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ABSTRACT
Big data analytics often involves complex join queries over two
or more tables. Such join processing is expensive in a distributed
setting both because large amounts of data must be read from disk,
and because of data shuffling across the network. Many techniques
based on data partitioning have been proposed to reduce the amount
of data that must be accessed, often focusing on finding the best
partitioning scheme for a particular workload, rather than adapting
to changes in the workload over time.

In this paper, we present AdaptDB, an adaptive storage manager
for analytical database workloads in a distributed setting. It works
by partitioning datasets across a cluster and incrementally refining
data partitioning as queries are run. AdaptDB introduces a novel
hyper-join that avoids expensive data shuffling by identifying stor-
age blocks of the joining tables that overlap on the join attribute,
and only joining those blocks. Hyper-join performs well when each
block in one table overlaps with few blocks in the other table, since
that will minimize the number of blocks that have to be accessed.
To minimize the number of overlapping blocks for common join
queries, AdaptDB users smooth repartitioning to repartition small
portions of the tables on join attributes as queries run. A prototype
of AdaptDB running on top of Spark improves query performance
by 2-3x on TPC-H as well as real-world dataset, versus a system
that employs scans and shuffle-joins.

1. INTRODUCTION
Data partitioning is a well-known technique for improving the

performance of database applications. By splitting data into parti-
tions and only accessing those that are needed to answer a query,
databases can avoid reading data that is not relevant to the query
being executed, often significantly improving performance. Ad-
ditionally, when partitions are spread across multiple machines,
databases can effectively parallelize large scan operations across
them. The traditional approach to partitioning has been to split
each table on some key, using hashing or range partitioning. This
helps queries that have selection predicates involving the key go
faster, but does not affect the performance of queries without the
key attribute. Likewise, for queries with joins, queries will benefit
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Figure 1: Shuffle vs co-partitioned joins

when the database is partitioned on attributes involved in the join,
i.e., if the tables are co-partitioned on the join attribute. If one or
both tables are not partitioned in this way, a shuffle join, where ta-
bles are dynamically repartitioned so that partitions that join with
each other are on the same machine, is typically performed instead.

Partitioning can dramatically improve the performance of database
applications, particularly when expensive shuffle-joins can be avoided.
To illustrate, Figure 1 shows that co-partitioned joins can be almost
2 times faster than shuffle joins (here we are joining lineitem
and orders tables from TPC-H, a popular decision support bench-
mark, at scale-factor 1000 in Spark [24] on 10 nodes). Because of
these performance gains, many techniques have been proposed to
find good data partitionings for a query workload. Such workload-
based data partitioning techniques typically assume that the query
workload is provided upfront or collected over time [2, 6, 15, 17,
19, 25, 26], and try to choose the best partitioning for that work-
load.

However, in many cases there may be no single static partition-
ing that is good for all workloads. For example, data science often
involves looking for anomalies and trends in data. There is often no
representative workload for this kind of ad-hoc, exploratory analy-
sis, and the set of tables and predicates of interest will often shift
over time. To illustrate this point, we obtained a workload trace
from the analytics engine of a local startup company, which shows
that even after seeing the first 80% of the workload, the remaining
20% of the workload still contains 57% new queries (i.e., only 43%
of the queries are similar to previous ones). Besides not necessar-
ily being representative of what analysts want to do, collecting a
workload upfront inhibits data scientists from starting to explore
the data; instead they must perform a tedious and time consuming
data collection task before they can even ask their first query.

In previous work [21], we proposed a system called Amoeba
that ameliorates some of these problems using a technique we call
hyper-partitioning. Specifically, it first performs an initial parti-
tioning of a dataset on as many attributes as possible, such that we
create a number of small partitions, each of which contains a hy-
percube of the data, potentially from a different subset of attributes.
This is done without any a priori workload. For example, partition
1 of the lineitem table from TPC-H might be partitioned first on
product id, then on price, finally on quantity and partition 2 might
be partitioned on price, then on order id. In this way, the system is
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able to answer any query by reading a subset of partitions. Second,
as more and more queries are observed, hyper-partitioning adap-
tively repartitions the data to gradually perform better on queries
over frequent attributes and attribute ranges.

A key limitation of hyper-partitioning is that it does not adapt in
response to join queries. Instead, tables are simply adapted based
on the range predicates issued over them. Consider TPC-H, where
lineitem can join with three dimension tables: orders, part
and supplier. A dimension table can also join with another di-
mension table. For example, orders can join with customer
on custkey. Nearly all data warehouse workloads involve simi-
lar joins between the fact table and multiple dimension tables. Be-
cause each table adapts differently in Amoeba, tables end up being
partitioned on different attributes and ranges, such that joins of-
ten involve moving large portions of the table from one machine
to another. As a result, shuffle-join is frequently the only sensi-
ble choice for a distributed join algorithm in the Amoeba system.
Such shuffle-joins typically dominate query processing time in dis-
tributed databases, and so represent a missed opportunity for adap-
tive partitioning.

In this paper, we describe AdaptDB, which adaptively reparti-
tions datasets to get good performance on frequent join queries.
As two tables are joined over and over again, AdaptDB smoothly
repartitions these two tables based on the join attribute using a tech-
nique we call two-phase partitioning. The key idea is that data is di-
vided into a number of partitioning trees, with one tree per frequent
join attribute per table. Blocks of data are incrementally moved
from one tree to another as join frequencies vary. Each partitioning
tree is split into two levels: in the top-most level data is partitioned
according to the join attribute, and in the bottom levels it is parti-
tioned according to frequent selection attributes (as in Amoeba). In
AdaptDB, these blocks are spread across many different nodes in a
cluster (we implemented AdaptDB on HDFS in Spark [24]).

As a result of this new partitioning approach, tables may end up
partially partitioned on several different attributes, such that when
two tables A and B are joined, a partition in A may join with sev-
eral partitions inB, each located on HDFS. One option is to simply
perform a shuffle join, repartitioning bothA andB so that each par-
tition of A joins with just one partition of B. However, this can be
suboptimal if each partition ofA only joins with a few partitions on
B; instead, building a hash table over some partitions of A (or B)
and probing it with partitions from B (or A) can result in signifi-
cantly less network and disk I/O. Interestingly, building hash tables
over different partitions of A or B can significantly affect the total
cost, as we show in the next example:

EXAMPLE 1. Suppose tableA has 3 partitions and tableB has
3 partitions. Suppose A1 joins with B1 and B2, A2 joins with
B1, B2 and B3, and A3 joins with B2 and B3, and each machine
Mi has memory to hold 2 partitions to build hash tables on A.
Consider building a hash table over A1 and A3 on M1; we will
need to read B1, B2 and B3. We then build another hash table
over A2 onM2 and again read B1, B2 and B3. In total, we read
6 blocks. As an alternative, building a hash table over A1 and
A2 onM1 and another one over A3 onM2 requires reading just
B1, 2 ∗B2, 2 ∗B3 = 5 blocks.

Thus, building hash tables over different subsets of partitions
will result in different costs. Unfortunately, as we show, finding
the optimal collection of partitions to read is NP-Hard. Instead,
we develop a new join algorithm called hyper-join that solves this
problem heuristically, providing significant performance gains over
shuffling in practice. To obtain these gains, partitions must be con-
structed such that, for a join between tablesA andB, each partition

of A only joins with a subset of the partitions of B. To do this, we
develop several partitioning techniques that adapt partitioning trees
to provide this property for commonly occurring joins.

In summary, we make the following major contributions:

• We introduce the hyper-join algorithm, which does not re-
quire shuffling datasets across the cluster. The challenge
of hyper-join is to find optimal splits to minimize the total
amount of disk I/O. We formulate this as an optimization
problem based on mixed integer programming and give a
proof of the hardness of the problem. An approximate al-
gorithm is also proposed, which runs in much less time.

• We introduce several techniques to incrementally generate
partitionings that are good for hyper-joins: two-phase par-
titioning and smooth repartitioning. AdaptDB’s optimizer
makes the decision to smoothly repartition part of the data
with two-phase partitioning based on the queries in the query
window.

• We describe an implementation of AdaptDB on top of HDFS
and Spark and report a detailed evaluation of the AdaptDB
storage manager on both synthetic and real workloads. We
demonstrate that hyper-join can significantly reduce the cost
of joins versus shuffle join, and that our incremental repar-
titioning techniques can yield partitionings that are good for
hyper-join. Overall we show that hyper-join can be 2x faster
than shuffle join on TPC-H and a real workload, and that it
can effectively adapt as the mix of queries changes.

Before describing how these algorithms work, we present the
architecture of the AdaptDB system.

2. SYSTEM ARCHITECTURE
AdaptDB is a table-oriented relational storage manager. It pro-

vides support for predicate-based data access and efficient data an-
alytics based on joins. The primary goal of AdaptDB is to adapt
to changes in the underlying workload using incremental reparti-
tioning to ensure that join performance is good (i.e., does not re-
quire shuffle joins), and that sequential scans of entire tables can be
avoided.
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Figure 2: AdaptDB architecture

AdaptDB is a self-tuning storage system that can adapt itself to a
specific workload and does not require manual effort or configura-
tion from users. Figure 2 shows the key components of AdaptDB.
The upfront partitioner creates an initial partitioning of the data
using the method of Amoeba [21], described in the next section.
This results in a collection of blocks (typically 64 MB or larger, as
in HDFS), spread across the nodes of a distributed storage engine.
Each of these blocks is partitioned on one or more attributes. This
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Figure 3: Upfront partitioning in Amoeba

up-front partitioning is done according to a partitioning tree, where
the root splits the data in two partitions according to a randomly se-
lected attribute, and each of these partitions is itself randomly par-
titioned (each on different attributes). This recursion repeats until
blocks are less than the desired block size (Amoeba uses a sample
of data to compute these splits and then loads data into blocks in
a single pass). In addition to storing these blocks and samples, we
store meta-data that tracks the split points for the data in the tree,
and query logs for use in making repartitioning decisions.

They key contribution of AdaptDB is that, for join queries over
multiple tables, we can execute joins using hyper-join. Hyper-join
is preferred over a conventional shuffle join when the partitioning
of the two tables is such that the number of blocks that would have
to be moved to complete the join would be less than the number
of blocks required in a shuffle join. This will be the case when the
number of blocks in each table overlap with only a few blocks in
the other table. Once it has chosen to use a hyper-join, AdaptDB
employs an optimization algorithm to build hash tables optimally.

To provide good performance, AdaptDB repartitions blocks as
queries are run. For selection predicates, it employs the adaptation
method of Amoeba (also described in the next section). For join
predicates, it employs a technique which we call smooth reparti-
tioning, where it uses the first few levels of the tree to split on join
attributes, and maintains multiple trees, one for each common join
attribute on a particular table. As joins are executed, blocks are
incrementally repartitioned from one partitioning tree to the other.
AdaptDB uses a cost model and query log to make decisions about
which blocks to move, and when.

3. BACKGROUND
In this section, we briefly describe the Amoeba storage system [21].

AdaptDB builds on top of Amoeba by adding support for adaptive
joins. Amoeba exposes a storage manager, consisting of a collec-
tion of tables, with support for predicate-based data access, i.e.,
scan a table with a set of predicates and return matching records.
By partitioning data, Amoeba can often access a subset of blocks
of data.

3.1 Upfront Data Partitioning
In Amoeba, a new block is created for every B bytes. Amoeba

also considers the attributes of the dataset when creating blocks.
As noted in the previous section, a dataset is split into data blocks
on the underlying storage system using a partitioning-tree based
on attributes. Amoeba recursively divides a dataset on different
attributes, until the partition size is smaller than the block size of
the storage system.

Amoeba represents the partitioning tree as a balanced binary
tree i.e., it recursively partitions the dataset into two parts until it
reaches the minimum partition size. Each node in the tree is de-
noted as Ap where A is the attribute being partitioned on and p is
the cut-point. All records with attributeA ≤ p go to the left subtree

and the rest of records go to the right subtree. The leaf nodes in the
tree are data blocks, each with a unique identifier. An attribute can
appear in multiple nodes in the tree. Having multiple occurrences
of an attribute increases the number of ways the data is partitioned
on that attribute.

Figure 3(a) shows such a partitioning tree. Here, it first partitions
the dataset over attribute A, and then on attributes B and C recur-
sively. In the end, 8 data blocks are created in total. As a result,
queries with predicates on any attribute of A, B, and C can skip
up to 50% of the data. The partitioning tree in Figure 3(a) can only
accommodate as many attributes as the depth of the tree. Given a
dataset with of size D and minimum block size p, the partitioning
tree can only contain blogn

D
P
c attributes when using n way parti-

tioning. For example, for n = 2, D = 1TB, and P = 64MB, the tree
can only accommodate 14 attributes. However, many real-world
schemas have many attributes. To accommodate more attributes,
Amoeba employs heterogeneous branching in the partitioning tree,
i.e., it puts different attributes on the same level in the tree as shown
in Figure 3(b). This sacrifices optimal performance on a few at-
tributes to achieve improved performance over more attributes. In
Figure 3(b), Amoeba is now able to accommodate 4 attributes, in-
stead of 3. However, attributes C and D are each partitioned on
50% of the data. Heterogeneous branching is based on the premise
that, in the absence of a workload, there is no reason to prefer one
attribute over another.

Amoeba uses a top-down algorithm to initially assign different
attributes to different nodes in the tree while trying to ensure the
average number of ways each attribute is partitioned on is almost
the same. The resulting balanced binary partitioning tree is used
to partition the data into blocks which are then saved on HDFS.
Real world datasets tend to be skewed or have correlation among
attributes. In order to generate almost equally sized blocks, the
system collects a sample from the data and uses it to choose the
appropriate cut points.

3.2 Adaptive Re-partitioning
As users query the dataset, the goal of Amoeba is to adapt the

partitioning based on the observed queries. Amoeba maintains a
query window denoted by W . Each incoming query q is added
into the query window. After each query, Amoeba looks at the cur-
rent query window and considers alternative partitioning trees that
could be generated by repartitioning on one or more blocks. These
alternatives are generated by using a set of transformation rules on
the current partitioning tree (i.e., merge two existing blocks parti-
tioned on A and repartition them on B.) The system uses a bottom-
up algorithm to compute the set of alternatives trees efficiently, us-
ing query predicates as hints to generate them. Among the set of
alternative trees generated, it switches to the tree T that maximizes
the total benefit using a simple cost formula based on the number
of blocks read and an estimate of the repartitioning cost.

4. ADAPTIVE DISTRIBUTED JOINS
We now turn our attention to the hyper-join algorithm, which

avoids expensive data shuffling whenever possible.

4.1 Hyper-join
Hyper-join is designed to move fewer blocks throughout the clus-

ter than a complete shuffle join when tables are not co-partitioned.
In the rest of this section, we first give the problem definition and
formulate it as an optimization problem. We then introduce an op-
timal solution based on mixed integer programming. Finally, we
present our approximate algorithm which can run in a much shorter
time.
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Figure 4: Illustrating hyper-join

4.1.1 Problem definition
Suppose we have two relations R and S, which can join on at-

tribute t. Let R = {r1, r2, . . . , rn} and S = {s1, s2, . . . , sm} be
the collection of data blocks obtained from AdaptDB.
V = {v1, v2, . . . , vn} is a collection of m-dimensional vectors,

where each vector corresponds to a data block in relationR. The j-
th bit of vi, denoted by vij , indicates whether block ri from relation
R overlaps with block sj from relation S on attribute t (these are
the blocks that must be joined with each other). Let Ranget(x) be
a function which gives the range (min and max values) of attribute
t in data block x and 1(s) be a function which gives 1 when state-
ment s is true. Given two relations R and S, and for each block ri
fromR and sj from S, let vij = 1(Ranget(ri)∩Ranget(sj) 6= ∅).
A straightforward algorithm to compute V has a time complexity
of O(nm). The Ranget values for each block are stored with each
block in the partitioning tree.

Let P = {p1, p2, . . . , pk} be a partitioning overR, where P is a
set of disjoint subsets of the blocks of R and its union is all blocks
inR. We constrain each pi to be able to fit into memory of the node
performing the join. We use ṽ(pi) to denote the union vector of all
vectors in pi, i.e., ṽ(pi) =

∨
rj∈pi vj , where vj is the vector for

block rj . Let δ(vi) =
∑m
k=1 vik indicating the number of bits set

in vi.
Given a partition pi, we define the cost C(pi) of joining pi

with all partitions in S as the number of bits set in in ṽ(pi), i.e.,
C(pi) = δ(ṽ(pi)). This corresponds to the number of blocks that
will have to be read to join pi in a hyper-join. Next, we define the
cost function C(P ) over a partitioning, which is the sum of C(pi)
over all pi in P :

C(P ) =
∑
pi∈P

C(pi)

Thus, the problem of computing hyper-join is finding the optimal
partitioning P of relation R.

Consider the example in Figure 4, with tableR = {r1, r2, r3, r4}
and table S = {s1, s2, s3, s4} and we assume |P | = 2, i.e., that
we have sufficient memory to store |R|/|P | = 4/2 = 2 blocks
of R in memory at a time. The interval on each partition indicates
the minimum and maximum value on the join attribute from all the
records. The arrows in the figure indicate the two corresponding
partitions overlapping on the join attribute. As we can see from
the figure, r1 needs to join with s1, r2 needs to join with s1, s2,
etc. Therefore, we have V = {v1 = 1000, v2 = 1100, v3 =
0110, v4 = 0011}. We can build a hash table over multiple yellow
partitions to share some disk access of green partitions. For exam-
ple, we can build a hash table over the first two yellow blocks (r1
and r2) and another one over the last two yellow blocks (r3 and
r4), so that only 5 green blocks need to be read from disk, assum-
ing only one green block is in memory at a time. In this way, the
partition P = {p1 = {r1, r2}, p2 = {r3, r4}}, which is optimal.

The overall cost C(P ) = 5, since ṽ(p1) = 2 and ṽ(p2) = 3.
Intuitively, the objective function C(P ) is the total number of

blocks read from relation S, with some blocks being read multiple
times. From the perspective of a real system, we have to constrain
the size of pi, both due to memory limits and to ensure a minimum
degree of parallelism (the number of partitions should be larger
than a threshold). If memory is sufficient to hold B blocks from
relation R, then we need c = dn/Be partitions. We now define the
Minimal Partitioning.

PROBLEM 1. Given a set of data blocks from relation R, find a
partitioning P over R such that C(P ) is minimized, i.e.,

arg min
P

C(P )

subject to |P | = c,

|pi| ≤ B,∀pi ∈ P.

4.1.2 Optimal algorithm
We now describe a mixed integer programming formulation which

can generate the minimal partitioning. Since the algorithm takes a
long time, it’s not practical for real-world deployment. Instead, it
provides a baseline with which to compare the faster approximation
algorithm that we present in the subsequent section.

Given the maximum number of data blocks B that we can use
to build a hash table due to available worker memory, we need to
build c = dn/Be hash tables in total. For each data block ri from
relation R and each partition pk, we indicate the assignment of
ri to partition pk with a binary decision variable xi,k ∈ {0, 1}.
Likewise, for each data block sj from relation S, we create a binary
decision variable yj,k ∈ {0, 1} to indicate if the j-th bit of ṽ(pk)
is 1.

The first constraint requires that the size of each partition pk is
under the memory budget B,

∀k,
n∑
i=1

xi,k ≤ B

The second constraint requires that each data block ri from rela-
tion R is assigned to exactly one partition, so for each ri,

∀i,
c∑

k=1

xi,k = 1

Given a partitioning P , for each partition pk, we need to guaran-
tee every overlapping data block from relation S is also in partition
pk. Let Jk be the set of data blocks from relationR which overlaps
with data block sk from relation S.

∀i,∀k, ∀j ∈ Jk, yi,k ≥ xi,j
We seek the minimal input size of relation S,

min

m∑
j=1

c∑
k=1

yj,k

Solving integer linear programming (ILP) of this form is gen-
erally exponential in the number of decision variables; hence the
running time of this algorithm may be prohibitive.

4.1.3 Approximate partitioning
We now consider a heuristic algorithm to partition R into parti-

tions of size B. The algorithm is given in Figure 5.
The algorithm starts from an empty set of partitions P . It it-

eratively generates a partition P by taking at most B data blocks
from relation R with smallest δ(ṽ(P)) and adds P into P until P
contains all blocks from relation R.
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R← {r1, r2, . . . , rn}, P ← ∅
while R is not empty:

generate P from min(B, |R|) blocks with smallest δ(ṽ(P))
remove all blocks in P from R and add P to P

return P

Figure 5: An approximate partitioning algorithm

4.1.4 NP-Hardness
We now prove that problem of takingB data blocks from relation

R with smallest δ(ṽ(P)) is NP-hard by reduction from maximum
k-subset intersection [5].

Given a maximum k-Subset intersection instance I = (C,E),
where C = {c1, c2, . . . , cn} subsets over a finite set of elements
E = {e1, e2, . . . , em}, and a positive integer k. The maximum k-
Subset intersection problem finds exactly k subsets cj1 , cj2 , . . . , cjk
from C whose intersection size |cj1 ∩ cj2 ∩· · ·∩ cjk | is maximum.

We construct an input to maximum k-Subset intersection prob-
lem from an instance to our problem as follows. For each bit vector
vi, we construct a flipped bit vector v̄i, i.e., ∀k, v̄ik = 1− vik . Let
C = {v̄1, v̄2, . . . , v̄n} be a set which consists of all flipped bit vec-
tors from relation R. Each flipped vector v̄i from C denotes which
blocks from relation S that v̄i does not overlap with. Therefore, we
let E = {s1, s2, . . . , sm} consist of all blocks from relation S and
k = B. Since

∧
v̄i =

∨
vi, minimizing |v̄j1 ∧ v̄j2 ∨ · · · ∨ v̄jk |

is equivalent to maximizing |vj1 ∨ vj2 ∨ · · · ∨ vjk |. Therefore,
an optimal solution to our problem solves the maximum k-Subset
intersection problem on I .

4.1.5 A bottom-up solution
Since takingB data blocks from relationRwith smallest δ(ṽ(P))

is NP-hard and there is no algorithm for n1−ε-approximation for
any constant ε > 0, we developed a simple bottom up algorithm
with practical runtimes for use in AdaptDB. It is shown in Figure 6.

R← {r1, r2, . . . , rn}, P ← ∅, P ← ∅
while R is not empty:

merge P with data block ri with smallest δ(ri ∨ ṽ(P))
if |P| = B or ri is the last one in R:

add P to P and P ← ∅
remove data block ri from R

return P

Figure 6: A bottom-up solution

The algorithm starts from an empty set of partitions P and an
empty partition P . It iteratively adds a data block ri into P with
smallest δ(ri ∨ ṽ(P)) until we have B blocks in partition P or no
data block left in relation R. It then adds P into P until P con-
tains all blocks from relation R. A straightforward implementation
of this algorithm has a time complexity of O(n2) (where n is the
number of blocks of R), since we have to compute the minimum
cost block (requiring a scan of the non-placed blocks) n times.

4.2 Analysis of Shuffle Join and Hyper-join
We consider a theoretical model here which analyzes the cost of

shuffle join and hyper-join in a distributed database. The model
focuses on the number of blocks read (I/O cost), as the time to
process a join is directly proportional to the number of blocks ac-
cessed. Each block incurs approximately the same amount of disk
I/O, network access, and CPU (hashing/joining) costs.

One concern might be that local I/O is cheaper than remote (net-
work I/O). However, recent improvements in datacenter network
design have resulted in designs that provide full cross-section band-
width of 1 Gbit/sec or more between all pairs of nodes [4], such that
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network throughput is no longer a bottleneck. Recent research has
shown that accessing a remote disk in a computing cluster is only
about 8% lower throughput than reading from a local disk [3].

To verify this in a real system, we ran a micro-benchmark on
Hadoop, in which we measured the runtime of a map-only job (per-
forming simple aggregation in the combiner) while varying the lo-
cality of data blocks on HDFS. Figure 7 shows the results from a
4-node cluster with full duplex 1 Gbit/sec network. Note that even
with locality as low as 27%, the job is just 18% slower than with
100% data locality. We leverage these new hardware trends and the
fact that the cost of remote disk access is essentially the same as
local disk access in our cost analysis below.

We now analyze the cost of shuffle join and hyper-join. Suppose
we have a query q over two relations R and S.
Shuffle Join. There are two phases in shuffle join. In the first
phase, map tasks are created to read data blocks from HDFS. For
each record in the dataset, it uses a partitioning function to find a
corresponding partition it belongs to and write it to a file on local
disk. In the second phase, each machine is responsible for some key
space of the partitioning function and reads partitions either locally
or from remote machines before joining two tables. In summary,
each record is read from disk, partitioned by a partition function
and written to disk, and read from disk again to compute join result.
We use Cost-SJ to denote the cost of shuffle join over two tables.

Cost-SJ(q) =
∑

b∈lookup(TR,q)

CSJ · |b|+
∑

b∈lookup(TS ,q)

CSJ · |b| (1)

Where TR and TS are the partitioning trees for relationR and S,
and the function lookup(T, q) gives the set of relevant data blocks
for query q in T . The value of CSJ is obtained empirically by mod-
eling the disk access and the cost of data shuffling, which is set to
3 in our evaluation. To verify Cost-SJ(q) is linear with the number
of data blocks read from disk, we ran a micro-benchmark in Spark,
in which we measured the runtime of joining table lineitem and
orders from TPC-H while varying the size of tables. Figure 8
shows the results from 175G to 580G; note that the running time
increases linearly with the size of dataset.
Hyper-join. In hyper-join, data blocks from one table are read
through HDFS to build a hash table. It then probes the hash table
with all overlapping data blocks from the other table. Without loss
of generality, a hash table is built on relation R in the analysis. We
use Cost-HyJ to denote the cost of hyper-join over two tables and
hash tables are built on table R.

Cost-HyJ(q) =
∑

b∈lookup(TR,q)

|b|+
∑

b∈lookup(TS ,q)

CHyJ · |b| (2)

Here CHyJ is a measure of the number of times (on average) a
data block from relation S needs to be read from disk – this depends
on the quality of the partitioning in the two tables. For a completely
co-partitioned table, CHyJ will be 1, as each block in relation R
joins with exactly one block in relation S. In Section 7.4, we show
that our algorithms can achieve an CHyJ of around 2 on real query
workloads using a memory size of 4GB on a 1 TB dataset.
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Figure 9: Illustrating two-phase partitioning

Depending on the values of Cost-SJ(q) and Cost-HyJ(q), hyper-
join can be substantially more efficient in terms of the communi-
cation cost than shuffle join. However, in order for this to be true,
data sets must be partitioned on the join attribute. It’s difficult to
achieve this by adaptively repartitioning a tree based solely on se-
lection predicates, as it’s unlikely to have the join attribute in very
many nodes in the tree, and it’s highly possible that every parti-
tion will overlap with a large number of partitions. To tackle this
challenge, AdaptDB employs a technique we call smooth reparti-
tioning with two-phase partitioning to push the join attribute into
the partitioning tree. We describe this in the next section.

4.3 Joins Over Multiple Relations
We have so far restricted our discussion on hyper-join to two

relations but our techniques extend to multiple inputs as well. Con-
sider TPC-H query 3. If the join order is (lineitem ./ orders)
./ customer and the intermediate result of the first two tables is
denoted by tempLO, then the relation customer needs to join
with tempLO on custkey. If custkey is the join attribute
in the customer partitioning tree, AdaptDB only needs to shuf-
fle tempLO based on custkey, and can then use hyper-join in-
stead of an expensive shuffle join, in which both tempLO and
customer need to be shuffled.

When there are more relations to join, shuffle join over two in-
termediate relations from hyper-join could be more efficient. Con-
sider TPC-H query 8. If the join order is ((lineitem ./ part) ./
orders) ./ customer, then the intermediate result with relation
lineitem needs to be shuffled twice. Instead, we can change the
join order to (lineitem ./ part) ./ (orders ./ customer)
and use hyper-join twice and a shuffle join over the intermediate
results.

5. PARTITIONING FOR HYPER-JOIN
In this section, we describe how we build and maintain partition-

ing trees to support the hyper-join algorithm running in AdaptDB.
Specifically, we introduce the idea of two-phase partitioning, where
partitioning trees have join predicates injected at their root, and
smooth repartitioning where we maintain multiple partitioning trees
and migrate blocks between them. AdaptDB’s optimizer automati-
cally applies these techniques as appropriate to achieve better per-
formance without the need for manual tuning.

5.1 Two-phase Partitioning
A key limitation of the adaptive repartitioning technique used in

Amoeba is that it does not adapt in response to join queries. Instead,
each table adapts independently and tables end up being partitioned
on different attributes and ranges, such that hyper-join would not
provide a performance advantage over shuffle joins. Hence a key
goal is to adapt partitioning trees in a way that facilitates joins while
maintaining the performance advantages of partitioning for selec-
tion queries.

Each AdaptDB tree is designed to support a single join attribute.
We choose to build a new partitioning tree when a new popular join

attribute is seen (this is described in more detail in the next section),
or if requested to do so by the user (because he or she believes a
particular join will be common).

AdaptDB uses two-phase partitioning to inject the join attribute
into the tree, as depicted in Figure 9. In the first phase, splitting
is done join attributes, and in the second it is done on selection
attributes.

In Figure 9, the join partitions are depicted in orange, and parti-
tioning nodes in support of selections are shown in blue. Median
values of the join attribute are used to split the dataset into two
subsets during the first phase. This median-based partitioning is
further applied in lower-levels of the tree, splitting each partition
on its median (we do this efficiently by sorting all values of the at-
tribute in the sample at the root, and recursively computing medians
for each subtree over this sorted list). During the second phase, the
join partitions are further partitioned using the adaptive partition-
ing technique of Amoeba. There is a trade-off between the number
of levels reserved for the join attribute and the number of levels
reserved for selection attributes. We evaluate the number of levels
that should be reserved for the join attribute in our evaluation.

Consider the left partitioning tree in Figure 4 as an example.
There are two levels in the tree which are reserved for the join at-
tribute, which, assuming data is uniformly distributed in the range
[0, 400], leads to four disjoint partitions with range [0, 100), [100, 200),
[200, 300), and [300, 400). The same procedure is also applied
to the right partitioning tree, which creates four disjoint partitions
with range [0, 150), [150, 250), [250, 350), and [350, 400).

As an alternative to partitioning the top levels of the tree on the
median value, we could have used hashing or range-based parti-
tioning. The disadvantage of hash-based co-partitioning is that it
cannot answer queries with range queries on the join attribute. Such
joins may occur, for example, in social network applications, where
we may wish to join on some geographic or temporal range, e.g.,
users who have been in a lat/lon region within some time frame.
Likewise, data skew is prevalent in social networks, and using sim-
ple range-based co-partitioning can lead to imbalanced data blocks;
medians help avoid this skew.

5.2 Smooth Repartitioning
A partitioning tree created through two-phase partitioning is only

optimized for a single join attribute. However, a table with multi-
ple foreign keys may join with multiple tables. For example, in
TPC-H, queries join lineitem and orders on order key and
lineitem and supplier join on supplier key. We observe
multiple instances of this kind of multi-join pattern in the real work-
loads we use to evaluate AdaptDB.

Our goal is that, when AdaptDB observes new incoming queries
containing a new join attribute, it should shift to the new join at-
tribute. However, repartitioning all of the data immediately would
introduce a potentially very long delay, and, when the workload is
periodic, could lead to oscillatory behavior where it switches from
one partitioning to another. In addition, during the shift to the new
join attribute, AdaptDB should provide good performance for both
types of queries instead of always using shuffle join.

To tackle these challenges, AdaptDB introduces smooth repar-
titioning, which smoothly adapts to the new join partitioning at-
tribute, providing reasonably good performance for both types of
queries during the transition. For the sake of simplicity, we restrict
our discussion to shifting from one join attribute to another attribute
in this section, but our techniques generalize naturally to multiple
join trees.

AdaptDB keeps all queries in a recent query window. When
AdaptDB observes a query with a new join attribute, it creates a
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(1)	A	partitioning	tree	on	A
(2)	Smooth	repartitioning	from	A	to	B

A	new	partitioning	tree	B	is	created.	Some	data	blocks	under	tree	A	are	repartitioned	after	running	each	query. (3)	Repartitioning	completes

Figure 10: Illustrating smooth repartitioning

W ← Query window, q ← New incoming query
T ← Old partitioning tree, T ′ ← New partitioning tree
W ←W ∪ {q}
if q’s join attribute t is as the same as T ′’s:
n← |{q|q ∈W ∧ q’s join attribute = t}|
p← n

|W | −
|T |

|T |+|T ′|
if p > 0, repartition p percent of the data from T to T ′

Figure 11: The smooth repartitioning algorithm

new partitioning (initially empty) tree. The new tree’s join attribute
comes from the new query and the its predicates are used to build
the lower levels of the tree. AdaptDB also repartitions 1/|W | of the
dataset from the old tree to the new tree, where |W | is the length
of the query window. This is accomplished by randomly choos-
ing 1/|W | of the blocks in the old tree, and inserting them into
the new tree (because files are only appended in HDFS, it is pos-
sible to do this without affecting the correctness of any concurrent
queries). To avoid doing repartitioning work when rare queries ar-
rive, AdaptDB can be configured to wait to create a new partition-
ing tree until the query window contains some minimum frequency
fmin of queries for a new join attribute; in this case once the tree is
created, fmin/|W | of the blocks will be moved.

As AdaptDB starts seeing more and more queries with the new
join attribute, it repartitions more data into the new partitioning tree
using the following algorithm. It first calculates the percentage of
two types of query in the query window and how much data each
partitioning tree has. If the incoming query’s join attribute is the
same as the newly created partitioning tree and the fraction of data
in the new partitioning tree is less than the fraction of its type in the
query window, AdaptDB moves data from the old partitioning tree
to the new one, again by randomly selecting blocks and moving
them. Pseudo-code of the algorithm is shown in Figure 11, where
|T | denotes the size of data under the partitioning tree T .

Consider the example in Figure 10. The algorithm starts from a
partitioning tree optimized for join attribute A. When a query with
new join attribute B comes into AdaptDB, AdaptDB creates a new
partitioning tree for B with two-phase partitioning and repartitions
1/|W | of the dataset from the old partitioning tree. The color of
nodes from the lower levels of the partitioning trees indicate the
size of data. The darker the color is, the larger the size of data is.
After the new tree is created, AdaptDB maintains two partitioning
trees with different join attributes during smooth repartitioning. As
more and more queries with join attribute B appear in the query
window, AdaptDB repartitions more data from the old partitioning
tree to the new one. AdaptDB iterates the above procedures until
the query window only includes queries with join attributeB. After
the dataset finishes repartitioning, the old partitioning tree for join
attribute A is removed and AdaptDB only maintains the partition-
ing tree for join attributeB, which is depicted by the last sub-figure
in Figure 10. (Of course, in many applications there will not be a

complete shift from one join to another, in which case multiple trees
will be preserved.)

5.3 Key Benefits
The key benefits of two-phase partitioning and smooth reparti-

tioning are as follows:

Avoiding shuffle join. It’s not uncommon for multiple tables to be
involved in data analytics. 18 out of 22 queries from TPC-H need
to join multiple tables, such as lineitem, orders, customer
and supplier. However, it’s prohibitively expensive to shuffle
a dataset across a cluster of machines, especially, when there is no
selective predicate on a large dataset. For example, consider TPC-
H query 3, the selectivity of predicate l shipdate > date ‘[DATE]’
is from 75% to 90%. As another example, TPC-H queries 5 and
8 do not have any predicate on lineitem at all. We would like
to fine-grained partition a dataset based on the join attribute. After
partitioning, each partition only needs to join with a few partitions
from the other dataset, so hyper-join will be very effective. Without
using partitioning on the join attribute, it may not be possible to get
any performance benefit from partitioning. For example, in the case
of TPC-H queries 5 and 8, no matter how many queries arrive, it’s
still not possible to reduce the number of records to read by simply
partitioning with selection predicates. In contrast, partitioning on
join attributes and employing hyper-join can provide a significant
speedup.

Smooth shift to other join attributes. When queries with a new
join attribute arrive in AdaptDB, it shifts the partitioning of the
dataset from the old join attribute to the new one. Meanwhile,
it can use a combination of hyper-join and shuffle to execute a
query. Consider the case of a mix of TPC-H queries 12 and 14.
Query 12 joins lineitem and orders on order key, and
query 14 joins lineitem and part on part key. As more and
more queries from query 14 arrive, the partitioning will shift from
order key to part key smoothly. Even when maintaining two
partitioning trees for lineitem (one on order key and the one
on part key), AdaptDB can use a combination of shuffle join and
hyper-join to execute queries from both queries, performing much
better than using full shuffle joins.

5.4 Putting it All Together
AdaptDB manages partitioning trees using the smooth-repartitioning

approach, continuously migrating blocks as join queries arrive to
ensure a proper balancing of data across partitioning trees. To exe-
cute joins, AdaptDB uses a simple cost model based on equations 1
and 2. First, it estimates CHyJ for the two tables being joined. It
does this by using the hyper-join algorithm (Section 4.1.5) to com-
pute the schedule of blocks to read, and counts the total number of
block reads that would result if the schedule were run. Then, using
the two equations, it decides whether to actually run hyper-join or
shuffle join based on the sizes of the two tables and the estimated
CHyJ value.
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6. IMPLEMENTATION
In this section, we describe AdaptDB’s implementation1. AdaptDB

runs on HDFS and Spark [24]. We choose HDFS as it’s a popular
open source distributed file system, but our ideas can be imple-
mented on any other distributed file system. Likewise, AdaptDB’s
query executor can also be built on any other data-parallel comput-
ing system, e.g., Hadoop [1] or Husky [23].

The AdaptDB storage manager consists of two modules: (1) the
upfront partitioner, which generates an upfront partitioning from
raw data and writes initial partitions. (2) the adaptive repartitioner,
which adaptively repartitions the underlying data according to query
workload. When a query is submitted to AdaptDB, it first goes to
the optimizer, then to the query planner and finally to the query
executor for query execution.

Optimizer. This component is responsible for adjusting the par-
titioning tree(s) for each table in AdaptDB. It decides how much
data should be repartitioned. If there are multiple partitioning trees
for a table, some blocks may be repartitioned based on the percent-
ages of each type of query in the query window. If there is only one
partitioning tree but the optimizer decides it can be refined, some
blocks also need to be repartitioned.

The optimizer yields two disjoint sets of data blocks: (1) Type
1 blocks that will only be scanned, and (2) Type 2 blocks that will
be scanned and repartitioned to generate new data blocks using the
new partitioning tree. Either one of these sets above may be empty.

Query Planner. This component decides how to join two tables
in AdaptDB. There are three cases: (1) both tables have only one
partitioning tree and each table is partitioned on the join attribute;
in this case, hyper-join can be used instead of shuffle join; (2) one
table has one partitioning tree on the join attribute and the other
table has multiple partitioning trees, which could happen during
smooth repartitioning – in this case, AdaptDB uses a combination
of hyper-join and shuffle join for query execution; (3) both tables
have multiple partitioning trees, or none of the partitioning trees are
on the join attribute – in this case, AdaptDB will generally fall back
to shuffle join for query execution (although its possible hyper-join
could still be beneficial if the up-front partitioning happens to work
out.)

Query Executor. AdaptDB executes queries in Spark. A Spark
job is constructed from the two sets of data blocks returned by the
optimizer. We create file splits from these data blocks. The size of
each file split is less than a user-supplied threshold; we use a 4GB
split size in our experiments.

A Spark task is created on each file split; the task reads the data
blocks from HDFS in bulk and iterates over the records in mem-
ory. Tasks created for Type 1 blocks run with a scan iterator which
simply reads all records and filter out ones that cannot pass the
predicates in the query. Tasks created for Type 2 blocks run with
a repartitioning iterator. Besides reading and filtering records as
in the scan iterator, the repartitioning iterator also looks up each
record in the new partitioning tree to find its new partition id and re-
partitions the record accordingly. The repartitioning iterator main-
tains a buffered writer. Once a buffer is full, the repartitioner flushes
the records in the buffer into HDFS. Several repartitioners across
the cluster may write to the same file. As a result, repartition-
ers need to coordinate while flushing the new partitions. We use
ZooKeeper for distributed coordination.

Tasks are scheduled by the Spark scheduler and executed across
the cluster in parallel. The result exposed to users is a Spark RDD.

1The source code is available at: https://github.com/
mitdbg/AdaptDB

Users can conduct more complex analysis on top of the returned
RDDs using the standard Spark APIs, e.g., run an aggregation.

7. EVALUATION
In this section, we analyze the performance of AdaptDB focus-

ing on the following key questions:
• How much performance gain can AdaptDB’s hyper-join al-

gorithm achieve over a traditional shuffle join algorithm?
• Does AdaptDB eventually converge when a particular work-

load is seen more often?
• How sensitive is AdaptDB to different parameters?
• Is AdaptDB’s ILP formulation for choosing which blocks to

join necessary for achieving good performance under a space
constraint? How does the heuristic block selection algorithm
perform?
• What is AdaptDB’s performance on real workloads, in addi-

tion to TPC-H?

7.1 Experimental Setup
We ran our experiments on a cluster of 10 machines, each with

256 GB RAM and four 2.13 GHz Intel(R) Xeon(R) E7-4830 CPUs
running 64-bit Ubuntu 12.04 with Linux kernel 3.2.0-23. The AdaptDB
storage system runs on top of Hadoop 2.6.0 and uses ZooKeeper
3.4.6 for synchronization. We ran queries in Spark 1.6.0 with Java
7. All experiments were conducted with cold caches.

TPC-H . The TPC-H benchmark is a decision support bench-
mark. We ran the benchmark with scale factor 1000 (1TB) on
AdaptDB. There are 22 query templates in TPC-H. We chose eight
query templates (q3, q5, q6, q8, q10, q12, q14, q19) from the TPC-
H workload. The reason that the other 14 query templates were
not chosen is twofold. First, five of the query templates (q2, q11,
q13, q16 and q22) do not involve the lineitem table, which is
the largest table in TPC-H. Second, nine query templates (q1, q4,
q7, q9, q15, q17, q18, q20 and q21) do not have selective filters, so
will not benefit from any partitioning technique. This choice of
workload is common to other papers that evaluate partitioning tech-
niques in distributed databases [22].

CMT. The CMT data consists of anonymized logs of user trips
obtained from a MA-based startup that specializes in processing
mobile sensor data for telematics. The data consists of a single
large fact table with 115 columns and several dimension tables with
33 columns in total. Each entry in the dataset has attributes of a trip
from users, such as user ID, average velocity, trip start time and end
time. Due to privacy concerns, we generated a synthetic version of
the data according to the statistics collected by the company. The
total size of the data is 205GB. A production query trace collected
from 04/19/2015 to 04/21/2015 was also obtained from the com-
pany (103 queries were issued by data scientists when performing
exploratory analysis on the data). Each query sub-selects different
portions of the data based on different predicates, e.g., user ID and
trip time range.

Unless otherwise stated, we set the length of AdaptDB’s query
window to 10, the split size of Spark [24] to 4GB, and used half of
the levels of the partitioning tree for join attributes.

7.2 Effect of Hyper-join Algorithm
We first look at how much benefit we can get from hyper-join

over shuffle join. For this experiment, we ran seven sets of queries
(q3, q5, q8, q10, q12, q14, q19) from TPC-H using both shuffle join
and hyper-join and show the results in Figure 12. We do not report
the performance of TPC-H query 6, since there is no join involved
in it. For each query template, we ran the smooth partitioning algo-
rithm for several iterations until just one tree with the join attribute
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Figure 12: Execution time for queries on TPC-H

existed for the target query. We then report the average runtime
of 10 runs of each query, using both hyper-join and shuffle join.
Both types of joins benefit from the Amoeba adaptive parititoning
algorithm in this case.

From Figure 12, we observe that hyper-join is more efficient than
shuffle join whether or not there are selective predicates in a query.
For example, there are selective predicates on shipinstruct,
quantity and shipmode in TPC-H query 19. In this case,
AdaptDB has a 33% performance gain. In cases with no selective
predicates, e.g. TPC-H query 5, AdaptDB has a 76% performance
gain due to the more efficient hyper-join algorithm. Overall, we can
observe that the hyper-join is consistently faster than shuffle join in
all seven query templates. AdaptDB achieves a 1.60x performance
gain on average over shuffle join (maximum 2.16x).

To better understand the significance of our adaptive join tech-
niques, we compared AdaptDB with Amoeba [21]. Amoeba does
not include join attributes in the partitioning tree and uses shuffle
joins. From Figure 12, we observe that AdaptDB with hyper-join
is always much faster than Amoeba. AdaptDB with shuffle join has
almost the same performance as Amoeba in q3, q5, q8, q10 and q14.
Amoeba has better performance than AdaptDB with shuffle join in
q12 and q19, since these two queries have more selective predicates
and fewer nodes in AdaptDB are used for selection predicates. In
effect, AdaptDB trades some of the levels in a partitioning tree for
more efficient hyper-join algorithm, which, at least for these TPC-
H queries, is a good tradeoff.

We also compared against a static data partitioning technique,
specifically predicate-based reference partitioning (or PREF [25]
for short). To provide a fair comparison, we partitioned the TPC-
H dataset by the PREF partitioner provided by its authors and ran
queries using the Spark-based executor as AdaptDB. We tried dif-
ferent numbers of partitions in PREF. Fewer partitions result in less
data redundancy but also has lead to lower parallelism in query ex-
ecution. We report the performance of PREF with 200 partitions
across 10 machines (we tried a number of different settings for the
number of partitions and found 200 to be optimal). Figure 12 shows
AdaptDB with hyper-join always outperforms PREF, often signif-
icantly. This is due to the fact that, in order to avoid shuffle joins,
PREF replicates data, which often results in significantly more I/O
than AdaptDB. We do see that, compared to AdaptDB’s with shuffle
join, PREF outperforms AdaptDB in q3, q5 and q8, because these
queries do not have selective predicates. In q10, q12, q14 and q19,
AdaptDB is much faster than PREF no matter what join algorithm
AdaptDB uses since the predicates here are selective.

In summary, these experiments show that when partitioning is
good, hyper-join performs well, usually better than competing tech-
niques. Next we show that the adaptive partitioning can generate
good partitionings over time.

7.3 Performance of Adaptive Repartitioner
We now study how AdaptDB adaptively repartitions the dataset

over different workload patterns on TPC-H. Initially, each table is

randomly partitioned by the upfront partitioner. We constructed
queries with different predicate values from each query template
and ran query templates in the order: q3, q5, q6, q8, q10, q12, q14,
q19.

We consider two types of workloads:

• switching workload: We run 20 queries for each query tem-
plate and switch from one query template to another imme-
diately. For example, we start from q3 and switch to q5 after
20 queries. We next switch to q6 again after 40 queries again.
In total, there are 160 queries in this workload.
• shifting workload: We gradually shift from one query tem-

plate to another one. For example, we start from query tem-
plate q3. As more queries are run, the workload shifts to
query template q5 smoothly and the transition finishes in 20
queries. Specifically, the probability of running query q5 (q3)
is increased (decreased) by 1/20th after each query. We next
shift the workload from query template q5 to query template
q6, and so on. In total, there are 140 queries in this workload.

We compare AdaptDB with two different baselines: (1) Full
Scan, where no partitioning tree is used, and full scans and shuffle
joins are run and (2) Repartitioning, where smooth repartitioning is
disabled, and AdaptDB does a complete repartitioning of the data
when half of the queries in the query window have a new join at-
tribute. hyper-join is used in this baseline whenever possible (e.g.,
after repartitioning).

Figure 13(a) shows the switching workload. Here we see the
benefit of AdaptDB over both repartitioning and full scan. Repar-
titioning incurs very long partitioning times in queries 5, 25, and
65, whereas AdaptDB spreads out the repartitioning over a longer
period during which performance is only moderately degraded. In
both cases, after repartitioning completes, the repartitioned system
is much faster than full scans with shuffle joins.

Note that the aggregate benefit of repartitioning is dependent on
the amount of time each query is active – if a query is run more
than 10 times, the benefit will be larger. Also, note that the rate
of adaptation of AdaptDB is dependent on the window size; faster
and more disruptive partitioning can be achieved by using a smaller
window, and slower and less disruptive partitioning can be achieved
by using a larger window.

Figure 13(b) shows the shifting workload, where a mix of queries
are active at each point. The overall performance trends are harder
to see because at each point one of two active queries is chosen,
and the performance of one query can be quite different from the
other (most of the spikes in the AdaptDB and Full Scan line are
due to this effect, not the overhead of repartitioning). Here we can
see that repartitioning approach performs major reorganizations at
queries 6, 14, 56 and 72. As in the switching workloads, AdaptDB
takes longer to adapt but has much less pronounced spikes. Again,
the overall benefit of partitioning depends on the time each query
template is active for, but generally reaches a 2x or greater im-
provement over full scan with shuffle join. In addition, as in the
switching workload, the rate of adaptation of AdaptDB depends on
the window size; we could further dampen the overhead of reparti-
tioning by using a bigger window.

We observed a performance degradation on query 5, queries 11-
14, queries 17-18 and queries 20-22 when AdaptDB repartitions
the data. The same phenomenon also happens from query 21 to
query 30 in the switching workload. We found the performance of
Spark degrades when writing large amounts of data into HDFS as
there is no predicate the 5th query template from TPC-H. We think
this is a problem with the Spark executor; we have reported to the
issue and hope it will be fixed in a future Spark release.

597



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

Full	Scan Repartitioning AdaptDB

Q3					 				 				 		Q5			 				 				 				 	Q6				 			 				 				 	Q8				 				 				 		Q10 Q12						 			 				Q14					 				 				Q19

(a) Switching workload

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Ru
nn
in
g	
tim

e	
(s
ec
on
ds
)

Full	Scan Repartitioning AdaptDB

Q3	→Q5						 	Q5	→Q6				 		Q6	→Q8					Q8	→Q10				Q10	→Q12		Q12	→Q14		Q14	→Q19

(b) Shifting workload

Figure 13: Execution time for changing workload on TPC-H

Overall, we can observe as AdaptDB runs more queries of a par-
ticular type, the query runtime approaches the ideal runtime. This
shows AdaptDB has the ability to adapt to changes in the workload.

7.4 Parameter Sensitivity
We now study how sensitive AdaptDB is to the size of the mem-

ory buffer for hyper-join, the size of query window as well as the
number of levels in the partitioning tree for the join attribute.

Effect of varying size of memory buffer. In order to quantify
the effect of memory buffer size, we joined the lineitem and
orders tables without selection predicates. As we introduced in
Section 4.1, more disk accesses are shared and less data is read
when we have more memory for buffers.
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Figure 14: Effect of varying size of memory buffer

Here, both tables are partitioned using two-phase partitioning. In
other words, l orderkey and o orderkey appear in the upper
level of the trees. We build hash tables over the lineitem table
and probe them with the orders table. We vary the size of the
memory buffer from 64 MB to 16 GB and report the query’s run-
ning time and the number of data blocks read from the orders
table.

Figure 14(a) shows that better performance is obtained as we in-
crease the size of the memory buffer up to 4 GB. Increasing the
buffer size beyond 4 GB does not help since the amount of data
read from disk is no longer significantly reduced, as shown in Fig-
ure 14(b).

Effect of varying the query window. We now study how the
size of the query window affects AdaptDB’s adaptive repartitioner.
As discussed in Section 3.2, AdaptDB uses the queries in the query
window to decide when and how frequently to adapt the tree.

We used a different shifting workload over TPC-H queries q14
and q19. We chose q14 and q19 instead of other query templates for
two reasons. First, both join the lineitem and part tables, so
AdaptDB does not need to use adaptive repartitioning to adapt to

a new join attribute when shifting queries, which is not the focus
of this experiment. Second, both queries have selective selection
predicates on the lineitem table, so we can see how AdaptDB’s
adaptive repartitioner works more clearly.
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Figure 15: Execution time on varying length of query window

There are 70 queries in this workload. We first run 10 queries
from query template q14. In the following 20 queries, We then
gradually shift the query from q14 to q19. The probability of run-
ning query q19 (q14) is increased (decreased) by 1/20th after each
query. We then run 10 queries from query template q19. In the
following 20 queries, we then gradually shift the query from q19
back to q14 as we did before. Finally, we run 10 queries from query
template q14.

We run the above workload using two different window sizes: 5
and 35. 5 is a small window size but still sufficient for AdaptDB’s
optimizer to estimate the benefit over repartitioning, while 35 is a
big window size which is the half of the number of queries in the
workload. From Figure 15, we can observe that AdaptDB adapts
the partitioning more quickly if the window size is smaller. For
example, the blue line is always the first to converge to the best
performance in the figure. The blue line also exhibits larger spikes,
e.g., at query 21, whereas the yellow line spreads the repartition-
ing cost out over more time. Besides being more volatile, faster
convergence can lead to overfitting the recent workload, adapting
significantly even when only a few queries of a particular type ar-
rive.

Effect of varying the number of levels for the join attribute
in partitioning trees. We now study how the number of levels
for the join attribute in partitioning trees affects the performance of
AdaptDB’s hyper-join algorithm. We handcrafted a query based on
q10 from TPC-H where table customer is discarded. We chose
q10 instead of other query templates because there are selective
predicates on both tables we are interested in. We varied the num-
ber of levels for the join attribute from 0 to 14 in the lineitem
partitioning tree, since there are at most 214 data blocks. Likewise,
we adjusted the number of levels from 0 to 11 in the partitioning
tree of orders. The size of memory buffer is set to 4GB. Without
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loss of generality, we build hash tables over the lineitem table
and probe them with the orders table. We report the number of
data blocks scanned from orders in Figure 16 as we probe the
hash tables using AdaptDB’s hyper-join algorithm.
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Figure 16: Effect of varying # of levels for join attributes

From Figure 16(a), we observed that when we set the number
of levels for the join attribute to 0 in both tables, a large number of
data blocks were scanned when probing the hash tables even though
some data blocks are filtered by the partitioning trees. When every
level is reserved for the join attribute in orders but no levels for
the join attribute in lineitem, the performance is even worse be-
cause no data block from orders is filtered by the query’s predi-
cates. From the figure, we can see that the number of data blocks
achieves its minimum when around half of levels are reserved for
join attributes in both tables, which is why we chose this as the
default in our experiments.

For the sake of completeness, we also report the result when
there are no predicates on either table in Figure 16(b). We can see
that the more levels we reserve for join attributes, the fewer data
blocks need to be scanned when probing the hash tables since both
tables are partitioned on the join attribute. In real scenarios, this is
would not like to occur, since it is unusual to join large tables with-
out predicates. It does suggest, however, that a future exploration of
adapting the number of join levels in the tree could be worthwhile
for some non-selective workloads.

7.5 Approximation Algorithm vs ILP
When using the hyper-join algorithm, AdaptDB builds hash ta-

bles over the first table and probes them with the second one. The
main challenge for our approximate grouping algorithm is to gen-
erate a grouping scheme which minimizes the amount of data read
from the second table. For this experiment, we run TPC-H scale-
factor 10, since the mixed integer programming solver does not
scale to TPC-H scale-factor 1000. The lineitem and orders
tables are joined as they are the largest tables in TPC-H. We set the
number of blocks in lineitem to 128 and the number of blocks
of orders to 32. In this way, each block size is around 64MB.

We implemented the ILP-based grouping algorithm in AdaptDB
using the GLPK solver2. We build hash tables on lineitem and
probe it with orders. We report the number of blocks read from
orders in Figure 17(a); the approximate algorithm performs rea-
sonably well but runs much faster, as shown in Figure 17(b). Here,
when we set the buffer size to 32 blocks, the ILP solver needs
around 20 minutes. If we set the buffer size to 16 blocks, it cannot
find the optimal solution in 96 hours. In contrast, our approximate
algorithm always give a reasonably good solution in a millisecond.

7.6 AdaptDB on a Real Workload
We next study the performance of AdaptDB on a real dataset,

which is obtained from Cambridge Mobile Telematics (CMT), a
2http://www.gnu.org/software/glpk/
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Figure 17: Varying buffer size on TPC-H with scale 10

Boston-area startup company. We ran the queries on a synthetic
version of the dataset, but used an actual query trace. The dataset
consists of three tables (a list of trips recorded, a table of histori-
cal processed results for each trip, and a table of the most recent
processed result for each trip). Most queries in the workload ei-
ther lookup a trip, or a combination of metadata about the trip and
its historical processing, although a few look up the most recent
processed result as well.
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Figure 18: Execution time on CMT dataset

There are 103 queries in the workload. Figure 18 shows the run-
time of each single query. AdaptDB spent 9 hours and 51 minutes
running all the queries compared to 20 hours and 47 minutes when
using full scan with shuffle joins. AdaptDB with full repartitioning
(and hyper-join) spent 9 hours and 11 minutes running all queries.
Even though the overall running time of AdaptDB with full repar-
titioning is 40 mins faster, the latency of the fifth query is greatly
increased. The spike at query 5 corresponds to the full repartition-
ing, which took 2945 seconds, which greatly increases the latency
of the 5th query. Using the adaptive repartitioner, AdaptDB can fin-
ish adapting the dataset according to the join attribute in the first 10
queries with an overhead in each query of around 400 seconds (note
that the green and yellow lines totally overlap between queries 10
and 100). The spikes between at queries 30 and 50 correspond to a
batch of queries that fetch a large fraction of data from the database;
many of the other queries are fetching on a small subset of records.

We also compared the performance of AdaptDB’s adaptive repar-
titioning with a hand-tuned fixed partitioning on the CMT work-
load. Specifically, we selected attributes appearing in the 103 queries
to build a partitioning tree for each table by hand. As we can see
from Figure 18, as AdaptDB runs more queries from the CMT
workload and adapts the underlying partitions to the ones that fit
the workload, the query runtime of AdaptDB approaches the run-
time of the this hand-tuned fixed partitioning, occasionally doing
slightly better as the mix of queries in the workload changes.

This experiment shows that AdaptDB can effectively improve
the performance of real query workloads by a significant margin.
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8. RELATED WORK
It is well known that join performance can be improved signif-

icantly by co-partitioning the tables being joined. This allows ta-
bles to be joined as map-only tasks without any intermediate shuf-
fling. Hadoop++ [7] and CoHadoop [10] proposed to co-partition
datasets in HDFS to speed up join performance by avoiding shuf-
fle joins. This approach works for well for two tables and fails if
multiple tables need to joined to a single table. Reference parti-
tioning [8] allows to co-partition multiple tables that are linked via
foreign keys and predicate-based reference partitioning [25] gen-
eralizes this further to allow co-partitioning tables linked with dif-
ferent join keys by allowing tuples to replicate in different parti-
tions. However, these approaches still require prior knowledge of
the workload. Also, when tables are not properly co-partitioned,
they fallback to shuffle joins, which are expensive. AdaptDB is
able to instead use partial partitioning and hyper-joins to get good
performance on multiple join attributes at the same time.

Adaptive online joins [9] are proposed in an online or stream-
ing setting where static partitioning schemes are infeasible. New
tuples coming to AdaptDB can be appended to the corresponding
data blocks based on the partitioning trees and AdaptDB can adapt
the underlying partitioning scheme based on workloads in an online
manner. Flow-Join [20] is designed to detect load imbalance dur-
ing data shuffling, which can be incorporated into AdaptDB when
shuffle join is used. In hyper-join, the query planner can generate a
balanced query plan when the philosophy of flat storage model [16]
is adopted.

Database cracking [12, 13] is designed to adaptively index data
without requiring an upfront query workload. Crack joins [11] ex-
tends the idea of cracking to joins. Crack join does dynamic phys-
ical reorganization of the join column based on the input queries.
Cracking has been used extensively in single node in-memory column-
stores. However, cracking cannot be applied directly to distributed
data stores as the cost of re-partitioning is very high. Unlike crack-
ing, where every query triggers re-organization, AdaptDB does care-
ful planning for each round of re-partitioning to amortize its cost.
Also, AdaptDB adapts the layout of the primary copy of the data
while cracking maintains secondary data structures, which can be
expensive to maintain in a distributed setting.

Scheduling the data blocks for computing joins on a single ma-
chine is also investigated by many researchers [14, 18]. Merrett et
al. [14] designed an algorithm to minimize the page access when
the size of buffer pool is limited to 2 pages. Pramanik et al. [18]
proposed a solution to give an upper bound of page access on con-
dition that each page is accessed once. Both of these works are
focused on scheduling the reads on a single node; in contrast, in
hyper-join, our objective is to figure out groups of partitions that
should be read together on multiple nodes. Besides the single node
vs multi-node objective, the hyper-join problem is different from
the problem in [18] because in their work the groups are known
in advance and the goal is to order the reads of pages to minimize
I/Os. Our problem boils down to solving minimum k-subset union
problem, which is not the problem solved in this prior work. In
this sense, the two algorithms above are orthogonal approaches for
computing joins on a single machine and AdaptDB benefits from
them when memory on each machine is limited.

9. CONCLUSION
In this paper, we presented AdaptDB, a system for adaptively

parititoning data to provide good performance for distributed joins.
Specifically, we showed that our new hyper-join algorithm can avoid
data shuffling by identifying blocks of data in the joined tables that

overlap on the join attribute, and then joining just those blocks. We
showed that optimally solving the problem of ordering hyper-join
blocks is NP-hard, and developed an approximate algorithm that
runs in a millisecond or less for reasonably sized datasets. In ad-
dition, we described how AdaptDB maintains several partitioning
trees, and employs smooth repartitioning to move blocks from one
tree to the other without immediately repartitioning the whole data
set. Our results on both real and synthetic workloads show that
AdaptDB provides improved query performance over shuffle joins,
and effectively adapts to changes in workloads over time.
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