416 research outputs found

    A Review Paper on Video De-Interlacing Multiple Techniques

    Get PDF
    In this paper present video interlacing de-interlacing and various techniques. Focus on the different techniques of video De- Interlacing that are Intra Field, Inter Field, Motion Adaptive, Motion Compensated De- interlacing and Spatio-Temporal Interpolation. De- Interlaced video use the full resolution of each scan so produced high quality image and remove flicker problem. Techniques are work on the scan line of object Intra Field techniques use pixels of the moving object, Inter Field works on stationary regions of object, Motion Adaptive works on the edge of the Object and Motion Compensation focus video sequence and brightness variation. Advantage of using De-interlacing technique is: Better Moving object image, no flickers and high vertical resolution

    Video post processing architectures

    Get PDF

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    Patient-specific bronchoscope simulation with pq-space-based 2D/3D registration

    No full text
    Objective: The use of patient-specific models for surgical simulation requires photorealistic rendering of 3D structure and surface properties. For bronchoscope simulation, this requires augmenting virtual bronchoscope views generated from 3D tomographic data with patient-specific bronchoscope videos. To facilitate matching of video images to the geometry extracted from 3D tomographic data, this paper presents a new pq-space-based 2D/3D registration method for camera pose estimation in bronchoscope tracking. Methods: The proposed technique involves the extraction of surface normals for each pixel of the video images by using a linear local shape-from-shading algorithm derived from the unique camera/lighting constraints of the endoscopes. The resultant pq-vectors are then matched to those of the 3D model by differentiation of the z-buffer. A similarity measure based on angular deviations of the pq-vectors is used to provide a robust 2D/3D registration framework. Localization of tissue deformation is considered by assessing the temporal variation of the pq-vectors between subsequent frames. Results: The accuracy of the proposed method was assessed by using an electromagnetic tracker and a specially constructed airway phantom. Preliminary in vivo validation of the proposed method was performed on a matched patient bronchoscope video sequence and 3D CT data. Comparison to existing intensity-based techniques was also made. Conclusion: The proposed method does not involve explicit feature extraction and is relatively immune to illumination changes. The temporal variation of the pq distribution also permits the identification of localized deformation, which offers an effective way of excluding such areas from the registration process

    Energy-efficient acceleration of MPEG-4 compression tools

    Get PDF
    We propose novel hardware accelerator architectures for the most computationally demanding algorithms of the MPEG-4 video compression standard-motion estimation, binary motion estimation (for shape coding), and the forward/inverse discrete cosine transforms (incorporating shape adaptive modes). These accelerators have been designed using general low-energy design philosophies at the algorithmic/architectural abstraction levels. The themes of these philosophies are avoiding waste and trading area/performance for power and energy gains. Each core has been synthesised targeting TSMC 0.09 μm TCBN90LP technology, and the experimental results presented in this paper show that the proposed cores improve upon the prior art
    corecore