31 research outputs found

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Characterization and Modelling of Scattered Wireless Channel at 60 GHZ in an Underground Mine Gallery

    Get PDF
    RÉSUMÉ Depuis plus d’une décennie, les applications du système de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimédias au public. De nos jours, la recherche se concentre sur la conception de communication sans fil à haute vitesse (i.e., 1 Gbps) en particulier dans des zones denses telles que des salles de conférence, des centres commerciaux,des stades et des lieux d’événements publics ouverts. Des réseaux locaux sans fil (WLAN) et des réseaux cellulaires utilisent des hauts potentiels pour réussir les haut débit de données en utilisant différentes technologies de pointe telles que la coexistence entre l’évaluation à long terme non autorisé (LTE-U) et les canaux Wi-Fi. En outre, la faisabilité d’utiliser le spectre à haute fréquence (i.e,> 6 GHz), une couche physique à 60 GHz pour les réseaux denses sont mis en évidence lorsque des liens de communication à courte distance (par exemple, <10 m) sont nécessaires aussi bien dans WLAN (i.e, WiGig) et le réseau cellulaire (i.e, 5G petite cellule). Cependant, les applications à 60 GHz se dirigent vers la communication sans fil souterraine pour une meilleure géolocalisation, les applications haute définition (HD) de streaming vidéo dans une galerie plus grande longueur (i.e,> 100 m) en raison de sa capacité de formation de faisceau et de plus grande capacité. Pour aider le concepteur du système, il est nécessaire de connaître les informations de propagation du canal sans fil diffusé puisque le plancher de la galerie, le plafond et le mur ont différentes rugosités (i.e.,> 5 mm). Cette thèse présente les résultats de la caractérisation du canal sans fil et la modélisation statistique à 60 GHz d’une mine souterraine à CANMET ayant des galeries dont la profondeur varie entre 40 m et 70 m. Depuis plus d’une décennie, les applications du système de communication sans fil sont exigeantes et augmentent rapidement pour fournir des services multimédias au public. Les résultats montrent que l’écart angulaire de la propagation par trajets multiples est inversement proportionnel à la distance entre l’émetteur et le récepteur. Un phénomène de dispersion solide est également observé dans le canal en observant l’angle de propagation des différents trajets. Des polarisations horizontales (H) et verticales (V) ont été utilisées puisque les diagrammes de rayonnement sont différents et peuvent fournir des comportements de dispersion temporelle différents. Les résultats montrent que l’antenne à polarisation verticale fournit un plus grand nombre de trajets multiples par rapport à polarisation horizontale et une valeur plus élevée de moyenne quadratique (RMS) par rapport à une horizontale. Par ailleurs, les mesures du coefficient de réflexion ont été effectuées pour étudier l’effet de dispersion de la surface rugueuse. Étant donné qu’aucun effet de regroupement sur le canal multitrajets n’a été observé, une approche de modélisation statistique a été considérée en tenant compte des différents trajets parcourus et leur amplitude. Par insertion des paramètres de hauteur de la surface de mesure, les modèles de diffusion connus ont également été analysées pour permettre la mise en oeuvre d’une approche de modélisation du canal dispersif.----------ABSTRACT More than a decade, there is a surge in demand and development of wireless communication system applications to deliver multimedia services. Nowadays the research is focused on the design of high speed (i.e., 1 Gbps) wireless system particularly in dense areas such as conference room, shopping mall, stadium and open public events. Wireless local area network (WLAN) and cellular network are making high potential approaches to fulfill high data rate by using different advanced technologies such as coexistence between Long Term Evaluation Unlicensed (LTE-U) and Wi-Fi Wireless channels. Moreover, the feasibility to use high-frequency spectrum (i.e., > 6 GHz), a physical layer research at 60 GHz for dense networks are highlighted where short-distance communication links (i.e., 100 m) due to its beamforming capability and higher capacity. To assist the system designer, it is necessary to know the scattered wireless channel propagation information since the gallery floor, ceiling and walls consist of the different magnitude of the roughness (i.e., > 5 mm). This thesis presents the results of wireless channel characterization and statistical modeling at 60 GHz where the measurements were carried out in CANMET underground mine (40 m and 70 m gallery depths). Several measurements were conducted with different antenna configurations and polarizations. Results show that angular and temporal dispersion are proportional to the mine gallery dimensions. Results also show that the angular spread of the multipath is inversely proportional to the transmitter receiver separation distance. A strong scattering phenomenon is also observed in the channel by observing multipath angle of arrivals. The use of Horizontal (H) and vertical (V) polarizations were performed due to its different radiation pattern can provide a different temporal dispersion behavior. The results show that a vertically polarized antenna provides a lower value of path loss exponent and a higher value of root mean square (RMS) delay spread compared to a horizontal one. Since no clustering effect was observed, a statistical modeling approach with the multipath arrivals and amplitudes was considered. In addition, the reflection coefficient measurements were conducted to investigate the scattering effect from the rough surface. By inserting measured surface height parameters, the known scattering models were also analyzed to have an idea to implement a modeling approach of the scattered channel

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Challenges and Opportunities in Applied System Innovation

    Get PDF
    This book introduces and provides solutions to a variety of problems faced by society, companies and individuals in a quickly changing and technology-dependent world. The wide acceptance of artificial intelligence, the upcoming fourth industrial revolution and newly designed 6G technologies are seen as the main enablers and game changers in this environment. The book considers these issues not only from a technological viewpoint but also on how society, labor and the economy are affected, leading to a circular economy that affects the way people design, function and deploy complex systems

    Security of Ubiquitous Computing Systems

    Get PDF
    The chapters in this open access book arise out of the EU Cost Action project Cryptacus, the objective of which was to improve and adapt existent cryptanalysis methodologies and tools to the ubiquitous computing framework. The cryptanalysis implemented lies along four axes: cryptographic models, cryptanalysis of building blocks, hardware and software security engineering, and security assessment of real-world systems. The authors are top-class researchers in security and cryptography, and the contributions are of value to researchers and practitioners in these domains. This book is open access under a CC BY license
    corecore