burst load
In this testing scenario, we give one node burst load to evaluate
the robustness and the convergence time of Lever. The burst load
results in that task completion time exceeds batch interval. We
also test other techniques’ effectiveness under this situation.

From the test result in Figure 17, we observe that both Lever
and Wrangler can achieve much better performance. Baseline,
Speculation, Skewtune and Dolly can not process subsequent
jobs timely because their cloning and hysteresis reaction are not
enough, leading to a large number of subsequent jobs are queueing
in scheduler’s waiting queue. The scheduling delay will increases
monotonously.

Although Wrangler can continue to process subsequent jobs,
it is not stable enough with delay jitter. This is because Wrangler
only cares about stragglers in one batch. The nodes of light
load (actually are potential stragglers) in current batch will be
scheduled many tasks in the next batch, leading to these nodes
being overloaded.

Lever avoids this problem by analyzing recurring jobs’ load
fluctuation in previous batches. As shown in Figure 17 (a), when
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(a) Latency when running WordCount under burst load on a straggler
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(b) Latency when running WordCount under burst load on a faster node

Fig. 17: Adaptability for burst load

giving burst load to a straggler node, Lever can converge to an
ideal latency in six batches. However, when giving burst load to
a faster node, Lever is late on identifying state transition of the
faster node for about one batch, as shown in Figure 17 (b). Only
when a faster node shows the characteristics of a straggler node
in one batch, can Lever adapts its scheduling decisions in the next
batch. Lever converges to an ideal latency in seven batches when
giving burst load to a faster node.

In summary, Lever can adapt to burst load effectively and
converge to a steady state quickly.

5.6 Data Locality and Queued Tasks
In this test, we conduct a statistical analysis about data locality
and queued tasks whose waiting time is greater than three quarters
of batch interval. We observe that in our experiments if a task
waits for three quarters of batch interval, it means that this node
is overloaded and the batch processing time will exceed the batch
interval.

As shown in Figure 18, for Baseline, although most of the tasks
can execute in the local node, there are 33.5%, 39.7%, 44.9% tasks
waiting for more than three quarters of batch interval for Grep,
WordCount and Topk, respectively. These tasks are from straggler
nodes. In order to illustrate the difference, we take WordCount
for example. Dolly and Wrangler only have up to 23.1% and
17.3% tasks waiting for more than three quarters of batch interval.
However, they only have 71.2% and 81.5% node local tasks. They
need to migrate tasks to remote nodes at runtime. This migration
causes extra overhead and neutralizes benefits from reduction in
the number of waiting tasks. Speculation only detects and migrates
a small number of tasks. Skewtune performs much worse because
it spends so long time on detection that it can not react to straggler
and data skew quickly.
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Fig. 18: Data Locality and Tasks whose waiting time is greater
than 3/4 batch interval when running Grep, WordCount and Topk

In the ideal case, all nodes execute local tasks and there are not
tasks queued for more than three quarters of batch interval. Lever
can achieve 96% data locality and 8.7% waiting tasks. The reason
why Lever can not reach the ideal state is that Lever relies on the
estimation of node’s capacity and ignores the median nodes. This
impedes Lever’s perfect load balancing.

In summary, compared to other strategies, Lever can achieve
better data locality and reduce the number of tasks waiting for
long time.

5.7 Deconstructing Performance

In this section, we deconstruct Lever and test each component’s
performance to have a deep understanding about Lever’s im-
provements. We deconstruct Lever into three parts, i.e. identify
potential stragglers based on recurring jobs (IPS), computational
capacity determination using Iterative Learning Control (ILC)
and capacity-aware data reassignment (CADR). We fetch 1800
batches’ information of WordCount to make a statistical analysis
about job completion time. Figure 19 presents the results.
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Fig. 19: Lever improvements. We deconstruct Lever into three
parts, i.e. identify potential stragglers based on recurring jobs
(IPS), computational capacity determination using Iterative Learn-
ing Control (ILC) and capacity-aware data reassignment (CADR).

As we can see, more than 62% batches can achieve 10%∼25%
improvements using IPS. 98% batches’ improvements is below
35%. By using IPS + ILC, more than 69% batches can achieve
15%∼35% improvements. 98% batches’ improvements is below
45%. Under IPS + ILC + CADR, more than 73% batches have
20%∼45% improvements. 98% batches’ improvements is below
60%.

5.8 Sensitivity Study
This section reports on tests used to determine good settings
for Lever parameters. We vary helper size and batch interval to
test Lever’s performance. For brevity, we show sensitivity results
when running WordCount, although similar results hold for other
benchmarks.

0 2 4 6 8 10 12

1.0

1.5

2.0

L
a
te

n
c
y
(s

)

Helper Size

(a) Helper Size

0 2 4 6 8 10

0.2

0.3

0.4

0.5

Im
p
ro

v
e
m

e
n
ts

Batch Interval(s)

(b) Batch Interval

Fig. 20: Sensitivity Analysis. We vary the size of helper group and
batch interval to evaluate Lever’s performance.

Helper Size Test. Recall that the helper group is the set
of workers to whom a worker is eligible to provide assistance.
Figure 20(a) shows the results of varying the helper size from
zero helpers, which is running in Baseline mode, to twelve helpers
for Lever. The results show that, once the helper size is set to 4
or higher, near-ideal performance is achieved. Closer inspection
reveals that using only six helpers provides the best performance.
Of course, the more the helpers are, the better performance Lever
can achieve. Because Lever can distribute stragglers’ work more
evenly among more helpers. But, the difference between settings
from 4 to 12 is negligible.

Batch Interval Test. The batch interval (also called as batch
size) of a batched stream system significantly affects the per-
formance and also impacts Lever’s improvements. Figure 20(b)
shows the results of varying the batch interval from 0.25s to 10s.
Considering that batched stream systems are usually deployed
in a real-time or near real-time scenario, we do not use larger
batch interval. As shown in this figure, we can see that when
batch interval is smaller than 1s, Lever’s effect is not evident.
When batch interval is 0.5s, Lever can achieve the improvements
by 27.78%. When batch interval comes to 0.25s, Lever can only
achieve 21.47%’s improvements. That is because when using very
small batch interval, there is a very small probability producing
stragglers. Stragglers wouldn’t fall behind significantly. As batch
interval increases, the probability becomes higher. The impact of
stragglers is also getting more and more serious. For example, for
a 2s’ batch interval, most of the tasks are normal tasks completed
in 0.5s. However, if one task proceeds more than 1s, it could be
marked as straggler task. So when batch interval is 2s, Lever’s
improvements can arrive at 43.39%.

In summary, choosing 4 helpers in our experimental environ-
ments is enough for Lever to achieve good performance. The batch
interval should not be too small. If the batch interval is less than
1s, Lever may behaves worse.

6 DISCUSSION AND FUTURE WORK

Alternative identifying stragglers. Lever uses a lightweight
method to predict stragglers. There is no doubt that using other
methods such as machine learning algorithms might be able to
get a more accurate result. However, considering the low latency
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of batched stream processing, the overhead of pre-scheduling
should be as small as possible. We do not adopt more complicated
solutions because it is enough to identify stragglers in batched
stream processing.

Compatibility with post-scheduling. Note that pre-
scheduling and post-scheduling are not mutual exclusive. They
are actually compatible with each other and can be integrated into
a system. If pre-scheduling misses some stragglers, then we can
use post-scheduling approaches to tackle them. How to effectively
coordinate pre-scheduling with post-scheduling will be a valuable
problem in our future work.

Multiple-stage and shuffle-heavy jobs. Lever has its limita-
tions because it mainly affects the stragglers in the first stage of
a job. In our experiments, the representative benchmarks are all
two-stages. According to our observations, the tasks’ execution
time in the first stage of a job accounts for a large proportion of
the job completion time. So, Lever performs much better in these
scenarios. However, when running multi-stage jobs or shuffle-
heavy jobs, the bottlenecks will be moved to shuffle operations or
other aspects. We plan to consider the influence of multi-stages or
shuffle-heavy tasks and how to pre-schedule data at shuffle stage
in the future. It will extend the usage of Lever.

7 RELATED WORK

Our work is related to the research in batched stream processing
and straggler mitigation on heterogeneous clusters. We discuss the
most related work in this section.

Batched Stream Processing and Incremental Data Process-
ing Systems. Batched stream processing systems collect received
data into batches and periodically process them using MapReduce-
style batch computations. The typical systems include Comet [6]
which is structured on DryadLINQ, HOP [5] which leverages the
power of batch framework MapReduce, and Spark Streaming [8]
which is built on top of Spark. These systems take full advantage
of characteristics in batch processing engine such as high through-
put and fault-tolerance. Some other systems [32] [33] intent to
modify batch framework to adapt to the requirements of stream
processing. Other stream processing systems such as Borealis [34],
TimeStream [35], Naiad [11], Storm [36] and Heron [37] are based
on the continuous operator model. In this model, the streaming
computation is expressed as a graph of long-lived operators that
exchange messages with each other to process the streaming data.
Incremental bulk processing systems such CBP [38], Percolator
[39] and Incoop [40] allow updated view of processed data set to
be maintained by incrementally and efficiently recomputing the
updates to the input data. In such systems, the recomputation is
triggered whenever an update to the input dataset is detected. A-
scheduler [41] proposes an adaptive scheduling approach for Spark
Streaming that dynamically schedules multiple jobs concurrently
using different policies based on their data dependencies and
automatically adjusts the level of job parallelism and resource
shares among jobs based on workload properties. [42] designs
an online adaptive algorithm based on Fixed-Point Iteration for
batched stream processing system. By using job statistics of prior
batches, it is able to quickly adapt the batch size under changes
in data rates, workload behaviors and available resources. Lever
is also inspired by this work. Drizzle [12] observes that while
streaming workloads require millisecond-level processing, work-
load and cluster properties change less frequently. It decouples the
processing interval from the coordination interval used for fault

tolerance and adaptability and implements a prototype based on
Spark Streaming.

Straggler and Data Skew on Heterogeneous Clusters. Load
imbalance on heterogeneous clusters are common phenomenon in
cluster computing environments because of heterogeneity, strag-
gler, data skew and so on. Many techniques have been presented to
solve these problems. The typical straggler mitigation approaches
are Speculative Execution [3] [43], Mantri [17], Dolly [20],
GRASS [44] and Wrangler [21]. Speculative Execution marks
slow tasks as stragglers and launches a redundant copy of a
task-in-progress on a different node. Using real-time progress
reports, Mantri monitors, detects and acts on outliers by restarting
outliers, network-aware placement of tasks and protecting outputs
of valuable tasks. Dolly is a replication-based method, and it
proposes full cloning of small jobs by delay assignment. Dolly do
not need to wait to observe before acting with a proactive approach
of cloning jobs. But it incurs extra resources. GRASS is designed
for approximation jobs, and it delicately balances immediacy of
improving the approximation goal with the long term implications
of using extra resources for speculation. Wrangler automatically
learns to predict stragglers using a statistical learning technique
based on cluster resource utilization counters. It is a straggler-
avoid method. The typical skew mitigation techniques are Scarlett
[45], SkewTune [15]. Scarlett replicates blocks based on their
popularity by accurately predicting file popularity and working
within hard bounds on additional storage. SkewTune solves the
problem of load balancing in MapReduce-like systems by iden-
tifying the task with the greatest expected remaining processing
time and redistributing the unprocessed data from the stragglers
to other workers. Sparrow [46] is a decentralized scheduler de-
signed for scheduling millions of tasks per second while offering
millisecond-level latency and high availability. It isn’t developed
for solving straggler problems. [47] proposes a cross-platform re-
source scheduling middleware which aims to improve the resource
utilization and application performance in multi-tenant Spark-on-
YARN clusters.

8 CONCLUSION

Optimizing batched stream processing system in heterogeneous
environments has been a challenging problem. This paper presents
Lever, a pre-scheduling straggler mitigation framework that ex-
ploits the predictability of recurring batched stream jobs to opti-
mize the assignment of data. Lever identifies potential stragglers
by analyzing execution information of historical jobs and intro-
duces Iterative Learning Control (ILC) model to evaluate nodes’
capacity. Furthermore, Lever carefully chooses helpers and opti-
mizes the reassignment of job input data according to each node’s
capacity proportion. This feedback-control loop makes Lever
achieve much better load balancing and avoid high execution over-
head. Lever has been implemented on the top of Spark Streaming.
It is also open source and has been included in Spark Packages at
https://spark-packages.org/package/trueyao/spark-lever. We con-
duct various experiments to validate the effectiveness of Lever. Ex-
perimental results demonstrate that Lever reduces job completion
time by 30.72% to 42.19% and outperforms traditional techniques
significantly.
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