6,430 research outputs found

    Advanced Control and Stability Enhancement of Grid-Connected Voltage-Source Inverter with LCL-Filter

    Get PDF

    Three-Phase PLLs:A Review of Recent Advances

    Get PDF

    Three-phase phase-locked loop synchronization algorithms for grid-connected renewable energy systems:A review

    Get PDF
    The increasing penetration of distributed renewable energy sources (RES) requires appropriate control techniques in order to remain interconnected and contribute in a proper way to the overall grid stability, whenever disturbances occur. In addition, the disconnection of RES due to synchronization problems must be avoided as this may result in penalties and loss of energy generation to RES operators. The control of RES mainly depends on the synchronization algorithm, which should be fast and accurately detect the grid voltage status (e.g., phase, amplitude, and frequency). Typically, phase-locked loop (PLL) synchronization techniques are used for the grid voltage monitoring. The design and performance of PLL directly affect the dynamics of the RES grid side converter (GSC). This paper presents the characteristics, design guidelines and features of advanced state-of-the-art PLL-based synchronization algorithms under normal, abnormal and harmonically-distorted grid conditions. Experimental tests on the selected PLL methods under different grid conditions are presented, followed by a comparative benchmarking and selection guide. Finally, corresponding PLL tuning procedures are discussed.This work was supported by the supported by the Research Promotion Foundation (RPF) of Cyprus under Project KOINA/SOLAR-ERA.NET/1215/06

    An Improved Hybrid Prefiltered Open-Loop Algorithm for Three-Phase Grid Synchronization

    Get PDF

    Novel PLL for power converters under unbalanced and distorted grid conditions

    Get PDF
    A novel phase-locked loop (PLL) with simple structure is proposed in the present work for three-phase power converters under adverse grid conditions. Based on a synchronous rotating frame PLL (SRF-PLL), multi-resonant harmonic compensators with the ability of accommodating frequency deviations are employed in the feedback path of a pre-filter. As a result, the negative-sequence component and harmonic distortions of grid voltage can be attenuated. Different from existing methods, only classical regulators are used, avoiding complicated networks for the decoupling of unbalance and harmonics and thus greatly simplifying the control algorithm. The proposed method is analysed and designed in both the continuous s-domain and discrete z-domain, whereby stable, fast, accurate, and robust responses are achieved. Simulation results have been obtained to show the improved performance of the proposed PLL compared with two widely used methods

    Flexible operation of grid-interfacing converters in distribution networks : bottom-up solutions to voltage quality enhancement

    Get PDF
    Due to the emerging application of distributed generation (DG), large numbers of DG systems are expected to deliver electricity into the distribution network in the near future. For the most part these systems are not ready for riding through grid disturbances and cannot mitigate unwanted influences on the grid. On the one hand, with the increasing use of sensitive and critical equipment by customers, the electricity network is required to serve high voltage quality. On the other hand, more and more unbalanced and nonlinear equipment, including DG units, is negatively affecting the power quality of distribution networks. To adapt to the future distribution network, the tendency for grid-interfacing converters will be to integrate voltage quality enhancement with DG functionality. In this thesis, the flexible operation of grid-interfacing converters in distribution networks is investigated for the purpose of voltage quality enhancement at both the grid and user sides. The research is carried out in a bottom-up fashion, from the low-level power electronics control, through the realization of individual system functionality, finally arriving at system-level concepts and implementation. Being essential to the control of grid-interfacing converters, both stationaryframe techniques for voltage detection and synchronization in disturbed grids, and asymmetrical current regulation are investigated. Firstly, a group of high performance filters for the detection of fundamental symmetrical sequences and harmonics under various grid conditions is proposed. The robustness of the proposed filters to small grid-frequency variation and their adaptability to large frequency change are discussed. Secondly, multiple reference frame current regulation is explored for dealing with unbalanced grid conditions. As a complement to the existing proportional resonant (PR) controllers, sequence-decoupled resonant (SDR) controllers are proposed for regulating individual symmetric sequences. Based on the modeling of a four-leg grid-connected system in different reference frames, three types of controllers, i.e. PI, PR, and proportional plus SDR controllers are compared. Grid-interactive control of distributed power generation, i.e. voltage unbalance compensation, grid-fault ride-through control and flexible power transfer, as well as the modeling of harmonic interaction, are all investigated. The in-depth study and analysis of these grid interactions show the grid-support possibilities and potential negative impact on the grid of inverter-based DG units, beyond their primary goal of power delivery. In order to achieve a co-operative voltage unbalance compensation based on distributed DG systems, two control schemes, namely voltage unbalance factor based control and negative-sequence admittance control, are proposed. The negativesequence voltages at the grid connection point can be compensated and mitigated by regulating the negative-sequence currents flowing between the grid and DG converters. Flexible active and reactive power control during unbalanced voltage dips is proposed that enables DG systems to enhance grid-fault ride-through capability and to adapt to various requirements for grid voltage support. By changing adaptable weighting factors, the compensation of oscillating power and the regulation of grid currents can be easily implemented. Two joint strategies for the simultaneous control of active and reactive power are derived, which maintain the adaptive controllability that can cope with multiple constraints in practical applications. The contribution of zero-sequence currents to active power control is also analyzed as a complement to the proposed control, which is based on positive- and negative-sequence components. Harmonic interaction between DG inverters and the grid is modeled and analyzed with an impedance-based approach. In order to mitigate the harmonic distortion in a polluted grid, it is proposed to specify output impedance limits as a design constraint for DG inverters. Results obtained from modeling, analysis, and simulations of a distribution network with aggregated DG inverters, show that the proposed method is a simple and effective way for estimating harmonic quasi-resonance problems. By integrating these proposed control strategies in a modified conventional series-parallel structure, we arrived at a group of grid-interfacing system topologies that is suitable for DG applications, voltage quality improvement, and flexible power transfer. A concrete laboratory system details the proposed concepts and specifies the practical problems related to control design. The introduction of multi-level control objectives illustrates that the proposed system can ride through voltage disturbances, can enhance the grid locally, and can continue the power transfer to and from the grid while high voltage quality is maintained for the local loads within the system module. A dual-converter laboratory set-up was built, with which the proposed concepts and practical implementation have been fully demonstrated

    An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid

    Full text link
    Si el © es de IEEE cuando se deposite una versión de autor hay que poner el siguiente texto en "descripción": “© © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.”The proper operation of grid-connected power electronics converters needs using a synchronization technique to estimate the phase of the grid voltage. The performance of this synchronization technique is related to the quality of the consumed or delivered electric power. The synchronous-reference-frame phase-locked loop (SRF-PLL) has been widely used due to its ease of operation and robust behavior. However, the estimated phase can have a considerable amount of unwanted ripple if the grid voltage disturbances are not properly rejected. The aim of this paper is to propose an adaptive SRF-PLL which strongly rejects these disturbances even if the fundamental frequency of the grid voltage varies. This is accomplished by using several adaptive infinite-impulse-response notch filters, implemented by means of an inherently stable Schur-lattice structure. This structure is perfectly suited to be programmed in fixed-point DSPs (i.e., it has high mapping precision, low roundoff accumulation, and suppression of quantization limit cycle oscillations). The proposed adaptive SRF-PLL has been tested by means of the TI TMS320F2812 DSP. The obtained experimental results show that the proposed synchronization method highly rejects the undesired harmonics even if the fundamental harmonic frequency of a highly polluted grid voltage abruptly varies. © 2011 IEEE.This work was supported by the Spanish Ministry of Science and Innovation under Grants ENE2009-13998-C02-02 and ENE2006-15521-C03-02.González Espín, FJ.; Figueres Amorós, E.; Garcerá Sanfeliú, G. (2012). An adaptive synchronous-reference-frame phase-locked loop for power quality improvement in a polluted utility grid. IEEE Transactions on Industrial Electronics. 59(6):2718-2731. doi:10.1109/TIE.2011.2166236S2718273159

    An Adaptive Control System for Three-Phase Photovoltaic Inverters Working in a Polluted andVariable Frequency Electric Grid

    Full text link
    Theproportional+resonant (PR) controller has been proposed in the past as a suitable method to control the current generated by the grid-connected photovoltaic voltage source inverters. Due to the fact that information regarding the frequency of the grid is needed to use this control technique, the synchronous reference frame phase-locked loop (SRF-PLL) is commonly used. To assure that the total harmonic distortion of the injected current (THDi) meets the appropriate standards, even if the grid voltage is polluted and its frequency varies, an adaptive control strategy is presented in this paper. This control strategy can improve the behavior of both, the conventional SRF-PLL and the conventional PR controller, when they are used in a polluted grid with a time varying frequency. The experimental results obtained by means of a digitally controlled 10-kVA inverter, show up that the THDi of the injected current is improved when the proposed adaptive control strategy replaces the conventional one.This work was supported by the Spanish Ministry of Science and Innovation under Grant ENE2009-13998-C02-02. Recommended for publication by Associate Editor B. Lehman.González Espín, FJ.; Gabriel Garcerá; Patrao Herrero, I.; Figueres Amorós, E. (2012). An Adaptive Control System for Three-Phase Photovoltaic Inverters Working in a Polluted andVariable Frequency Electric Grid. IEEE Transactions on Power Electronics. 27(10):4248-4261. https://doi.org/10.1109/TPEL.2012.2191623S42484261271
    corecore