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geboren te Belgrado, Servië
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Summary

Video Post Processing Architectures

The current IC technology has advanced to a level where millions of transistors inte-
grated on a die of just a few square millimeters provide billions of operations per second.
One of the current challenges is to increase the design efficiency by balancing the dedi-
cated and more flexible (software programmable) hardware, and to increase the available
off-chip memory bandwidth. These challenges are particularly important for the target
application domain of this thesis, video post processing. Applications from video post
processing are designed to adapt the stored or broadcasted video data to the individual
display properties, the reception/viewing conditions and the taste of the viewer. These ap-
plications include de-interlacing, picture-rate up-conversion, spatial (resolution) scaling,
noise reduction, sharpness and contrast enhancement, etc. Each of the functions in the
domain can be implemented using different algorithms. This algorithmic diversity is an
additional challenge of our domain.

We identify the memory subsystem as the key component that determines the compute
performance and cost efficiency of the architecture. A cost effective memory subsystem,
sufficiently flexible within the application domain is presented. The memory subsystem
is based on scratchpad memories, which enable predictable performance, and the archi-
tecture is scalable to support a number of performance points. This memory subsystem
is meant to be embedded in a VLIW-based ASIP with a vector instruction set, which is
our architecture of choice. Such an architecture can exploit the instruction and data level
parallelisms abundantly present in the video processing domain.

We propose a scratchpad architecture that enables one- and two-dimensional accesses
to arbitrarily positioned blocks of data. These access patterns are needed in the application
domain, typical examples are pixel filtering and motion estimation/compensation. To
bridge the gap between the offered and requested off-chip memory bandwidth, we propose
a scratchpad organization and addressing technique to minimize the off-chip memory
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x Summary

bandwidth. This concept enables a tradeoff between the scratchpad capacity and off-chip
memory bandwidth. The proposed two techniques, for un-aligned access and bandwidth
reduction, naturally map onto two levels of memory hierarchy. We show, however, that
it is possible to apply both techniques to a memory subsystem based on just one level of
memory hierarchy and list the number of advantages of such a concept. The effects to
area, power, bandwidth requirement, software complexity and impact on algorithm have
been analyzed.

The approach we adopt here is to fetch from a local memory subsystem relatively
large groups of pixels, for example containing 16 or 32 pixels. The number of pixels
equals the width of the datapath. After being fetched from the memory subsystem, these
pixels are directly processed by the datapath that uses the instruction set with vector ex-
tensions. We identify two major algorithmic classes and show how they can be vector-
ized to match our architecture. Both algorithmic classes have similar requirements from
the architecture point of view, un-aligned data accesses and 1D or 2D access patterns.
The first class contains block-based motion estimation/compensation and the second one
pixel-based content-adaptive filtering. They are generic enough to cover a range of ap-
plications with high quality and acceptable implementation cost. Our memory subsystem
is benchmarked against other approaches using the proposed set of six criteria. Per in-
dividual criterion, it is at least equally good as any other evaluated solution performing
on that criterion. Finally, we include a proof of concept. A processor that implements a
high-quality motion estimation algorithm and processes HDTV material (1920*1080) in
real-time, has been developed based on the concepts presented in this thesis. Comparison
of the performance per square millimeter with the state-of-the-art media processor shows
that our implementation is eight times more efficient.



Samenvatting

Architecturen voor Beeldsignaal Verbetering
De huidige IC technologie is uitgegroeid tot een niveau waar miljoenen transistoren

biljoenen operaties per seconde uitvoeren op een geı̈ntegreerd circuit van slechts enkele
vierkante millimeters. Op dit moment zijn er twee belangrijke uitdagingen. De eerste
betreft het verhogen van de ontwerpefficiëntie door het balanceren van functiespecifieke
en flexibele, d.w.z. software programmeerbare, logische schakelingen. De tweede het
verhogen van de beschikbare en benodigde bandbreedte naar het externe geheugen. Deze
uitdagingen zijn met name belangrijk voor het applicatiedomein van deze thesis, beeldver-
betering. Toepassingen van beeldverbetering zijn, en worden nog steeds, ontwikkeld om
opgeslagen of uitgezonden videosignalen aan te passen aan de individuele beeldscher-
meigenschappen, de ontvangst- en weergavecondities, en de smaak van de kijker. Als
voorbeelden noemen we de-interliniering, omzetting van de beeldherhalingsfrequentie,
resolutievergroting, ruisfiltering, scherpte- en contrastverbetering, etc. Voor elk van deze
functies in het applicatiedomein zijn realisaties met verschillende algoritmen beschik-
baar. Naast deze algoritmediversiteit is ook de hoge vereiste bandbreedte naar het externe
geheugen een grote uitdaging.

Wij identificeren het geheugensubsysteem als de belangrijkste component voor de
prestaties en kostenefficiëntie van de architectuur. Een kostenefficiënt geheugensubsys-
teem wordt gepresenteerd dat voldoende flexibiliteit biedt binnen het applicatiedomein.
Dit geheugensubsysteem is gebaseerd op scratchpadgeheugens, die voorspelbare prestaties
laten zien, en een schaalbare architectuur toestaan om meerdere prestatiepunten te onder-
steunen. De gekozen architectuur, waarin dit geheugensubsysteem is bedoeld opgenomen
te worden, is een VLIW-gebaseerde ASIP met een vector instructieset. Een dergelijke ar-
chitectuur is geschikt voor benutting van parallellisme op instructie- en dataniveau, welke
veelvuldig aanwezig is in de beeldbewerkingapplicaties.

Wij hebben een scratchpadarchitectuur voorgesteld die één- en tweedimensionale toe-
gang tot willekeurig geplaatste datablokken toelaat (unaligned access). Deze toegangspa-
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tronen zijn nodig in het applicatiedomein, en typische voorbeelden zijn pixelfiltering en
bewegingsschatting/compensatie. Om de kloof tussen aangeboden en gevraagde externe
geheugenbandbreedte te overbruggen, hebben wij een scratchpadorganisatie en adresser-
ingstechniek voorgesteld om de externe geheugenbandbreedte te minimaliseren. Dit con-
cept staat een uitruil van scratchpadcapaciteit en externe geheugenbandbreedte toe. De
twee voorgestelde technieken, voor un-aligned access en bandbreedtevermindering, zijn
op een natuurlijke manier af te beelden op twee niveaus van geheugenhiërarchie. Wij
tonen echter aan, dat het ook mogelijk is om de beide technieken toe te passen op een
geheugensubsysteem dat op één enkel niveau van geheugenhiërarchie is gebaseerd. De
voordelen van een dergelijk concept, en de gevolgen voor oppervlakte, dissipatie, band-
breedte-eisen, softwarecomplexiteit, alsmede het effect op de algoritmen worden geanal-
yseerd.

Onze benadering hier is om een grote groep van pixels uit het geheugensubsysteem
te halen, bijvoorbeeld een groep van 16 of 32 pixels. Het aantal pixel is gelijk aan de
breedte van het datapad. Nadat ze uit het geheugensubsysteem gehaald zijn, worden deze
pixels direct verwerkt door het datapad, waarbij de instructieset met vectoruitbreidingen
gebruikt wordt.

Wij identificeren twee belangrijke algoritmeklassen en tonen aan hoe zij gevector-
izeerd kunnen worden om ze aan onze architectuur aan te passen. Beide algoritmeklassen
hebben vergelijkbare vereisten vanuit het architectuurstandpunt, de unaligned data access
en 1D of 2D toegangspatronen. De eerste klasse bevat blokgebaseerde bewegingsschat-
ting/compensatie en tweede het data-afhankelijk filtreren. Deze twee klassen zijn generiek
genoeg om een breed scala aan toepassingen met hoge kwaliteit en aanvaardbare imple-
mentatiekosten af te dekken.

We vergelijken ons geheugensubsysteem met andere oplossingen op basis van een
voorgestelde reeks van zes criteria. Per individueel criterium blijkt onze oplossing beter
of tenminste even goed te presteren als de beste van de alternatieven. Ook presenteren wij
een voorbeeldimplementatie om onze concepten te bewijzen: Een processor voor hoge
kwaliteit real-time bewegingschatting op HDTV materiaal (1920*1080), gebaseerd op de
voorgestelde concepten. De vergelijking van de prestaties per vierkante millimeter met
een recente referentie processor toont aan dat onze implementatie acht keer efficiënter is.
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1

Introduction

REVOLUTIONS concern a drastic and far-reaching change in ways of thinking or
behaving. The digital revolution brought the transition from analogue to digital sig-

nals, which by now has led to the almost complete domination of digital signal processing
over analogue. Until the second half of the twentieth century, analogue signal process-
ing was the only way to implement an application. The arguments in favor of digital,
reproducibility and predictability, were not strong enough to outweigh the increased com-
ponent count of digital. The digital revolution could happen only upon the cost reduction
of digital implementation and the cost reduction required some fundamental research.

In 1946, J. W. Mauchly and J. P. Eckert correctly predicted the need for electronic
computers and developed the ENIAC I (Electrical Numerical Integrator And Calculator)
[1, 2]. This calculator occupied 167 m2 of floor space, weighed 30 tons and consumed 160
kilowatts. Despite being large and clumsy, the ENIAC I was important enough to cause
decades of discussions and patent (in)validations [3]. To arrive at the pocket version we
know today, fundamental research was essential. A tiny invention with a big future, also
known as the transistor, was the result of fundamental research at Bell Labs. Invented in
December 1947 and published in July 1948 [4], the transistor marked the beginning of
the digital era because of its potential for miniaturization that was impossible with the
vacuum tubes they replaced. Although the Nobel Prize for physics in 1956 was awarded
for this invention [5], the discussion who really invented it has not stopped even today [6].

After the invention of the transistor, a bit more than a decade was needed until an-
other idea further pushed the wheel of digital revolution. Independently from eachother,
J. S. Kilby, a debutant at Texas Instruments and R. Noyce from a startup called Fairchild
Semiconductor, later co-founder of Intel, integrated a complete circuit containing a tran-
sistor and other components. Both are recognized as the inventors of the first integrated

1
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Figure 1.1: From a single transistor, to few components integrated and to millions of them. Courtesy of Bell
Labs, Texas Instruments and Philips Semiconductors.

circuit (IC). Only a few years later, in April 1965, Gordon E. Moore, yet another Intel co-
founder, formulated a self-fulfilling prophecy stating that the number of transistors on an
IC will increase exponentially, doubling their number roughly every two years [7]. This
initiated a race between companies to stay on Moore’s curve and the process of minia-
turization continues. The result is that today a transistor is probably the most massively
manufactured electrical device while a typical IC contains millions of them.

Already in 1946, the transistor inventors predicted that their creation will find its use
in many applications, including television. Even though the British Broadcasting Com-
pany (BBC) started the first regular black and white television broadcast in 1936, it took a
few decades of underlying technology research and development until television reached
popularity. At the beginning of the second half of the twentieth century, three broad-
casting standards were developed, one in the USA (NTSC) and two in Europe (PAL and
SECAM). By the year of 1970, regular color TV broadcast had started in most European
countries. Initially, the TV merely played the role of status symbol, but soon it became
an inseparable part of every home. Originally, its main purpose was viewing at distance,
allowing millions of people to see what is happening in some other city, country, the
other side of the globe, or even in space. Modern TV-sets offer much more than just a
basic viewing at a distance. Large, bright screens with sharp pictures are becoming more
and more interactive, they communicate with other devices, support a number of differ-
ent input standards with compressed and uncompressed video streams, viewing multiple
channels at the same time, etc. The latest generations influence even the ambient light-
ing to provide an immerse viewing experience. Each new generation was armed with
new features enabled by the evolution of technological progress and thereby an increased
number of transistors.

It took half a century to sufficiently improve the IC technology and develop the ap-
plications to arrive at today’s high-end consumer television. Like all other developments,
also this one was driven by application requirements that were always higher than the
current machines were capable of. Consequently, the complexity of applications and ICs
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Figure 1.2: Dramatic change of the consumer television system required half a century of research and de-
velopment of IC technology and applications. Advanced digital video post processing applications are executed
on multi-million transistor ICs enabling high quality pictures.

has significantly increased. One of the remaining challenges for the IC technology is to
increase the design efficiency by balancing the dedicated and more flexible (software pro-
grammable) hardware, and to increase the offered off-chip memory bandwidth. Unlike
the compute power, the offered off-chip memory bandwidth failed to follow Moore’s law.
Meanwhile, the screen resolutions and picture rates have been steadily increasing to a
level where the bandwidth became the bottleneck. This gap, between the available com-
pute resources and memory bandwidth, directly affects the application performance. This
thesis proposes an architecture that increases the efficiency and lowers the bandwidth.
The focus is given to the memory subsystem, which enables these benefits. The proposed
memory organization enables predictable high-performance. Cost (area, power) is opti-
mized and the off-chip memory bandwidth is kept to a minimum. Through a comparative
study, we show the advantages compared to existing solutions.

1.1 Video post processing

The concepts proposed in this thesis are applicable to the application domain of video post
processing. Video post processing is a pool of applications designed to adapt the stored
or broadcasted video data to the individual display properties, reception and viewing con-
ditions, and the taste of the viewer. These applications include de-interlacing, picture-
rate up-conversion, spatial (resolution) scaling, noise reduction, sharpness and contrast
enhancement, etc. Although this work focuses on video post processing, it appears that
the proposed concepts are applicable even outside this target domain, particularly to video
compression. Video compression uses basic algorithms, such as motion estimation, which
are also part of the video post processing domain. However, video compression has not
been analyzed in detail, and we therefore define video post processing as the scope of this
thesis.

Television is one of the strongest drivers for digital video post processing. For decades,
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Figure 1.3: A large number of devices, from portable to stationary, having different resolutions and refresh
rates, emphasize the need for advanced video post processing.

all video material originated from cameras and video material existed and was broad-
casted in just a few formats, PAL, SECAM and NTSC. The three formats were used in
different parts of the world, almost without an overlap, so the need for conversion was
limited.

At the broadcaster side as well as at the receiver end, the situation has dramatically
changed since the first days of television. The diversity is huge now. Modern television
sets display video material at various refresh rates that in general range from 50 to 120 Hz.
At the source side, video material is recorded at 50 or 60 Hz, while the movie material is
recorded at 24, 25 or 30 Hz. Further, video material is transmitted in an interlaced format
meaning that odd and even lines of pixels alternately occur in successive pictures. Re-
garding display resolution, there are two main categories, SDTV (standard definition TV)
and HDTV (high definition TV). SDTV assumes an interlaced format with resolution of
720*576 at 50Hz (PAL) or 720*480 at 60Hz (NTSC), while the HDTV standard includes
three formats, 1920*1080 interlaced, 1920*1080 progressive and 1280*720 progressive.
Clearly, conversion of digital signals from one format to another is necessary.

Television is a strong application driver for digital video post processing, but is not
the only one. The digital revolution caused the appearance of a number of other sources
of video material in addition to the already existing broadcasting material. This includes
artificially created video content like cartoons, special film effects and computer graphics.
Furthermore, there are a number of mobile devices that offer various video services. It is
possible to follow the news, stock market report, results of sport events, or watch movies
on a portable device like a laptop, PDA or a mobile phone. Watching recorded movie
material in high quality is also possible by using specialized mobile displays. Figure 1.3
shows some of the devices that are capable of delivering video services.

In summary, different resolutions coupled with interlaced or progressive format and
a variety of input and output refresh rates form a huge space of different combinations
of input and output formats of video streams. Additionally, a video stream should be
displayed in a high quality.
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1.2 Domain-specific video processing

Through the process of miniaturization, the digital revolution enabled the implementation
of millions of transistors onto a single die. Even though Moore’s law might be unconstitu-
tional [8], Gordon Moore correctly predicted this technology trend at the bare beginning
of the miniaturization process [7]. His (improved) prediction was matching with the com-
plexity curve of the Intel processors. Integrated circuits used in video processing have
been following this trend as well. The recent situation is that millions of transistors form
a compute resource pool providing billions of operations per second. The question is how
efficiently those resources can be used. We shall recognize three major approaches.

1. Application-Specific Integrated Circuits (ASICs) are optimal in terms of area and
power and the performance requirements are fully met. The biggest drawback is
their very limited flexibility, if there is any flexibility at all. As the applications are
becoming more demanding, the complexity of ASICs increases. Thereby, the time
spent on hardware verification and debugging increases. Consequently, time-to-
design increases and the percentage of first-time right designs drops. These are
the key reasons why ASICs are becoming less advantageous and solutions like
General-purpose Programmable Processors (GPPs) or Application-domain Spe-
cific Instruction-set Processors (ASIPs) that offer late modifications in software are
gaining popularity.

2. GPPs offer a high degree of flexibility and usually have generic function units per-
forming addition, subtraction, multiplication, etc. These function units are usually
limited to 32 bits with the possibility to use 2-way or 4-way SIMD (Single In-
struction, Multiple Data) or vector instructions. The SIMD, or vector, model offers
computation on partitioned data and is one of the oldest models for parallel compu-
tation since the earliest ideas are almost half a century old [10]. This offers a way
to parallelize the computation but GPPs can profit from it only to a limited extent

Figure 1.4: The tradeoff between flexibility, performance and power dissipation, source [9].
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since the width of the datapath is limited. In order to increase the performance (ex-
pressed in terms of number of operations per second), some GPPs partially follow
the approach from the ASIP world and use hardware accelerators such as special-
ized function units. Although they improve the performance, hardware accelerators
impair two strong arguments of the GPPs, flexibility and software entry in a high-
level language like C.

The usage of specialized hardware only reduces the performance problem. The
other bottleneck of GPPs, the narrow datapath that limits the possibilities for par-
allel computation, remains. This bottleneck grows more significant for longer data
words, e.g. when pixel data are moving from 8 to 10 or even 16 bits, which then
limits the throughput. To increase the throughput (and therefore the performance),
some GPPs use a Very Large Instruction Word (VLIW) architecture [11], which
enables Instruction Level Parallelism (ILP) [12]. This partly solves the through-
put problem for some applications. However, for the most demanding applications
aiming at high quality at high resolutions, GPPs cannot cope with the required
throughput and I/O data rates.

3. In the last few years, ASIPs have drawn a significant attention from both univer-
sity and industry [9, 13–19]. Being tuned to a specific application domain they
offer high performance suitable for very demanding applications and at the same
time they are sufficiently flexible for the target domain. The ASIPs leverage the
commonalities between applications, while bridging the gap between the ASICs
and GPPs in terms of performance and flexibility (see Figure 1.4). ASIPs are de-
signed to be flexible, but only within an application domain. They ideally offer
performance, power and area that are comparable to ASICs. ASIP implementa-
tions are superior in terms of performance, power and area compared to GPPs for
applications within their domain [9, 15]. These key features of ASIPs make them
promising candidates for the next generations of video signal processing architec-
tures.

1.3 Memory bandwidth challenges
The memory speed does not increase as fast as the compute power of processors [12]. This
creates a gap between the offered memory bandwidth and available compute resources.
This growth tendency gap is illustrated in Figure 1.5. It is interesting to dimension this
gap in the context of the target application domain. We shall tackle two aspects, the
bandwidth that is required by the processing element, and the memory bandwidth offered
by the state-of-the-art memories, frequently used in today’s System-on-Chips (SoCs).
Additional question is whether the offered bandwidth is sufficient for current and future
applications running on these SoCs.

The picture resolution and the refresh rate of displays have grown over time, resulting
in higher bandwidth requirements. Additionally, to produce one pixel, algorithms refer-
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Figure 1.5: The gap between the memory and processor speeds. Source: [12].

ence pixels from few temporal instances and reference the same pixels multiple times.
These are some of the main reasons for high bandwidth requirement towards the off-chip
picture memory. Example applications are de-interlacing [20, 21] and picture-rate up-
conversion [22]. They are based on motion estimation [23], which requires repetitive
pixel access. Chapter 4 will show that the raw bandwidth requirement of an extremely
efficient motion estimation algorithm performed at HDTV resolution (1920*1080 @ 60
Hz) used in picture-rate up-conversion is equal to 2.7 GB/s. The requested bandwidth
can even be larger if the picture rate or resolution increase. In case of 120 Hz processing,
the raw bandwidth requirement doubles to 5.4 GB/s. In case of quad HDTV resolution
(3840*2160), this bandwidth is four times larger, 10.8 GB/s. This is a large bandwidth
requirement, which requires adequate memory subsystem.

The above example discusses only a part of an application (picture-rate up-conversion).
A typical SoC executes a chain of applications, such as video format conversion [24] or
a Digital TV (DTV) application chain. The bandwidth of the off-chip memory is shared
by a number of producers/consumers executing a chain of applications. This causes a lot
of traffic to and from the off-chip memory making the requested bandwidth even higher.
Let us analyze a typical DTV application chain in a bit more detail. One of the first steps
is decoding the input video stream (MPEG2/H.264 are commonly used). The decom-
pressed video signal goes through a sequence of steps performing format conversion and
picture quality enhancement. Typically, they include de-interlacing, picture-rate conver-
sion, spatial scaling, picture quality enhancement. These steps produce and consume the
intermediate results (pictures), which are stored in the off-chip memory. Some recent
(2007) papers estimate the combination of the H.264 decoding and motion compensated
format conversion and quality enhancement to require 5.2 GB/s off-chip memory band-
width (this estimate assumes an on-chip memory subsystem) [25]. In case of dual H.264
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Figure 1.6: The processing template used in this work, a VLIW-based ASIP with vector function units. A
customized memory subsystem is needed to provide the data to the function units. This thesis proposes one such
customized memory subsystem.

stream, the bandwidth requirement is doubled. The off-chip memory used in today’s
System-on-Chips (SoCs) is usually realized as an SDRAM (Synchronous Dynamic Ran-
dom Access Memory). A 32-bit DDR2/DDR3 SDRAM (Double Data Rate SDRAM)
with a bus clocked at 400 MHz offers a peak memory bandwidth (without taking into
account the high latency) of 3.2 GB/s. Assuming bandwidth efficiency of 80 % [25],
the usable bandwidth drops to 2.56 GB/s. In a 64-bit version, the offered bandwidth is
twice as large, which is still not enough. This emphasizes the importance of the memory
subsystem.

1.4 The processing template

We have selected a VLIW-based ASIP with vector instruction set to be our processing
platform. VLIW is an adequate template to exploit the ILP largely present in video pro-
cessing applications. The application code is processed by the compiler off-line and all
the parallelism available in the VLIW machine is utilized, taking into account any data
dependencies [11, 26]. Video processing enables parallel computation, as groups of pix-
els having the same attributes can be identified and processed in the same way. To exploit
that, the usage of a vector instruction set looks promising. The benefits of such a vector in-
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struction set have already been reported [27–31]. Additionally, changing the vector length
(for example, 8, 16 or 32 pixel-wide) enables a scalable solution, which can be applicable
for different performance points. The vector instruction set may be generic, customized
or mixed [31–33]. A generic instruction set offers the highest degree of flexibility, possi-
bly bigger than needed by the application domain. A customized instruction set is more
tuned towards a specific application domain and offers a higher performance. We do not
analyze in depth the pros and cons of different instruction sets, but rather choose to use
a generic instruction set for the sake of demonstration. By no means, does this decision
limit the applicability of this work to only this instruction set.

To maximize the throughput, the presence of the selected processing platform that
enables billions of operations per second is necessary, but not sufficient. A memory sub-
system should limit the exposed bandwidth towards the off-chip memory and efficiently
accommodate the specific access patterns of the application domain. The main focus of
this thesis is on such a memory subsystem. The framework of this work is sketched in
Figure 1.6.

1.5 This thesis
The topic of this thesis is the architectural research within the application domain of video
post processing. The challenges are briefly summarized in the next subsection. Following,
the list of main contributions is highlighted. An outline of this manuscript concludes this
chapter.

1.5.1 Challenges

A large number of algorithms enabling the basic functions in the application domain have
been reported in the literature and/or have already been realized in silicon. From a pro-
cessing point of view, different algorithms use a different number of picture references,
apply different filtering schemes, etc. At the application side, the picture resolutions and
rates have been steadily increasing. This trend is not only present in television screens, but
holds as well for other display devices including mobile phones. The algorithmic diversity
coupled with high picture resolutions and rates imposes implementation challenges.

While the processor compute performance managed to stay on Moore’s curve, the
memory speed did not. The consequence is a discrepancy between the offered and re-
quested memory bandwidth. At the processing element side, the bandwidth requirements
are high. At the off-chip memory side, the available bandwidth is limited. The memory
subsystem should bridge the gap between the offered and requested bandwidth.

In summary, the algorithmic diversity, high requested memory bandwidth at the pro-
cessing element side and limited available bandwidth at the off-chip memory side rep-
resent the implementation challenges. The architecture should be cost-effective, flexible
enough within the application domain, offer predictable performance and, finally, be scal-
able to enable implementation for different picture resolutions and rates.
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1.5.2 Contributions
In this thesis, we propose an architecture to implement the algorithms from the video post
processing application domain. This architecture enables low off-chip memory bandwidth
and high processing element bandwidth (high performance). The architecture is based on
a cost-effective memory subsystem, which is sufficiently flexible within the application
domain. The performance is predictable and the architecture is scalable to support a
number of performance points. The contributions are summarized in the following list.

1. We recognize two distinct algorithmic classes, the first enabling block-based mo-
tion estimation/compensation and the other pixel-based content-adaptive filtering.
The list of algorithms within the application domain is impressive. The number
of different classes should be limited to simplify the task of implementation. The
selected two algorithmic classes are generic enough to cover a wide range of appli-
cations with high quality under acceptable implementation cost [Chapter 2].

2. In spite of operating on different data granularity (block- vs. pixel-based data), we
identify implementation commonalities between the two algorithmic classes that
allow a common architecture. We start from the C-description of the two classes
and show how both of them can be mapped onto our architecture of choice using the
vector instruction set, which enables parallel computation. To prove our concept,
we use the generic vector instruction set [Chapter 3].

3. We propose a scratchpad architecture that enables one-dimensional (1D) and two-
dimensional (2D) accesses to arbitrarily positioned blocks of data. Both algorithmic
classes require these type of accesses. The 1D and 2D accesses are realized within
the memory subsystem and release the datapath from this task [Section 4.4].

4. We propose a scratchpad organization and addressing technique to minimize the
off-chip memory bandwidth, which also enables a tradeoff between the off-chip
memory bandwidth and on-chip memory capacity. This technique is realized in
software and enables a flexible implementation [Section 4.5].

5. We discuss the number of memory hierarchy levels. The proposed architecture,
which enables 1D and 2D accesses to arbitrarily positioned blocks of data and the
technique for bandwidth reduction, naturally maps onto two levels of memory hi-
erarchy. We show, however, that it is possible to design a memory subsystem based
on just one level of memory hierarchy using the proposed architecture and the band-
width reduction technique. The advantages include reduced software complexity,
which has an impact on the overall performance and cost, an improved algorithmic
performance and, in most cases, a reduced power dissipation and area [Section 4.6].

6. We include a benchmark of our memory subsystem. In order to rank a memory
subsystem, we proposed a set of six criteria: minimal off-chip memory bandwidth,
predictability, high processing element bandwidth, flexibility, efficiency and scala-
bility. Our memory subsystem is benchmarked with the existing solutions over the
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proposed six criteria and proves to be better, on average, than any of the other solu-
tions. Per individual criterion, it is better or equal than any other evaluated solution
performing on that criterion [Section 4.7].

7. We include a proof of concept. A processor that implements a high-quality mo-
tion estimation algorithm [23] and processes HDTV material (1920*1080) in real-
time, has been developed, synthesized and compared with the Trimedia TM3270
processor. Comparison of the performance per square millimeter shows that our
implementation is eight times more efficient [Appendix C].

1.5.3 Outline
The remainder of this thesis is organized as follows. Chapter 2 presents the applica-
tion domain of video post processing. Three pillars of the application domain are iden-
tified: Video format conversion, video enhancement and motion estimation. Different
algorithms, i.e. different implementations of the applications within the domain are pro-
vided for each of the pillars. The number of different algorithms illustrates the diversity
of the application domain. From that algorithmic diversity, we have selected two distinct
algorithmic approaches (classes) as our major implementation target. The first class is
block-based motion estimation/compensation and the second one is pixel-based content-
adaptive filtering. Algorithms from these two classes enable a high picture quality under
acceptable cost and together, they cover a wide range of applications.

Chapter 3 starts from the proposed classification of the algorithms. The chapter con-
tinues with a demonstration how the algorithms from both classes can be adapted to our
architecture template, which exploits data level parallelism. Starting from a C-like de-
scription in a step-by-step fashion, we show how the algorithms from both classes can be
vectorized. We conclude the chapter with the algorithmic requirements for the memory
subsystem. In spite of their algorithmic diversity, our conclusions show that both algo-
rithmic classes require access to an arbitrarily positioned group or block of pixels, and the
block of accessed pixels is localized within a limited area.

Chapter 4 proposes a memory subsystem that is customized to the needs of the ap-
plication domain. From the conclusions drawn so far, we identify two basic goals that a
memory subsystem should fulfill, access to an arbitrarily positioned block of pixels and
reduction of the off-chip memory bandwidth. Section 4.4 proposes a scratchpad architec-
ture that enables one-dimensional and two-dimensional accesses to arbitrarily positioned
blocks of pixels. Both access types are needed by the two algorithmic classes. Section
4.5 continues with a scratchpad organization and addressing technique that minimize the
off-chip memory bandwidth. This proposal also enables a tradeoff between the off-chip
memory bandwidth and required on-chip memory capacity. The important question on
the number of memory hierarchy levels is addressed in Section 4.6. After benchmarking
the proposed memory subsystem against the prior work in Section 4.7, we conclude the
chapter in Section 4.8.

Chapter 5 concludes this thesis and presents some directions for future work.
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2

Application domain: overview and analysis

THE goal of this thesis is to find an architecture that can efficiently deal with the
entire application domain. This chapter provides an overview of the various methods

and algorithms that are applied across the application domain. In order to assess the
needs of these methods for architectural resources, we shall also provide an analysis of
the application domain from an implementation point of view. In the conclusion of this
chapter we shall use this overview and analysis to make the proper algorithmic choices
that limit the achievable quality as little as possible.

To render a picture on a modern display, a number of processing steps take place.
The picture might originate from a scene captured by the camera sensor, or it might be
artificially generated. In this thesis, we assume that the picture is available in a digital
format (which is nowadays most often the case) and the processing is performed in a dig-
ital domain. The sequence of digitalized pictures goes through a number of processing
steps as indicated in Figure 2.1. The first step usually is noise reduction. Further, depend-
ing on the input format and the display format, each picture might be de-interlaced. In
order to increase the picture rate, picture-rate up-conversion is applied. As the displays
are becoming bigger, their resolution increases as well. At the same time, there is plenty
of video material available in old (smaller) resolution. In order to display this material,
spatial scaling must be applied. Further, there is a large number of algorithms used to
enhance the quality of the rendered pictures. Examples are sharpness enhancement, gray-
level rescaling, color correction, etc. Finally, motion estimation is sometimes used to
enhance the quality of applications, such as de-interlacing or picture-rate up-conversion.
As indicated in Figure 2.1, there are also algorithms that are applied for a specific type
of displays. Even though Figure 2.1 suggests a specific order of these applications, they
could be ordered differently, depending on the characteristics of the specific display, ap-
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Figure 2.1: The video processing pipe with the application domain that this thesis targets. This thesis focuses
to the display independent processing.

plied algorithms, the type of input material, etc.

There is a large number of algorithmic approaches to implement an application. Even
though the basic functionality is satisfied, the difference between the performance and
cost can be enormous. When describing a certain method, we shall indicate some of the
cost indicators: the number of reference pictures used, number and position of pixels used
in pixel interpolation and the computational complexity of an algorithm in general. The
presentation of this chapter is organized in three pillars, video format conversion, video
enhancement, motion estimation. The motivation for this is provided in the next section.
The overview of the algorithms given in this chapter was inspired by [34].

This chapter will show that each application from the target domain can be imple-
mented using different algorithms. The diversity of these algorithms is visible in many
aspects. The presentation of each application will start from the basic algorithms that
merely implement the requested function. The implementation cost of such algorithms
is often low, but the achieved quality is low as well. After pointing to the drawbacks of
these methods, the story continues with the improved algorithms, which eliminate some
of the artifacts of the previous methods and increase the quality. Eventually, reaching the
highest quality levels, the story will lead us to one of the two, or both, basic algorithm
classes: motion estimation and content-adaptive filtering. This is certainly sure for the
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most quality affecting applications from the domain, de-interlacing [21, 35–38], picture-
rate up-conversion [22, 39–43] and spatial up-scaling [44, 45]. Based on the analysis of
independent applications from the domain, Section 2.5 concludes that motion estimation
and content-adaptive filtering are the two algorithmic classes that offer high quality. In
addition, the content-adaptive algorithmic class is broad enough to include algorithmic
approaches that obtain good quality even with fixed coefficients. Typically, such algo-
rithms are found in the applications to enhance the quality of the rendered pictures.

In this and the following chapters we shall use mathematical equations as a tool to
compactly define an algorithm. We denote the luminance value of the pixel located at
position (x, y) in picture number n with FI(~x, n), where ~x is a compact way of writing
(x, y). In the notation, we shall also use unit vectors, i.e. ~ux ≡ (1, 0) and ~uy ≡ (0, 1).

2.1 Three pillars of the application domain

This thesis identifies three pillars of the application domain:

• Video format conversion,
• Video enhancement,
• Motion estimation.

Video format conversion is an inevitable ingredient of the post processing application
domain and represents our first pillar. A revolution in the display technology made video
format conversion key to achieving a good motion portrayal [46]. A good motion por-
trayal is important in niche markets like 100 Hz television sets. There are plenty of input
and output video formats that are currently in use and there is a clear need for conversion
from one to another. To mention a few, there is film material recorded at 24 or 25 Hz,
video material at 50 or 60 Hz, explosion of streaming videos on the Internet. Input and
output video format do not only differ in picture rate but also at the scanning raster (inter-
laced vs. progressive), and picture resolution. The applications involved in video format
conversion are de-interlacing, picture-rate up-conversion and spatial (resolution) scaling.

With state-of-the-art-displays, the quality of the output pictures is one of the key dif-
ferentiators. Having brighter, crisper, more colorful pictures is on the wish list of any
display-related company. Therefore, video enhancement is our second pillar. Key appli-
cation drivers are noise reduction, sharpness, contrast and color enhancement.

Lastly, motion estimation has recently become a key enabler of many of the processing
steps within the video chain. Motion compensated algorithms are usually the ones that
provide the highest quality of pictures. The reason that motion estimation was not widely
used in the past was its cost. Recently though, it was shown that motion estimation
and compensation are feasible at acceptable implementation cost [23]. This fact firmly
embedded motion compensated processing into the video chain and made our third pillar
motion estimation.
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2.2 Video format conversion

All three applications from the video format conversion pillar synthesize pixels at new
spatio-temporal locations. The most simple methods are linear methods that lead to a
poor quality of output pictures since video signals are in general not stationary signals.
We begin this section starting from those linear methods, and then continue with non-
linear methods that in general offer better quality under higher needs for computational
resources.

2.2.1 De-interlacing
Interlace is a technique of alternatively transmitting odd and even lines of a picture. At
picture number n, half of the picture (called field) containing the odd lines is transmitted
and at picture number n + 1, the other field containing the even lines is transmitted.
Interlaced transmission is illustrated in Figure 2.2.

Interlace has been invented in the early thirties. The credits for this invention typically
go to R. C. Ballard and somewhat less often to F. Schroeter. The main advantage of this
invention is reduction of channel bandwidth. Interlaced video namely reduces the signal
bandwidth by a factor of two, for a given spatial resolution and refresh rate. For example,
1920*1080i HDTV signal with a 60 Hz field rate has a similar bandwidth to 1280*720p
HDTV with a 60 Hz picture rate, but approximately twice the spatial resolution. Its main
drawbacks are that it performs poorly on moving pictures, leading to saw tooth (combing)
and other artifacts and that fine vertical detail is subject to flicker with two times lower
frequency as the rest of the picture.

Contemporary displays use progressive scan and the need for interlace is lessened
significantly with time. Currently, the transmission is mostly digital and initially there is
a lot of bandwidth available [47]. However, in the process of analogue-to-digital TV set
conversion, an increasing number of subscribers is asking for more advanced, bandwidth-
hungry services like video-on-demand. The acceptance of the HDTV standard increased
the pixel count 5 times (from SDTV (720*576i) to HDTV (1920*1080i)), which increases

n−1 n+1n Picture number

Figure 2.2: The basic principal of interlaced video. Only alternating pixel lines (marked as black circles) are
transmitted.
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the needed bandwidth. In conclusion, we cannot be sure that the bandwidth issues are
solved for good. Furthermore, digital video broadcast already applies video compression
to save bandwidth [48]. Thereby, the question to interlace or not to interlace is still quite
open. In summary, interlace is the origin of years of research, legacy we have to deal with
and possibly a technique that will continue to be used in the future as well.

De-interlacing is a technique that converts the interlaced input video material or fields
to progressive video material or frames. Formally, the de-interlaced frame is defined with
the following equation:

FO(~x, n) =
{

FI(~x, n), y mod 2 = n mod 2
FINT (~x, n), otherwise (2.1)

where FINT denotes the interpolated pixels.

De-interlacing is one of the major determinants of picture quality in a modern display
processing chain. It takes one of the first positions within the video chain, before the
picture-rate up-conversion. It is thereby important to minimize the artifacts that it pro-
duces since they propagate further and usually get amplified on their way to the display.
Figure 2.3 illustrates the challenges of de-interlacing by showing some of the artifacts.

Figure 2.3: Different artifacts of de-interlacing. The picture in the top left corner was obtained by applying
line repetition algorithm, top right field repetition (insertion), bottom left edge-dependent de-interlacing and
bottom right motion compensated de-interlacing based on Generalized sampling theorem.
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2.2.1.1 Linear methods

All linear methods are defined with the following equation:

FINT (~x, n) =
∑

k F (~x + k~uy, n + m)h(k, m),
where k, m ∈ Z, (k + m) mod 2 = 1 (2.2)

In the above formula h(k, m) denotes the impulse response of the filter.

The two simplest and probably best known linear de-interlacing methods are line rep-
etition (spatial de-interlacing) and field insertion (temporal de-interlacing) [49]. Line
repetition is a spatial method that can be derived from Equation 2.2 when h(k, 0) = 1
for k = −1 and h(k,m) = 0 otherwise. This is probably the cheapest de-interlacing
method, which requires only one complete pixel-line and practically no pixel processing.
The strong alias that results from this method (visible in Figure 2.3) can be reduced by
increasing the order of interpolation. Increasing the order of interpolation by one leads to
the line-averaging or popular Bob de-interlacing. The filter impulse response is defined
with h(k, 0) = 0.5, k ∈ {−1, 1} and h(k,m) = 0 otherwise. Bob de-interlacing still has
modest memory capacity requirements and a simple 2-tap filtering, i.e. line averaging.

Due to the high temporal correlation of the incoming pictures, the next logical step
would be to profit from it. Field repetition or field insertion (also known as Weave in
the PC community) is the simplest linear temporal de-interlacing method. Its impulse
response results when selecting h(0,−1) = 1 and h(k,m) = 0 otherwise. This method
provides the perfect result in case of stationary video sequence but quite annoying artifacts
in the case of motion as can be seen in Figure 2.3.

Field insertion does require one field reference that makes it memory-wise much more
expensive compared to its spatial counter part. Better (and more costly) results can be
obtained if longer FIR filtering is applied. The number of filter taps defines the complexity
of implementation and the memory requirements. This makes the Weave de-interlacing
implementation-wise unattractive as the number of used field references is equal to the
number of filter taps.

Vertical-temporal filtering is a linear filter that combines spatial and temporal infor-
mation available in the sequence of pictures. This filter is designed such that only the
higher frequencies are used from the neighboring fields. An example realization is given
in the following equation:

hV T (k,m) =

 1, 8, 8, 1, k ∈ {−3,−1, 1, 3} ∧m = 0
−5, 10, 5, k ∈ {−2, 0, 2} ∧m = −1
0, otherwise

(2.3)

As can be seen from the above equation, this method is computationally-wise and mem-
ory capacity-wise more expensive than just a combination of the Bob and Weave de-
interlacers, it requires one field reference and a 7-tap filtering.
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2.2.1.2 Non-linear methods

The next step that improves the quality is to take the motion information into account
when filtering the pixels. This can be realized through methods that are motion or detail
adaptive. Motion adaptive algorithms position themselves in between non-motion com-
pensated algorithms and motion compensated ones, in terms of cost and performance. In
general, motion detectors compute the difference between (parts of) two field references.
This difference is usually low-pass filtered and rectified to increase the reliability of the
signal [34]. The motion detector is used to switch or fade between two or more process-
ing modes. As we have seen from the weave and bob de-interlacers, a de-interlacer might
be optimized for certain type of video material, e.g. involving a lot of motion or mainly
stationary. Bock [50] proposed a version of this reasoning that provides fading between
these two modes of operation according to the next equation:

FBOCK(~x, n) =
{

FI(~x, n), y mod 2 = n mod 2
αFST (~x, n) + (1− α)FMOT (~x, n), otherwise (2.4)

In this equation, α is the fading factor, provided by the motion detector, FST and FMOT

are the functions describing the static and moving picture parts, respectively. Apart from
motion detector, this method requires computation of both, Fst and Fmot functions. Mix-
ing of the two outputs is also required.

An extension to Bock’s idea is to fade between more than two interpolators. Filliman
et al. [51] designed an IC used in television that implements this idea. The de-interlaced
output has two sources, the high-frequency component and the low-frequency component
of the input signal. The fading (again, controlled by the motion detector) is applied to the
low frequency component.

FFIL(~x, n) =

 FI(~x, n), y mod 2 = n mod 2
FHF (~x + ~uy, n) + αFAV (~x, n)+
(1− α)FLF (~x, n− 1), otherwise

(2.5)

where FAV = 1
2 (FLF (~x− ~uy, n) + FLF (~x + ~uy, n)).

The motion detector proposed by Filliman et al. uses the field difference to determine
the amount of motion. This implies rather straightforward and simple processing with
modest cost and the usage of two field references. The presence of motion is quantized
using eight levels (three bits). Apart from the motion detector, this approach implies the
splitting of the input signal into the high and low frequency parts, HF and LF respectively.
The LF part of the signal is calculated for the previous field using the FIR filter of the sixth
order. The HF part is computed as the difference between the original signal and the LF
part. Thereby, two field references are required in this part of the algorithm, which is
matched with the needs of the motion detector. To compute the FAV , a simple vertical
filter (averaging) was applied on the pixels from two vertically neighboring pixel-lines.
Mixing is performed in two stages, as defined by Equation 2.5. In the first stage, mixing
of the LF components take place, similar to Bock’s approach. In the second stage, the
already mixed LF component is combined with the HF component.



20 Chapter 2 Application domain: overview and analysis

FD E

B C

X

A

(a) (b)

Figure 2.4: Two edge-dependent de-interlacing algorithms. The difference is in the aperture, i.e. the number
of possible edges they can distinguish. The strongest edge is determined and the interpolation is performed
along that edge. Pixels indicated as black circles are existing pixels from the current field and the white ones are
to be interpolated. Pixel marked with square is the one currently being interpolated.

The edge-dependent de-interlacers (EDDI) perform directional interpolation. We il-
lustrate its principals on the simple example published by Doyle et al. [52]. This method
distinguishes between three edges, 45◦, 90◦ and 135◦ by using the aperture of 3*2 pixels.
The aperture and notion of particular pixels is illustrated in Figure 2.4a. Using the nota-
tion from the same figure, we present the interpolation equation of the missing pixel X .

X =

 XA, (| A− F |<| C −D |) ∧ (| A− F |<| B − E |)
XB , (| C −D |<| A− F |) ∧ (| C −D |<| B − E |)
XC , otherwise

(2.6)

where XA = (A + F )/2, XB = (B + E)/2, XA = (C + D)/2 and the pixels used in
formula are the ones as indicated in Figure 2.4a. In the improved version, XB is replaced
by the vertical temporal median filter such as:

FV TM =
{

FI(~x, n), y mod 2 = n mod 2
med(FI(~x− ~uy, n), FI(~x + ~uy, n), FI(~x, n− 1)), otherwise

(2.7)
Where the med operator performs the three-tap median. This is the simplest form of the
vertical temporal median filter. It can be shown that this method automatically switches
to the intra/inter field interpolation on a pixel-basis. Vertical temporal median filtering
was also used in a commercially available chip [53]. In order to enhance the quality,
more angles can be taken into account. In this case, the solution becomes more expensive
since the aperture has increased and the number of operations needed to arrive at the
strongest edge increases accordingly. One such approach (illustrated in Figure 2.4b) has
been published in [54].

In order to estimate the cost of the EDDI-class algorithms, we first note that they
are spatial algorithms (if the vertical temporal filtering is not applied). The support they
require usually fits in two pixel-lines. The horizontal aperture determines the quality
and linearly increases the need for HW resources. Per edge, three absolute differences
need to be calculated, two comparisons and one logical operation need to be performed.
The interpolation is usually a simple two-pixel averaging performed along the strongest
edge. In the improved version, which uses vertical temporal median filter such as the one
indicated by Equation 2.7, the algorithm requires an additional field reference.
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2.2.1.3 Motion compensated methods

The idea behind motion compensated de-interlacing is to improve the correlation between
pixels used in filtering. With application of motion estimation, the filtering is performed
along the motion trajectory. Thereby, for many non-motion compensated de-interlacing
methods, its motion compensated counter part exist as well. Replacing the pixels FI(~x, n)
by FI(~x + m~D(~x, n), n + m) converts a non-motion compensated method into the mo-
tion compensated (MC) one. For example, MC field repetition, MC field averaging, MC
vertical temporal filtering, MC median filtering and others are known de-interlacing al-
gorithms. For these methods, we must assume the existence of motion vectors without
explaining how we obtain those. Subsection 2.4 will provide insight into the most popular
motion estimation techniques. There we shall also asses the cost associated with motion
estimation.

This subsection discusses the particular methods that cannot be directly derived from
the non-MC algorithms. The fundamental problem here arises when the motion vector
does not point to an existing pixel on the interlaced grid. In the horizontal domain, this
is not a problem since we can apply the sampling rate conversion theory. In the vertical
domain, the theory cannot be applied since the demands of the sampling theorem are not
satisfied.

To cope with this problem, we could neglect the theory and interpolate even in the
vertical domain [35]. Woods et al. [36] improve this approach by extending the motion
vector to the pre-previous field. They check then if the vector points to the vicinity of an
existing pixel in either of these two fields. Only if this is not the case, spatial interpolation
in the previous field is performed. The drawback is that the algorithm assumes linear
motion vector field over the two-field period, which is not always the case. The HW costs
are increased since the third field reference is needed as well.

Another approach is to use the previously de-interlaced frame in the interpolation and
directly apply the sampling rate conversion theory [55]. Since this approach is recursive,
the errors from the previously de-interlaced frame propagate. This is the biggest drawback
of this method. To prevent error propagation, methods have been proposed [55, 56].
Median filtering such as in the following equation proved to provide good results.

FO(~x, n) = med

 FO(~x− ~D(~x, n), n− 1),
FI(~x− ~uy, n),
FI(~x + ~uy, n),

(2.8)

The median filter used in the above method can cause alias. To improve on that, Adaptive-
Recursive (AR) de-interlacing was proposed in [57]. AR de-interlacing is defined with
the following equation:

FO(~x, n) =
{

kFI(~x, n) + (1− k)FO(~x− ~D(~x, n), n− 1), (y+n) mod 2 = 0
pFA(~x, n) + (1− p)FO(~x− ~D(~x, n), n− 1), otherwise

(2.9)
where k and p are adaptive parameters and FA(~x, n) is the output of any (preferably
simple) de-interlacing algorithm. Reference [57] explains how to calculate p and k.
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a) b)

Figure 2.5: Picture (a) illustrates the essence of the 1D GST based de-interlacing. Picture (b) shows the filter
support used in 2D GST based de-interlacing. In order to de-interlace the missing pixels (white circles), two
sets of pixels are used: the original pixels from the picture number n (black circles) and the motion compensated
ones taken from the picture number n-1 (triangles).

We conclude the de-interlacing section with the algorithm based on the Generalized
Sampling Theorem. According to the sampling theorem, a bandwidth-limited signal with
a maximum frequency of 0.5fs, can exactly be reconstructed after sampling at a fre-
quency higher than fs (Nyquist criterion). In 1956, Yen [58] proposed a generalization
of the sampling theorem (GST), proving that a signal with a bandwidth of 0.5fs can be
reconstructed from S independent sets of samples, all obtained by sampling the signal
at fs/S with a phase shift. Put in the context of video processing, Delogne et. al have
proposed the solution for de-interlacing based on the GST [37, 38]. As shown in Figure
2.5a for de-interlacing, the first of the two required independent sets of pixels is obtained
by shifting the pixels from the previous field (picture number n-1) over the motion vector
towards the current picture n. The second set contains pixels from the current field. This
filter does not use previously interpolated field, which prevents error propagation. The
filter coefficients depend on the fractional values of the vertical component of the motion
vector.

The robustness of this method can be improved if the outliers in the motion vector
field are replaced by the more probable values. The most common method to that is the
median filtering. Bellers and de Haan [59] show that the median filtering degrades the
quality of the motion vector field too much in the areas with correct motion vectors. The
authors proposed to apply the modification only in the areas where motion vectors contain
close to critical velocity.

A further improvement has been published by Ciuhu and de Haan in [21]. This algo-
rithm computes the de-interlaced pixel twice. A pixel is interpolated using the previous
and the current fields as well as using the current and the next field. Theoretically, these
two values should be identical. If their difference is higher than certain threshold, this is
the case of unreliable motion vector candidate. In such a case a fall back scenario can be
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applied.

The 2D generalized sampling theorem based de-interlacing [21] uses the 2-D pattern
of pixels used in GST-based de-interlacing. Ten pixels contributing to de-interlacing are
selected from the circular 2-D neighborhood of the pixel being interpolated (see Figure
2.5b). Taking into account the discussion about the robustness of the motion vector field
from the previous paragraph, we conclude that the 2D GST based de-interlacing is a three-
field algorithm where the motion vector candidates are used to fetch motion compensated
pixels from the previous field and the next field in order to estimate the motion for the
current field. Using the best-matching motion vector candidate, the missing pixels are
interpolated using the 10-tap filter.

Apart from the fact that the algorithm uses three picture references, we note that this
is a compute intensive algorithm. For each motion vector candidate, a 10-tap filtering has
to be performed twice, for previous-current and for the current-next input field combi-
nation. During the de-interlacing, the complete process is repeated for the best motion
vector candidate. Thereby the dominant part of the algorithm is pixel interpolation. More
information about the computational complexity of this algorithm can be found in [60].
The author made an effort to simplify this algorithm. The interested reader may find more
detailed information in [20].

2.2.2 Picture-rate up-conversion

Modern television sets display video stream at rates that range from 50 to 120 Hz, while
the source picture-rate can be 50 or 60 Hz for video material and 24, 25 or 30 Hz for
film material. Clearly, a high quality conversion of signals from one format to another
is of great importance. In order to generate new pictures (see Figure 2.6), we need to
perform a temporal interpolation. Directly interpolating pictures according to the rules of
the sampling theorem [61] does not produce good results unless the temporal interpolation
is performed along the motion trajectory [34]. The human visual system (HVS) is capable
of tracking a moving object. In the case of motion, the HVS compensates for the motion,

n+αn n+1 Picture number

Figure 2.6: The problem statement of picture-rate up-conversion. Pixels marked as black circles are trans-
mitted. Pixels marked as white (empty) circles have to be interpolated.
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creating a stationary object at the retina. Therefore, if the temporal interpolation is not
performed along the motion trajectory, echos or aliases of the moving object appear at the
retina. This either leads to motion judder or blur [34].

There is no upper limit to the temporal frequencies in video that the HVS can resolve
because the eye transforms them to low frequencies. Without an upper limit it is impos-
sible to design an interpolating low-pass filter that does not cause blur. However, there
is a limit to the maximum perceivable temporal frequency at the retina. For the average
viewer, it is about 50 Hz (this value depends on the brightness of the display and the view-
ing angle) [34]. This implies that it is possible to interpolate in the temporal dimension
only after compensating for motion.

The classical approaches neglect this aspect of temporal interpolation and therefore
produce poor results with respect to the motion portrayal. We start this section with
these simple algorithms, show their drawbacks and present more advanced methods that
perform the interpolation along the motion trajectory.

2.2.2.1 Linear methods

All linear methods for up-converting a video sequence by a factor of k/l, where k and
l are natural numbers, can be defined with the following set of equations [34]. We shall
denote the input samples with n and the output with n′. The up-conversion with a factor
of k starts with the appropriate zero-stuffing. The zero-stuffed signal Fz is defined with
the following equation:

Fz(~x, a
k ) =

{
FI(~x, n), a

k =1, 2, 3, . . .
0, otherwise (2.10)

followed by the low-pass filtering:

FLP (~x, a) =
∑
m

Fz(~x, a + m)h(m),m ∈ Z (2.11)

In the above formula, h(m) denotes the impulse response of the temporal filter. The last
step is the decimation with a factor l:

FO(~x, n′) = FLP (~x, la) (2.12)

Changing k, l and h(m) leads to various linear up-conversion techniques including the
simplest one, picture repetition. The impulse response is defined with the following equa-
tion:

hREP (m) =
{

1, m ∈ {−1, 0}
0, otherwise (2.13)

The picture repetition algorithm practically does not require any processing and it needs
one picture reference. Surprisingly enough, this approach is actually also used in profes-
sional equipment for displaying film material on a 50 or 60Hz television. Since film is
usually recorded with a 24 Hz camera, in order to be displayed on a 50Hz television, two
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Figure 2.7: Different artifacts of picture-rate up-conversion. From top-left to bottom-right: Non motion
compensated picture averaging, motion compensated picture averaging, static median filtering, dynamic median
filtering, cascaded median and the central weighted median filtering.
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steps are applied. The first step is to accelerate the material to 25 Hz and the second one
is to display each picture twice (this method is also called 2-2 pull down). In the case
of 60Hz television, pictures are repeated two or three times, alternating (2-3 pull down).
By doing this, the achieved rate is exactly 60 fps (frames per second), or 60Hz. Picture
repetition has also been used in the early ICs for flicker-free television [53].

In order to produce better results, we return to the sampling theory. As the theory
prescribes, after band limiting and zero-stuffing the signal, we apply low-pass filtering in
which the empty pixels get meaningful values. Unlike in the picture repetition algorithm,
we should take infinitely many picture references and a low-pass filter should have in-
finitely many taps in order to arrive at the ideal impulse response of the filter, the sync
function. Practical implementation aspects impose limitations to the number of used pic-
ture references and filter design, which leads to feasible filters. Here we exemplify it with
the simple weighted picture averaging that uses only two picture references:

FAV G(~x, n + α) = (1− α)FI(~x, n) + αFI(~x, n + 1),
0 ≤ α ≤ 1 (2.14)

This linear method uses coefficients that are reversely proportional to the temporal dis-
tance between the original pictures and the interpolated one. In the case of picture rate
doubling (counterpart of the 2-2 pull down for example), α = 1/2, the impulse filter
response is defined with:

hAV G(m) =

 1, m = 0
1/2, m ∈ {−1, 1}
0, otherwise

(2.15)

Compared to the coefficients of the impulse filter of the picture repetition, we see that the
number of non-zero coefficients has increased. This means that the number of echos in
the interpolated picture has also increased, which results in a blurred picture. The blurring
with visible echos is illustrated in Figure 2.7.

The reason why this blurring occurs we have to seek in the way the interpolation was
performed. In this case, it was performed along the temporal and not along the motion
axis. Therefore, using more picture references does not help, it will only increase the
number of echos. In order to achieve good results, filtering must be performed along the
motion trajectory. This implies the usage of motion-compensated techniques.

2.2.2.2 Motion compensated methods

The simple picture-rate up-conversion algorithms like picture repetition or picture av-
eraging produce visual artifacts like motion judder and blur while motion compensated
algorithms enhance the up-conversion quality. Picture-rate up-conversion is independent
from the motion estimation algorithm used. In this subsection, we assume the existence
of motion estimator and leave the analysis of various estimators for Subsection 2.4.

After motion estimation is performed, to every pixel identified with spatial position ~x
and temporal position n, a displacement vector ~D(~x, n) has been assigned. Based on the
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Figure 2.8: The pixels from the previous n and current n+1 picture, accessed in the motion compensated
up-conversion. ’a’ and ’b’ denote the pixels compensated with the current motion vector candidate while ’c’
and ’d’ are non-motion compensated positions in the previous and current picture.

motion vector field calculated at the temporal position n + α, 0 ≤ α ≤ 1 as well as the
luminance values of the pixels available at the picture numbers n and n+1, new pixels can
be interpolated at picture n+α. Figure 2.8 illustrates the process of motion compensated
creation of the pixel ’e’ in the interpolated picture (picture number n + α). This picture
is applicable for all the methods to follow.

All linear non-motion compensated methods discussed in this subsection have their
motion compensated counterpart. We begin discussing those methods and afterwards
continue with the non-linear MC methods, which bring further performance improvement.

2.2.2.3 Linear motion compensated methods

Using motion estimation, the corresponding pixels on the motion trajectory in the previous
and current picture are determined (motion compensated pixels ’a’ and ’b’, respectively).
The simplest motion compensated algorithm called motion compensated pixel repetition
(MCPR) is based on the first order linear interpolation and it uses only one of the two
mentioned pixels (pixel ’a’ or ’b’). It is defined with:

FMCPR(~x, n + α) = FI(~x− α~D, n),
0 ≤ α ≤ 1

(2.16)

The next improvement is to use higher order interpolation linearly combining pixels from
successive pictures. This method is called motion compensated pixel averaging (MCPA)
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and averages motion compensated pixels ’a’ and ’b’. Formally, MCPA is defined with:

FMCPA(~x, n + α) =
1/2

{
FI(~x− α~D, n) + FI(~x + (1− α) ~D, n + 1)

}
,

0 ≤ α ≤ 1
(2.17)

Compared to MCPA, MCPR has the modest advantage of using just one picture refer-
ence. This advantage is limited since it is only applicable in case of an external motion
estimator, which is often not the case. MCPR practically does not require any process-
ing. MCPA requires a bit more processing, i.e. a simple averaging at pixel rate. For
both methods, the dominant HW cost goes to fetching the right pixels pointed out by the
motion vector with possible application of the scaling factor α.

Thanks to the application of motion compensation, which enables interpolation along
the motion trajectory, the blurring in moving picture parts is drastically reduced compared
to the non-motion compensated variants of these algorithms. Figure 2.7 illustrates signif-
icant quality improvement that MCPA brings compared to its non motion compensated
variant. However, the problems that all motion compensated methods face are the errors
in the motion vector field. These errors cause the wrong pixels to be fetched and used in
the interpolation. For example, if we look at the compensation of a video sequence that
contains a subtitle, the non-zero motion vectors might also penetrate into the regions with
subtitles. This leads to the artifacts as illustrated in Figure 2.7.

2.2.2.4 Non-linear motion compensated methods

The way to tackle this problem is to generate a number of likely pixel candidates for
temporal interpolation and remove the outliers by using the order statistical filtering. In
the literature, we find a number of solutions [40–43, 62–65]. We distinguish two major
options among the non-linear motion compensated methods.

According to the first option, the promising candidates can be pointed out by the best-
matching motion vector or a zero vector (more conservative approach). Actually, the more
complete pixel candidate set consists of the pixels pointed out by all the motion vectors
from the evaluation set (including the zero candidate) [39]. The order statistical filter will
then select one pixel from this relatively large and complete pixel candidate set.

The second option would be to choose from the list of small position variations cen-
tered around the motion compensated pixel [64, 65]. The non motion compensated variant
of this approach would be the list of variations centered around the zero vector [64]. In
the coming text, we will cover both options in more detail.

The first option: In order to find an outlier, at least three candidates are required such
that a majority prevails and eliminates the outlier. There are four immediate possibilities
for these candidates, MC compensated pixels from the previous (’a’) or the next (’b’)
picture or the non-MC pixels from the previous (’c’) or the next (’d’) picture. These four
candidates provide the bases for a couple of non-linear methods that we will present in
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the following paragraphs.
In order to cope with the previously mentioned subtitle artifacts, a conservative 3-tap

median filter which has two non-MC compensated inputs and one MC input has been
proposed [43]. This filter, called the static median filter, is defined with the following
equation:

FMCSTA(~x, n + α) =
med {FI(~x, n), FI(~x, n + 1), FMCAV G(~x, n + α)} ;
0 ≤ α ≤ 1

(2.18)

As the number of non-motion compensated pixels outnumbers the motion compensated
pixels (only one), it is clear that this filter is a conservative one that switches to one of
the non-motion compensated pixels in the case of a spurious motion vector. Its biggest
problem occurs with detailed moving picture parts (like textures, or very thin objects)
where the difference between non-MC pixels is very large causing that the filter output
frequently switches among the three inputs. The performance of the static median filter is
illustrated in Figure 2.7. The subtitle is practically artifact free but the leaves of the palm-
tree (detailed texture) show prominent artifacts as a result of too-conservative median
filtering.

To address the mentioned problem, another 3-tap median filter has been proposed,
where the number of MC pixels outnumbers the number of non-motion compensated
ones. This filter is called dynamic median filter [39, 40]. The dynamic median filter is
defined with the following equation:

FMCDY N (~x, n + α) =
med {FI(~x− α~D, n), FI(~x + (1− α) ~D, n + 1), FAV G(~x, n + α)};
0 ≤ α ≤ 1

(2.19)

where FAV G is the non-motion compensated picture average defined with Equation 2.14.
In case of the accurate motion vector, the MC pixels will be ranked next to each other and
the output of the filter will be one of them. This is the reason why this filter performs better
than the static median in case of reliable motion vector and improvements are visible in
the case of input material is detailed texture. If the motion vector is not reliable, the idea
is that the MC pixels will be significantly different such that the non-motion compensated
average sample will be in the middle and therefore be selected as the output of the median
filter. Sometimes this does not work, as illustrated in Figure 2.7. Contrary to the static
median filter the subtitle suffers again from artifacts while the detailed texture is correctly
interpolated (since the correct velocity has been detected by the estimator).

To asses the HW cost of these two median based filters, we note that additional to the
cost of MCPA, these methods also require fetching the non-motion compensated pixels
from the pre-determined positions. Further, as a final step, the 3-tap median is calculated.
Clearly, the HW cost for the median based filtering is somewhat higher than the cost of
MCPR and MCPA.

An alternative to the median filtering is mixing the MC averaging and temporal av-
eraging [41]. The mixing is controlled by the local reliability of the motion vector field,
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Figure 2.9: Illustration of the algorithm published in [64] that uses weighted median filter. Pixel marked with
square is currently being interpolated.

denoted with k as defined by the following equation.

FMIX(~x, n + α) = (1− k)FAV G + kFMCPA (2.20)

As proposed in [41], the reliability k is controlled with two differences, between the
motion compensated pixels and the second one between the non-motion compensated
pixels. Depending on the control, the performance resembles the static or dynamic median
filter.

The static median filter performs good in the stationary areas, but not in the case of
detailed textures. Dynamic median performs much better in the latter case assuming that
the motion vector is correct. To benefit from both the static and the dynamic median
filtering, they can be combined in order to arrive at more robust up-conversion [42]. A
practical implementation, involving two-stage median filtering, called cascaded median
has been published in [43]. Cascaded median is defined with the following equation:

FCMED = med {FMCDY N , FMCSTA, FMIX} (2.21)

This algorithm requires calculation of all three used methods and performs additional
three-tap median. Figure 2.7 illustrates the benefits of this method that joins the good
points of static and dynamic median filtering.

The second option: As we mentioned in the introduction of the non-linear MC meth-
ods, an alternative to the aforementioned methods is a median filter, using input pixels
centered around the motion compensated pixels. By doing that, we can correct small er-
rors in the motion vector field. In the case where motion estimation is not applied, the
same holds with the only difference that the median filter is centered around the zero
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vector. Blume et al. [64] extend this idea and propose the so-called Central Weighted
Median (CWM) filter. In the weighted median filter, some input samples are repeated
multiple times, thereby giving those samples higher specific weight. The median filter
used in [64] has 26 taps and the highest weights get pixels originating from the same
spatial location and two temporally neighboring locations as the pixel currently being in-
terpolated. If with FCWM (~x, n + α) we denote the pixel being interpolated, the pixels
having highest weights are FI(~x, n) and FI(~x, n + 1), where FI denotes the luminance
values of the input pixels. Figure 2.9 further clarifies this method.

To clarify the benefits of the weighted median filtering, we first observe that the simple
(unweighted) median filter is already sufficient in interpolation of a moving edge. The
displacement of the edge in a picture period should not exceed the aperture of the median
filter. The main drawback of the simple median filter is the degradation of fine details in
case of stationary sequence while the central weighting can preserve those.

The CWM filter is good for sequences with very limited or no motion (motion which
does not go beyond the limits of the filter support). However, as Figure 2.7 illustrates, it is
still not good enough for areas with motion. As we mentioned before, centering the CWM
filter around the best-matching motion vector significantly improves the performance. In
this case, the motion compensated CWM (MCCWM) method should indeed be able to
correct small errors in the motion vector field. The details about MCCWM approach can
be found in the work of Franzen [65].

Even though this method uses a modest filter support, its large 26-tap median filter is
its main drawback. In spite of the methods for efficient median filter implementation [65],
a 26-tap median filter is still much more expensive than a 3-tap median filter. Further, any
change in the filter support (for example, adding more pixels) changes the median filter
tap count which directly impacts the implementation.

The CWM summarized here has an aperture that extends only in the horizontal do-
main. A 2D central weighted median has also been published by Blume [64]. The typical
aperture is cross-shaped (no diagonal neighbors).

2.2.2.5 Occlusion-aware up-conversion

In the previous motion-compensated methods, we have mentioned the problem of inaccu-
racies of the motion vector field. All the mentioned methods use a single motion vector
field computed based on two successive pictures. By doing so, we are unable to cope
with the fundamental problem of occlusions [22]. The brief description of the occlusion
problem is that in the occluded areas, we are unable to determine whether we should com-
pensate using the foreground or background motion vector and whether we should use
pixels from the previous, or from the next picture. The motion estimator typically shows
a tendency to extend the foreground vectors to the background causing the so-called halo
effect [66]. We will address this problem in Subsection 2.4.

Apart from having three picture references and performing the motion estimation on
two picture pairs, the computations on the motion vector field are quite intense. A detailed
cost analysis of this algorithm is available in [67].
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2.2.3 Spatial Scaling
Spatial scaling and resolution up-conversion make the third major function member of the
video format conversion pillar. Recently, the need for high-quality up-scaling is on the
rise, mostly thanks to the boom of HDTV. There is enormous amount of video material
available in lower resolutions like SDTV (PAL and NTSC). Further, a vast majority of
broadcasters still emit their program in SDTV resolution. At the same time, people are
abandoning their CRT displays and going for large panels with increased resolution. The
need for high-quality up-scaling is evident. As in the previous sections, we will begin this
section with classical linear theory applied to the spatial up-scaling problem.

2.2.3.1 Linear up-scaling

In order to scale the input signal with a rational factor u
d , u, d ∈ N, the signal first needs

to be up-sampled by a factor of u and then down-sampled by a factor of d. In order to
up-sample the signal by a factor of u, two steps are needed [68, 69]. The first step is zero
stuffing to arrive at the new sampling rate (according to the up-sampling factor u). The
second step is interpolating low-pass filtering that brings the meaningful values to the zero
samples. It should also suppress all the frequencies from the spectrum of the output signal
that are above the Nyquist frequency. We illustrate this low-pass filtering on the example
of the 1D video signal, e.g. horizontal or vertical dimension. Formally, the up-sampled,
continuous signal is defined as the convolution of the sampled input video signal and the
continuous impulse response of the filter:

F (x) =
∑

k

x(k)h(x− k) (2.22)

According to the theory, for the ideal suppression of any frequency above the Nyquist
rate, the continuous impulse response h(k) should be the sinc function. The sinc func-
tion however uses infinite number of pixels. For practical usage, we apply a windowing
function to limit the filtering support or opt for the filters with simpler impulse responses
(which inevitably leads to alias). In the literature, we find the following popular practi-
cal choices. The impulse response of the zero-order filter is defined with the following
equation:

h0(x) =
{

1, −0.5 < x ≤ 0.5
0, otherwise (2.23)

Better quality is achieved by using the first order filter whose impulse response is obtained
by convolution of the aforementioned zero-order impulse response:

h1(x) = h0(x)h0(x) =
{

1− | x |, | x |≤ 0.5
0, otherwise (2.24)

This filter is in the 2D/3D world known as the bilinear/trilinear interpolation. Its coeffi-
cients are reversely proportional to the distance between the pixel being interpolated and
its neighboring pixels.

Finally, the signal F (x) is down-sampled with a factor of d. Down-sampling begins
with the low-pass filtering. The frequency spectrum of the input (up-sampled) signal has
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Figure 2.10: Different artifacts of spatial up-scaling and resolution up-conversion. From top-left to bottom-
right: The down-scaled version of the original picture (drawn to scale), the original picture, up-scaled using
bi-linear interpolation, up-scaled using advanced resolution up-conversion.

to be limited to match the new (lower) sampling rate. The lower sampling rate implies
lower maximal representable spatial frequency. Thereby, limiting the spectrum to the
half of the new sampling rate (Nyquist frequency) prevents the alias in the down-sampled
picture.

The method that is more frequently applied for scaling with a rational factor in the
television applications is the poly-phase filtering [68, 69]. Poly-phase filtering is filtering
that merges the up-sampling and down-sampling and the thrown away samples are not
computed. This filtering is performed such that the coefficients depend on the position
(or the phase) of the output pixel. By doing so, the coefficient set is optimized for each
phase of the output pixel such that only the multiplications with the non-zero coefficients
are computed. Clearly, this method offers a tradeoff between number of computations
and additional control. The control can be realized by using the LUT holding a number of
coefficient sets. A practical implementation (IC) that uses 24-tap poly-phase scaling has
recently been reported for scaling even beyond HDTV resolution (1920*1080) [70].

2.2.3.2 Resolution up-conversion

Looking at the frequency side, linear up-scaling methods do not extend the high frequency
part of the spectrum since the resolution has not increased. In this subsection, we shall
discuss some advanced resolution up-conversion algorithms that go beyond the linear
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theory and introduce new spectral components [44, 71–75]. Figure 2.10 illustrates the
quality improvement brought by the advanced resolution up-conversion method.

In general, we distinguish two categories of the resolution up-conversion algorithms.
The algorithms from the first category, optimize objective performance (usually expressed
using the mean square error, MSE) aiming at picture restoration. Algorithms from the
second category have the subjective performance as the target. We shall provide four
algorithms from the first category (Kondo et al. [44], Atkins et al. [71], Plaziac [72], Li
and Orchard [73]) and a combination of two algorithms from the second category [74, 75].

Methods that aim at picture restoration

In the method proposed by Kondo et al. [44], the coefficients used in the interpolation
depend on the local picture content. Based on the large amounts of video material, picture
content is classified and for each class, different set of coefficients is available. This
method requires the availability of both original and up-scaled video material. Based
on this material, the optimal filter coefficients are determined by means of minimal mean
square error (MSE) criterion. This is extremely compute intensive method that fortunately
has to be performed only once, offline.

The algorithm consists of two steps, classification and filtering. Both steps use the
same aperture of 3*3 pixels, illustrated in Figure 2.11a. Classification uses the so-called
Adaptive Dynamic Range Coding (ADRC) algorithm that drastically reduces the number
of total classes [76]. In the ADRC approach, each pixel in the aperture is encoded with
a single bit. If we denote this bit with Q, the encoding is defined with the following
equation:

Q = b(FIP − FMIN )/((FMAX − FMIN )/2)c (2.25)

where FMIN denotes the minimal, and FMAX the maximal value in the aperture, FIP

denotes the original, input pixel and b·c denotes the floor operation. By repeating the
previous equation for each of the nine pixels within the aperture, we obtain the 9-bit class
identifier. The second step, filtering is applied based on the same filter support as the
support used in the classification process, 3*3 pixels. The coefficients depend on the x
and y coordinates of the appropriate input pixels and the determined class c.

To analyze the computational complexity of this algorithm, we begin with remark that
it is spatial-only and pixel-based which means that each pixel is treated differently, de-
pending on its own value and its 8 nearest neighbors. The classification step starts with
determining the minimal and the maximal value within the 3*3 pixel aperture. The divi-
sion from equation 2.25 can be substituted by a comparison, which reduces the computa-
tional complexity. If FIP −FMIN > (FMAX −FMIN )/2 then the result is 1, otherwise
0. This comparison is repeated for all nine pixels within the aperture and 9-bit value is
produced. This value is actually an address of the LUT where the filter coefficients are
stored. The second step, a 9-tap filtering, is performed per each output pixel. All the
coefficients used in the interpolation depend on the local picture content. Note that this
method requires the LUT with 29 entries, each entry holding one filter coefficient. Such a
large LUT increases the cost of implementation. Recently, methods have been proposed
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(a) (b)

Usage of geom. duality
Determine interp. coeff.:

Interpolation aperture (c)

Figure 2.11: The apertures used in various resolution up-conversion algorithms. Picture (a) illustrates a 3*3
support used in the Kondo method [44]. Picture (b) illustrates the aperture used in neural network proposed by
Plaziac [72]. Picture (c) illustrates the algorithm proposed in [73] that performs the training of the coefficients
on-the-fly. As before, the black pixels in the shaded area mark the existing pixels used in the interpolation while
the square-shaped black pixels are currently being interpolated.

to reduce the size of the LUT under minor picture quality loss [77, 78]. The LUT can be
reduced by two orders of magnitude, which leads to cost-effective implementation of this
method.

A method also involving classification and aiming at minimal MSE has been proposed
by Atkins et al. [71]. According to this method, the output is computed as the weighted
sum of the outputs of number of linear filters based on classification. The filter aperture is
identical to the one from Kondo, 3*3 pixels, although the classification algorithm is more
complex [71, 79]. The Expectation Maximization algorithm [79] provides a probability
that a vector belongs to certain class. The number of classes that this algorithm uses is
fixed and is around 100.

Analyzing the computational complexity of this algorithm we first note that its advan-
tage compared to Kondo’s approach is that the number of classes is fixed (it depends on
the aperture in Kondo’s method). However, the number of classes is not lower in case the
mentioned class number reduction methods are applied to Kondo’s method. Thereby, the
LUT is larger. Even bigger drawback of this approach is the computational complexity.
In order to compute the output pixel, all the linear filters (reflecting all 100 classes) have
to be computed followed by the weighted summing. In the Kondo’s approach, after the
classification, only one filtering has to be performed. Finally, the weighting factor is a
continuous function. Coarser quantization might lead to the performance degradation.

Another example of a method that needs a training, is the neural network based up-
scaling. In the neural network approach, the video material is implicitly classified in the
process of learning (training). Plaziac [72] proposes a neural network for de-interlacing
and spatial up-scaling. This network has multiple inputs and outputs and multi-cell hidden
layer. The output of this non-linear approach is defined with the following set of two
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equations:
~h = tanh(~w0

~FI +~b0) (2.26)

where the tanh is a non-linear function, w0 is the weight matrix between the hidden layer
and the N input pixels FI and b0 is the bias vector for the hidden layer. The output pixels
of the neural network, FNN are described with the following equation:

~FNN = (~w1
~h +~b1) (2.27)

where w1 is the weight matrix between the output pixels and the hidden and b1 is the bias
vector for the output layer. The w0, w1, b0 and b1 parameters of the network have been
determined in an off-line training process.

Based on the above equations, Plaziac proposed the method for spatial up-scaling that
uses one picture reference. The up-scaling neural network has 24 input pixels, 16 cells in
hidden layer and produces 5 output pixels. The aperture used here has a diamond shape
as illustrated in Figure 2.11b. However, the network is flexible, meaning that the number
of inputs can be changed. In spite of using such a large number of input pixels, more
than one output pixel are produced. Since the computations can be shared, the overall
computation effort per produced output pixel can be reduced. However, the computational
requirements of this method are quite high due to equations 2.26 and 2.27. They involve
matrix multiplication and the number of input pixels and the number of cells in the hidden
layer are high.

Contrary to the above methods, the training can also be performed on-line. Li and
Orchard [73] propose one such method. The interpolation coefficients are determined
based on the minimal MSE algorithm executed on the original pixel grid. Compared
to all previously mentioned non-linear algorithms, the number of classes is not limited.
There are two major disadvantages of this method, the increased amount of calculations
(which might impair the real-time implementation) and that no original up-scaled picture
data were available for training (which might lead to the quality degradation).

This method can up-scale the input picture by the factor of 2n, n ∈ N, horizontally
and vertically. Assuming an up-scaling factor of 2, horizontally and vertically, we shall
illustrate and analyze the proposed method. Following the authors’ notation, with Xi,j we
denote the original pixels and with Y2i+k,2j+l, 0 ≤ k, l ≤ 1 the up-scaled ones. Fourth
order interpolation is used to limit the operation count (see also Figure 2.11c) :

Y2i+1,2j+1 =
1∑

k=0

1∑
l=0

α2k+lY2(i+k),2(j+l) (2.28)

where Y2(i+k),2(j+l) = Xi+k,j+l. The interpolating α coefficients are determined in an
on-the-fly process using the feature of geometrical duality. They are determined based
on the local window of M ∗ M original pixels. More details can be found in the cited
paper, but for the purpose of this analysis it is enough to mention that the authors have
chosen that M = 8. Geometrical duality (see also Figure 2.11c) basically means that
the relationship between the diagonal neighbors from the original grid is the same as the
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relationship between the interpolated pixel and its nearest diagonal neighbors from the
original grid.

Analyzing the computational complexity of the mentioned approach, first we note that
the algorithm requires only one picture reference and that interpolation is of the fourth or-
der. However, as the authors themselves also conclude, the real computational complexity
does not lie in the filtering itself but rather in determining the values of the coefficients.
All four coefficients depend on the content of the local window of M ∗M pixels. If the
dimension of the local window is M = 8, as much as 1300 multiplications are needed to
compute four α coefficients. To relax the computational requirements the authors go for
a hybrid solution where only pixels that are near the edge are computed in the described
manner and the rest are computed by using the simple bilinear interpolation. Whether
a pixel is considered to be close to an edge or not is determined by comparing its local
activity (local variance estimated from its four nearest neighbors) to a certain threshold.
According to the authors, even though this reduction assumes computing the local activity
per pixel, they achieved a speed-up by a factor of 7-20.

Methods that aim at subjective performance

All the non-linear methods mentioned so far minimize the objective error, expressed in
MSE. Finally, we shall report on a method that optimizes the subjective performance. In
the introduction part of this subsection we have mentioned that the drawback of the linear
methods is that the high-frequency part of the spectrum is not extended. To improve
the linearly up-scaled pictures, and add new spectral components, the methods described
below use methods such as luminance transient improvement, LTI and peaking. The LTI
and peaking will be described in more detail in Section 2.3.

Bellers [74] proposed to use peaking (filter that boosts high frequencies) on textured
areas and luminance transient improvement, LTI (on edges) to improve the up-scaled
pictures. Since LTI is a 1D technique, the authors propose a straightforward way to extend
it in the 2D space - LTI is first applied in the vertical direction and then in horizontal. To
achieve better results, in [75] was proposed to apply the LTI perpendicular to the edge.
This involves detection of the edge orientation (implemented using Sobel operators) and
rotation of the line along which the LTI operates. In order to reduce the complexity,
an alternative edge orientation dependent LTI technique has been proposed. According to
that proposal, a horizontal and vertical LTI are calculated in parallel. These two results are
combined into a weighted sum, where the weights are controlled by the edge orientation
detector. This approach was shown to give the best price-performance [34].

2.3 Video enhancement
The goal of video enhancement is to enhance the subjective (perceived) picture quality. As
subjective quality may differ from person to person, many of the techniques summarized
in this section should be controlled by the end user. This poses an important design
constraint demanding a high degree of flexibility, additional to the high performance.
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We divide the topic of this section into four parts, noise and coding artifacts reduction,
sharpness enhancement, contrast enhancement and color reproduction enhancement.

2.3.1 Noise reduction
The need for noise reduction originates from the analogue world where the illumination
of the scene may be insufficient, the transmission channel may not be properly dimen-
sioned, receiving antennas can be too small, cables may be degraded over time, etc. In a
television system, the typical entry points of the noise are in the picture sensor and/or in
the transmission channel. The noise reduction problem statement is to find an estimate of
the input video sequence, which has been corrupted by noise.

In general, noise and artifact reduction assumes that the signal is large compared to
the artifact and the correlation between neighboring pixels in a picture sequence is high.
This assumption leads to an estimate of the uncorrupted pixel by combining likely iden-
tically valued neighboring pixels. Denoting the pixels in the support with S(~x, n)), we
summarize that it is possible (see also Chapter 3 of [34]):

• To use all the pixels in the neighborhood (standard neighborhood), Ns(~x, n) =
S(~x, n)

• To only combine a predetermined fraction of the pixels in the support choosing the
ones that differ least from the current pixel (K-nearest neighborhood). Formally, to define
the k-nearest neighborhood, we start from the ordered support SO containing s pixels:

~SO(~x, n) = {Fi ∈ S(~x, n) | F1, F2, . . . Fs} (2.29)

where
| Fi − F (~xc, n) |≤| Fi−1 − F (~xc, n) |, i = 2, . . . , s (2.30)

where F (~xc, n) is the luminance value of the central pixel from the filter support. Us-
ing the above two equations, we define the K-nearest neighborhood as the subset of the
ordered support SO:

~NKNN(~x, n) = {Fi ∈ SO(~x, n) | F1, F2, . . . FK+1} (2.31)

• To only combine pixels that differ less than a threshold value, sigma (σ), from each
other. The sigma nearest neighborhood is defined with the following equation:

~NSNN(~x, n) = {Fi ∈ S(~x, n) | σ ≥| Fi − F (~xc, n) |} (2.32)

• To combine those symmetrically distributed pixels (with respect to the central pixel),
that are closest to the central pixel.

~NSYMNN(~x, n) = {F (~xc + ~k, n) ∈ S(~x, n) |
| F (~xc + ~k, n)− F (~xc, n) |≤| F (~xc − ~k, n)− F (~xc, n) |}

(2.33)

• To only combine pixels if there is no edge between them (motion-adaptive, and
edge-adaptive filtering, general term: edge-preserving smoothing [80]) or to prescribe a
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Figure 2.12: Different types of noise. Top left corner shows the original Lena picture, top right the same
picture corrupted with additive white Gaussian noise, bottom row left/right shows the effects of the clamp/shot
noise, respectively.

specific combination of pixels depending on a local picture classification [81, 82]. For
coding artifact reduction, the location of the pixel relative to the encoding block-grid may
be used to affect the combination of pixels [83, 84].

From this general concept, many variants can be derived. First, the neighboring pix-
els that may be combined, the so-called filter support, can be 1, 2, or 3-dimensional and,
either spatial, temporal, or spatio-temporal. Second, the combination can be a plain aver-
aging, a weighted averaging, or a non-linear combination like rank-order filtering [85].

To further complicate the application domain, we recognize that some input pixels
may have been filtered before (recursive filtering) [86–88], pixels in the support taken
from neighboring pictures may be compensated for motion, i.e. taken from a shifted
location depending on the local speed [89], while the noise smoothing may be in a trans-
formed, e.g. wavelet, domain [90]. Finally, it is a common practice to globally adapt the
parameters of the noise/artifact reduction filter to the estimated noise/artifact level that
has to be, either estimated [91, 92], or communicated from the noise source (e.g. the
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encoder).

To better understand the principles and requirements of the algorithms for noise reduc-
tion, in the following text we will report on a few published methods that utilize some of
the previously briefly introduced features. Before we proceed, we visualize the challenges
of the noise and coding artifact reduction in Figure 2.12.

Spatial noise reduction neglects temporal correlation between successive pictures in
the video sequence and only combines pixels from the same picture. The advantage
of this spatial filtering is its cost-effectiveness - there is no need for picture memories.
Another advantage is the minimal delay caused by this function. For some equipment,
the video signal must not be too much delayed (for example to prevent loss of the lip-
synchronization) and in such cases spatial filtering might be preferred.

To exemplify spatial processing and some of the peculiarities mentioned above like
adaptive weights and recursive processing, we refer to the filter realized in silicon (see
Chapter 3 of [34]). This filter is actually related to the ”sigma filter” [86] and the gradi-
ent inverse filter [93]. It is purely spatial (using just one picture reference) and utilizes a
modest filter support consisting of two pixel-lines only. The pixels used in the recursive
path are located one pixel-line above the line that is currently being interpolated. The
recursiveness applied here does not hamper a parallel implementation since, theoretically,
one complete pixel-line can be computed in parallel (there is no data dependency at pixel
level). Eventual pipelined execution has to be performed within a line and not across
lines. The weights of this filter are monotonously decreasing with increase of the abso-
lute difference of the output and input luminance function. To make it simple for HW
implementation, this monotonously decreasing function is piece-wise linear and has only
three segments with the remark that in the two outer segments the coefficients are either
one or zero.

Spatial-only filters neglect temporal information and introduce temporal artifacts like
abrupt changes in the pixel values and oversmoothing [94]. In case of usage of (spatio-
)temporal filters we profit from the temporal redundancy of the video signal while paying
the price in the memory capacity and delay.

Drewery et al. [91] from BBC research did some initial research of the temporal
filtering of noise. Application of temporal filtering requires at least one picture delay,
which implies the usage of large memory elements capable of storing one or more picture
references.

3D spatio-temporal can also profit from the recursive filtering [87, 88]. An alterna-
tive approach that ignores the correlation between pixels exist and it is based on ordered
statistics filtering. We exemplify this approach by looking into the 1D temporal and 3D
spatio-temporal solution. The simple and cheap temporal 1D solution has been proposed
by Huang an Hsu [95]. For video sequences corrupted by Gaussian noise the average
value approximates the maximum likelihood estimate. However, video signal is in gen-
eral not stationary and thereby local distributions are not Gaussian. Therefore, a median
filter should provide a better estimate of the original signal.

Alp et al. [85] use two-stage median based spatio-temporal 3D filter and references
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Figure 2.13: Illustration of the coding artifacts. The left picture shows the blockiness artifacts and the right
one shows the ringing artifact (picture showing ringing artifact is taken from http://www.gisdevelopment.net).

three pictures. They propose two algorithms, both being two stage median filter based,
which is the only processing performed. Both proposed algorithms, called 3D planar filter
(P3D) and 3D multilevel filter (ML3D) are of similar complexity of the first stage (three
times 5-tap median versus two times 7-tap median) and have identical complexity of the
second stage (3-tap median). The filter support used in the first stage of the P3D algorithm
has the shape of the cross (for all three median operations). The filter support used in the
first stage of the ML3D algorithm is different for the two performed operations. One uses
the quincunx shaped filter support and the other one the shape of the cross.

2.3.2 Coding artifact reduction

The call for coding artifact reduction started with the introduction of digital transmission
and storage. Theoretically, digital transmission can be lossless, but in practice, the avail-
able channel bandwidth makes lossy compression necessary, which results in visible arti-
facts [96] (see also Figure 2.13). Block-based Discrete Cosine Transformation (DCT) has
been widely used for picture and video compression. To obtain a reasonable compression
ratio, coarse quantization of DCT coefficients is necessary. As a result, the compressed
pictures may exhibit coding artifacts and the perceptual picture quality is degraded.

The most annoying coding artifacts are blocking, ringing, blurring and mosquito noise
[34]. All these artifacts are a consequence of omitting the high frequencies by truncating
the DCT coefficients. Since the blocking artifact is the most visible one [97], we will here
focus solely on this artifact. In the literature, very many approaches for blocking artifact
reduction have been published [81, 83, 84, 98–109]. Among them, we can distinguish
two main classes, the methods that operate in the spatial domain and the methods defined
in the frequency domain. The methods in the spatial domain are more popular as they
operate directly on the received spatial data (pixels) [81, 83, 84, 98, 99, 103–105, 110].
In other words, they do not require access to the DCT coefficients, which are usually not
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available for post processing.

2.3.2.1 Artifact reduction in the spatial domain

Due to the horizontal and vertical ”edges” or lines demarking the block grid, there are
additional high frequencies in the spectrum of the decoded video signal. The logical
remedy would be application of the low-pass filtering to suppress those frequencies [84,
110].

• Jarske et al. propose the Gaussian low-pass filter with a high-pass frequency em-
phasis [110]. A similar method, also based on Gaussian filtering, uses a 3*3 aperture
applied only to the pixels that are located along the block boundaries [84]. Gaussian
low-pass filtering computes a weighted average of the pixel within the support, in which
the weights decrease with distance from the support center. The general assumption is
that pictures typically vary slowly over space, so near pixels are likely to have similar
values. It is further assumed that the noise values that corrupt these nearby pixels are
mutually less correlated than the signal values, so noise is averaged away while signal is
preserved. These assumptions however fail at edges, which are consequently blurred by
low-pass filtering. The concluding general drawback of such algorithms is the loss of high
frequencies (excessive blurring) [83]. To overcome this drawback, adaptive de-blocking
algorithms have been proposed.

• In general, adaptive filtering [81, 98, 99] requires a classification step (usually based
on the mean or variance statistics) followed by the linear or nonlinear filtering. For ex-
ample, Ramamurthi et al. [83] use these two mentioned statistics to determine whether a
block is a monotone or contains an edge. Edge blocks have higher variance. If it is con-
cluded that a block is a monotone one, a 2D filtering is applied, otherwise 1D directional
filtering is applied.

• Bilateral filtering [98] is a simple non-linear technique to remove the picture noise
while preserving edges. The bilateral filter adjusts its coefficients to the geometric close-
ness and to the photometric similarity of the pixels. Bilateral filtering is a nonlinear op-
eration because the weights depend on picture intensity. Regarding computational com-
plexity, in addition to the filtering, analysis of the local content is required.

• Sobel filters are frequently used in the literature for edge detection [81, 100–102].
The example of usage of adaptive filtering in combination with Sobel kernels can be
found in the algorithm proposed by Lee et al. [81]. The picture is classified into two
areas, an edge and a monotone area using Sobel filters. After the edge information has
been computed, two steps follow, 1D directional filter and adaptive 2D low-pass filter.
This directional 1D filtering is performed on edges (to reduce the staircase artifacts) along
eight directions, 0◦, ±45◦, ±90◦, ±135◦ and 180◦. The second step, adaptive 2D low-
pass filtering uses a 5*5 pixel support, excluding the corner pixels. The weights of this
filter depend on whether pixels in the support are classified as edges or not. For simplicity
reasons we omit here the explanation of weights computations, those details can be found
in the mentioned publication, [81].

The algorithm is a 1D/2D spatial using just one picture reference. It actually consists
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of four steps, two in the classification of edges and two in filtering. Two steps in clas-
sification assume computation of two Sobel-based weighted averaging. The Sobel filter
support can be optimized to 3*2 pixels per edge and because the coefficients are fixed to
1, 2, 1, the multiplications can be avoided. The classification step also assumes compu-
tation of the mean and variance values. The filtering applied is pixel-based, conditional,
and can be 1D (3-tap directional filtering) or 2D adaptive low-pass filtering using 21 taps
in the worst case.

• Further quality improvement of the adaptive algorithms can be achieved if the al-
gorithm in addition to the blockiness reduction may enhance details and preserve the
existing edges. One such algorithm that applies blockiness reduction in combination with
sharpness enhancement can be found in [99]. The authors use already mentioned content
adaptive filtering with number of coefficient classes obtained from the off-line training
process [44, 76]. Since the coefficients depend on the training material, if the reference
pictures are satisfactory sharp, the algorithm can be optimized for both functions, block-
iness reduction and sharpness enhancement. The authors conclude significant quality
improvements with preservation of edges and other picture detail.

• Finally, another collection of methods for blockiness reduction pertains to the tech-
nique called the Projection Onto Convex Sets or POCS. POCS is effective in eliminating
blocking artifacts but less practical for real time applications, since the iterative procedure
adopted increases the computation complexity [111]. The quantization function applied
during encoding is an injective function, i.e. has no inverse function. Youla et al. in-
troduced the POCS to the field of picture processing [112]. Let A denote the set of all
possible solutions that can result from the input encoded video signal. Let B denote the
set of all solutions (sequences) without artifacts. Our solution lies in the set A ∩ B. The
constraint sets used in reducing the aforementioned set intersection is the problem of the
POCS method. Some of the popular constraints like the intensity or smoothness constraint
as well as other information about the POCS technique can be found in [103–106].

2.3.2.2 Artifact reduction in the frequency domain

The argument in favor of artifact reduction in the frequency domain might be that the
spatial methods bring in excessive blurring [107]. As we have seen in the previous para-
graphs, many spatial methods apply low-pass filtering and as such, result in unnecessary
blurring of the picture. We have also presented a few advanced methods that successively
deal with this in the spatial domain, and here we will register a few of them that operate
in the frequency domain.

Relatively few approaches in the literature have tackled the problem of blockiness
reduction in the frequency domain, including [102, 106–109]. The methods that op-
erate in the frequency domain can either use coefficients available in the bitstream, or
re-compute DCT coefficients in post processing. The problem of the DCT coefficients
re-computation, apart from the extra cost, is the need to locate the original block grid. At
the end of this subsection, we will report on a method, [106] that belongs to that class.

• A method [108] is recommended in the JPEG standard to suppress the blocking
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discontinuities in smooth areas of the picture. It uses the dc values from current and
neighboring blocks for interpolating the first few ac coefficients into the current block, by
fitting the pixel values in a quadratic polynomial.

• Tan and Ghanbari propose the method to exploit the periodic nature of blocking
artifacts [102]. The harmonics generated by the regular lattice pattern can be measured
easily in the frequency domain, and give vital information of blockiness estimation. The
amplitude of the harmonics is proportional to the degree of blockiness, while the phase of
the harmonics can be used to verify that the harmonics are not due to contextual details in
the picture. Examining both the amplitude and phase information of the harmonics leads
to an accurate blockiness detector that needs no reference pictures.

•Minami and Zakhor in [107] present an approach based on the empirical observation
that the quantization of the DCT coefficients of two neighboring blocks increases the ex-
pected value of the Mean Squared Difference of Slope (MSDS) between the neighboring
boundary pixels. The MSDS is the criterion proposed by the authors. Therefore, among
all the possible inverse quantized coefficients, the set that minimizes this MSDS is the
most likely to decrease the blocking effect. The authors further propose a method to min-
imize the MSDS. This minimization can be formulated as a compute-intensive Quadratic
Programming (QP) problem.

• The smoothing constraint, part of the POCS technique can also be applied in the
frequency domain. Paek proposed to remove the high frequencies in the DCT domain
by looking into the 8-point and 16-point DCTs [106]. Therefore, an 8-point DCTs are
calculated on two horizontally neighboring blocks. In addition, one 16-point DCT is
calculated on a joint block. If a high frequency is found in the result of the 16-point
DCT and not in the 8-point DCTS, the authors conclude that this high frequency is a
consequence of the block-boundary. They remove this frequency component by zeroing
the appropriate coefficient(s) and performing the IDCT.

2.3.3 Sharpness enhancement

We can distinguish two classes of algorithms that try to enhance the subjective perception
of sharpness. Algorithms from the first class apply non-linear methods to increase the
steepness of the edges in the picture (edge enhancement methods). Algorithms from
the second class increase high or middle frequency components by using small FIR filters
(linear peaking methods). Peaking can also be dynamic (see for example [113] and silicon
realization [114]). In the following paragraphs, we tackle these methods in more detail.

Shrinking or compressing the edges is a non-linear operation, which produces the im-
pression of sharper picture. This technique is called the luminance/chrominance transient
improvement (LTI/CTI). To achieve this, two mainstream methods are applied, the first
one uses a tapped delay line and the second is basically a clipped peaking filter.

The first method computes the second derivative of the input video signal and the
found amplitude indicates the position of the pixel which replaces the current pixel.
This method requires the signals in continuous form or the sufficiently high sampling
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Figure 2.14: The LTI method consisting of successive peaking and clipping. The original edge is located,
peaking is applied with higher overshoot followed by the clipping to the local minimal (min) and local maximal
(max) values.

frequency (accuracy of determining the zero-crossings must be good enough).
There are a few drawbacks of this method. Some edges that should remain unchanged

will become so sharp that they will look unnatural. If the transient has a long duration, it is
unclear where is the center. Further, the first and the second derivation are very sensitive
to the noise in the signal. This is especially visible in case of small second derivations.
Transient improvement as a non-linear operation introduces new harmonics into the signal
and thereby alias in pictures.

The second method is a clipped peaking filter. Figure 2.14 illustrates the concept of
edge compression. To address the issue of sensitivity to the noise of the LTI/CTI, the
peaked signal can be clipped. After the initial peaking has been performed, the results
are clipped to the minimal and maximal value found in the local neighborhood [115]. In
order to achieve a steeper edge, the applied peaking has higher overshoot than normally
used. This can be done since the output of the peaking will be clipped afterwards. The
algorithm is sketched in Figure 2.14. The authors recommend application of one more
peaking after the clipping. This filter is a 21-tap 2D peaking filter using 5*5 filter support.
A similar filter is applied for the first peaking step.

A method similar to the previously analyzed one has been proposed and realized in
ICs [113, 114]. This method is used for both LTI and CTI. The authors also use a peaked
version of the original signal as a reference. This signal is then clipped to the local min-



46 Chapter 2 Application domain: overview and analysis

Figure 2.15: The process of gamma correction for CRT display. The graph shows a CRT’s nonlinear transfer
function, light intensity as a function of input voltage, and applied correction. Source: Wikipedia.

imum and maximum. Over- and undershoots are thereby avoided, allowing the method
described to be used not only as a luminance transition improvement, but also as a chromi-
nance transition improvement. The authors reason that the over- and under-shoots in the
chrominance part are quite irritating for the HVS (human visual system). Since the over-
and under-shoots are avoided by the clipping, they apply this method directly for CTI as
well. The detection of the local maximum and minimum uses a small horizontal support
of 4 pixels. The local extremum detection is performed using multiplexing logic. The
second step (the clipping) is realized as a simple 3-tap median with the following inputs:
local minimum, current pixel and the local maximum.

2.3.4 Contrast enhancement

Contrast enhancement is a non-linear technique in which gray-level of the picture is
rescaled. There are three major methods for contrast enhancement, gamma correction,
automatic black and soft-clipping. Histogram modification includes all of these.

2.3.4.1 Gamma correction

Displays in general convert a video signal into the light in a non-linear way. Looking at
the cathode ray tube (CRT) displays for example, we observe that the electron gun is a
non-linear device where the intensity of the light I is exponentially related to the input
voltage VS , as described with the following equation.

I = constV γ
S (2.34)

where γ (gamma) is a measure of the nonlinearity of a display device. Each display has
its own value of gamma, for a CRT display, it is about 2.2. The effect of this non-linearity
for CRT is illustrated in Figure 2.15. In order to get linear relation between the applied
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Figure 2.16: Illustration of the histogram. Even though the pixel count is plotted here as a continuous curve,
it is often realized as a discrete function computed over several intervals (assuming implementation in the digital
domain).

stimulus and perceived light intensity, we must apply inverse function to the video signal
before sending it to the display.

The optimal gamma correction setting depends on the taste of the user, ambient light
and other conditions. Thereby, this setting must be left under user control or adjusted
automatically. Gamma control is one of the basic settings of a display and is available in
various ICs [116–118].

2.3.4.2 Automatic black control

To enhance the contrast, there is a need to emphasize the black parts of the screen (since
the human eye is more sensitive to changes in dark areas than in light areas). There
are three major methods of black control, auto pedestal, black restore and black stretch
(ranked from the simpler to more complex).

• Auto pedestal measures the darkest pixel in the picture and then subtracts this value
from the entire picture. As a result, the smallest luminance values become truly black.
The obvious disadvantage of this simple method is global brightness reduction.

• Black restore slightly improves the performance of the auto pedestal since white
remains white. This is achieved with a transfer curve with a gain greater than unity.

•Black stretch is a more advanced method with a three-segment-linear characteristics.
Light-gray pixels are unchanged by the black stretch algorithm due to the non-linearity of
the transfer curve. Skin tone also look more natural as the parts of the picture having skin
tone colors are not darkened.

2.3.4.3 Histogram modification

Histogram modification practically contains all the previously mentioned methods for
video enhancement. As its name says, the essence of this technique is to calculate the
histogram of the picture, i.e. the distribution of luminance values in the picture. Based
on this (statistical) data, the values of some pixels are modified such that e.g. contrast
is improved. As in the majority of similar techniques, the risk is that the artist did not
actually want any modification or ”improvement” of the picture. Another negative aspect
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is that if the noise was present in the picture, it will probably be emphasized. Figure 2.16
illustrates the histogram.

More information about physical implementation of the histogram modification can
be found in the IC datasheets, e.g. [119]. This particular IC keeps track of 32 different
gray levels. The major functions that it performs are the black stretch and the white
stretch.

2.3.5 Colour reproduction enhancement

With the television standard evolution from NTSC to PAL and SECAM and with newer
display technologies, the primary colors have changed significantly. In spite of improving
the power efficiency, the new colors are less saturated, which implies that the color gamut
of the new TV set is smaller than the old TV set. There are four major methods for color
enhancement, linear color space conversion, green enhancement, skin-tone correction and
white adjustment.

• The solution to this problem starts from converting one set of R, G and B compo-
nents to another, R’, G’ and B’. To realize that, one can use a matrix multiplication such
as:  R′

G′

B′

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

 R
G
B

 (2.35)

However, matrix multiplication is a fully linear operation and we have seen in the
previous paragraphs that video signal suffers severe non-linearity on its way through the
chain of video applications (for example gamma correction). The best achievable opti-
mization with matrix multiplication is to aim at three corrected color points. The usual
choice falls on the green, skin-tone and white colors.

• In principle, the technique for green enhancement is quite simple. The color detector
senses the green-like areas in the picture and for those areas, the saturation is increased.
Thereby, more vivid colors are obtained.

• The human eye is especially sensitive for the skin tone and thereby, dynamic skin
tone correction can be applied. As a negative consequence, not only human skin is ”cor-
rected” but everything that looks like the human skin is modified.

• Depending on the region of the World and the personal consumer taste, the different
color temperature of the white color might be preferred. As a result, not only the white
point are modified, but all the other weakly saturated colors as well. To prevent the
negative influence of this to the skin tone, a detector is used to find the areas with little
saturation and allow the mentioned change to happen only in those areas. Skin tone
is saturated enough such that it does not pass through the detector’s filter and remains
unchanged.
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2.4 Motion estimation
Motion estimation is one of the key enabling algorithms for modern video processing.
Initially, the implementation demands were too high, partly because of immaturity of ar-
chitectures that lacked performance and partly because the motion estimation algorithms
were indeed unnecessary computational intense. With the waves of digital revolution,
processing architectures significantly gained processing power and flexibility, while at
the same time a lot of research went into simplifying motion estimation algorithms. The
result is that motion estimation is now embedded in all major video compression standards
and in various high end video post processing integrated circuits [89, 120–126].

The evolution of motion estimation (ME) algorithms starts with the pixel-based algo-
rithms [127], continues via block-based [23] to object-based ME algorithms [128]. The
high compute demands of pixel-based algorithms limited their usage to academia only.
Block-based estimators are performing on groups of pixels (blocks), meaning that a sin-
gle, best matching motion vector is associated to a block of pixels. They are much more
noise-robust compared to the pixel-based ones and, due to their block property, much
more attractive for silicon implementation. The third class of motion estimation that goes
one step further, is called object-based motion estimation aiming to a single motion model
description for each object. By far, the most popular ones are the block-based motion esti-
mation algorithms since they offer the best ratio between the performance (picture quality)
and compute intensity. Apart from a few words about object-based estimators, we shall
devote this section completely to the block-based ME.

A number of block-based motion estimation algorithms exist. Block-based ME algo-
rithms or block-matchers divide the picture into blocks of pixels B( ~X) with center ~X and
assign to all pixels of every block at picture number n a displacement vector, ~D( ~X, n),
selected from a candidate set, CSmax, that limits the possible output vectors to a search
space or search area, SA.

2.4.1 The full search algorithm
Probably, the best known motion estimation algorithm is the full search block-matcher
(FSBM) where within a certain search area and accuracy, all possible motion vectors are
evaluated. Formally, the full-pel accurate candidate set of the FSBM is defined with the
following equation:

CSmax =
{

~C| −N ≤ Cx ≤ +N,−M ≤ Cy ≤ +M,Cx, Cy ∈ Z
}

, (2.36)

where N and M represent the horizontal and vertical dimensions of the search area, re-
spectively.

The advantage of the FSBM is a good access regularity, which offers a number of
possibilities for parallel implementation. The FSBM has the following three major draw-
backs:

• A high computational complexity,
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• Its motion vectors have a poor relation with the true motion of the objects, and,
• It cannot deal with the occluded areas.

In the following three subsections, we register the ways to remedy these three draw-
backs.

2.4.2 Complexity reduction
Assuming that FSBM operates on a modest SA of 72*56 pixels, the number of evaluations
results in more than 3000 motion vector candidate evaluations per block. Assuming a
sum-of-absolute-differences (SAD) as an evaluation criterion (will be explained shortly
after) and the dimensions of the SAD window of 8*8 pixels, almost 600 KOPs are needed
to evaluate all the candidates of a block of 8*8 pixels1. Such a high operation count
disables an efficient real-time implementation. To reduce the complexity, we have four
options available: pixel sub-sampling, block sub-sampling, complexity reduction of the
cost function and efficient search strategies.

2.4.2.1 Pixel and block sub-sampling

Pixel sub-sampling reduces the number of pixels participating in the SAD calculation.
Usually, the sub-sampling can go up to a factor of four [120, 129]. Block sub-sampling
means that the SAD computations are not performed for some blocks [130]. Instead,
motion vectors are computed based on their neighbors in the motion vector field. Pixel
and block sub-sampling reduce complexity by few times, which is still not enough for
efficient real-time implementation.

2.4.2.2 Cost function reduction

Motion vectors are evaluated according to a certain cost function or criterion. Three major
criteria have been proposed: The sum-of-absolute-differences (SAD), the mean squared
error (MSE) and the normalized cross correlation function (NCCF) criterion, which is
only meaningful if the match error is computed in the Fourier domain. By far the most
widely used criterion is the SAD criterion, which offers a good price/performance ratio
[34]. The absolute difference is found between the respective blocks of pixels originating
from two picture references distanced by p pictures and displaced by the motion vector
candidate ~C being evaluated. The motion vector candidate yielding the minimal SAD
value is selected as the winner of the process. Formally, the match error for candidate ~C
according to the SAD criterion is defined with the following equation:

SAD(~C, ~X, n) =
∑

~x∈B( ~X)

|F (~x, n)− F (~x− ~C, n− p)| (2.37)

1As 1OP, we consider addition, subtraction and absolute difference. Each of these three contribute by roughly
200KOPs. For simplicity reasons we have omitted the overheads such as the comparisons of the SADs and
motion vector generation.
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2.4.2.3 Efficient search strategies

Iterative algorithms such as the three-step search [131], logarithmic search [132] or one-
at-a-time-search (OTS) [133] offer more significant complexity reduction. The first step
of these algorithms is to obtain the best matching motion vector on the coarse pixel grid.
For each next step, a new search is performed on a finer grid, centralized around the pixel
where the best motion vector from the previous step points to.

The three mentioned algorithms on the average evaluate up to a few dozens of motion
vectors, which is roughly two orders of magnitude lower than the FSBM. This does enable
a real-time implementation. However, from the quality point of view, they do not find the
best matching motion vector in the SA, they just find the local minimum that might not
be the global one. Further, the problem of motion portrayal is still not solved. A few
methods discussed in the further text have been proposed for this purpose.

2.4.3 True motion

As a result of the FSBM, the vector that yields a minimal SAD value is selected. The
techniques that we registered in the previous subsection reduce the number of computa-
tion but the problem of motion portrayal is still not solved. All these methods (including
the FSBM) aim only for the best match in terms of the applied cost function (error crite-
rion) but do not take into account the real motion velocities of the objects in the screen.
In this subsection, we report on some of the methods that take the motion portrayal into
account.

2.4.3.1 Motion vector field post processing

Post-processing should preferably not create any new motion vector (the vector that did
not result in the estimation process). Median filtering is frequently used (see also Sub-
section 3.3 of [134]). Reuter [135] proposed to use a 2D median filter with a support
of 5 horizontally and 3 vertically, centered around the motion vector being filtered. This
technique uses relatively large number of taps that might have impacts to the HW imple-
mentation. The advantage of this method is that it is performed on the motion vector field
grid, rather than on the pixel grid, which significantly reduces the number of elements on
which the computation has to be performed.

Another median-based method that improves the quality of the motion vector field is
block erosion. Block erosion reduces the granularity of the motion vectors associated to
blocks. For example, if the generated motion vector field is of 8*8 granularity, eroding it
might lead to 4*4, 2*2 or even 1*1 blocks, each having its own motion vector associated
to. There are few methods used here, but the most popular one (since it does not introduce
new values) is the one based on the median filtering of the current vector and its spatial
neighbors. Block erosion requires small filter support containing the nearest motion vec-
tor neighbors. From the processing point of view, it requires 3-tap median filtering, with
the only peculiarity that it operates on two independent motion vector components. Block
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erosion makes the task of motion compensation more compute intensive since it reduces
the granularity of processing.

In some occasions, the motion in an entire picture can be described with a very limited
parametric model. For example, zooming with the camera will generate motion vectors
that linearly change with the spatial position. Panning, tilting or traveling with a camera,
on the other hand, will generate a uniform motion vector field for the entire picture. An
example of the parametric model can be found in [136]. Based on the derived parametric
model, an additional motion vector candidate is added to the candidate set. Global para-
metric motion model assumes computation on the generated motion vector field. This
processing is performed once per picture reference (after the motion vector field has al-
ready been generated). It is thereby not compute intensive although it requires the memory
capacity capable for storing of one motion vector field. It does not require eroded motion
vector field, it operates on the original motion vector grid.

2.4.3.2 Hierarchical algorithms

Hierarchical motion estimators construct the motion vector field in a few iterations, start-
ing from the strongly pre-filtered and sub-sampled picture and ending with the highest
original resolution grid [137]. The result from the lower resolution is used as the initial-
ization for a more accurate estimate at the next sub-band, which contains higher frequen-
cies. The consistent motion vector field is realized through this process of initialization
of motion estimators with a global estimate.

A method related to the hierarchical motion estimation is phase plane correlation.
Phase plane correlation is initially introduced in the field of astronomy [138], and later
was successfully applied in studio picture-rate conversion [139] and consists of two steps.
The first step operates in the frequency domain on fairly large blocks (e.g. 64*64 pixels)
and produces a limited number of motion vector candidates (usually less than 10), which
is used by the second step. The first step starts by computing the 2D Discrete Fourier
Transform (DFT) on the blocks originating from the current and the previous picture
reference. Afterwards, the Cross-Power Spectrum (CSP) is computed. The second step
operates in the spatial domain on much smaller block grid (ranging from 1*1 to 8*8
pixels) and uses the candidate set produced by the first step.

To analyze the computational complexity we start with remark that the algorithm uses
two picture references and the number of candidates and processing steps is known in ad-
vance. The peculiarity of this algorithm is that the first step is performed in the frequency
domain, which requires computation of the 2D DFT and IDFT, multiplication in the fre-
quency domain and normalization. In the spatial domain, a motion estimation algorithm
is performed. The number of evaluations per block is dictated by the first step. This of-
fers a possibility for a tradeoff since the number of evaluations can be specified apriori,
thereby limiting the compute requirements of the second step.
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Figure 2.17: The background of the 3DRS block matcher: The blocks marked with S provide the spatial
prediction candidates, those with T provide the temporal ones, while C identifies the current block.

2.4.3.3 Maximum-a-posteriori methods

In statistics, the method of maximum a posteriori (MAP, or posterior mode) estimation
can be used to obtain a point estimate of an unobserved quantity on the basis of empirical
data. It requires at least two probability distribution models, the conditional probability
of the observed picture intensity given the motion field and the a-priori probability of the
motion vectors. In the context of motion estimation, the MAP method aims to find the
motion vector field which maximizes the posterior distribution. More details about the
maximum-a-posteriori methods can be found in [140]. Example of the MAP estimation
is the optical flow, which is based on the assumption that the picture intensity remains
constant along the motion trajectory. Even the 3DRS (explained in the further text) can
be viewed as an MAP method [140].

2.4.3.4 The 3DRS motion estimation algorithm

Another way to arrive at economical ME algorithm, which features the true motion is to
use the recursive approach. Such a solution, called the 3-dimensional recursive search
(3DRS) has been proposed [23, 129]. Economical attractiveness comes from the low
candidate count and the true motion comes from the recursive candidate selection that
originates from the spatio-temporal 3D neighborhood. The 3DRS reduces the candidate
set of an FSBM based on the following two assumptions:

1. Objects within a picture are larger than blocks, and

2. Objects have inertia.

The implication of the first assumption is that evaluation of all possible vectors within the
search area denoted with CSmax is not necessary, as a candidate set that contains result
vectors taken from the neighbors (marked with S and T in figure 2.17) should be sufficient:

CS( ~X, n) =
{

~C ∈ CSmax|~C = ~D( ~X +
[
iX
jY

]
, n)

}
, i, j = −1, 0, 1 (2.38)

where, X/Y are the block width/height.

The initialization problem (all the vectors are zero) and convergence problem (also
after the scene change) are tackled by adding a (pseudo) random update vector to one of
the spatial neighbors and using it as an additional candidate. This update vector is chosen
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Figure 2.18: Picture a) illustrates the limitation of the two picture reference up-conversion. The foreground
vector often provides the best match in the occluded background (gray-shaded). Picture b) shows that three
picture-reference up-conversion enables the selection of the proper motion vector even in the occluded areas.

cyclically from a predefined update set, such as:

USi =
{

~yu, −~yu, ~xu, −~xu,
2~yu, −2~yu, 3~xu, −3~xu

}
, where ~xu =

[
1
0

]
and ~yu =

[
0
1

]
(2.39)

Result vectors can be sub-pixel accurate if the update set also contains fractional updates.
Different update strategies are also possible (see for example [120]).

The 3DRS block matcher uses two picture references. In the case of quarter-pel ac-
curate vectors, the bilinear interpolation is applied to interpolate the missing pixels. The
bilinear interpolation uses four nearest neighbors of the pixel being interpolated. The us-
age of pixel sub-sampling within the block is also optional to reduce the operation count.
To further reduce the operation count, the author proposed a technique to reduce the al-
ready low number of motion vector candidates that 3DRS uses [141].

The recursive nature of the algorithm makes difficult parallel evaluation of two blocks.
The possibility of pipelined execution is still left open. The horizontally neighboring spa-
tial motion vector candidate is evaluated as part of the candidate set of the current block.
Thereby, the evaluation of this particular candidate can start only after the evaluation of
the previous block has been completed. However, the evaluation of all the other motion
vector candidates can start even before the evaluation of the previous block is completed.
This conclusion is valid for one complete block-line.

2.4.4 Occlusion-aware estimation
All the previously mentioned methods assume that the motion estimation has been per-
formed on two picture references. The biggest problem of these methods is to estimate
the motion between two pictures for the occluded parts, i.e. those parts of the background
that are being covered or uncovered. Figure 2.18a illustrates that problem. This problem
is present since only two pictures are used in motion estimation and in occlusion areas, no
proper match can be found If the third, i.e. next, picture is used in addition to the current
and previous, then the correct motion vectors can be found even in the occluded areas.
The motion estimation that uses three picture references is illustrated in Figure 2.18b.
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The first motion vector field is computed backward using the current (n) and the pre-
vious (n − 1) pictures as references and the second one is computed forward using the
current (n) and the next (n+1) pictures as references. Both motion vector fields are valid
at the current picture (n). This is actually the problem since we are interpolating a picture
located in between two pictures, e.g. (n + α) and thereby we need a motion vector field
valid at time instance (n + α). Vector field re-timing [22] addresses this issue.

Even after the re-timing is performed, in order to properly perform the up-conversion,
the occlusion type has to be determined. Two types of occlusions exist, the covering and
uncovering. In the case of covering, we use previous picture for interpolation while in
the case of uncovering, the next one. More data on the topic of occlusion-aware motion
estimation involving advanced motion vector field processing can be found in [22].

Looking at the HW aspects of this method, we first note that this is the only motion
estimation algorithm that uses three picture references. Another peculiarity is that the mo-
tion estimation is performed twice per original picture reference (forward and backward).
Apart from having three picture references and performing the motion estimation twice,
the computations on the motion vector field are quite intense. Analyzing the complete
picture-rate up-conversion algorithm, in [67] it was concluded that the motion vector field
post processing takes 88% of the total operation count.

2.4.5 Object-based motion estimation
The usage of block-based motion estimation results in the blocking artifacts since the
boundaries of the real objects in the scene in general do not correspond to the boundaries
of the blocks used in the estimation. Object-based motion estimation (OBME) was intro-
duced as a method to overcome this difficulty. In spite of being a promising technique,
OBME until now did not gain any significant popularity, possibly due to already satisfac-
tory results of block-based estimators. Since there are only a few references of the OBME
realizations [142, 143], we limit our scope here to only briefly mention the very basics of
the OBME, without going into any detailed analysis. In general, we distinguish between
the bottom-up and top-down OBME methods.

Bottom-up methods (see for example [136]) start from the picture segmentation based
on the previously calculated motion vector field. The regions that feature the same or
similar motion are grouped together. These large regions are then treated independently.
Top-down methods are based on the changed/unchanged rule (see for example [142]). The
two consecutive pictures are compared: When two corresponding motion compensated
(blocks of) pixels in these two pictures are significantly different, these pixels are marked
as changed. The new motion model is calculated for these portions of the picture and the
process is repeated until there are no positions marked as changed.

Regarding the complexity of the OBME, we could refer to the relative complexity
comparison of the OBME and the 3DRS [143]. The authors conclude that their OBME
implementation requires 10% more operations while maintaining the same level of qual-
ity. The additional benefit that the OBME brings is the segmentation map that could
potentially be used by some other application.
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2.5 Conclusions
Decades of video post processing research resulted in an impressive stack of different
algorithms. Each of the functions in the domain can be implemented using different
algorithms. The diversity of these algorithms is visible in many aspects. Algorithms can
be based on spatial, temporal and spatio-temporal processing, which can be recursive,
content-adaptive and linear as well as non-linear.

Our goal is to identify algorithmic approaches that are generic enough to cover a
wide range of applications with high quality and acceptable implementation cost. The
number of different approaches should be limited to simplify the task of implementation.
We have selected two distinct approaches, the first enabling block-based motion estima-
tion/compensation and the other pixel-based content-adaptive filtering.

Having in mind everything said in this chapter, block-based motion estimation such
as the 3DRS was an obvious choice. Indeed, it is cost-effective and enables a substan-
tially better quality than other approaches throughout the application domain. Per applica-
tion, we find many algorithms that use block-based motion estimation and compensation.
De-interlacing [21, 35–38], picture-rate up-conversion [22, 39–43] and noise reduction
[87, 89] are good examples of applications that profit from motion-compensated pro-
cessing. Our application domain requires true-motion, so support for the 3DRS motion
estimator was a logical choice. Finally, motion estimation and compensation are essen-
tial ingredients of all major video compression standards. Even though video compres-
sion was not within the immediate scope of this thesis, supporting motion estimation and
compensation certainly extends the coverage of this work beyond the target application
domain.

Content-adaptive filtering has been selected as the second distinct approach for two
reasons. The first reason is that for a number of applications, it enables high quality of
output pictures. The recently proposed class-reduction methods [77, 78] make it suitable
for cost-effective implementation. Examples include de-interlacing, up-scaling [44, 45],
coding artifact removal and sharpness enhancement [82, 99]. The second reason is that
content-adaptive filtering is generic and also covers algorithms that obtain good quality
even with fixed coefficients. This is a very large group of applications based on FIR
filtering or matrix multiplication. Occasionally, the coefficients depend on a single or a
few conditions and in such cases, we can think of having just a few coefficients classes.
Most of the algorithms that require one, or a few, coefficient classes are found within the
video enhancement pillar, e.g. [100, 101, 113, 115, 116, 118, 119].
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IN the previous chapter, a wide variety of applications was discussed which all belong
to the target domain. Our goal is to define an architecture that combines efficiency with

programmability in order to deal with the different applications. A three-step approach
is adopted. The first step is algorithm development. The functional requirements at the
application level (the what description) are translated into a high-level language such as
”C” representing an implementation at the algorithmic level (the how description). An
application can be implemented by many different algorithms possibly offering a variety
of quality levels. In a second step, the SIMD form of parallelism is introduced for perfor-
mance reasons and the ”C”-like description is vectorized. A common vector instruction
set is defined. In a third step, a datapath is defined and the requirements for the memory
subsystem are derived.

This chapter describes the gradual convergence to a single architecture and consists
of three sections. The first section discusses the algorithm step. The algorithms from
the application domain belong to one of the two algorithmic classes, the pixel-based or
the block-based class. As concluded in the previous chapter, there are algorithms from
both classes that offer acceptable picture quality, i.e. the content-adaptive algorithms as
representatives of the first class, and, motion-compensated algorithms representing the
second. The second section shows how the algorithms of both classes can be vectorized
resulting in a common vector instruction set. The principle is illustrated on most important
kernels taken from class representatives. Lastly, the third section concludes the chapter
and presents the directions for future work.

57
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3.1 The two algorithmic classes
The algorithms from the application domain can be classified in two algorithmic groups
or classes, the pixel-based or the block-based class. An application might have a tendency
or preference towards one of the two mentioned algorithmic classes. Another possibility
is that an application can be implemented using both algorithmic classes. All the pos-
sibilities are illustrated in Figure 3.1. Typical examples of block-based applications are
picture-rate up-conversion and de-interlacing. These high-quality applications use block-
based motion estimation and compensation as the basic algorithms. Typical examples
of pixel-based applications are de-interlacing, spatial up-scaling, sharpness enhancement,
histogram and gamma correction. To stay as generic as possible, we allow that the coef-
ficients depend on the local content, for example, as described in the T. Kondo method
[44, 76].

Our goal is to cover the algorithms from both classes. Not all the algorithms are di-
rectly supported, for example, recursive pixel-based filtering. According to our approach,
a number of input and output pixels are processed in parallel. This cannot be directly done
in case of recursive pixel-based filtering, because of the data dependencies between the
output pixels. One of the methods for avoiding the data dependencies could be to compute
partial products separately in parallel. Only the final product and sum would be computed
in sequence. We did not explore these possibilities since the supported algorithms from
both classes ensure sufficient quality of output pictures. The above does not affect the re-
cursive motion estimation algorithms such as the 3DRS since the data dependencies exist
at the block level only (and not at the pixel level). This enables parallel computation of
pixels pertaining to a block.

pixel−based class block−based class

architecture

application domain

algorithms

Figure 3.1: Different scenarios during mapping applications to two algorithmic classes. An application can
be mapped to one of the two classes or to both.
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De-interlacing is an example that can be mapped onto both classes. The block-based
variant is based on the Generalized Sampling Theorem and uses block-based motion es-
timation/compensation [21]. Pixel-based de-interlacing is edge-dependent [54].

First we analyze the characteristics of both classes followed by a comparison. The
characteristics of each class will be analyzed using a representative algorithm. The in-
evitable ingredient of block-based algorithms is motion estimation algorithm, such as the
3DRS. This is why motion estimation is selected to be the representative of this class. For
pixel-based algorithms, filtering is performed in most of the cases. Since it is compute-
intensive, in many cases defining the performance, we select it as a representative of the
pixel-based class. As mentioned before, the coefficients used in filtering may depend on
the local pixel content.

3.1.1 Algorithm characterization
In order to characterize the two algorithmic classes, they will be analyzed from two an-
gles, access pattern (position of the pixels that are used in the processing) and the type of
the processing involved. The next two subsections address pixel-based and block-based
algorithms, respectively. Finally, the differences and commonalities between these two
algorithmic classes will be determined.

3.1.2 Pixel-based algorithms
Filtering is part of most of the pixel-based algorithms. Depending on the number of used
filter taps, it can be compute intensive requiring a large number of multiplications and
additions per pixel that influences the cost. A typical scenario is that a central pixel is
interpolated using its neighboring pixels. As mentioned before, the coefficients used in
interpolation may depend on the local picture content. This is taken into account in all the
illustrations and pseudo-code snapshots related to the pixel-based class. The characteris-
tics of pixel-based algorithms, are summarized by the following pseudo-code.

Pixel-based algorithms: (e.g. filtering)
for (each interpolated pixel I ∈ picture) {

I = 0 ;

for (each pixel Ci ∈ support(I)) {
I = I + ci(I)Ci ;

}
normalize(I) ;

}
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Figure 3.2: Some of the supports used in pixel-based processing. Most of the pixels do not pertain to the
block-grid. The filter supports illustrated here are used in content-adaptive spatial up-scaling and sharpness
enhancement. Black pixels participate in the interpolation and the pixel being interpolated is marked with a
black square.

To characterize pixel-based algorithms, we first look into the access patterns. The
access patterns depend on the distribution of pixels in the filter support. Various supports
are used, for example, a square, a rectangle (e.g. 3*2, 3*3 pixels) or a diamond (e.g.
involving 13 pixels) [23, 45, 52, 82]. Figure 3.2 provides an illustration. An imaginary
block-grid is overlaid on this figure. In case a group of pixels is stored at one memory
location, the memory address of that pixel group coincides with the block grid. In the
above figure, we have assumed that the interpolated pixel is located at the block grid,
which in general is not the case. As we can see from this figure, even in this case, the
locations of the majority of the pixels from the filter support do not coincide with the block
grid. This poses a challenge for retrieval of such pixels from the memory subsystem. We
shall discuss this in greater detail in Section 3.2 that introduces vectorization.

To conclude, the processing consists of n-tap filtering that is performed per output
pixel. The number of taps, n, is equal to the number of pixels in the interpolation support.
As mentioned before, the coefficients used in the interpolation may depend on the local
picture content. Lastly, all the pixels within the support are spatially localized. This
locality of reference can thereby be used.
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3.1.3 Block-based algorithms

The characteristics of block-based processing is that a picture is split into blocks of pixels
and the processing is performed in a block-by-block fashion. Motion estimation and
compensation are the only block-based basic algorithms from the domain that ensure high
quality. Block-based motion-compensated (MC) algorithms compare blocks of pixels
from at least two picture references. Here, we call them the previous and the current
picture reference. The position of the currently processed block (located in the current
picture reference, time instance n) pertains to the block-grid. The position of the block in
the previous picture reference, time instance n, is determined by the motion vector, which
can point at any pixel within the search range (search area). Since the motion vector
pertains only to the pixel grid, the position of the referenced block does not pertain to
the block-grid in general. Additional aspect of the pixel fetching applied here is that the
locations on the pixel-grid are known only at run-time, since a motion vector candidate is
a run-time variable. Lastly, the motion vector candidates are limited within the boundaries
of the Search Area (SA), as mentioned in Section 2.4.

The processing is typically block-comparison. In the common case of sub-pel ac-
curate motion vectors, pixel interpolation is used as well. For each motion vector can-
didate, a difference between a block from the current and previous picture reference is
computed using an error criterion. The most commonly used error criterion is SAD (sum-
of-absolute-differences), illustrated in Figure 3.3. SAD requires pixels from at least two
picture references, and possibly more [22, 67]. If the pixel grid is interlaced, the com-

n
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Figure 3.3: The access pattern used in motion estimation. The pixels that participate in SAD calculation are
shaded. The block at time instance n (current picture reference) pertains to the block grid while the block at
time instance n − 1 (previous picture reference) does not. The index (0, 0) of the top-left pixel at the previous
picture reference is chosen for clarity.
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I

Motion compensated pixel from previous field (even)

Interpolated pixel from current field (even)

Original pixel from current field (odd)

I: pixel being interpolated

Figure 3.4: The circular support of the interpolation on the interlaced grid that involves pixels from two field
references (spatio-temporal filtering). This is used in high-quality motion-compensated Generalized sampling
theorem based de-interlacing.

putation of SAD might become more complex than bi-linear interpolation. An example
is high-quality 2D Generalized Sampling Theorem (2D GST) based de-interlacing. This
block-based de-interlacing algorithm uses motion estimation and compensation.

Much like other motion-compensated algorithms, in the process of pixel interpolation,
this algorithm involves pixels from two fields, the original pixels from the current field
and the motion-compensated pixels from the previous field [21, 60]. Taking into account
pixels from both references, the filter support has a circular shape and consists of ten
pixels. This is shown in Figure 3.4. It is possible to split this circular two-reference-
field support into two single-reference-field supports. The first support consists of 3*2
pixels original pixels from the current field. In Figure 3.4, these pixels are marked as
white circles located within the dotted circle. The second support consists of 2*2 motion
compensated pixels originating from the previous field. These pixels are marked as white
triangles. Thereby this circular support is equivalent to the union of the two rectangular-
shaped supports originating from two reference pictures. Without loosing generality, in
the further text, we continue with the motion estimation that uses rectangular support for
interpolation. Typical example is bi-linear interpolation that uses rectangular 2*2 pixel
support. The characteristics of this algorithmic class are summarized in the following
pseudo-code.

Block-based algorithms: (e.g. motion estimation)
for (each block B( ~X) ∈ picture) {

for (each candidate
−−−→
MV C) {

CB = fetch aligned (B( ~X), n) ; // current block

PB = fetch unaligned (B( ~X +
−−−→
MV C), n− 1) ; // previous block

SAD = block compare (CB, PB) ;

compute min (SAD) ;

}
}
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3.1.4 Comparison

The main difference between the algorithms from these two classes is that pixel-based
algorithms treat each pixel differently while in the case of the block-based ones, a group
of pixels is treated in the same way. Other differences, valid in a typical case, include the
following. Block-based algorithms impose data dependencies between successive blocks
while pixel-based algorithms usually do not (at the pixel level). Block-based algorithms
basically compare rectangular blocks of data while pixel-based algorithms involve filter
supports of different shapes.

The text provided in the above subsections showed that the two algorithmic classes
have differences in the access pattern and processing. Because of those differences, the
transformations to introduce vector type parallelism are different. But, both classes have
also commonalities. Both of them require access to the pixels that do not pertain to the
block grid. Additionally, accessed pixels are always localized that opens the possibility
for the usage of the locality of reference.

3.2 Vectorization of the algorithms

In this thesis, we use vector operations to process a number of pixels in parallel. For the
sake of demonstration, the used instruction set is generic. By using generic instruction set,
the software can be written regardless of any algorithmic peculiarity such as the number
of pixels in the support, the shape of the support, etc. A generic vector instruction set has
already been proposed and used [27–31] and in this section we show that this concept can
be applied to our two algorithmic classes. To further increase the performance, custom-
ops may be added to the instruction set. Within this application domain, this has already
been proposed in [32, 33]. In general, vector instruction set offers a number of advantages.
Let us mention a few of them.

The architecture is parametric and can be tuned for different performance nodes. The
vector length is equal to the number of pixels processed in parallel. This is just an architec-
ture parameter selected according to the specified performance requirement. This para-
metric approach offers a generic and flexible solution for different performance nodes.
This means that even for different vector dimensions, the software (especially the ker-
nels) does not require major modifications. Usually, the parts of software that need to be
modified are the parts that process the borders of the picture (padding, clipping, etc.).

In order to eliminate the need for major software modifications, the software must
be written in such a way that the used vector length is independent from the parameters
of the application. For example, in the case of the pixel-based class, the shape of the
filtering support and the number of pixels in the support should not affect the software.
The vector instruction set enables that, but requires rewriting an algorithm in a vector
form, or algorithm vectorization.

Vectorization is a set of (loop) transformations. In case of our two algorithmic classes,
the applied transformation is loop tiling and unrolling. In this section, we show how



64 Chapter 3 Application Domain Processing

loop unrolling can be applied to vectorize the two algorithmic classes. For each of the
classes, we begin with the generic recipe indicating which loops should be unrolled. This
is followed by an example. In order to present the vectorization, we need a number of
definitions that are provided in the next subsection.

3.2.1 Definition of a Block-Of-Interest (BOI) and access types
In block-based algorithms, e.g. motion estimation and compensation, a picture is split
into blocks and the block grid (coarser than the pixel grid) can be defined at the picture
level. Usually, a block is defined as a group of 8*8 pixels [32, 124]. From the architecture
point of view, in a common case, a vector contains 8, 16, 32 or 64 pixels. The question is
how to organize the pixels within a vector. Because of the block constraints, the vector in
general needs to be two-dimensional. The typical vector dimensions are 8*1, 8*2, 8*4,
8*8 pixels. We will devote some additional attention to this in Subsection 3.2.3. In pixel-
based algorithms, there is no block constraint and pixels can be grouped and stored in a
one-dimensional vector. The vector consists of a number of pixels organized in one line,
typically, 8*1, 16*1, 32*1, 64*1 pixels.

The datapath accesses pixels from the (local) storage. The accessed group of pixels
we call the Block-Of-Interest (BOI). This BOI is stored in a vector and processed by the
datapath. Following from our discussion in the previous paragraphs, a BOI can be one-
or two-dimensional (1D or 2D BOI). Thereby, in this thesis, we use rectangular access
patterns. We distinguish between two types of accesses, aligned and un-aligned, which
are defined as follows. The access is aligned if it is possible to arrange one or more tiled
BOIs such that they fully coincide with the block-grid. Opposite, if no tiled arrangement
can be found, the access is un-aligned. Figure 3.5 clarifies the definition.

According to our approach, a memory subsystem should provide to the datapath only
the pixels that belong to a BOI, regardless of the type of the access. The pixels that belong
to a BOI, are directly processed by the datapath and we call them the useful pixels. This
approach omits the shuffling of the data within the datapath. Thereby, a BOI is defined as

8x1 BOI (1D), aligned

8x4 BOI (2D), un−aligned

8x1 BOI (1D), un−aligned

8x4 BOI (2D), aligned

tiled to coincide with block grid

Block grid: 8*8 pixels

Figure 3.5: The difference between aligned and un-aligned types of accesses. The illustration is provided for
the two common cases: 1D and 2D rectangular BOI.
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a group of useful pixels provided by the memory subsystem and directly processed by the
datapath. In Figure 3.5, the useful pixels are marked as black circles, which are part of a
BOI.

The part of an algorithm that has the most influence on the performance is the kernel.
This piece of code is executed the largest number of times. Here we demonstrate the vec-
torization of kernels on one representative example per algorithmic class. The example
kernels include bi-linear interpolation used in block-based motion estimation and com-
pensation [129], and a combination of content-adaptive spatial up-scaling and sharpness
enhancement [45] used in the pixel-based class.

3.2.2 Vectorization of pixel-based algorithms
This algorithmic class does not impose any restriction on the dimensions or the aspect
ratio of the processed block of pixels. The only constraint is that the number of pixels
within such a block is equal to the vector size. When vectorizing this algorithmic class,
we have a freedom to select the aspect ratio of the processed block of pixels, such that is
most suitable for implementation.

One of the most important issues of vectorization of the pixel-based class is the sup-
port of various shapes of the filter supports. For example, a representative of this class,
a content-adaptive de-blocking algorithm [82], uses a 13-pixel diamond filter support to
interpolate the central pixel. The most obvious way of addressing this filter support would
be to fetch those 13 pixels and perform the interpolation. However, as mentioned before,
other filter supports containing different number of pixels are also present within this
class (for example, a square support containing 9 pixels). Following the idea of fetching
all the pixels from the support implies that the memory subsystem would have to support
a number of filter supports each possibly containing a different number of pixels. The
same holds for the datapath. Clearly, such an architecture would neither be efficient nor
generic.

We opt for an approach where a vector consists of a number of pixels arranged in
one horizontal line, and thus is one-dimensional. Other arrangements are also possible.
However, the simplest way of vectorizing this algorithmic class is the case when vectors
contain 1D blocks of pixels. The number of vectors participating in interpolation is equal
to the number of pixels in the filter support. The process of vectorization is illustrated
using the following three snapshots of a generic pseudo-code.
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For the sake of clarity, we repeat the pseudo-code of a starting point, being a content-
adaptive filtering as a representative of the pixel-based class.

Pixel-based algorithms: (e.g. filtering)
for (each interpolated pixel I ∈ picture) { LOOP TILING (1D)

I = 0 ;

for (each pixel Ci ∈ support(I)) {
Ci = fetch unaligned (support(I), i) ;

I = I + ci(I)Ci ;

}
normalize(I) ;

}

We begin with 1D loop tiling, applied to the outer-most pixel loop. The tile size is
equal to the vector dimension. The result is indicated in the following pseudo-code.

Pixel-based algorithms: Intermediate step
for (each interpolated vector ~I ∈ picture) {

for (each interpolated pixel I ∈ ~I) { LOOP UNROLLING
I = 0 ;

for (each pixel Ci ∈ support(I)) {
Ci = fetch unaligned (support(I), i) ;

I = I + ci(I)Ci ;

}
normalize(I) ;

}
}

The next step is completely unrolling the new loop. All the pixels from the unrolled
loop are stored in one vector. The pseudo-code can now be rewritten in a vector form:

Pixel-based algorithms: Vectorized
for (each interpolated vector ~I ∈ picture) {

~I = ~0 ;

for (each vector ~Ci ∈ vectorized support(~I) {
~Ci = fetch unaligned (vectorized support(~I), i) ;
~I = ~I + ci(~I)~Ci ;

}
normalize (~I) ;

}
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Figure 3.6: The vectorization of a pixel-based spatial up-scaling algorithm. In this example, the datapath
processes 16 pixels in parallel and the dimensions of the fetched block are 16*1 pixels.

The vectorization of the pixel-based class can be illustrated on the example of the
de-blocking algorithm using the diamond shaped support containing 13 pixels [82]. Each
pixel within the support marks the starting pixel of a vector. Therefore, 13 vectors of
input pixels are used in the interpolation. As a result, the interpolated vector is computed.
Naturally, the width of this vector is the same as the width of any of the 13 input vectors.
There is one additional peculiarity related to this example. This pixel-based algorithm is
content-adaptive, meaning that each pixel belongs to a different class and is interpolated
using a different set of coefficients. The consequence of this is that a multiplication of
a vector by a vector is used. In pixel-based algorithms that are not content-adaptive, a
multiplication of a vector by a scalar is used. Cost (power, area) of a multiplication by
a vector and by a scalar does not significantly differ. However, here we do not tackle
the memory subsystem needed to deliver coefficients to the vector multiplier. In order to
interpolate a pixel marked with Ii,j , the following operation is performed:

I =
NT AP S−1∑

i=0

ci(I)Ci

where
0 ≤ i ≤ 15 and NTAPS = 13

(3.1)

As we have mentioned before, our pixel-based class does not contain algorithms that are
recursive. Thereby, there are no data-dependencies between the interpolated pixels and
couple of them may be interpolated at the same time. The immediate consequence is that
there are practically no limitations in organization of pixels within a vector (within the
limits of picture). In other words, pixels may be organized in a 1D or a 2D block of data
of any aspect ratio as long as the total number of pixels equals the vector length. For a
memory sub-system and a programmer, 1D is typically an easier scenario, and here we
use it as well. Since we are using a vector length of 16, a vector contains 16*1 pixels
organized in one horizontal pixel-line. This is illustrated in Figure 3.6. Using generic
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units, we realize the mentioned interpolation through the set of commands given in the
following pseudo-code.

for (each interpolated vector ~I ∈ picture) {
~I = ~0 ;

for (i = 0; i < NTAPS ; i + +) {
~I = ~I + ~ci(~I)~Ci ;

}
normalize (~I) ;

}

3.2.3 Vectorization of block-based algorithms

In case of block-based algorithms, the algorithmic constraints are stronger compared to
the pixel-based class. The block-based class of algorithms enables that each pixel from
the block is treated in the same way, which seems to offer a direct way to vectorize an
algorithm. However, the block dimensions impose some additional constraints. The width
of a block is a relatively small number, typically 8 or 16 pixels. If the vector length is
larger than the width of the block, the vector contains the pixels that span over multiple
pixel lines, i.e. the data are two-dimensional. To illustrate this issue, we refer to the
common case of SAD computation. If bi-linear interpolation is not used, the typical case
of SAD window is 8*8 pixels. In such a case, the processed block can be organized as a
group of 8*1, 8*2, 8*4 or 8*8 pixels, depending on the selected vector length.

The problem of vectorization of such an algorithm occurs if bi-linear interpolation is
used, which is the common case, for example if motion vectors are quarter-pel accurate.
In such a case, in order to produce 8*8 interpolated pixels to be used in SAD calculation,
in total, 9*9 pixels need to be fetched from the memory subsystem. The dimensions
of the fetched block and the block of pixels that are interpolated differ by one in both
directions. This is illustrated in Figure 3.7. The following paragraphs show how block-

8 9

Figure 3.7: Bi-linear interpolation applied to a block of 9*9 pixels. The resulting block contains 8*8 pixels.
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based algorithms, which also use interpolation, can be vectorized.
We assume that a vector contains a two-dimensional group of pixels. The number of

input vectors used in the computation of one output vector equals the number of pixels
in the filter support. For example, in the case of bilinear interpolation, four vectors are
fetched for each interpolation. The process of vectorization of the block-based class is
illustrated in the following three pseudo-code snapshots. As in the case of the pixel-based
algorithms, we begin with the repetition of the pseudo-code of the block-based filtering
algorithm.

Block-based algorithms: (e.g. motion estimation)
for (each block B( ~X) ∈ picture) {

for (each candidate
−−−→
MV C) {

SAD = 0 ;

for (each pixel pair (C, P ) ∈ (CB, PB)) { LOOP TILING (2D)
C = fetch aligned (B( ~X), n) ; // curr

P = 0 ; // prev

for (each pixel Pi,j ∈ 2*2 support) {
Pi,j = fetch unaligned (B( ~X) +

−−−→
MV C, n− 1) ;

P = P + ci,j(
−−−→
MV C)Pi,j ;

}
SAD = SAD + |C − P | ;

}
compute min (SAD) ;

}
}

The support in the above pseudo-code has a shape of 2*2 pixels. The coefficients
depend on the fractional part of the motion vector. For each of the four pixels in the sup-
port, the coefficients are constant for the entire block. The locations of pixels used in the
computation, P and C pixels, are also indicated in Figure 3.3. When vectorizing this algo-
rithmic class, we must take into account some data dependencies. Motion estimation can
be recursive, an example is the 3DRS. In such a case, there are data dependencies when
processing the neighboring blocks. In particular, a strong data dependency exists when
processing the horizontally neighboring blocks. Thereby, we leave the motion vector loop
intact and unroll the loop nested within it 1.

The intermediate phase in vectorization of the block-based class and the loop being
unrolled is indicated in the following pseudo-code snapshot.

1The motion vector candidate loop can be unrolled as well. This can be done to a limited extent since the
data dependencies do not exist for all the candidates.
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Block-based algorithms: Intermediate step
for (each block B( ~X) ∈ picture) {

for (each candidate
−−−→
MV C) {

SAD = 0 ;

for (each vector pair (~C, ~P ) ∈ (CB, PB))

for (each pixel pair (C, P ) ∈ (~C, ~P )) { LOOP UNROLLING
C = fetch aligned (B( ~X), n) ; // curr

P = 0 ; // prev

for (each pixel Pi,j ∈ 2*2 support) {
Pi,j = fetch unaligned (B( ~X) +

−−−→
MV C, n− 1) ;

P = P + ci,jPi,j ;

SAD = SAD + |C − P | ;
}

}
compute min (SAD) ;

}
}

If all the pixels from the unrolled loop are stored in one vector, the pseudo-code can
be rewritten in a vector form. We keep indices to mark the vectors used in interpolation.
The approach we adopt here is that four vectors are fetched, where the ”top-left” pixel
of a vector marks one of the four pixels participating in the interpolation. Thereby, the
indices i and j take the following values: (i, j) ∈ (0, 0), (0, 1), (1, 0), (1, 1).

Block-based algorithms: Vectorized
for (each block B( ~X) ∈ picture) {

for (each candidate
−−−→
MV C) {

SAD = 0 ;

for (each vector pair (~C, ~P ) ∈ (CB, PB) {
~C = fetch aligned (CB, n) ; // curr
~P = ~0 ; // prev

for (each vector ~Pi,j ∈ vectorized 2*2 support) {
~Pi,j = fetch unaligned (PB +

−−−→
MV C, n− 1) ;

~P = ~P + ci,j
~Pi,j ;

}
SAD = SAD + |~C − ~P | ;

}
compute min (SAD) ;

}
}
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Figure 3.8: The vectorized bi-linear interpolation. Pixels marked with P are the original pixels participating
in the interpolation. Pixels P0,0, P0,1, P1,0, P1,1 mark the positions of the top-left pixels of the corresponding
vectors of 8*2 pixels.

Let us illustrate the above on the example of bi-linear interpolation and SAD com-
puted on blocks of 8*8 pixels. The vector length is set to 16. To accommodate the
horizontal SAD dimension, the vector is organized as a 2D block of data consisting of
8*2 pixels. Figure 3.8 illustrates the computation of bi-linear interpolation in a vector
form. Four input vectors, each consisting of 8*2 pixels, are used in the interpolation of
one output 8*2 pixel vector (the output is not indicated in figure). In order to interpolate
any of the indicated 16 pixels, the following operation is performed:

Ii,j =
(c0Pi,j + c1Pi,j+1 + c2Pi+1,j + c3Pi+1,j+1)/c4

where
0 ≤ i ≤ 1 and 0 ≤ j ≤ 7

(3.2)

where c0, c1, c2, c3 stand for four coefficients proportional to the fractional parts of
motion vector. This formula can be vectorized if the pixels are grouped according to the
generic recipe provided above and according to Figure 3.8. The following pseudo-code
illustrates Equation 3.2 in a vector form.

~Vtemp0 = c0
~P0,0 ; ~Vtemp1 = c1

~P0,1 ;
~Vtemp2 = c2

~P1,0 ; ~Vtemp3 = c3
~P1,1 ;

~I = (~Vtemp0 + ~Vtemp1) + (~Vtemp2 + ~Vtemp3) ;
~I = ~I >> c ;

where,
~P0,0 = {P0,0, . . . , P0,7, P1,0, . . . , P1,7} ;
~P0,1 = {P0,1, . . . , P0,8, P1,1, . . . , P1,8} ;
~P1,0 = {P1,0, . . . , P1,7, P2,0, . . . , P2,7} ;
~P1,1 = {P1,1, . . . , P1,8, P2,1, . . . , P2,8} ;



72 Chapter 3 Application Domain Processing

In this case, three basic operations are used to perform the bilinear interpolation, mul-
tiplication of a vector by a scalar, vector addition and shifting (possibly with the usage of
rounding) of a vector by a scalar. The factor used in shifting depends on the magnitude of
the coefficients. Since we are operating on 16 pixels in parallel and the block dimension
is horizontally 8 pixels, the memory subsystem has to output four blocks of 8*2 pixels,
~P0,0, ~P0,1, ~P1,0 and ~P1,1 to interpolate a block of 8*2 pixels, ~I .

3.3 Conclusions
From the architecture point of view, we have adopted the following classification of the
algorithms: Block-based and pixel-based. Representative algorithms for the first class are
motion estimation and compensation. For the second class it is pixel-based filtering where
the coefficients may be content dependent. From a quality point of view, the two process-
ing classes offer acceptable quality levels of the output pictures. From an architecture
point of view, they have similar requirements.

Our architecture of choice is a VLIW-based ASIP with a vector instruction set. Such
an architecture is suitable for exploitation of the instruction and data level parallelism
largely present in video processing applications. For the sake of demonstration, the used
instruction set is generic. By using generic vector operations, the software can be written
regardless of any algorithmic peculiarity such as the number of pixels in the support, the
shape of the support, etc. The addition of customized instructions remains an option to
further improve the performance.

The approach we adopt here is to fetch relatively large groups of pixels, for example
containing 16 or 32 pixels from a local memory subsystem. The number of pixels equals
the width of the datapath. After being fetched from the memory subsystem, these pix-
els are directly processed by the datapath that uses the vector instruction set. We have
shown how both the algorithmic classes can be vectorized to match our architecture. Vec-
torization assumes that the pixels to be processed are fetched directly from the memory
subsystem without the need for reshuffling and discarding some of the pixels within the
datapath. This is enabled if un-aligned access to a pixel storage is possible. In the case
of block-based algorithms, algorithmic constraints impose un-aligned access to a two-
dimensional block of pixels. The requirements of pixel-based algorithms are not so strict,
i.e. a block of fetched pixels can be one- or two-dimensional. For both of them, the
group of accessed pixels is localized within a limited area. The processing presented
here requires a customized memory subsystem that can deliver the requested pixels. Our
proposition of such a memory subsystem is presented in the next chapter.



4

Memory Subsystem

THE digital revolution enabled efficient implementation of the storage elements that
are essential ingredient of a memory subsystem. One of the first applications of

storage elements in television was a delay-line in receivers compatible with the PAL tele-
vision standard. The PAL standard achieves better picture quality than the NTSC (par-
ticularly color representation) at the additional cost of line averaging, which requires one
line-delay. As a result of the digital revolution, today, a line-delay incurs a negligible
cost increase, but this was different in the past. Looking back to the early days of tele-
vision, television sets compliant to the PAL standard were implementing this delay in a
cumbersome collection of coils and capacitors. This was soon replaced by an ultrasonic
line-delay using a block of glass with two piezo-transducers glued to it. Finally, a digital
line-delay enabled efficient implementation.

Line-delay from the previous example enables accesses to pixels from the previous
pixel-line. This principle, with extensions to pixel- and picture-delays is widely used in
the context of memory subsystems. It enables concurrent accesses to pixels from previous
instances. An example that directly implements this principle we find in [125]. The cited
work implements the motion estimator and uses pixel- and line-delays on-chip to enable
accesses to a search area. Picture-delays are used to enable accesses to two successive
pictures. Decades of research in this field, brought different memory architectures. We
are going to list the different approaches in Subsection 4.2.

In the introduction of this thesis, we motivate the need for memory subsystems by
referring to the well-known gap between the memory and processor speeds [12]. Let
us roughly quantify the requested memory bandwidth. Here, we compute the first order
approximation of the bandwidth needs of the three-frame block-based motion estimation
used in high quality picture-rate up-conversion [22]. In our example, we start from the fol-
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lowing assumptions. The luminance pixels are encoded with 8 bits. Assuming the HDTV
standard (1920*1080 @ 60Hz), the raw input rate is equal to 120 MBytes/s per frame ref-
erence. The motion estimation uses three successive reference frames. Motion estimation
repeatedly accesses pixels at two frame references while at the third one, it stays at the
rate of 120 MBytes/s. In our setup, we analyze the extremely efficient motion estimation
algorithm which evaluates 7 motion vector candidates. In the first order approximation,
the read rate at two frame references is 7 times higher compared to the third one. In total,
we arrive at the minimal read rate of (7+7+1)*120 MB/s ≈ 1.8 GB/s. However, motion
estimation requires un-aligned pixel accesses within the off-chip memory. Assuming a
32 bit off-chip memory, the bandwidth is increased by 50% and we arrive to 2.7 GB/s as
the requested bandwidth1. For clarity reasons, this calculation neglects some factors that
influence the requested bandwidth, such as pixel interpolation. The requested bandwidth
can be much larger in case of a chain of applications, or frame rate increase or resolution
increase. In case of 120Hz processing, the bandwidth requirement doubles to 5.4 GB/s.
In case of quad HDTV resolution (3840*2160), this bandwidth is four times larger, 10.8
GB/s. Such a large bandwidth requirement requires adequate memory subsystem.

Off-chip memory offers a limited bandwidth. To quantify the differences between
the offered and requested memory bandwidth, we refer to the Digital TV (DTV) appli-
cation chain example mentioned in Chapter 1. The application chain includes decoding
the input video stream, de-interlacing, picture-rate conversion, spatial scaling and picture
quality enhancement. These applications produce and consume the intermediate results
(pictures), which are stored in the off-chip memory. Thereby, the off-chip memory band-
width is shared by a number of producers/consumers and is estimated to 5.2 GB/s [25]. A
32 bit DDR2/DDR3 SDRAM with a bus clocked at 400 MHz offers a peak memory band-
width of 3.2 GB/s. Assuming efficiency of 80% [25], we arrive to effective bandwidth of
2.56 GB/s. The effective bandwidth is doubled in case of 64-bit SDRAM, which is still
not enough for the DTV application chain. A memory subsystem, capable of minimizing
the off-chip memory bandwidth requirement is therefore essential ingredient of an SoC.

The memory subsystem proposed in this thesis bridges the gap between the requested
and offered bandwidth services. It offers a solution for the two major problems To answer
the high bandwidth requirement of the processing element, the proposed memory subsys-
tem enables one- and two-dimensional un-aligned memory accesses. This omits the need
for redundant fetches from the local memory and shuffling the data within the datapath.
To answer the limited offered bandwidth at the off-chip memory side, the proposed mem-
ory subsystem minimizes the bandwidth towards the off-chip memory. Furthermore, it
enables the tradeoff between the on-chip memory capacity and off-chip memory band-
width, allowing a user to select the suitable tradeoff point.

This chapter is organized as follows. In Section 4.1, we analyze the application do-
main from a memory subsystem point of view and propose the six criteria for benchmark-
ing a memory subsystem. In Section 4.2, we present a survey of earlier memory subsys-

1In a 32 bit memory, four 8-bit pixels are stored per location. To read an arbitrarily positioned 8 horizontally
neighboring pixels, three reads from the off-chip memory are needed. The minimal read rate of 1.8 GB/s
assumed two reads only.
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tems. Sections 4.3, 4.4, 4.5 and 4.6 present our memory subsystem. The improvements
that this work brings are quantified in Section 4.7. Section 4.8 concludes this chapter.

4.1 Application domain analysis and evaluation criteria
We start this section with a summary of the basic features of the application domain and
requirements for the memory subsystem. We use the definition of a Block-Of-Interest
(BOI) and aligned/un-aligned access types proposed in Subsection 3.2.1. Figure 4.1 pro-
vides a reminder.

Un-aligned read access
Chapter 3 has shown that the algorithms from the video post processing domain, re-

quire un-aligned read accesses at the side of the processing element (PE). At the off-chip
memory side, the access pattern is aligned.

Number of pixels within a BOI accessed in parallel
The use-case we analyzed in the introduction of this chapter has shown that a high-

quality application operating at high input resolution and frame rate imposes high re-
quested services at the processing element (PE) side. The number of pixels fetched in
parallel is dictated by the performance specifications; the typical value is 16.

The x and y dimensions of the rectangular BOI are parametric
The algorithms from the application domain require different access patterns, i.e. a

BOI has different aspect ratios for different applications. For example, if a BOI contains
16 pixels, block-based algorithms (motion estimation/compensation) usually require ac-
cess to a BOI of 8*2 pixels (2D BOI). The requirements of the pixel-based algorithms can
be fulfilled with a BOI of 16*1 pixels (1D BOI).

Locality of reference is present in the application domain
Two major types of locality exist, the temporal and spatial [12]. The temporal locality

means that it is likely that an application will reference the same block in the near future
again. The spatial locality means that it is likely that the neighboring block of data will be
referenced in the near future. Both of these localities are present in video post processing.
For the block-based algorithms, e.g. motion estimation/compensation, the motion vectors
may point to the same block multiple times (temporal locality). When processing the next
block, it is also likely that some of the accessed blocks will be referenced again (spatial
locality). Similar holds for the pixel-based algorithms, the same pixels are referenced
multiple times while processing the current and next vector of data.

Fortunately, for all algorithms in the domain, the distance between a currently pro-
cessed block and a fetched BOI is limited to an area containing few blocks of 8*8 pixels.
We this area a Window-Of-Interest, WOI (indicated in Figure 4.1). The exact dimensions
of a WOI depend on the application. For example, for motion estimation based applica-
tions, the WOI corresponds to the search area.

The BOI can be subsampled
Additionally, motion estimation in some cases requires access to a subsampled 2D

BOI. Subsampling means skipping some pixels from a 2D BOI that are located at the
same pixel-line or the same pixel-column. The most widely used subsampling factors are



76 Chapter 4 Memory Subsystem
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8x4 BOI (2D): Un−aligned accessAligned access

8x1 BOI (1D): Un−aligned accessAligned access

16x4 subsampled (4) BOI: Un−aligned access

Figure 4.1: A Window-Of-Interest, split into blocks of 8*8 pixels. It shows the difference in 1D and 2D
accesses with aligned and un-aligned types of accesses. The principle of subsampling is also illustrated empha-
sizing the term useful pixel. Useful pixels are denoted as black-filled circles in this figure.

two horizontally (every second pixel from the pixel-line is retrieved) and four horizon-
tally (every fourth pixel from the pixel-line is retrieved). Often, the so-called quincunx
pattern is preferred. Figure 4.1 illustrates the quincunx pattern for a 16*4 2D BOI with a
horizontal subsampling factor of four. The same figure illustrates the term useful pixel. A
pixel is useful if it can be directly processed by the PE.

Using the analysis of the application domain as the basis, we propose a set of six
criteria for benchmarking a memory subsystem.

1. Minimal off-chip memory bandwidth: Our first criterion is the bandwidth towards
the off-chip memory. A memory subsystem satisfies this criterion if each pixel from the
off-chip memory is on the average accessed approximately once.

2. Predictability: If the performance of a memory subsystem is known at compile
time, we call it a predictable memory subsystem.

3. High PE bandwidth: The processing element (PE) should not stall and the data
access should not be a bottleneck. The memory subsystem should only provide the useful
pixels to the PE.

4. Flexibility: The support for all the applications from the application domain re-
quires a significant degree of flexibility from a memory subsystem. The flexibility re-
flects in the possibility for software changes. A list of the parameters that should be
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programmable includes the following:
• The resolution of the input pictures,
•Different scanning orders, like left-to-right-top-to-bottom (LRTB), right-to-left-bottom-

to-top (RLBT), meandering,
• The size of a WOI, aspect ratio of a BOI and the number of reads of a BOI.
5. Efficiency: Efficiency of a memory subsystem is judged using the two cost func-

tions, area and power.
6. Scalability: A memory subsystem architecture is scalable with respect to cost

(area, power) if it efficiently supports different problem sizes, for example WOI, BOI.
Scalability is related to the hardware platform.

4.2 Prior work
The importance of memory organization in the context of embedded systems has been
recognized by a large number of authors [12, 33, 121, 122, 144–148]. An exhaustive
collection of different approaches available in the literature can be found in [149]. In
general, we distinguish three different approaches, application-specific, general-purpose
(cache based) and domain-specific memory subsystems. However, in case of memory
subsystems, the border between the application-specific and domain-specific memory
subsystems is not clearly defined. The concepts applied in a memory subsystem intended
for one application under minor modifications can be applicable to other applications as
well. For example, a memory subsystem, proposed in [125], intended for the 3DRS mo-
tion estimation algorithm as part of the picture-rate up-conversion is applicable to other
motion-estimation based applications as well. Thereby, we focus on two groups, general-
purpose (cache based) and domain-specific memory subsystems. Since the second group
is more aligned with the work present in this thesis, we devote it more attention.

4.2.1 General-purpose memory subsystems
Over the past decades, architectures based on caches have been extensively studied and
implemented [12, 121–123, 145, 146, 150–157]. The cache-based approach is the ar-
chitecture of choice in the general-purpose processor (GPP) world, as it allows the cov-
erage of a large application space. However, some quantitative characterizations have
revealed that applications originating from different domains tend to utilize the memory
quite differently [158]. The cache-based architectures typically try to solve the lack of
performance across the entire application space by increasing the size of the cache and
consecutively the area of the complete architecture.

One of the disadvantages of the cache-based approach is the lack of predictability.
The performance is not known at compile time, since the processing element (PE) might
stall due to cache misses. Typically, the penalty for a cache miss is an order of magnitude
longer access latency than the previous (lower) memory hierarchy level [159].

Generally, three types of cache misses occur. A cold start or compulsory miss occurs
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when the application tries to access a particular data block for the first time, because only
previously accessed data is found in the cache. Capacity miss occurs when the cache
evicts less recently used data to make room for the new data. If the same data is needed
later, the PE has to wait until the data is fetched from the off-chip memory. Naturally,
the capacity miss can be reduced if the cache size increases. From the cost point of view,
data reorganization might be a better solution for cache miss reduction, especially in case
of conflict misses. Conflict misses occur when the accessed data are mapped to the same
cache line. Those can be reduced by introducing dummy memory words that change data
layout [145]. Other data layout approaches have been proposed as well, for example, a
generic method of splitting the original data arrays into sub-arrays (or tiles) of equal size
in an interleaved fashion [146]. According to this method, the data should be stored in
the off-chip memory in this fashion. This technique, in combination with dummy words
insertion has been applied to a somewhat more real-world example, full search motion
estimation at low resolution (196*256) [160]. The drawback of this method is that it
requires data reorganization in the off-chip memory, which might not always be possible,
especially in the context of an SoC with a lot of IPs of different vendors. The data layout
can dynamically be reorganized in between computation stages [152]. Techniques that
rely on data layout optimizations profit from the compile-time knowledge of the executed
application. Lastly, many of the cache misses can be reduced (but not eliminated) through
hardware or software prefetching [153, 154]. Especially in video processing, a number of
papers reported that the usage of prefetching can significantly reduce the number of cache
misses [155–157].

To alleviate the performance drop of cache-based systems for video applications,
some authors go further with hardware modifications. For example, [151] proposes a re-
configurable cache design with minimal hardware changes compared to a classical cache.
The mentioned design dynamically distributes the available memory into partitions that
can be used for different processor activities. The processor can then concurrently access
these partitions, which helps in exposing the parallelism embedded in video applications.
Trimedia TM3270 [147] has a special instruction (LD FRAC8) to perform a load com-
bined with weighted average. This instruction is useful for bi-linear interpolation often
used in sub-pel accurate motion estimation and compensation.

Intelligent prefetching, hardware changes (reconfigurable caches) and software cha-
nges (reorganization) are techniques proposed to reduce the miss rate without significantly
increasing the capacity. These are the most commonly used methods to increase the effi-
ciency of the cache-based systems. To address the predictability issue, mixed solutions,
or combinations of caches and predictable memories such as scratchpads have also been
proposed [161, 162]. The usage of customized memories increases the predictability. We
address customized solutions with predictable performance in the next subsection.

4.2.2 Domain-specific memory subsystems
In the previous parts of the thesis, we have shown that there are two essential problems
that have to be addressed by a memory subsystem, minimization of the off-chip memory
bandwidth and supporting un-aligned pixel access. Most of the approaches we cite here,
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Figure 4.2: Two-level memory hierarchy used in [144]. The first level of hierarchy holds the stripe of the
screen and the second one the search area of the estimator.

give more focus to only one of the two problems. Thereby, we divide them into two
groups. The first group addresses the bandwidth reduction towards the off-chip memory.

4.2.2.1 Bandwidth reduction

Cache-based systems that we have addressed in the previous subsection, reduce the band-
width towards the off-chip memory. The bandwidth can further be reduced by using
customized memory subsystems. Few approaches have been proposed which achieve
the theoretically minimal bandwidth towards the off-chip memory, where each pixel is
fetched only once [144, 163, 164]. We illustrate one of them in the following paragraphs.

The memory subsystem used in [144] is based on a two-level on-chip memory hierar-
chy and the application is MPEG4 video encoding. Both levels of the memory hierarchy
are organized in a block-based form. The chosen synchronization granularity is one block
and the communication between the memory levels is block-based. The memory hierar-
chy is illustrated in Figure 4.2. The memory levels are denoted according to the notation
used in this thesis which is different from the cited article.

The L0 scratchpad holds the search area of the motion estimator. As soon as the
motion estimator has processed the current block (marked with C in Figure 4.2), the L0
scratchpad needs to be refilled and the blocks marked with X are overwritten by the gray-
shaded blocks. The blocks used for refreshing come from the higher level of hierarchy,
the L1 scratchpad. The L1 scratchpad holds just enough data to support the refreshing of
the L0 scratchpad on a block-by-block basis.

The previously described approach does not offer any tradeoffs between the L1 scratch-
pad capacity and the required off-chip memory bandwidth. Tuan et al. [165] have pro-
posed a one-level memory subsystem used for a full search block matcher that enables
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that tradeoff. The authors offer four different levels of bandwidth savings, denoted as
level-A to level-D (level-D has the minimal bandwidth). Level-D brings the bandwidth to
the minimum and has the shape of the stripe which horizontally spans across the com-
plete picture. Their level-D setup has a similar organization as the L1 scratchpad in
[144, 163, 164]. The next level, level-C, offers a bandwidth overhead that is defined
with the following equation:

BWoverhead ' 1 +
SAY

N
, (4.1)

where SAY stands for the vertical dimension of the search area and N stands for the
horizontal/vertical block dimension. In the use case addressed by the authors, N = 16 and
SAY = {32, 64}. This leads to BWoverhead = {3, 5}. In other words, the bandwidth
for level-C is three or five times higher than the minimal one (level-D). One-level memory
subsystems have been used by other authors as well. For example Yang et al. use the one-
level memory subsystem to store the search area of the motion estimator [166]. However,
as we shall show in the next section, buffering just a search area causes bandwidth that is
a few times higher than the minimal one. To conclude, the drawback of this and similar
approaches is that the exposed off-chip memory bandwidth is still high.

4.2.2.2 Un-aligned data access

For the picture-rate conversion application at SD resolution (Standard Definition, 720*576
@ 50Hz), a hardwired solution to provide motion compensated 100Hz output has been
proposed in [125]. The off-chip memory consists of two cascaded memories storing com-
plete video fields. The order in which the pixels are stored in these two memories is the
same as the order in which they are read. To double the input data rate, the data is read
twice from the first memory. Thereby, the second memory operates completely at the
output pixel rate and provides the references to the previous and current field necessary
for motion estimation/compensation.

This IC is based on a one-level memory subsystem which consists of line- and pixel-
delays. These delays enable accesses to individual pixels through a so-called switch ma-
trix. The switch matrix has access to each pixel since it is connected to all pixel-delays.
This memory subsystem operates at the output pixel-rate and has the capability to deliver
one pixel at a time to the datapath. The architecture evaluates four motion vectors per
block of pixels even though it can process only one pixel at a time. This is achieved by
using subsampling by a factor of four. The pixel/line/switch matrix based memory sub-
system is replicated twice to enable concurrent accesses to pixels originating from the
previous and current fields.

In essence, the previous example is based on a pixel-based memory subsystem. The
efficiency of such a memory subsystem can be increased if the pixel-delay elements are
replaced by single-pixel wide memory banks. The usage of such memory banks enables
accesses to individual pixels as well. The question is what is the minimal number of those
banks.

More than three decades ago, the problem of determining a minimal number of single-
pixel wide memory banks has been analyzed [167–170]. In [167], the authors support the
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block−grid

Figure 4.3: The basic access patterns consisting of 16 pixels that are enabled by the usage of 17 memory
banks. The following patterns are supported: 2D block, 1D horizontal, 1D vertical, forward-diagonal and
backward-diagonal.

following un-aligned 2D BOI access patterns: a 2D block
√

n∗
√

n, column-like 1∗n, row-
like n ∗ 1, forward-diagonal and backward-diagonal. These access patterns are illustrated
in Figure 4.3. Let us denote with n the number of pixels within a 2D BOI and with m
the number of used memory banks. The authors show that m and n have to be relatively
prime numbers. Two integer numbers are relatively prime if their only common divisor
is 1. If the access patterns are limited to the rectangular patterns, the number of needed
memory banks is equal to n.

The authors in [168], [169] and [170] further improve the addressing logic. Their
memory subsystems also use the mentioned prime number of single-pixel wide memory
banks while the addressing efficiency is increased. The addressing in [170] is simpli-
fied since some of the computations are replaced by two look-up-tables located in two
SRAMs. All the access patterns from Figure 4.3 are supported.

The idea of single-pixel wide memory banks has been exploited by more authors than
mentioned here. A comprehensive review and analysis of various methods can be found
in [170]. In the following few paragraphs, we address a few practical implementations of
the single-pixel wide memory banks memory subsystems.

To benefit from two worlds, a combination of a cache-based approach and a cus-
tomized memory approach has been proposed [162]. A twofold memory subsystem re-
sults, which is utilized by an array of four identical datapaths. The memory subsystem
consists of a customized memory called the matrix memory and a small set-associative
cache. The matrix memory, used for regular access patterns, provides access to an un-
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Figure 4.4: The matrix memory and possible access patterns proposed in [162]. From left to right: 2 x 2
adjacent pixels, 2 x 2 pixels with distances between them, broadcast of a 2 x 1 pixel matrix and broadcast of a
single pixel to four datapaths.

aligned 2D BOI with the support of subsampling. For irregular access patterns, each of
the four datapaths has a private access to a conventional set-associative cache. In the
context of our work, we continue with analysis of the matrix memory organization.

The matrix memory is organized in 3*3 memory banks, each bank holding 256 16-
bit pixels. It allows access to a 2D BOI of 2*2 pixels in one clock cycle. These four
pixels are consumed or produced, in parallel, by the four datapaths. The matrix organi-
zation of memory banks coupled with the specific matrix dimension makes subsampling
feasible. The addressing is realized through division and modulo operations, where the
divisor is equivalent to the matrix dimension. The vertical and horizontal addressing of
the matrix rows and columns are independent from each other, which enables indepen-
dent control of the horizontal and vertical position of the top-left corner of the 2D BOI
and the subsampling factor. We note that a subsampling by a factor of three is not pos-
sible in this architecture, since in this particular case a bank conflict occurs. This is not
a drawback of the architecture as the most widely used subsampling factors are two and
four. Lastly, since the access network between the datapaths and the matrix memory is
fully connected, broadcast of the retrieved data to two or four datapaths is also possible.
The possible access patterns are illustrated in Figure 4.4.

In order to increase the parallelism, i.e. the number of pixels within a 2D BOI, the
matrix dimension must increase. The next configuration is a matrix of 5*5 memory banks
offering a parallel processing of 16 pixels (2D BOI contains 16 pixels). The authors
published this particular case in [122].
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4.3 The memory hierarchy

The introduction of this chapter has shown that there is a gap between the offered and
requested memory access services. A memory subsystem illustrated in Figure 4.5 is in-
troduced in order to bridge that gap. In order to arrive to an efficient memory subsystem,
the following questions arise.

• How many levels of memory hierarchy are needed?

• What is the capacity of each level of the memory hierarchy?

• How wide is a read/write access at each level of the memory hierarchy?

• Where to place a block within each level of the memory hierarchy?

• When to do an update of each level of the memory hierarchy?

We use two basic techniques within our memory subsystem. The first one enables un-
aligned read data access by using a customized organization of pixels to reduce the cost.
The second technique reduces the off-chip memory bandwidth. These two techniques are
presented in two sections, as separate hierarchy levels. Afterwards, a comparison of the
2-level and 1-level memory subsystems is provided. Since both are based on the same
techniques, they require the same off-chip memory bandwidth and deliver the same band-
width to the processing element. The comparison concludes that in most of cases, 1-level
memory subsystems is superior with respect to area, power, performance, programming
effort and algorithm requirements. We shall also list the exceptions.
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Figure 4.5: The memory subsystem bridges the gap between the offered and requested services. The width
of the two major access points is defined according to system constraints (the offered services by the off-chip
memory) and the application demands (the requested services by the Processing Element). The DMA provides
an interface between the external world and the memory subsystem and adjusts the data access points widths.
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4.3.1 The DMA interface
Picture 4.5 shows that an interface is present between the memory subsystem and the
off-chip memory. The purpose of this interface is to enable direct memory accesses
(DMA) to the off-chip memory. The DMA interface is capable of fetching and storing
two-dimensional blocks of data from and to the off-chip memory. The idea is to offload
the processing element from these tasks. Among other parameters, the processing element
specifies the transferred block dimensions and the source and destination addresses.

For the purpose of this thesis, it is important to mention the other function of the
DMA, namely, data width conversion. For performance reasons, the internal data width
of the memory hierarchy is much larger than standard 32 bits. On the other hand, the
data width of the surrounding system is typically 32 bits or occasionally 64 bits (e.g. the
AMBA AHB bus connecting a number of components within an SoC [171]). The DMA
has internal buffers which are used for data width conversion. The initial specifications
of the DMA interface used in this thesis has been proposed by the author, which has been
followed by two designs [172, 173].

4.3.2 Basic bandwidth calculus
According to a generic guideline, smaller memories are faster, and dissipate less power.
Using this principle, we arrive to a hierarchy of memories with different speeds and ca-
pacities [12]. Let’s first discuss the level 0 (L0) of the memory hierarchy, closest to the
processing element (PE). For performance and predictability reasons, L0 misses are not
acceptable during the computation of a block. Therefore, the capacity of the L0 scratch-
pad must at least be large enough to hold the complete WOI. Until Section 4.6, we set
its capacity to exactly match the size of a WOI. This means that it contains all the data
needed to compute a block. The size of a WOI depends on the length of motion vectors
and the dimensions of the filter support. The question is whether to use a next level of the
memory hierarchy, namely level 1 (L1) or directly fetch pixels from the off-chip memory.

The advantage of a L1 memory is a reduction of the number of accesses to the off-chip
memory and the corresponding gain in dissipation. To quantify the need for the next level
of the memory hierarchy, we compute the number of accesses to the off-chip memory
without the usage of the L1 scratchpad.

The equations will be derived in terms of number of transfers (accesses) of blocks
of pixels (usually, a block contains 8*8 pixels). To derive the equations, we use the
following notation. (L0X , L0Y ) denotes the dimensions in terms of blocks of a 2D array
representing a part of the picture (Window-Of-Interest) containing all the data needed
for the computation of a complete block. For example, in case of motion estimation, it
is the search area. (L2X , L2Y ) denotes the dimensions of a 2D array representing the
picture stored in the off-chip memory. Note that the (L1X , L1Y ) is reserved for the L1
scratchpad. This notation reflects the algorithmic level only and does not relate to the
physical dimensions of the used memory banks. The numbering (L0, L1, L2) clarifies
the level of the memory hierarchy. The lower number means closer to the processing
element.
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Figure 4.6: The processing (scanning) of the picture. Two common traces, left-to-right-top-to-bottom and
meandering are shown. The common case of the L0 scratchpad update is also illustrated: block-column update.
The notation used for the bandwidth calculation is also indicated.

Figure 4.6 illustrates two common scanning traces, left-to-right-top-to-bottom (LRTB)
and meandering. Here, we derive the equations for the number of accesses within the off-
chip memory for both. To simplify the derivation of these numbers, we neglect some
boundary effects. We assume that each processed block is a center of a L0 scratchpad.
This also holds for the blocks located at or close to the picture borders. This is equiv-
alent to the case when the picture is extended to the left and right by bL0X/2c blocks
and to the top and bottom by bL0Y /2c blocks. The number of accesses, NA, within the
off-chip memory (denoted as L2) for the LRTB and meandering scanning trace of the L0
scratchpad are defined with the following two equations.

NALRTB = L2Y (L2X − 1)L0Y + L2Y L0XL0Y (4.2)

NAMEAND = L2Y (L2X − 1)L0Y + (L2Y − 1)L0X + L0XL0Y (4.3)

The first term in both equations stands for the block-column update, which occurs L2X−1
times per block-row. There are L2Y block-rows per picture. The last term in the first equa-
tion stands for a complete L0 scratchpad refill, which occurs L2Y times per picture. In
case of meandering scan, this term is replaced by the block-row update (L2Y − 1 times)
and a complete L0 scratchpad refill (only once). In the first order approximation, the num-
ber of accesses for the LRTB and meandering scanning traces is equal to L2Y L2XL0Y .
The minimal number of the off-chip memory accesses, i.e. when each block is accessed
only once, is equal to: NAMIN = L2Y L2X . Thereby, the bandwidth between the off-
chip memory and the L0 scratchpad is approximately L0Y times bigger than the minimal
one.

We could also reach this conclusion by looking at Figure 4.6. While meandering
horizontally, or performing the LRTB scan, the predominant type of L0 refill is a block-
column refill. This means that for each processed block, for a majority of cases, L0Y



86 Chapter 4 Memory Subsystem

blocks have to be read. That is why, in the first order approximation, each block within
the off-chip memory is accessed L0Y times.

In Appendix A, the derivation of equations for LRTB and meandering traces is com-
pleted. It shows that the LRTB scanning trace requires more bandwidth, with the typical
difference being in the range of 5-10%. The main reason for this is that in case of mean-
dering, at the end of each block-line, a block-row refill occurs followed by the change of
the scanning direction. The refill of the complete L0 scratchpad happens only once (the
first refill). In case of the LRTB scan, the complete refill of the L0 scratchpad occurs at
the beginning of each block-line.

4.3.3 Used memory models
To analyze the cost of a memory subsystem, we use the memory models from NXP [174].
The data is based on high speed, ultra high density, single port SRAM in 90nm CMOS
memory technology. When calculating power, in the first order approximation, we as-
sumed that writes and reads consume equal amount of power. The cost of the memory
banks that are the most often used in this thesis is given in Figure 4.7. The picture shows
that the power and area remain relatively constant for small capacities. The reason is that
for those cases, the memory cells do not contribute the most to the cost. Apart from the
memory cells, each memory bank consists of the input and output line buffers and the
address decoder, which are dominant in case of small capacities.

Figure 4.7: The cost of the most frequently used memory banks in this thesis.
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4.4 The L0 memory
This section presents the architecture (organization of pixels) that enables un-aligned read
accesses and aligned write accesses. As before, we denote it with the L0 scratchpad. With
respect to cost, our basic assumption is that the memory banks are the dominant cost
factors.

Recapitulating what has been explained before, the L0 scratchpad provides an un-
aligned access to a 2D Block-Of-Interest (BOI) without misses for a single block cal-
culation. As we have seen from the prior work, authors propose solutions with narrow
memory banks, which are single-pixel wide [122, 162, 167–170]. In such a case, access
to a multi-pixel BOI requires a large number of memory banks. As we shall show later
in this section, having a large number of narrow banks is not efficient, neither from the
area nor the power point of view. To cope with this, we approach the problem from a
different angle. We group the neighboring pixels and store them in memory banks that
hold the number of pixels per addressable location. To enable un-aligned access, the data
is organized in a special way.

For better predictability and lower power dissipation we use scratchpad memories in-
stead of caches. As a consequence, the application programmer is responsible to move
data to the proper place at the correct point in time. Further, the location assignment
(where to store each pixel) plays a central role. The location assignment is realized in
hardware. Hardware realization maintains the sufficient flexibility to cover the applica-
tions from the domain. The advantage compared to software realization is less book-
keeping for the programmer. Software realization requires additional instructions. These
instructions are only used for address manipulations and the occupied issue-slots cannot
be used for some other processing. This has an impact to performance and the program
code size (cost). In this and the following subsections, we analyze the location assignment
in a greater detail.

We start with the classic scratchpad organization that uses single-pixel wide memory
banks. According to this approach, each pixel from the reference picture is mapped to
a unique memory location. This architecture has the constraint that only pixels within
the same line can be accessed at the same clock cycle. The architecture will be modified
to remove this constraint allowing access to more pixel-lines in parallel. To increase the
efficiency, the number of banks will be reduced.

4.4.1 The classic scratchpad approach
Let us denote the width and the height of the reference picture in terms of pixels with W
and H , respectively. The complete WOI, which is a part of the reference picture, holds
WWOI pixels horizontally and HWOI vertically. The difference between the notation
used in the previous section is that here we refer to pixels, instead of blocks. Similarly,
the dimensions of the BOI are denoted with WBOI and HBOI . Based on this, we derive
the physical descriptors of the L0 scratchpad such as the number of banks per scratchpad,
number of pixels per bank, the depth of a bank, etc. The position of each pixel within the
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Figure 4.8: On the left-hand side, the position of a pixel within the picture is shown. It is denoted with (x, y).
On the right-hand side, the location of the same pixel within the L0 scratchpad is defined with (row, bank).
The L0 scratchpad is realized using NB single-pixel wide memory banks.

WOI will be described with row and bank pointers.
This is a direct mapped approach where the pixel with coordinates (x, y) within the

reference picture is mapped to a (row, bank) address within the L0 scratchpad. We begin
this analysis with a simpler case where the width of the L0 scratchpad is equal to the
width of the stored WOI. Later, we shall generalize this to the case when the width of the
WOI is greater than the width of the L0 scratchpad. Figure 4.8 clarifies the location of a
pixel within the off-chip memory vs. its location within the L0 scratchpad.

The complete WOI is stored within the L0 scratchpad. We start with the simple L0
scratchpad architecture that uses single-pixel wide memory banks. We denote the number
of used banks with NB . The line size or the number of pixels per addressable location
within a memory bank is denoted with NP . In this case, NP = 1. Accordingly, WWOI =
NBNP = NB .

Here, we derive the equations defining the location of a pixel within the L0 scratch-
pad. Let us define the mapping. A pixel located at (x, y) position in the reference
picture is stored at mem[row][bank], where row ∈ {0, . . . ,HWOI − 1} and bank ∈
{0, . . . ,WWOI−1} ≡ {0, . . . , NB−1}. The address components (row, bank), defining
the location of a pixel in the L0 scratchpad are given below.

row = y mod HWOI

bank = x mod WWOI
(4.4)

The constraint applicable here is that only one access per bank per clock cycle is
possible. However, different banks can be accessed in parallel, possibly with different
addresses. Here we focus on read sequences, specifically to the 2D BOI reading illustrated
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Figure 4.9: A snapshot of the contents of the Window-Of-Interest (WOI) with the 8*8 Block-Of-Interest
(BOI) indicated as well. Since the used memory banks are single-pixel wide, NP = 1.

in Figure 4.9. The first line of the 2D BOI (M01, . . . ,M08) can be read in a single clock
cycle. However, other pixels from the 2D BOI cannot be accessed since they are located
in already activated memory banks. In other words, due to the bank conflict, reading of
the 2D BOI would take at least HBOI clock cycles.

4.4.2 Skewing during write
The disadvantage of the previous approach was the fact that the reading the 2D BOI was
sequential due to the bank conflict. In order to allow concurrent access to a 2D BOI, data
can be reorganized during writing. Data can be written to the L0 scratchpad, such that it
enables efficient read operations, as required by the application. Since the access pattern
is rectangular, the performance of reading can be improved if the data is stored into the
memory in skewed form, in anticipation of the rectangular read pattern. This concept is
illustrated in Figure 4.10. The equation 4.4 is changed into:

row = y mod HWOI

bank = ((y mod HBOI)boffset + x) mod WWOI
(4.5)

This equation introduces additional parameter, boffset, standing for bank offset. It is
defined in anticipation of the read request, and is equivalent to the number of activated
banks during read operation. If WBOI denotes the width of the 2D BOI, then boffset =
WBOI since banks are single-pixel wide.

The concept of skewing enables access to a number of pixel-lines concurrently while
utilizing the same number of memory banks as in the classical approach. Since the data
in different pixel-lines pertaining to the BOI are located in different memory banks, more
than one pixel-line of the BOI can be accessed concurrently. The number of concurrently
accessed pixel-lines depends on the number of available memory banks.



90 Chapter 4 Memory Subsystem

O O O O O O O O O O O O
NB1

NB1

N N N N N N N NN N N NN N

O

M MM M M M MM MM M M M M M M 0900 08 10 11 12 13 14 1501 02 03 04 05 06 07

O O

One pixel−line: O

N

M17

01O

N N 0801 02 03 04 05 06 07N

M16

00O
09

O
00

Block Of Interest: 8*8 pixels

boffset

P =NBNBN

Window−Of−Interest

Figure 4.10: The effect of skewing applied during writing the pixels into the WOI. The consequence of
skewing is increase of performance. More than one pixel-line within is accessible at the same clock cycle.

4.4.3 Reducing the number of banks
The previous solution enables high performance but its cost-effectiveness can be im-
proved. In order to enable concurrent access to p pixel-lines within the BOI, the archi-
tecture must be based on at least pWBOI memory banks. As we shall see in subsection
4.4.5, the architecture that uses narrow (single-pixel wide) memory banks is not cost-
effective compared to the architecture that uses fewer multi-pixel wide memory banks. It
is assumed that in both cases, the total capacity is kept the same.

Thereby, to increase the efficiency, we group neighboring pixels into a bank. In this
case, NP > 1, where NP denotes the number of pixel per addressable location within a
memory bank, as before. The extra level for identifying a column position of a within a
bank is introduced in equations, and a pixel location is defined with mem[row][bank][col],
where row ∈ {0, . . . ,HWOI −1}, bank ∈ {0, . . . , NB−1} and col ∈ {0, . . . , NP −1}.
The address components (row, bank, col), are defined with the following equations.

row = y mod HWOI

bank = bx/NP c mod NB

col = x mod NP

(4.6)

This location assignment is illustrated in Figure 4.11. This figure shows the L0 scratchpad
holding a Window-Of-Interest (WOI) distributed along NB memory banks of NP pixels
wide. An arbitrarily positioned BOI of 8*8 pixels is also indicated. In order to emphasize
the wide banks used here, the notation of pixels is different compared to Figure 4.9.

Performance-wise, the result of this organization is equal to the case defined with
Equation 4.4 and Figure 4.9 where only one pixel-line of the 2D BOI can be read per
clock cycle. For instance, pixels M01, M02, M03, M10, M11, M12, M13, M20 can be
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Figure 4.11: The usage of multi-pixels wide memory banks. Four pixels are grouped into one bank.

accessed in one read instruction. Note that, to read this first pixel-line from the 2D BOI,
accesses to 3 banks are needed (banks marked with 0, 1 and 2 in Figure 4.11). Hence,
each read action will deliver 12 pixels from which the required 8 pixels can be derived.
In other words, from 8 successive read actions, 12*8 pixels are read from the scratchpad
from which the required block of 8*8 pixels can be derived.

In order to improve the performance, we apply the proposed skewing concept. Equa-
tion 4.5 is appended by the col parameter:

row = y mod HWOI

bank = ((y mod HBOI)boffset + bx/NP c) mod NB

col = x mod NP

(4.7)

where boffset has the same meaning as before but is defined differently, because of dif-
ferent bank organization.

boffset = d(WBOI − 1)/NP e+ 1 (4.8)

Note that if NP = 1, the value of boffset is same as before, WBOI . To be able to
illustrate the concept of skewing applied to multi-pixel banks, Figure 4.11 is redrawn
in a different shape. Four horizontally neighboring pixels pertaining to the same bank
are grouped and represented with a single digit denoting the bank. Figure 4.12a depicts
a classical scratchpad organization with 12 banks where each bank is four pixels wide
(NB = 12, NP = 4). Figure 4.12b depicts a scratchpad organization with improved
performance. An un-aligned block of 8*4 pixels can be accessed during one clock-cycle.
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Figure 4.12: The skewing of pixels in the context of multi-pixel memory banks. Picture (a) shows the
scratchpad architecture with classical data organization. Picture (b) is derived based on the picture shown under
(a) by skewing the groups of four pixels during writing. Four lines can now be accessed in parallel.

Let us remove the limitation concerning the width of the L0 scratchpad. In general,
the width of the L0 scratchpad is smaller than the width of the WOI, NBNP < WWOI .
In such a case, each pixel-line within the WOI is folded into multiple pixel-lines within
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Figure 4.13: Generic case of the L0 scratchpad dimensions. The width of the WOI might not be a multiple
of the L0 scratchpad’s width. In case they are the same, the shaded surfaces are identical.

the L0 scratchpad. To cope with that, integer division and additional modulo operators
are used. In the most general case, the width of the WOI is not a multiple of the L0
scratchpad’s width. In such a case, to simplify the addressing logic, the first pixel of each
pixel-line of the WOI will still be located at the first pixel location of the L0 scratchpad.
Additionally, some locations of the L0 scratchpad are left empty which has as a conse-
quence that the surface (capacity) of the L0 scratchpad exceeds the surface (capacity) of
the WOI. Figure 4.13 illustrates this. Note that the surface of the WOI (indicated as the
dotted shaded rectangle on the left-hand side) is smaller than or equal to the ”surface” of
the L0 scratchpad. Let us rewrite Equation 4.4 according to this general case.

row = y′dWWOI/NBe+ bx′/NBc
bank = x′ mod NB

(4.9)

where x′ = x mod WWOI and y′ = y mod HWOI . The ceiling function is necessary for
cases when WWOI/NB is not integer. The capacity of the L0 scratchpad is defined with
the following equation, dWWOI/NBeHWOI . Thereby, row ∈ {0, . . . , dWWOI/NBe ∗
HWOI − 1}. Similarly, Equation 4.5 becomes:

row = y′dWWOI/NBe+ b((y′ mod HBOI)boffset + x′)/NBc
bank = ((y′ mod HBOI)boffset + x′) mod NB

(4.10)

The combination of using multi-pixel banks and folding the pixel-lines within the L0
scratchpad leads to a change of Equation 4.6 into:

row = y′dWWOI/(NP NB)e+ bx′/(NP NB)c
bank = bx′/NP c mod NB

col = x′ mod NP

(4.11)
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Finally, let us rewrite Equation 4.7.

row = y′dWWOI/(NP NB)e+ b((y′ mod HBOI)boffset + bx′/NP c)/NBc
bank = ((y′ mod HBOI)boffset + bx′/NP c) mod NB

col = x′ mod NP

(4.12)

Where boffset = d(WBOI−1)/NP e+1. The illustration of the scratchpad defined by the
last equation is provided in Figure 4.14a. The mentioned figure illustrates the architecture
of the scratchpad that can deliver two pixel-lines in parallel.

The derivation of the equations of the proposed architectures was such that only one
dimension of a BOI is supported. However, the proposed architecture offers more flexi-
bility. As long as the number of pixels within a BOI is constant, the proposed bank or-
ganization allows different BOI aspect ratios. For example, six four-pixel wide banks in
Figure 4.14a support 8*2 BOI. However, 16*1 BOI is also supported. This BOI requires
un-aligned access from only one pixel-line and thereby, no skewed storage is needed.
However, access to five four-pixel wide banks is needed, and the architecture allows that.
In order to support multiple aspect ratios of a BOI, the L0 scratchpad has to be configured
according to the use case that requires the highest line-parallelism. Per each pixel-line
that is accessed in parallel as part of the BOI, at least two banks are needed. Let’s take
as an example a 32-pixel BOI and a situation where we want to support two different
aspect ratios, 32*1, 8*4. To support 32*1, we have three possibilities, 2 32-pixel wide,
3 16-pixel wide and 5 8-pixel wide memory banks. To support 8*4, only one possibil-
ity exists: 4*2 8-pixel wide memory banks. It is clear that to support both aspect ratios,
architecture should be based on at least eight 8-pixel wide memory banks. More details
about configuring the L0 scratchpad will be given in Subsection 4.4.5.

For convenient addressing, the width of the WOI should be a multiple of the L0
scratchpad’s width, NBNP . This imposes additional constraint to the supported width
of the WOI. The introduction of the set-based scratchpad relaxes this constraint.

4.4.4 The set-based architecture

To grasp the set-based concept and understand the differences compared to the previous
proposals, we refer to Figure 4.14. Figure 4.14a illustrates the scratchpad defined by
Equation 4.12 while Figure 4.14b illustrates the set-based architecture. Both illustrations
address the case when a pixel-line is folded within the scratchpad.

In a set-based scratchpad, each pixel-line is stored within one set. Thereby, a pixel-line
does not spread across all the available memory banks but only across those which pertain
to the appropriate set. The consequence is that the number of concurrently accessed pixel-
lines (i.e. the parallelism) is equal to the number of sets. The minimal number of banks
per set is equivalent to boffset. Thereby, boffset constraint is embedded in the architecture
and eliminated from equations. The set-based scratchpad is defined with the following
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Figure 4.14: Both architectures offer the same line parallelism. Picture (b) introduces the concept of a set.

equations.
row = by′/NScdWWOI/(NP NB)e+ bx′/(NP NB)c
set = y′ mod NS

bank = bx′/NP c mod NB

col = x′ mod NP

(4.13)

The new parameter in equation 4.13 is the number of sets, NS . The other parameters, NB

and NP have the same meaning as before, with the remark that NB stands for the number
of banks per set. Each pixel-line within the scratchpad is folded and takes multiple lines
in the scratchpad. Since a pixel-line spans only across the banks within a set and not
across all the banks within the scratchpad, the additional benefit of the introduction of the
set-based scratchpad is the increased freedom of the supported width of the WOI. The
set-based scratchpad supports the width of the L0 scratchpad, WWOI that is a multiple of
NBNP . The previous solution supports only the widths equivalent to NSNBNP . We can
conclude that the set-based architecture offers an ”NS times” more flexible solution in
terms of the supported widths of the L0 scratchpad, WWOI . Additionally, the advantage
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of the set-based architecture is that it can easily be configured to support different line-
parallelisms. Namely, just by selecting the number of sets (which are all identical), a user
can select the maximal number of pixel-lines accessed in parallel (maximal HBOI ).

Let us understand some drawbacks of the set-based architecture. Chapter 3 has shown
that the applications from the domain require 1D and 2D un-aligned accesses. This im-
plies that our L0 scratchpad has to support both of them. The architecture defined with
Equation 4.12 offers the support of 1D and 2D access patterns, simultaneously. This
means, that once the L0 scratchpad is filled-in, the user can read both, 1D and 2D BOIs.
For example, the architecture illustrated in Figure 4.14a supports 16*1 and 8*2 BOI as-
pect ratios. The set-based architecture does support both aspect ratios, but not simulta-
neously. The scratchpad should be filled-in separately to support one of those two cases.
The question is whether the simultaneous reading of both aspect ratios is needed by the
application. Usually, the application is executed in sequence of steps and each step uses
only one aspect ratio. In the remainder of this thesis, we decided in favor of flexibility
of the supported widths of the WOI and in the following examples we shall use the set-
based architecture. However, the choice is application driven, and the user may prefer one
architecture over the other.

4.4.5 Efficiently configuring the L0 scratchpad
Here we show how the L0 scratchpad can efficiently be configured, i.e. how to define
its parameters. The L0 scratchpad has three main parameters that should be configured
at design time, the number of sets NS , the number of banks per set NB and the number
of pixels per addressable location within a memory bank NP . These three parameters
should be defined for given dimensions of the specified WOI and performance (2D BOI
dimensions). If we use the notation where WBOI denotes the horizontal number of pixels
in the 2D BOI and HBOI denotes its vertical dimension, the above three architecture
parameters can be defined taking into account the following constraints:

NS = HBOI

NP ≤ WBOI

NB ≥ boffset = d(WBOI − 1)/NP e+ 1 (see Equation 4.8)
NP = 2n;NB = 2m, n,m ∈ N
NP NW NBNS ≥ WWOIHWOI

(4.14)

where NW stands for the number of words per memory bank.
The number of sets NS is equal to the required line parallelism, or, the height of the

2D BOI. Thereby, common values for NS are 1, 2, 4 or eventually 8, all powers of two,
selected like that to fit better in the application domain requirements and simplify the
address calculation. Value of NP has an upper bound, it should always be less than or
equal to WBOI . Increasing it above that limit would only make the memory banks wider
but will not reduce their number since the number of banks per set must always be greater
than or equal to two. The number of banks, NB , is defined based on Equation 4.8. Since
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Figure 4.15: The effect the capacity of the memory bank has on the cost. Data given for the picture a) is
valid for a four-pixel (32 bit) memory bank, and, picture b) for an eight-pixel (64 bit) bank. The area of memory
banks with a small capacity shows almost negligible growth while the power dissipation is almost constant.
The dotted line indicates the linear growth of area with capacity. An instance with 512 words per bank is more
efficient in terms of area than an instance of 256 words per bank and an instance with 256 words per bank is
more efficient than one with 128. This behavior is even more emphasized in case of power.

the addressing logic is based on modulo arithmetic, the implementation of the addressing
logic is simplified if NB and NP are powers of two. Lastly, the total supported capacity
should be greater than or equal to the requested capacity. These generic guidelines help
in the selection of optimal NB and NP for a specific case.

Next we focus on the number of banks per set and pixels per bank. They should jointly
be defined taking into account the cost efficiency and the number of concurrently accessed
pixels within a single line. As a first guideline, the number of words per bank NW should
not be chosen too small. Indeed, since each bank is instantiated as a stand-alone mem-
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Figure 4.16: The effect the number of banks per L0 scratchpad has on the cost (area, power). The total
capacity per L0 scratchpad is kept the same for all the use cases. Data given for the picture a) is valid for a
four-pixel (32 bit) memory bank, and, picture b) for an eight-pixel (64 bit) bank.

ory, a small NW leads to many small inefficient memories. The issue of inefficiency of
small memory banks has been addressed in Subsection 4.3.3. The impact on cost (area,
power) is also illustrated in Figure 4.15. This semi-logarithmic diagram reveals that until
a certain threshold, the cost is almost constant while the capacity increases. To emphasize
this effect, the graph is decorated with the dotted lines that represent the linear growth of
area with respect to the capacity increase. The angle between the actual result (growth
path) and the dotted line represents the measure of the efficiency of the particular point
at the graph. From the graph it is clear that the capacity of the banks should be maxi-
mized. Therefore, the number of used memory banks should be minimized. Figure 4.16
illustrates this for the case of the complete scratchpad. The scratchpad that uses fewer
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WBOI = 8 WBOI = 16

NP 1 2 4 4 8 1 2 4 8 8 16

NB 8 5 3 4 2 16 9 5 3 4 2

Figure 4.17: The cost of the L0 scratchpad as a function of the selected capacity and (NP , NB) pair. The
analyzed values of the (NP , NB) pair are provided in the table above. The cost and capacity are given per one
set of the L0 scratchpad. The left-hand side reflects the setup where WBOI = 8. The right-hand side reflects
the setup where WBOI = 16.

banks (6 banks) is more efficient than the scratchpad that uses 12 banks. Similar results
are obtained for the case of four and eight pixels per bank.

The analysis so far showed that NP and NB parameters should be jointly selected
as a function of the specified L0 set capacity and the horizontal dimension of a BOI.
The cost (area, power) is graphically presented for two cases of WBOI in Figure 4.17,
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Figure 4.18: The difference in silicon efficiency between the proposed L0 scratchpad solution and the prior
work [167–170] that is based on single-pixel wide memory banks. Top row presents the setup where the 2D
BOI contains 16 pixels while the bottom row the setup where the 2D BOI contains 32 pixels.

WBOI ∈ {8, 16}. The cost is plotted for a range of capacities of the L0 scratchpad. The
selection of values for NP and NB is summarized in the table above based on constraints
defined by Equation 4.14. If we keep the constraints that NP and NB are powers of two,
the efficiency is highest when NP = WBOI . If we only keep the constraint for NP , we
get comparable results if NP = WBOI/2 and the number of banks NB has the minimal
value defined by Equation 4.14, NB = d(WBOI − 1)/NP e + 1. Note that the resulting
cost depends on the used memory technology.

In order to compare our solution for the L0 scratchpad with the prior work [167–
170], we refer to Figure 4.17. This figure shows that the solutions from prior work that
use single-pixel wide memory banks are not efficient. In order to quantify the numbers,
we plot side-by-side the solution that uses multi-pixel memory banks and single-pixel
memory banks.

Let’s observe two cases, a 16-pixel BOI organized in two lines and 32-pixel BOI
organized in four lines. According to the domain-specific memory subsystems, for the
case of 16-pixel BOI, 17 banks are needed to enable un-aligned access to number of pixel
patterns. However, since we are looking into only rectangular and row-like patterns, we
assume that only 16 banks are needed. Similarly, for a 32-pixel BOI, 32 banks are needed.

According to our approach, to enable these access patterns, we use the setup where
NP = WBOI which results in two 8-pixel banks per set. For the case of 16-pixel BOI,
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there are two sets for two pixel-lines in parallel (or four banks in total) and for the case of
the 32-pixel BOI, there are four sets for four pixel-lines in parallel (or eight banks in total).
Figure 4.18 illustrates the difference in cost (area and power) between our proposal and
the domain-specific memory subsystems for various L0 scratchpad capacities. It shows
that in both scenarios, our solution offers better area and power numbers. Section 4.7
addresses the efficiency and comparison against the prior work in more detail. A number
of examples that cover small, medium and large capacity of the L0 scratchpad will be
analyzed from cost point of view.

In conclusion, this architecture is modular and offers trade offs between cost and per-
formance. Without modifying the dimensions of the Window-Of-Interest, it is possible
to trade off the area for performance by adapting the number of used memory banks to
the performance needs. The requested performance is specified by the number of con-
currently accessed pixel-lines and the width of a pixel-line. By halving the number of
concurrently accessed pixel-lines (and reducing the performance by a factor of two), we
half the number of sets and consecutively the number of memory banks. We have also
shown how the parameters of the L0 scratchpad can be determined such that the efficiency
is maximized.

4.4.6 The addressing of the L0 scratchpad

To guarantee high performance, most of the internal addressing logic is realized in hard-
ware leaving the user a set of API instructions. In this subsection, we provide the basic
concept, while some of the additional implementation details can be found in the pub-
lished implementation of the L0 scratchpad [148]. We distinguish two types of the API,
the initialization and the read/write API.

Initialization API: Through the following initialization API, a sufficient number of
parameters can be programmed:

1. initWOI: The x and y dimensions of the WOI.

2. initBOI: The x and y dimensions of the 2D BOI (and therefore the aspect ratio of
the 2D BOI).

3. initSUB: The pattern applied in sub-sampling (in case sub-sampling is used)

initWOI API is used in the address computation during block-refill (write operation)
and block-read (read operation). If smaller dimensions of the WOI (compared to physi-
cally available) are used, only the smaller WOI is refilled, which results in reduced band-
width towards the next level of the memory hierarchy (the L1 scratchpad).

initBOI API sets up the parameters of the reading logic. This is used during reading
of the 2D BOI. In the applications using motion estimation and compensation, the motion
vector indicates the position of the requested 2D BOI. If sub-pixel accuracy of the motion
vector is selected, the user provides only the integer part of the motion vector and the
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necessary interpolations are performed in SW after fetching the 2D BOI.

initSUB API is used to setup the eventual use of sub-sampling. Denoting the sub-
sampling factor with SSF , the following subsampling features are supported: SSF ∈
{1, 2, 4}. In case the subsampling is used, the popular quincunx patterns are also sup-
ported.

Read/Write API: The read/write (access) API is used to control the read and the
refill of the L0 scratchpad. To simplify the addressing logic, only two possibilities for
a refill exist: block-column refill and, block-row refill. The control unit (for example,
the PE) supplies the refill command to the refill address logic of the L0 scratchpad. This
command contains the information about the direction of sliding of the L0 scratchpad,
top/bottom/left/right. Depending on this command, the refill logic determines the address
of the block-column or the block-row that has to be refilled, and updates the information
about the center of the L0 scratchpad. It is also possible to reset the L0 scratchpad. This
command is used in case of a complete refill. Complete refill occurs at the beginning
of each block-line in case of the LRTB scan and at the beginning of the first block-line
in case of meandering. In this case, the reset command will be issued followed by the
sequence of commands for a block-row refill or a block-column refill.

The read of the 2D BOI is performed after the read command has been issued by a
user. The position of a 2D BOI is specified by a user as part of the read command. Based
on this input, the addressing logic determines three parameters: The first memory bank
in the set that has to be accessed, the address of each accessed bank and the offset with
respect to the first pixel of the starting bank. Due to the set-based approach, these parame-
ters are the same for all sets. This logic is realized in hardware. After the three parameters
are identified, the appropriate memory banks are read and the block of NBNP NS pixels
is available. In order to access a block of (NB − 1)NP NS pixels, only the appropriate
pixels are kept. This is done through the limited rotation and keeping the appropriate
(NB − 1)NP pixels of each pixel-line. The same rotation is performed for each set (for
each pixel-line). The number of rotation places is computed based on the position of the
2D BOI, provided as part of the read command.

The presented concepts are sufficient for un-aligned 2D access. As indicated before,
motion estimation has two additional specific requests, sub-pel accuracy and usage of
subsampling. Memory subsystem can be enhanced to support these two requests and re-
duce the amount of processing in the datapath. Sub-sampling will be addressed in greater
detail in the following paragraphs. Similar concepts can be used for sub-pel accuracy.

There are two possibilities to implement the subsampling:

1. The memory subsystem returns the larger BOI to the datapath, which performs the
pruning, and,

2. The memory subsystem does the pruning and returns the BOI.

We support the second possibility. In addition to the SSF parameter, subsampling is
configured with one additional parameter, STARTSET . This parameter specifies dif-
ferent starting pixels for each set. This feature also enables the quincunx pattern. The
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Figure 4.19: Producing the sub-sampled 2D BOI happens after reading un-aligned 2D BOI from the L0
scratchpad.

sub-sampling is applied horizontally, within each pixel-line. Vertical sub-sampling is not
supported, partly because there is not enough application drive and partly to simplify the
address computations and shuffling the data. Figure 4.19 illustrates the subsampling on
the example of SSF = 2.

To clarify the reading, supported 2D BOIs and sub-sampling, we refer to a real-world
example, applicable to the target application domain and set the number of delivered
pixels to the PE to 16. In order to support all the 2D BOI dimensions, the number of sets
is 4, number of banks per set to 2 and each bank stores 8 pixels. In such a case, the L0
scratchpad delivers the following 2D BOIs for different subsampling factors:

• SSF = 1 (no subsampling), 2D BOI is 16*1, 8*2, 4*4,
• SSF = 2 (subsampling by a factor of two), 2D BOI is 16*2, 8*4,
• SSF = 4 (subsampling by a factor of four), 2D BOI is 16*4.
It is important to note that power savings are possible in almost all the modes. As can

be seen from previous expressions, in all the modes, some of the banks are not used. In
such modes, the data from the inactive banks is not read.

In case of motion estimation/compensation, sub-pel accuracy is implemented through
the bi-linear interpolation. To fully support the bi-linear interpolation in the memory
subsystem, one additional pixel-line has to be fetched, which requires one additional set.
This requires more banks, increases the complexity of the addressing logic and thereby the
cost. Alternative is just to (horizontally) implement the linear interpolation as part of the
memory subsystem and complete the interpolation in the vertical domain in the datapath.
This tradeoff does not require any modification of the number of banks. The difference
is that for each pixel-line (set) from the starting NBNP pixels (NB − 1)NP + 1 pixels
are selected. Then, two overlapping pixel groups of (NB − 1)NP are selected and using
the fractional part of the motion vector as the additional input, (NB − 1)NP horizontally
interpolated pixels are output.
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4.5 The L1 memory
This section proposes the technique for bandwidth reduction towards the off-chip mem-
ory. It is implemented as a separate, higher hierarchy level. As before, we denote it with
the L1 scratchpad.

A part of the picture is stored within the L1 scratchpad, which is scanned by the
L0 scratchpad block-by-block. By doing so, the high memory bandwidth needed for a
L0 refill (see Equations A.3 and A.4 from Appendix A) is not exposed to the off-chip
memory but to the L1 scratchpad instead. The bandwidth needed to fill the L1 scratchpad
is kept close to one access per pixel, which is the minimal one. In the text to follow, we
analyze this bandwidth requirement in more details as well.

We use the same notation as in Subsection 4.3.2. The difference is the extra level of
the memory hierarchy introduced in between the L0 scratchpad and the off-chip memory.
Accordingly, the L0 scratchpad is as before the lowest level of the memory hierarchy,
closest to the processing element. The next level is the L1 scratchpad, which holds part of
the picture. Thereby, (L1X , L1Y ) denotes the dimensions of a 2D array representing the
part of the picture stored within the L1 scratchpad. Finally, at the top of the memory hier-
archy is the off-chip memory holding the complete picture. As before, it is denoted as L2.
Similarly to Subsection, 4.3.2, all dimensions of the stored areas within the three levels
of the memory hierarchy are given in terms of blocks. Again, they do not correspond to
the physical dimensions of the scratchpads but only to the algorithmic width and height.

4.5.1 The stripe-based approach
As already discussed in Section 4.2, one of the basic concepts of utilizing the second
level of the memory hierarchy is to store a number of complete block-lines, i.e. the stripe,
within the L1 scratchpad. These block-lines spread horizontally across the complete pic-
ture width. The L0 scratchpad scans the picture portion stored within the L1 scratchpad
block-by-block. After a block-line has been completely scanned by the L0 scratchpad,
the L0 scratchpad moves one block-line down and starts processing the new block-line.
Thereby, one block-line (the top-most one) within the L1 scratchpad is not used anymore
by the L0 scratchpad and can be overwritten by the new data. In other words, the read and
write address pointers need to be maintained in a circular fashion for the L1 scratchpad.

One of the important aspects that influences the performance is prefetching the data
within the L1 scratchpad. Writing the new block-line must be done in parallel to the
processing. If the vertical dimension of the L1 scratchpad is greater than the vertical
dimension of the L0 scratchpad by one block, L1Y = L0Y + 1, prefetching is possible2.
In such a case, while the data located within the top-most L0Y block-lines are being
processed, the data coming from the off-chip memory can be stored in this additional
block-line. The DMA can be programmed to prefetch the data. This data is then used in
the next processing iteration. This strategy is illustrated in Figure 4.20.

The consequence of storing complete block-lines is that the bandwidth requirement

2Prefetching is possible if there are one or more blocks available. Our choice of having a complete block-line
relaxes the schedule.
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L1 scratchpad: Stripe

L0 scratchpad: SA

Figure 4.20: The 2-level memory subsystem using the stripe-based concept. The L1 scratchpad holds a stripe
of the picture consisting of L0Y + 1 of complete block-lines. The L0 scratchpad performs the meandering (or
LRTB) scan within that stripe.

towards the off-chip memory is minimal (one access per pixel). In addition to the high
cost (caused by the high capacity of the L1 scratchpad), the other major drawback of this
approach is the lack of flexibility concerning the size of the L1 scratchpad. The vertical
dimension of the L1 scratchpad is driven by the vertical dimension of the L0 scratchpad,
and its horizontal dimension by the horizontal dimension of the picture. Thereby, any
change in the algorithm, which increases the vertical dimension of the L0 scratchpad
cannot be accommodated by this approach. For example, change of the aspect ratio of the
L0 scratchpad (which might not increase the capacity of the L0 scratchpad) might cause
the vertical dimension of the L1 scratchpad to become smaller than the L0 scratchpad’s
one. Similar situation occurs when the horizontal dimension of the picture increases.

An additional drawback is that this approach does not directly support multiple scans
of the data within the L1 scratchpad. In some applications (for example motion esti-
mation), multiple scans are required [23, 175]. Since the vertical dimension of the L1
scratchpad is kept to the minimum, i.e. L1Y = L0Y + 1, multiple scans are not possible
because the L0 scratchpad has only room to scan one block-line. To enable the multi-
ple scans, the height of the L1 scratchpad should increase, which increases the cost. To
enable multiple scans within L1 scratchpad (which has the limited height, smaller than
the picture), the vertical dimension of the L1 scratchpad has to increase, which has an
additional impact on the cost. Alternatively, the data should be fetched multiple times to
the L1 scratchpad, which increases the off-chip memory bandwidth. For example, to en-
able the top-down scan, followed by the down-top, performed at the level of the complete
picture, the bandwidth increases by a factor of two.
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4.5.2 The region-based approach
The region-based approach addresses the limitations of the stripe-based approach related
to flexibility. According to the region-based approach, the complete picture is partitioned
into regions (sometimes, they are also called tiles) that are fetched from the off-chip mem-
ory and stored within the L1 scratchpad. This way, the dimensions of the L1 scratchpad
do not depend on the picture dimensions. The algorithm is written as follows:

...

for (Every Region) {
ProcessRegion () ;

}
...

So, the region is defined as a portion or partition of the picture wherein the processing
takes place. The algorithm executes within the limits of a particular region according to
a well-defined scanning pattern. So the hierarchy of the algorithm can also be interpreted
as a hierarchy of the scanning pattern. The additional advantage compared to the stripe-
based approach is the fact that multiple scans within a region are possible. This concept
is illustrated in Figure 4.21.

The region-based approach is quite generic. Other approaches such as the previously

Off−chip memory: Complete picture

Region 1

Figure 4.21: The concept of a region-based scan. The picture is divided into independent regions. The
algorithm is executed within each region.
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Off−chip memory: Complete picture

Off−chip memory: Complete picture

L1 scratchpad: Region 1 Refreshing of L1 scratchpad

L1 scratchpad: Region 2

Few blocks of overlap

Figure 4.22: The region-based approach. The L1 scratchpad holds a region of the picture and the L0 scratch-
pad performs the meandering scan within the region. When region 1 is processed, the content of the L1 scratch-
pad is updated by the new region.

described stripe-based approach can be seen as special cases. In the stripe-based ap-
proach, there is only one scanning trace defined for the entire picture. Therefore, the
stripe-based approach is algorithmically equal to the region-based approach where the
dimensions of the region are equal to the dimensions of the picture.

Since there is neither direct coupling with the dimensions of the picture nor the L0
scratchpad, the solution is more flexible and open to algorithmic modifications (the L0
scratchpad size) or changes to the picture size. If the algorithm specifications or the
picture dimension change, the system could still function. Furthermore, the aspect ratio of
the region can be adjusted to best match the new situation keeping its capacity intact. This
makes the region-based approach advantageous compared to the stripe-based approach.

After the data within the L1 scratchpad have been processed, the L1 scratchpad has
to be refilled (see Figure 4.22). The problem is that the L1 scratchpad contains an order
of magnitude more blocks compared to the L0 scratchpad, and refilling of the complete
content requires a lot more processing cycles. Even worse, the data is usually transmitted
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from the off-chip memory to the L1 scratchpad over the standard 32 bit link and the arrival
of data depends on the availability of the off-chip memory and other resources. This might
cause stalling of the computation and reduction of the performance of the complete video
subsystem. This problem can be solved by using prefetching mechanism similar to the
one described for the stripe-based approach. During the last scan of the current region,
the additional block-line is used to prefetch the data from the next region.

In order to process every block within the picture and accommodate a WOI around it,
regions are overlapping as illustrated in Figure 4.22. The dimensions of the region must
be defined. From the cost point of view, it is advantageous to choose smaller regions but
this has two negative consequences. The first consequence is that the bandwidth towards
the off-chip memory increases because of the overlap between the neighboring regions.
This will be detailed in the bandwidth analysis provided in Subsection 4.5.7. The second
consequence is that the L0 scratchpad’s scanning trace is interrupted (broken) at the region
boundaries. This could degrade the performance for some algorithms, particularly motion
estimation. The following paragraph tackles this degradation for the case of a recursive
motion estimation algorithm, such as the 3DRS.

From the motion estimation algorithm point of view, the L0 scanning trace is broken
when switching from region 1 to region 2, as illustrated in Figures 4.21 and 4.22. Let us
analyze the situation of a moving background. A moving background appears as a result
of panning or traveling of the camera or of the camera following the foreground object.
Let’s assume the case where the correct velocity of the moving object is captured in region
2 and not in region 1. The captured velocity cannot propagate to region 1 instantaneously
(since region 1 has already been processed), but only in one of the following scanning
iterations. In general, this is not a major problem if the number of regions is moderate,
since the convergence process can be delayed by only few frames. The author proposed a
technique called the dynamic aspect ratio of regions that reduces this problem [176].

4.5.3 The sliding-L1 approach

To reduce the needed L1 capacity, we propose to decouple the vertical dimension of the
L1 memory from the size of the region. This is called the sliding-L1 approach. According
to this method, the width of the L1 remains the same as in the classical region-based
approach. However, the height of the supported region increases and is equivalent to the
height of the picture while the L1 scratchpad significantly reduces its capacity compared
to the case of the classical region-based approach. This is achieved if the L1 scratchpad
has the minimal height and slides down the region. The method is illustrated in Figure
4.23.

The sliding-L1 offers a few benefits compared to classical region-based and stripe-
based approaches. One of the most important benefits of the sliding-L1 approach is a
significant reduction in the capacity of the L1 scratchpad, compared to both the stripe-
based and the region-based approaches. Namely, the height of the L1 scratchpad is equal
to L0Y + 1 blocks while its width is typically a few times smaller than the width of
the picture. In addition, the number of regions in the vertical domain is just one, which
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Off−chip memory: Complete picture

L1 scratchpad
L0 scratchpad

Refill while processing

Region

1

Figure 4.23: The concept of a sliding-L1 scratchpad. The region is much bigger compared to the region-
based approach while the capacity of the L1 scratchpad is significantly reduced.

reduces the overall number of regions per picture. Since the number of regions is reduced,
there is less interruption in the scanning order, which could potentially increase the quality
and also reduce the software complexity.

Multiple scans within the sliding-L1 are possible under the price of area increment.
Since the width of the sliding-L1 scratchpad is smaller than the stripe-based L1, its in-
crease in height would result in a smaller cost increase compared to the stripe-based L1
scratchpad. So, the sliding-L1 approach offers a tradeoff between the cost of the L1
scratchpad and quality improvements enabled by the multiple scans.

4.5.4 Bandwidth analysis: Region-based approach
As we have mentioned in Subsection 4.5.2, the region-based approach is the most generic
one. In this subsection, we analyze the consequences for the bandwidth requirements.
Based on the numbers that come out of this analysis, the numbers for the stripe-based L1
and the sliding-L1 will be derived as special cases.

One of the characteristics of the ideal L1 scratchpad is minimal bandwidth require-
ment towards the off-chip memory. In the target application domain, each (block of)
pixels has to be processed3 and, thereby, the minimal bandwidth towards the off-chip

3This is not true for all video applications. For example, in video decoding, some of the blocks from the



110 Chapter 4 Memory Subsystem

Region is extended by these blocks
Current block (central block of the L0)

/2YL0

XL0 /2

Region
Reduced

Complete Picture

L0

Region

a)

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

XL0 /2

2*(L0X/2)

L0

Complete Picture

Current block of the horizontally
neighbouring region
Current block (central block of the L0)
Other block within the L0

Region 2Region 1

b)

Figure 4.24: The L0 scratchpad (size 9*5 blocks) centered around the currently processed block (gray) and
located at the corner of a region. It is not drawn to scale. Picture a) illustrates that the distance between a current
block and the edge of the region is bL0X/2c blocks horizontally and bL0Y /2c blocks vertically. Picture b)
illustrates that the width of the vertical overlapping stripe between two regions is equal to 2bL0X/2rlfloor.
Blocks located within this stripe are fetched twice from the off-chip memory.

memory means that each pixel within the picture is accessed exactly once. The region-
based approach is characterized by slightly higher bandwidth requirements compared to
this minimal one. The difference is due to boundary effects.

4.5.4.1 Traffic between the L2 and L1 scratchpad

When the L0 scratchpad is located at the border of a region, some of its blocks of pixels
lie outside the region. Figure 4.24a illustrates that scenario. If the L1 scratchpad holds the
area denoted as the reduced region, the blocks of pixels illustrated as white squares are
not accessible and the current block cannot be processed. If the L1 scratchpad holds the
area denoted as the region, these blocks are accessible. Thereby, the horizontal distance
between the lastly processed block of the region and the edge block within the region has
to be bL0X/2c blocks. Similarly, the vertical distance is bL0Y /2c blocks.

In order to determine the number of pixels accessed twice, we focus on the horizontal
overlap between regions. Figure 4.24b provides the illustration. In order to process the
black pixel pertaining to Region 2, some blocks from the previously processed region
(Region 1) need to be accessed as well. These blocks are located in vertical stripes. The
width of a vertical stripe is 2bL0X/2c blocks, where integer division is used. Similarly,
we can conclude that the height of a horizontal stripe is 2bL0Y /2c pixels. Pixels within

reference picture might not be accessed at all, while some can be accessed multiple times. In spite of that, the
proposed memory hierarchy can be beneficial for such applications as well, since it offers access to un-aligned
2D BOI, predictability, etc. However, this exceeds the scope of this thesis and will not be further analyzed.
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− Number of overlaping stripes in y−domain
− Number of overlaping stripes in x−domain

ny

Blocks accessed twice in the case of LRTB  

Figure 4.25: The blocks located in the vertically overlapping area (dark gray). These blocks have to be filled
to the L1 scratchpad twice. The numbers indicate the processing order.

such stripes are accessed twice within the off-chip memory.
Figure 4.25 illustrates the locations of the pixels that have to be fetched multiple times.

With nx we denote the number of vertically overlapping stripes (in x-domain) and with
ny the number of horizontally overlapping ones. Later, we formally derive nx and ny .
The following equations define the total bandwidth overhead (compared to the minimal
bandwidth of 1 access per pixel) towards the off-chip memory. As before, to derive the
bandwidth overhead, we compare the number of accesses.

NAREG−L2−L1

NAMIN−L2−L1
=

=
L2XL2Y +

Vertical stripes in Fig. 4.25︷ ︸︸ ︷
L2Y nx2bL0X/2c +

Horizontal stripes in Fig. 4.25︷ ︸︸ ︷
L2Xny2bL0Y /2c

L2XL2Y

≈ L2XL2Y + L2Y nxL0X + L2XnyL0Y

L2XL2Y

= 1 + nx
L0X

L2X
+ ny

L0Y

L2Y

(4.15)

where L2X and L2Y denote the width and the height of the picture located in the off-
chip memory. This is a generic equation that will be used as the starting point in the
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computation of the bandwidth overhead for all three L1 scratchpad approaches. With the
help of Figure 4.26, ny can be derived. When computing the number of regions in the
vertical domain, we need to take into account the overlaps between the vertically neigh-
boring regions and the fact that the bottom-most (or top-most, depending on the reference
point) region has no overlap. In a similar fashion, we can also derive nx. Following two
equations define nx and ny .

nx = d (L2X − L1X)
(L1X − 2bL0X/2c)e ≈ d (L2X − L1X)

(L1X − L0X)e

ny = d (L2Y − L1Y )
(L1Y − 2bL0Y /2c)e ≈ d (L2Y − L1Y )

(L1Y − L0Y )e
(4.16)

The approximation in the above two equations can lead to an error when the L0 scratchpad
consists of an odd number of blocks4. In those cases, an error is equal to one and it
is introduced due to approximating the second term of the denominator. Typically, the
dimensions of the L1 scratchpad are much larger than one, e.g. 50-100 blocks. So, the
error we might introduce is small, e.g. 2-1 %. When the L0 scratchpad consists of an
even number of blocks, no error is introduced. We perform this approximation in order to
simplify the equations.

The overhead from Equation 4.15 can be reduced if the regions are scanned in a certain
order. For example, if all the regions in the picture are processed from left-to-right-top-to-
bottom, LRTB (as illustrated in Figure 4.25), the blocks located in the vertical stripes can
be reused when switching from two horizontally neighboring regions (e.g. when going
from region 2 to region 3 in Figure 4.25). The result is that the second term in Equation
4.15 disappears.

However, when all the regions located at the same horizontal stripe have been pro-
cessed (regions 1, 2 and 3 in Figure 4.25), the next region to be processed is located in
a different stripe (region 4 in Figure 4.25). To process the first few top block-lines of
region 4, due to the fact that the top part of the L0 scratchpad partly lies within region 1,
a few block-lines from region 1 would be needed. Hence, apart from being present within
region 1, these blocks need to be part of region 4. This analysis could be extended for
regions 5 and 6 and leads to the conclusion that for the LRTB region scanning strategy,
the blocks located in the stripe marked with darkest gray in Figure 4.25 have to be fetched
from the off-chip memory twice. Formally, for the case of the LRTB region scanning, the
bandwidth overhead is defined with the following equation.

NALRTB−REG−L2−L1

NAMIN−L2−L1
=

= 1 + ny
L0Y

L2Y
(4.17)

In order to estimate the range of this overhead, we start from the assumption that the
dimensions of the L0 scratchpad are roughly an order of magnitude lower than those of

4The condition that the L0 scratchpad consists of an odd number of blocks is a necessary but not sufficient
condition that leads to an error. The eventual wrong value for nx or ny is also influenced by the combination
of the dimensions of all three factors that contribute in the equation.
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Figure 4.26: Picture clarifies the number of regions used in the vertical domain. The thin vertically oriented
shaded area illustrates how is computed the number of regions used in the vertical domain.

the picture stored in the off-chip memory. This brings us to the rough estimate of a few
tens of percents.

Note that different region scanning strategies are possible such as meandering or a
spiral path leading to lower bandwidth overhead and more complex scanning algorithms.
We shall not explore them and in the remaining parts of this thesis, we shall always assume
the LRTB region scanning order.

4.5.4.2 Traffic between the L1 and L0 scratchpad

In the region-based approach, the picture is split into (nx + 1)(ny + 1) regions (see also
Figure 4.25). We assume that those regions are identical. Combining the number of
regions with Equation A.1 from Appendix A, we compute the number of accesses for the
case of the region-based L1 scratchpad and LRTB scanning order of the L0 scratchpad.

NAREGION−L1−L0 =
= (nx + 1)(ny + 1)L1Y (L1X − 1 + L0X)L0Y (4.18)

Note that we cannot assume L1X � L0X . By making this assumption, the number of
accesses would resume to the typical case of a block-column refill. Doing so, we would
remove any influence of the complete refill of the L0 scratchpad. This influence is very
important in case of horizontally small regions.
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4.5.5 Bandwidth analysis: Sliding-L1 approach
In the sliding-L1 approach, the data reuse from the neighboring regions in Figure 4.25 is
already embedded in the approach; regions 1, 4 and 7 are merged into one region and the
L1 scratchpad slides downwards in that region. Thereby, the blocks located at the borders
of horizontally neighboring regions (indicated by the vertical dotted lines in Figure 4.25)
need to be fetched twice. We arrive at a bandwidth overhead number if we omit the last
term from Equation 4.15.

NASLIDING−L2−L1

NAMIN−L2−L1
=

= 1 + nx
L0X

L2X
(4.19)

This bandwidth overhead is comparable with the region-based approach. To quantify the
traffic between the L1 and L0 scratchpads, we note that the picture is split into (nx + 1)
regions. Thereby, the number of accesses within the L1 scratchpad caused by the L0
scratchpad refill is defined with the following equations.

NASLIDING−L1−L0 =
= (nx + 1)L1Y (L1X − 1 + L0X)L0Y

= (nx + 1)L2Y (L1X − 1 + L0X)L0Y (4.20)

In this case, L1Y = L2Y , since we consider the region dimensions and not the scratchpad
dimensions.

4.5.6 Bandwidth analysis: Stripe-based approach
If the width of the L1 scratchpad is extended to the limits of the picture, the sliding-L1
approach becomes identical to the stripe-based approach. Formally, if we use the property
L1X = L2X in Equation 4.16, nx becomes zero. Replacing nx with zero in Equation
4.19, we arrive at a ratio of one, meaning that there is no bandwidth overhead. Thereby,
the bandwidth requirement of the stripe-based approach is theoretically minimal.

NASTRIPE−L2−L1

NAMIN−L2−L1
= 1 (4.21)

In order to compute the number of accesses of the L0 scratchpad to the L1 scratchpad,
we note that the stripe-based approach actually utilizes only one region. The dimensions
of that region are equal to the dimensions of the picture. This approach results in a mini-
mal number of accesses since it uses one region only. Replacing L1X with L2X and L1Y

with L2Y (L2Y is the vertical dimension of the region) in Equation 4.18, we compute the
number of accesses for the case of the stripe-based L1 scratchpad.

NASTRIPE−L1−L0 =
= L2Y (L2X − 1 + L0X)L0Y (4.22)
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To compute the ratio between the bandwidth requirements of the region-based and the
stripe-based approach, we use Equations 4.18 and 4.22.

NAREGION−L1−L0

NASTRIPE−L1−L0 =

= (nx + 1)(ny + 1)
L1Y (L1X − 1 + L0X)
L2Y (L2X − 1 + L0X)

(4.23)

In a similar way, the ratio between the bandwidth of the sliding-L1 and the stripe-based
L1 is computed. Equations 4.20 and 4.22 are used.

NASLIDING−L1−L0

NASTRIPE−L1−L0 =

= (nx + 1)
L1X − 1 + L0X

L2X − 1 + L0X
(4.24)

4.5.7 L1 bandwidth and capacity comparison
This subsection compares the three approaches in terms of bandwidth and capacity of
the L1 scratchpad. We compare the region-based, the sliding-L1 and the stripe-based
L1 scratchpads. The cost (in terms of number of stored pixel-blocks), the bandwidth
overhead towards the off-chip memory and the bandwidth from the L1 scratchpad towards
the L0 scratchpad are summarized in Table 4.1 as a function of the parameters L2, L1 and
L0. For the comparison, the expressions in Table 4.1 are rewritten as a function of the
parameters nx and ny because the conclusions depend on the ratios L1/L2 and L0/L2 and
not on the absolute values of L2, L1 and L0. We assume that all the regions have the same
dimensions or equivalently, that nx and ny are integers, without the usage of the ceiling
function in Equation 4.16. For the L0 scratchpad, we use two scenarios. According to
the first scenario, the L0 scratchpad is relatively large where L0X = L2X/10;L0Y =
L2Y /10, and according to the second one, the L0 scratchpad is four times smaller, L0X =
L2X/20;L0Y = L2Y /20. Let us start with the most general case, i.e. the region-based
L1 approach. Rewriting Equation 4.16 leads to:

L1X =
10 + nx

10(nx + 1)
L2X L1Y =

10 + ny

10(ny + 1)
L2Y (4.25)

for the first scenario, and,

L1X =
20 + nx

20(nx + 1)
L2X L1Y =

20 + ny

20(ny + 1)
L2Y (4.26)

for the second scenario. The derivation of these equations is available in Appendix B. In
case of the sliding-L1 and the stripe-based L1 scratchpads, we have to rewrite L1Y =
L0Y + 1. If we assume that one block-line is typically 1 % of L2Y

5, we arrive at L1Y =
5Let’s assume that one block-line consists of 8 pixel-lines. For SD resolution (720*576), there are 576/8=72

block-lines and thereby, one block-line is 1/72*100=1.38% of L2Y . For HD resolution (1920*1080), there are
1080/8=135 block-lines and thereby, one block-line is 1/135*100=0.74% of L2Y . On the average, it is a bit
more than 1% of L2Y .
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Table 4.1 Summary of cost and bandwidth requirements for the three ap-
proaches (stripe-based, region-based and sliding-L1 scratchpad).
The bandwidth is given relative to the minimal bandwidth (caused
by the stripe-based L1 scratchpad).

L1 Mem. Capacity BW L2 to L1 BW L1 to L0
[blocks] [relative to stripe-based L1]

Stripe L2X(L0Y + 1) 1 1

(nx + 1)(ny + 1)

Region L1XL1Y 1 + ny
L0Y

L2Y
L1Y (L1X − 1 + L0X)
L2Y (L2X − 1 + L0X)

(nx + 1)

Sliding-L1 L1X(L0Y + 1) 1 + nx
L0X

L2X
L1X − 1 + L0X

L2X − 1 + L0X

L0Y + 1 = 1/10 ∗ L2Y + 1/100 ∗ L2Y = 11/100 ∗ L2Y for the first scenario and
L1Y = L0Y + 1 = 1/20 ∗L2Y + 1/100 ∗L2Y = 6/100 ∗L2Y for the second scenario.
Based on the above assumptions, we have summarized the capacity and the bandwidth of
the three approaches in Table 4.2. Figure 4.27 illustrates the capacity and the bandwidth
requirements of the region-based approach as functions of its two degrees of freedom, nx

and ny . The graph is plotted according to equations in Table 4.2, relative to the stripe-
based approach. The left-hand side of the figure shows the case of the larger L0 scratchpad
and the right-hand side of the smaller one.

For a better comparison, the results are plotted in a 2D diagram. The region-based
approach has one degree of freedom more compared to the other two approaches. To
enable graphical comparison between the three approaches in 2D space, one of its degrees
of freedom needs to be frozen. We keep the width of the region, and thereby ny , constant.
The height of the region, and thereby nx, is parametric. This enables to monitor the
tradeoff between the region capacity and the bandwidth towards the off-chip memory. In
addition, as we shall see in the further text, this will enable the comparison of the region-
based and the sliding-L1 approaches on capacity and the bandwidth from the L1 to the L0
scratchpads. As we can see in Figure 4.27, the selected nx affects the bandwidth between
the L1 and the L0 scratchpad. Thereby, we select it as a compromise between the region
capacity and the bandwidth between the L1 and the L0 scratchpad. For example, selecting
nx = 4 for the case of the larger L0 scratchpad and nx = 8 for the case of the smaller
L0 scratchpad might lead to a suitable compromise. This choice is arbitrarily made. In
reality, the selection of these parameters is the result of architectural constraints.

For the case of the sliding-L1 approach, its width and thereby ny is a parameter allow-
ing to monitor the tradeoff between its capacity and the bandwidths towards the off-chip
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Table 4.2 Two instances based on Table 4.1. Table a) is given for the case of
L0X = L2X/10 and L0Y = L2Y /10. Table b) is given for the
case of L0X = L2X/20 and L0Y = L2Y /20.

L1 Mem. Capacity BW L2 to L1 BW L1 to L0
[relative to stripe-based L1]

Stripe-L1 1 1 1

Region-L1

1
11

10 + nx

nx + 1
1 +

1
10

ny

1
1090

10 + ny

ny + 1
(19nx + 109)(10 + ny)

Sliding-L1
10 + nx

10(nx + 1)
1 +

1
10

nx
1

109
(19nx + 109)

a)

L1 Mem. Capacity BW L2 to L1 BW L1 to L0
[relative to stripe-based L1]

Stripe-L1 1 1 1

Region-L1

5
120

20 + nx

nx + 1
1 +

1
20

ny

1
2080

20 + ny

ny + 1
(9nx + 104)(20 + ny)

Sliding-L1
20 + nx

20(nx + 1)
1 +

1
20

nx
1

104
(9nx + 104)

b)

memory and the L0 scratchpad. Note that its height is precisely defined as in case of the
stripe-based approach. Figure 4.28 graphically presents the comparison between the three
approaches. The stripe-based approach is selected as the reference point.

To conclude, the result of the comparison between the three approaches is that the
sliding-L1 approach offers the best compromise between the capacity, the bandwidth to-
wards the off-chip memory and the bandwidth towards the L0 scratchpad. Comparing it
with the stripe-based approach, for the case of the larger L0 scratchpad, the ideal point
might be nx = 2 where the capacity of the L1 scratchpad is 60% lower, bandwidth to-
wards the off-chip memory is 20% higher and bandwidth towards the L0 scratchpad is
35% higher. For the case of the smaller L0 scratchpad, the ideal point might be nx = 3
where the capacity of the L1 scratchpad is 71% lower, bandwidth towards the off-chip
memory is 15% higher and bandwidth towards the L0 scratchpad is 26% higher. Let us
compare the sliding-L1 with the region-based L1 approach. Making ny constant in case
of the region-based L1, enabled that both sliding-L1 and region-based L1 have the same



118 Chapter 4 Memory Subsystem

Figure 4.27: Plots of the capacity and the bandwidth requirements of the region-based approach as a function
of its two degrees of freedom, nx and ny . The left-hand side reflects the setup where L0X = L2X/10; L0Y =
L2Y /10. The right-hand side reflects the setup where L0X = L2X/20; L0Y = L2Y /20. All the graphs are
plotted relative to the stripe-based approach.
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Figure 4.28: The difference in the L1 scratchpad capacity requirements and bandwidth overhead towards
the off-chip memory and the L0 scratchpad. For the region-based approach, ny is the degree of freedom while
for the sliding-L1 approach, it is nx. The capacity and the bandwidth are expressed relative to the stripe-based
approach. The left column is given for the setup where L0X = L2X/10; L0Y = L2Y /10 and nx = 4 in
case of the region-based approach. The right column is given for the setup where L0X = L2X/20; L0Y =
L2Y /20 and nx = 8 in case of the region-based approach.

bandwidth overhead. This enabled comparison of other parameters, the capacity and the
bandwidth from the L1 to the L0 scratchpad. For all the cases, the sliding-L1 offers lower
capacity, typically two times. Bandwidth towards the L0 scratchpad is lower as well.
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Figure 4.29: The internal organization of (blocks of) pixels within the scratchpad utilizing sliding region.
It assumes 8*8 pixels per block and a width of the L1 scratchpad’s memory bank of 8 pixels. The picture
illustrates the common case when the data is written to the L1 scratchpad in a line-by-line manner. The picture
also illustrates which addresses need to be accessed in order to load a block-column from the L1 scratchpad.

4.5.8 Data organization within the L1 scratchpad

From the L1 scratchpad point of view, the data flow from the off-chip memory as well as
the data flow to the L0 scratchpad is block-aligned. Thereby, there is no need for an un-
aligned read or write data access. This enables straightforward addressing, which can be
realized in software, without the need for support of any specific hardware. Hence, for the
L1 scratchpad, the use of standard memory banks and standard addressing mechanisms
(base address plus the offset) is sufficient. The width of the access points of the L1
scratchpad is dictated by the required performance. In a VLIW processor, load/store units
are attached to the L0 and L1 scratchpads. The data that is communicated to or from
these scratchpads is produced or consumed in the datapath of the processor. The data
width conversion can be avoided if the widths of the access points of the L0 and L1
scratchpads are equal. This simplifies the architecture and here we make the choice to
make these access points equal.

SoCs are usually based on a system-bus architecture where all the components in the
SoC communicate over one or more data buses such as the AMBA AHB multilayer bus
[171]. Usually, the width of these buses is just 32 bits. To improve the performance, the
preferred way of communication are burst data transfers. As we have mentioned in Sub-
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section 4.3.1, the task of performing the data transfers to and from the off-chip memory
can be realized through a DMA controller [172, 173]. Apart from communicating with
the off-chip memory using burst transfers, the DMA controller also does packing and
unpacking data and thereby functions as an interface towards the ”external world”.

The data usually arrives in a line-by-line fashion to the off-chip memory. In the same
fashion it is stored. Pixels are grouped horizontally and stored in the off-chip memory,
which is most often 32-bit or 64-bit wide. The data is also stored in a line-by-line fashion
in the L1 scratchpad. Figure 4.29 illustrates that. The only difference is that the pixels
are regrouped (by the DMA) and stored in wider words, to fit the internal architecture of
the L1 scratchpad. Loading a block-column, which is a typical case for the L0 scratchpad
refill, is straightforward. The typical base and offset addressing mechanism is sufficient to
efficiently load one block column. As an example, pseudo code for a block-column load
from the L1 scratchpad and store to the L0 scratchpad is provided below. This pseudo
code is realized in software.

// Reading one L0 block-column

// Block-column is centered around (bx, by)

raddress = (by-L0Y /2) mod L1Y ;

raddress = raddress * (8 * strideY) ;

raddress = raddress + bx*8/8 ;

// *8 pixels per block /8 pixels per mem. loc. in L1

for (offset = 0 ; offset < 8*strideY ; offset += strideY) {
load (L1scratchpad, raddress, offset, subblock) ;

pixel pad (subblock, padded subblock) ;

store (L0scratchpad, padded subblock) ;

}

The software can also be written for different types of accesses, for example a block-
row update. Since the sliding-L1 approach only assumes aligned read and write ac-
cesses, software-based addressing is sufficient. Different padding schemes can also be
programmed. This software realization supports flexibility within the target domain.
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4.6 Number of hierarchy levels
The previous sections motivate the need for each level of the memory hierarchy. The L1
scratchpad is needed to reduce the bandwidth requirements towards the off-chip memory
to a minimum. Accesses within the L1 scratchpad are aligned, which allows the usage
of a generic memory block for L1. Addressing is realized in software. The L0 scratch-
pad enables accesses to an arbitrarily positioned 2D BOI. Read accesses are un-aligned.
To enable this, more than one memory bank is used and additional hardware support is
needed.

The question is how many levels of memory hierarchy are needed. Specifically, we
compare two memory architectures. One is the memory subsystem that consists of two
levels of memory hierarchy (2-level memory subsystem). The second one uses only one
level of memory hierarchy (1-level memory subsystem). The 1-level memory subsystem
is a result of a merge between the two concepts, the L0 memory architecture as presented
in Section 4.4 and the sliding-L1 data organization as presented in Subsection 4.5.3. The
1-level memory subsystem must behave in the same way from the processing element as
well as from the off-chip memory point of view. In other words, it must enable un-aligned
access to a 2D BOI and maintain the minimal off-chip memory bandwidth.

The 2-level memory subsystem has the disadvantage that the same pixels are present in
multiple locations, in different memory locations. Pixels are read from the L1 scratchpad
and copied to the L0 scratchpad. Having just one level omits the need for copying pixels
from the L1 to L0 scratchpad. We denote it with L01M (L0 and L1 Merged) scratchpad.
The L01M scratchpad has an internal organization of the L0 scratchpad and the capacity
of the L1 scratchpad as defined according to the sliding-L1 approach. The differences
between the two architectures are illustrated in Figure 4.30.
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off−chip memory
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off−chip memory
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1 bank
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Figure 4.30: On the left-hand side, the 2-level memory subsystem. On the right-hand side, the 1-level
memory subsystem that is based on the merged, L01M scratchpad. The access points are appended with read
and write access rates.
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Table 4.3 Bandwidth [MByte/s] and memory capacity requirements [Kbytes]
for five analyzed approaches. The data are given assuming HDTV
interlaced material (1920*1080i @60Hz) and one referenced video
field.

Proposed memory subsystem
2-level 1-level

L1 dim. [blocks] 88*8 /
L1 cap. [blocks] 704 /
L1 cap. [KB] 22 /
L0/L01M dim. [blocks] 13*7 88*8
L0/L01M cap.[blocks] 91 704
L0/L01M cap. [KB] 2.8 22

Off-chip mem. BW [MB/s] 65.3 65.3
Off-chip mem. BW overhead [%] 10 10
L1 → L0/L01M BW [MB/s] 461.7 /
L1 → L0/L01M BW overhead [%] 10.7 /
L0/L01M → PE BW [MB/s] 415.3 415.3

Let us illustrate the differences in capacity and similarities in bandwidth require-
ments between the 2-level and 1-level memory subsystems using the case study of the
high-quality motion-compensated de-interlacing application applied for input interlaced
HDTV material (1920*1080i @60Hz) [20]. This application references multiple frames.
We analyze the access patterns related to only one reference picture because other refer-
ences are similar.

The size of the L0 scratchpad is 13*7 blocks of 8*4 pixels. The vertical dimension
of a block is 4 pixels and not 8 pixels since the input material is interlaced. Consecu-
tively, the size of the frame is 240*135 blocks. It is assumed that the scanning trace of
the L0 scratchpad is horizontal meandering and for each processed block, seven motion
vector candidates are evaluated. A pixel is encoded with 8 bits. Table 4.3 illustrates
the bandwidth and area requirements of the two approaches. As expected, the 1-level
memory subsystem requires less capacity and both memory subsystems require the same
bandwidth from the off-chip memory and the processing element.

The following four subsections compare the 1-level and 2-level memory subsystems
on the following important aspects, cost (area), cost (power), impact on the software,
impact on the algorithm (WOI size).
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Table 4.4 Differences in area between the 1-level and 2-level memory subsys-
tems for six use-cases. Organization of the L0 and L01M scratch-
pads uses the following setup: NB = 2, NP = 8.

NB = 2, NP = 8 16-pixel BOI, NS = 2 32-pixel BOI, NS = 4

WOI [blocks] 3*3 13*7 21*15 3*3 13*7 21*15

L0 scratchpad [blocks] 9 91 315 9 91 315
L1 scratchpad [blocks] 76 552 1504 76 552 1504
L0 scratchpad [mm2] 0.160 0.216 0.464 0.320 0.368 0.520
L1 scratchpad [mm2] 0.112 0.524 1.235 0.169 0.567 1.235
Total 2-level [mm2] 0.272 0.74 1.699 0.489 0.935 1.755

L01M scratchpad [blocks] 76 552 1504 76 552 1504
L01M scratchpad [mm2] 0.208 0.696 1.516 0.360 0.872 1.664
Total 1-level [mm2] 0.208 0.696 1.516 0.360 0.872 1.664

1-level is smaller by [%] 31 6 12 36 7 5

The influence on area and power will be analyzed through two groups of use cases
that are chosen in accordance with our application domain. The first group is based on
a 16-pixel BOI (8*2) and the second one on a 32-pixel BOI (8*4). For each group,
we analyze three dimensions of the WOI: small (3*3 blocks), medium (13*7 blocks)
and large (21*15 blocks). A block contains 8*8 pixels. Small WOI is used by pixel-
filtering algorithms while large and medium WOIs by motion estimation/compensation.
The internal organization in terms of number of banks and sets is identical for the L0 and
the L01M scratchpad: NP = 8, NB = 2 and NS = 2 (8*2 pixel BOI), and NP = 8,
NB = 2 and NS = 4 (8*4 pixel BOI). In all cases, the dimensions and capacity of the L1
and the L01M scratchpad are defined according to the sliding-L1 approach.

4.6.1 Comparison: Cost (Area)
From the previous discussion, it is clear that the 1-level memory subsystem requires less
memory capacity than the 2-level. They differ exactly by the capacity of the L0 scratch-
pad. However, the difference in area is influenced by the internal architecture. To explore
those differences we analyze the mentioned use cases. The results are shown in Table 4.4.

The results show that in all cases, a 1-level memory subsystem offers lower area. The
gains are the biggest in cases of small WOI. The reason is that in case of the 2-level
memory subsystem, even small capacity of the L0 scratchpad is distributed in number of
banks, 4 in case of the 16-pixel BOI and 8 in case of the 32-pixel BOI. As we have seen
in Subsection 4.3.3, banks with small capacities are inefficient. The L01M scratchpad has
the same number of banks with larger capacities, which leads to higher efficiency. As the
size of the WOI grows, the efficiency of the L0 scratchpad increases and the difference in
area between the two memory subsystems becomes smaller.
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4.6.2 Comparison: Cost (Power)

Power dissipation consists of two components, active power (AP) and standby leakage
power (LP). For the memory technology used here, leakage power is significantly lower
than active power. Note that this is not the case for lower technology nodes, such as 45nm.
In our case, assuming that memory is clocked at 200 MHz, leakage power is lower than
0.3 % of the active power. Therefore, we focus on active power only.

Let us analyze similarities and differences between the two approaches. Looking at
the PE side, the read rates of the L0 and the L01M scratchpads are the same. The situation
is different at the off-chip memory side. The frequencies with which pixels are written into
the 2-level and 1-level memory subsystem are the same. However, the L01M scratchpad is
based on a number of banks, while the L1 scratchpad is typically based on just one bank.
All of the L01M scratchpad’s banks are active during read (to enable un-aligned access),
but not all are active during write. For example, in case of the 2D 8*2 pixel BOI where
NB = 2, NP = 8, only 2 out of 4 banks are active during write. This means that 50%
of the banks are active and thereby halves the effective frequency of the write accesses.
Finally, in case of the 2-level memory subsystem, additional power is caused by copying
the pixels from the L1 to the L0 scratchpad.

The power dissipation will be analyzed using the equations derived in this chapter,
in particular, Equations 4.2, 4.3, 4.14, 4.16, 4.19, 4.20. In addition, a simplified power
model, illustrated in Figure 4.31, will be used. This model is piece-wise linear, consisting
of only two segments. The left segment we call the flat and the right one the inclined
segment. We use three widths of scratchpads here and, as before, assume that pixels are
encoded with 8 bits. Thereby, the banks of the L0 and L01M scratchpads are 64 bits wide.
In case of 16-pixel BOI, the L1 scratchpad is 128 bits wide, and in case of 32-pixel BOI,
it is 256 bits wide. We analyze two use cases, the small and the medium/large WOI.

Small WOI: The number of words for all the scratchpads (L0, L1 and L01M) is
relatively small. The L1 scratchpad requires the largest number of words, which in case
of the 16-pixel BOI is 304. Thereby, all of them are located in the flat segment of our
power model. Because of this, the power dissipations caused by the reads from the L0
and L01M scratchpads are almost the same. In the following paragraph, we compare the
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Figure 4.31: The piece-wise linear power model that is used for power dissipation analysis.
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power caused by the writes to the same scratchpads.

Since the 1-level memory subsystem keeps the off-chip memory bandwidth require-
ment minimal, the assumption is that each pixel is approximately written once to the
L01M scratchpad. However, in case of the 2-level memory subsystem, each pixel is writ-
ten to the L0 scratchpad approximately L0Y times. Even in case of a small WOI, L0Y

is greater than one6. On top of that, the power dissipation of the L1 scratchpad has to
be included. Our expectation is that for the low number of accesses (e.g. low number
of motion vectors or low number of pixels in the filter support), the 1-level memory sub-
system will consume significantly less power than the 2-level. As this number increases,
the difference will be smaller and smaller. At some point, the power caused by the PE
reads will prevail and the fact that the L01M scratchpad has higher power dissipation than
the L0 scratchpad (because of higher capacity) will play a dominant role. Only then, the
2-level memory subsystem will have lower overall power dissipation.

Medium/Large WOI: The number of words for the L01M and L1 scratchpads is
large. The smallest is in case of the medium WOI and 32-pixel BOI (L01M scratchpad
requires 552 words) and the largest is in case of the large WOI and 16-pixel BOI (L1
scratchpad requires more than 6000 words). Thereby, both are in the inclined segment
of our power model. On the other hand, the number of words for the L0 scratchpad is
located in the vicinity of the knee of the curve. It ranges from 91 words in case of the
medium WOI and 32-pixel BOI to 630 words in case of the large WOI and 16-pixel BOI.

The power dissipation caused by the reads from the lowest level of the memory hierar-
chy is significantly larger in case of the L01M scratchpad (especially when the PE issues
a large number of reads). On the other hand, the power caused by the writes into the
L0 scratchpad is significant, since the WOI is medium to large implying larger values of
L0Y . In addition, a large L1 scratchpad also causes significant power dissipation. Based
on the analysis so far, we conclude the following: If PE issues a low number of reads, the
most dominant component is the L1 scratchpad and power caused by the writes to the L0
scratchpad. Note that, this component of the power dissipation remains constant for any
number of the PE accesses. If the number of accesses is low, the dominant power com-
ponent is caused by the reads from the lowest level of the hierarchy. In such cases, the
1-level memory subsystem is expected to have lower power dissipation. As the number of
accesses increases, the power caused by the reads increases as well. At some point, this
power becomes dominant and the 2-level memory subsystem is better in terms of power.

Use cases: Here we refer to two groups of use cases defined before. The results
for HDTV standard (1920*1080p @ 60 fps) are plotted in Figure 4.32. The number of
block read accesses from the lowest level of the memory hierarchy ranges from 1 to 64
per block of 8*8 pixels. In case of pixel filtering, the number of accesses is equal to
the number of pixels in the pixel support. In most cases, it is lower than 16. In case of
motion estimation, if full-pel accurate vectors are used, the number of accesses is equal
to number of motion vectors, which is typically 6-8. If the vectors are sub-pel accurate

6Theoretically, L0Y can be equal to one, e.g. in cases when pixel interpolation does not require accesses to
any vertically neighboring pixel-lines.



4.6 Number of hierarchy levels 127

Figure 4.32: The difference in power dissipation between the 2-level and 1-level memory subsystem. The
selected configuration of the lowest level of the memory hierarchy is NB = 2, NP = 8. When the number
of accesses is moderate, the 1-level memory subsystem offers far lower power dissipation. In some cases, the
difference is more than 10 times.

and the bi-linear interpolation has to be used, the number of accesses is four times larger,
24-32. The number of accesses can significantly be reduced if the linear interpolation is
embedded in the memory subsystem (see Subsection 4.4.6). In such a case, one additional
pixel-line has to be fetched per block of 8*8 pixels. This means that from the original 6-8
accesses, the number of accesses becomes 9/8 times higher, or approximately 7-9. In
case of motion compensation, only one access is needed. Thereby, for most of cases, the
1-level memory subsystem offers lower power dissipation.
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4.6.3 Comparison: Impact on the software

In a scratchpad-based approach, a programmer is responsible for placing the memory
operations within the memory hierarchy. This task begins with address calculation. This
address is needed to read the pixels from the L1 scratchpad. These pixels are conditionally
padded (needed in the vicinity of picture borders) and written to the L0 scratchpad. Many
of the mentioned actions are not required for the case of the 1-level memory subsystem.
The differences are illustrated in Figure 4.33.

The differences between the two approaches are reflected in the increased perfor-
mance, the reduced size of the program memory and additional gains in power. Let us
briefly explain those gains from the perspective of the 1-level memory subsystem. Since a
number of instructions from Figure 4.33 are not executed, clock cycles are spared, which
causes a performance increase. Without those instructions, the code size is reduced, which
reflects in area and power. The overall power dissipation is further reduced since the dat-
apath does not execute those instructions. Lastly, different scanning patterns are imple-
mented in an easier way. At the left hand side of Figure 4.33, the LRTB scanning order is
implemented. In order to implement the meandering, one of the changes is that the filling
of the complete L0 scratchpad has to be replaced by the block-row filling. In case of the
1-level memory subsystem, the changes are much smaller. They only require a change of
the read coordinates provided to the L01M scratchpad.
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Figure 4.33: On the left-hand side, the picture illustrates the simplified snapshot of the software in case of
the 2-level memory subsystem. On the right-hand side, in case of the 1-level.
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4.6.4 Comparison: Impact on the algorithm
A final advantage of the 1-level memory subsystem that we mention here is the increased
size of the supported WOI. This is especially important for motion-compensated appli-
cations. The dimensions of the L01M scratchpad are equal to the dimensions of the L1
scratchpad and thereby the covered WOI is bigger than in case of the L0 scratchpad.
Compared to the 2-level memory subsystem, there are no differences in the WOI height.
Let us compare the differences in the WOI width, WWOI , between the two approaches.
We analyze the situation where the overlap between the sliding regions is the same for
both approaches (see equations 4.15, 4.16 and Figure 4.24). In case of the 2-level mem-
ory subsystem, WWOI corresponds to the L0 scratchpad. In case of the 1-level memory
subsystem, WWOI corresponds to the L01M scratchpad and is a few times wider than
in case of the 2-level memory subsystem. However, motion vectors are asymmetrical as
illustrated in Figure 4.34. The maximal horizontal vector length is influenced by the po-
sition of the currently processed block. In all cases, the minimal horizontal vector length
is greater than or equal to the one supported by the 2-level memory subsystem.

The 1-level memory subsystem offers a WOI that is horizontally a few times big-
ger. This is important for applications that use motion estimation and compensation as
it increases the range of the motion vectors by a number of times. In post processing
applications, this is of limited importance since the WOI is asymmetrical and not all ve-
locities (directions) can be tracked. In case of the video compression and decompression
this maybe more important. These applications typically do not aim to true motion and
thereby do not suffer from the asymmetrical WOI. They only look at the minimal block
difference and enlarged search space improves that process.
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Figure 4.34: The difference in the supported WOI size. On the left-hand side, the 2-level memory subsystem
is illustrated and on the right-hand side, the 1-level. The 1-level memory subsystem supports a much larger
WOI.
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4.7 Benchmark of the memory subsystems
This section benchmarks our memory subsystem against prior work. The benchmark is
performed using the proposed six criteria. The support of each criterion is marked with
one of the following possible answers, yes, partly or no. Table 4.6 given at the end of this
Subsection summarizes the benchmark results.

4.7.1 Cache-based memory subsystems

Two techniques are typically used to optimize the cache performance for streaming ap-
plications, data partitioning and prefetching. The data replacing strategies such as the
”least recently used blocks” do not guarantee that all the data needed for computation of
the current block are available in the cache. The application programmer has typically no
control what is overwritten in the cache. This is one of the causes for the cache misses
that increase the off-chip memory bandwidth and stall the processing element.

Here we assume that the cache contains sufficient memory capacity to keep the off-
chip memory bandwidth low, in spite of the cache misses. The first criterion is thus
supported. The cache-based approach is not predictable although it is typically possible
to define the lower bound of the estimated performance. Thereby, we rank the predictabil-
ity with partly. In general, caches are not capable to deliver un-aligned blocks of data. In
some cases, like in the Trimedia 3270 [147], un-aligned access to a group of four pixels
is supported. However, the cache misses cause stalls and thereby, the support to the High
PE Bandwidth criterion is marked as partly. Cache architectures are scalable and flexible.
The need to support all applications results in a cache size increase. This increase leads
to off-chip memory bandwidth reduction but also to inefficient implementation. Here,
we assume that some of the techniques for reducing the miss-rate mentioned in Subsec-
tion 4.2.1 are applied such that the cache size is not dramatically increased. Taking into
account the usage of these techniques, the efficiency of pixel storage and pixel access
is improved but not to a level of the sliding-L1 approach, which guarantees the off-chip
memory bandwidth for selected capacity. Another drawback is the area and power over-
head as a consequence of cache tags. We conclude that the cache-based architectures
partly satisfy the efficiency criterion.

4.7.2 Domain-specific memory subsystems

The publications that target domain-specific memory subsystems can be split into two
major groups. The first group minimizes the off-chip memory bandwidth and the second
one focuses on memory architectures that enable read accesses to un-aligned BOIs. To
the best of our knowledge, there were no attempts to jointly address this problem in the
context of custom-based memory subsystems for video processing. Firstly, we briefly
summarize the methods for off-chip memory bandwidth reduction and then, in greater
detail, the architectures that enable un-aligned pixel accesses.

Most of the authors from prior work solve the problem of high off-chip memory band-
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Table 4.5 Differences in area between the prior work [167–170] and our pro-
posal. Both are based on a 1-level memory subsystem and have
identical capacity. Organization of the L01M scratchpads uses the
following setup: NB = 2, NP = 8.

NB = 2, NP = 8 16-pixel BOI 32-pixel BOI

Total capacity [blocks] 19*4 69*8 94*16 19*4 69*8 94*16

1-pixel bank [mm2] 0.022 0.068 0.13 0.019 0.078 0.078
Prior work [mm2] 0.352 1.088 2.080 0.608 1.248 2.496

8-pixel bank [mm2] 0.052 0.174 0.379 0.045 0.109 0.208
Our proposal [mm2] 0.208 0.696 1.516 0.360 0.872 1.664

Prior work is larger by [%] 69 56 37 68 43 50

width by using a two-level memory hierarchy [125, 144, 164, 165]. In a typical case, the
higher level of the memory hierarchy contains the complete stripe that extends across the
complete picture. Thereby, each pixel is accessed only once, which results in the minimal
bandwidth. The cost is high since the required memory capacity is large, especially for
HDTV picture resolution. The work of Tuan et al. [165] offers four points for tradeoff be-
tween the bandwidth increase and capacity reduction. However, the bandwidth increases
sharply with area reduction. The cited publications do not discuss the memory organi-
zations that enable un-aligned pixel access. The exception is [125], which is based on
inefficient pixel- and line-delays. We shall not benchmark the mentioned proposals as
they do not propose memory organizations. Instead, we focus to memory subsystems that
are based on the single-pixel wide memory banks, which enable un-aligned accesses.

A substantial effort has been made to propose an architecture of a memory subsystem
which enables un-aligned pixel access [122, 162, 167–170]. All the cited approaches are
based on single-pixel wide memory banks. The advantages are that many dimensions
and shapes of a BOI can be addressed, including the diagonal patterns. Thereby, more
attention will be devoted to these approaches. Most emphasis will be on efficiency and
cost (power, area). We focus on the following architectures, [167–170] since they require
fewer banks than the scratchpads reported in [122, 162].

These architectures are proposed to enable un-aligned access pattern. The authors
made no effort to minimize the off-chip memory bandwidth. Thereby, we do not rank the
support to the first criterion. These architectures are predictable; criterion two is therefore
supported. The architectures offer high PE bandwidth allowing accesses to an un-aligned
(subsampled) 2D BOI. The PEs are constantly fed with useful pixel data. Thereby, the
third criterion is supported. To score these architectures on the flexibility criterion we
note the following. There are no limitations in terms of the scanning order as the (groups
of) pixels can be written in any order. The utilized size of the WOI can be different than



132 Chapter 4 Memory Subsystem

Figure 4.35: The difference in power dissipation between our proposal (the 1-level memory subsystem) and
the memory subsystem based on single-pixel wide memory banks. In all cases, the power dissipation of our
1-level memory subsystems is lower.

the physically available, which offers an opportunity for bandwidth reduction. Different
aspect ratios of the 2D BOI are also supported. There are no limits in terms of number of
reads of a BOI. In summary, we conclude that the flexibility criterion is satisfied.

To evaluate the efficiency criterion, we note that due to the usage of many narrow
banks, this architecture does not offer efficient (area and power) pixel storage. The area
comparison is provided in Table 4.5 and the differences in power dissipation between this
work and our proposal are illustrated in Figure 4.35. Pixels are written individually to the
memory, which is not cost-effective. Namely, to write a block of n pixels to a memory



4.7 Benchmark of the memory subsystems 133

Table 4.6 Benchmarking of the proposed memory subsystem with existing
solutions. Six proposed criteria are used.

General-purpose Application-domain specific
Generic Cache [122, 162, 167, 168, 170] Our work

Minimal off-chip
yes n.a.

yes (typ.
mem. bandwidth 1.2 acc/pix)
Predictability partly yes yes
High PE bandwidth partly yes yes
Flexibility yes yes yes
Efficiency partly no yes
Scalability yes yes yes

that consists of n banks, all n banks are activated. In this case, the memory architecture
does not profit from the fact that the write access is aligned and that the written pixels are
spatial neighbors. Situation during reading is similar but not the same since the accesses
are un-aligned. All the banks are again activated. Thereby, we conclude that the efficiency
criterion is not supported.

These approaches are scalable since increase of the bank capacity causes reasonable
increase of area and power. Namely, as we have seen in Subsection 4.3.3, the slope of the
increase curve is always less than or equal to 45 degrees (doubling the capacity in worst
case causes doubling the area). Power increases much slower than area. If the 2D BOI
doubles its size (from 16 to 32 to 64 pixels), the number of banks increases linearly (from
16 to 32 to 64 banks). Thereby, the scalability criterion is supported.

4.7.3 Our work
1. Minimal off-chip memory bandwidth: The bandwidth to the off-chip memory is

reduced close to one access per pixel. The overhead is in the order of ten percents
and it is user-controlled.

2. Predictability: Performance of the proposed memory subsystem is known at com-
pile time, i.e. the memory subsystem is predictable.

3. High PE bandwidth: Memory subsystem is designed such that it delivers un-aligned
2D BOI per access, i.e. useful pixels. The PE is not stalled. We conclude that our
memory subsystem satisfies the third criterion.

4. Flexibility: The Sliding-L1 approach tolerates the change of the picture width and
height. The architecture does not impose any restriction about the scanning order,
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number of reads of a BOI or the size of the WOI. Aspect ratio of the un-aligned
2D BOI is programmable. In summary, the algorithmic parameters are controlled
in software and thereby our architecture satisfies this criterion.

5. Efficiency: The pixels are stored into the memory subsystem using aligned access
triggering significantly less address locations compared to the number of stored
pixels. This is power efficient. The system is area effective since it utilizes wide
banks, each bank holding multiple pixels. The proposed memory subsystem offers
a number of novel methods to increase the efficiency. It is superior in area and
power compared to prior work based on the single-pixel wide memory banks.

6. Scalability: In order to support larger WOI, the capacity of the memory subsystem
has to be moderately increased. The number of used memory banks remains the
same. If the 2D BOI increases in the pixel count, the number of sets (and consecu-
tively banks) increases. For example, in order to double the number of pixels within
a 2D BOI to 32 pixels distributed in four lines, the number of sets (and banks) is
doubled. This proves that the architecture is fully scalable.

Finally, our memory subsystem is configurable at design time offering a number of
tradeoffs. It is possible to tradeoff the performance (number of pixels delivered in parallel)
for area by selecting the appropriate number of memory banks. In case of the set-based
approach, the number of sets is equal to the number of pixel-lines delivered in parallel.
This tradeoff does not affect the supported size of the WOI. In addition, the sliding-L1
approach enables the possibility to tradeoff bandwidth towards the off-chip memory for
area. The total memory capacity is selected according to the off-chip memory bandwidth
and area constraints.

4.8 Conclusions
Unlike the compute performance, the offered off-chip memory bandwidth failed to follow
Moore’s law [12]. Meanwhile, the screen resolutions and picture rates have been steadily
increasing to a level where the bandwidth became the bottleneck. This resulted in a gap
between the available compute resources and memory bandwidth, which directly affects
the application performance. Memory subsystems bridge this gap and reduce the off-chip
memory bandwidth by moving the repetitive accesses within the memory subsystem. This
results in lower power dissipation.

The importance of on-chip memory subsystems in the context of embedded sys-
tems has been recognized in the literature [12, 33, 121, 122, 144–148]. Many of the
proposed and implemented memory subsystems is based on caches, especially in the
general-purpose processor (GPP) world [12, 123, 145, 146, 150–157]. To improve the
performance, cache based systems use intelligent prefetching and hardware and software
changes. However, the usage of these techniques does not remove all capacity and con-
flict cache misses and thereby solves the problem only partially. In previous chapters, we
have shown that the applications from the target domain access data within a well defined
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area. Even though for some algorithms, such as motion estimation and compensation, the
locations of accessed pixels are not known at compile time, accesses do not exceed the
limits of the search area. Thereby, caches do not seem to be suitable solutions for such ap-
plications. Customized memories, such as scratchpads, which enable predictability, seem
to be a more adequate choice for our application domain [33, 122, 144, 148, 149, 161–
164, 167–170]. Yet, such solutions are less addressed in the literature compared to cache-
based solutions. This chapter has proposed one such customized solution. The summary
of our proposal and findings is provided below.

In addition to predictability, our goal was to enable un-aligned access with maxi-
mal bandwidth towards the Processing Element (PE) and minimal bandwidth towards the
off-chip memory. These two goals have been addressed in two Sections, 4.4 and 4.5, re-
spectively. The high bandwidth towards the PE has been achieved through a customized
memory architecture that enables un-aligned accesses to a 2D BOI. Pixels are skewed
during writing, which makes parallel access to multiple pixel-lines possible. Our solution
is based on multi-pixel wide memory banks, which results in an efficient implementa-
tion. The proposed solution is parametric, based on three main parameters, the number
of sets NS , the number of banks per set NB and the number of pixels per addressable
location within a memory bank NP . We have defined a guideline for selection of these
parameters according to defined specifications. The specifications include the number of
pixels in a BOI, aspect ratio of a BOI, dimensions of the stored WOI, etc. Finally, it is
also possible to instantiate a number of scratchpads within a VLIW processor. Instanti-
ating a few scratchpads enables concurrent access to a few BOIs and increases the total
offered bandwidth to the Processing Element. This adds the third dimension to our access
patterns.

The second important goal of a memory subsystem is keeping the off-chip memory
bandwidth minimal. Our scratchpad-based memory subsystem brings down the number
of accesses to approximately one access per pixel. The bandwidth requirement is known
at compile time. The cost-effective realization has been enabled by using the proposed
sliding-L1 approach of refreshing the scratchpad content. The sliding-L1 approach en-
ables to tradeoff scratchpad capacity and off-chip memory bandwidth. This makes our
proposal applicable to various use cases.

We have addressed the important question of how many levels a memory subsystem
should contain. The drawbacks of the 2-level memory subsystem have been highlighted
and a 1-level memory subsystem has been presented as a merge of the two concepts,
the L0 memory architecture as presented in Section 4.4 and the sliding-L1 approach as
presented in Subsection 4.5.3. The 1-level memory subsystem behaves in the same way
from the processing element and the off-chip memory point of view. The 1-level mem-
ory subsystem in most cases offers lower area and power compared to the 2-level memory
subsystem. In some cases where the processing element issues a large number of accesses
per processed block (larger than 16), the 2-level memory subsystem offers lower power.
With respect to software, the code becomes simpler in case of the 1-level memory sub-
system. A number of load, store and pixel padding instructions disappear. With respect
to the algorithm, the 1-level memory subsystem covers a wider, although asymmetrical
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WOI, which may be beneficial for some motion estimation based applications.
Finally, the question is how good is our proposed memory subsystem. To answer

that question, we have proposed a generic set of six criteria to benchmark a memory
subsystem. The criteria are defined as follows: Minimal off-chip memory bandwidth,
predictability, high processing element bandwidth (high performance), flexibility, effi-
ciency, and, scalability. Our memory subsystem is benchmarked against the cache-based
solutions and customized solutions that use single-pixel wide memory banks over the
proposed six criteria and proves to be better on the average than the other solutions. Per
individual criterion, it is better than or equal to other evaluated solutions.



5

Conclusions and Future Work

DECADES of research within the field of digital video post processing resulted in an
impressive stack of different algorithms. The diversity of these algorithms is visible

in many aspects. Algorithms are based on spatial, temporal or spatio-temporal processing,
are sometimes recursive, content-adaptive, linear or non-linear. Such diversity causes
implementation challenges for a single flexible though application specific processing
architecture.

The goal of this thesis is an architecture that enables efficient mapping of high quality
algorithms from the video post processing domain. We identify the on-chip memory
subsystem as the key component of the proposed architecture to which we devote most
of our attention. The importance of the memory subsystem in the context of embedded
systems has been recognized in the literature as well [12, 33, 121, 122, 144–148]. Many
of the proposed and implemented memory subsystems are based on caches, especially in
the general-purpose processor (GPP) world [12, 123, 145, 146, 150–157]. To minimize
the datapath stalls that occur due to cache misses, cache-based systems use intelligent
prefetching and hardware or software changes. However, the usage of these techniques
does not remove all capacity and conflict cache misses and thereby solves the problem
only partially.

One of the peculiarities of the video post processing domain is locality of reference,
i.e. the processing element always requests pixels located in a predefined vicinity of the
currently processed pixel and the same pixel might be requested multiple times. Cus-
tomized memories such as scratchpads, which enable predictability, may profit from the
compile-time knowledge of the executed application (especially the access patterns) and
seem to be a more adequate choice for our domain [33, 122, 144, 148, 149, 161–164, 167–
170]. Yet, such solutions receive little attention in the literature compared to the cache-
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based solutions. In this thesis, we have proposed one such customized solution. The major
contributions of this thesis are the concepts for data organization that enable un-aligned
2D accesses and minimize the off-chip memory bandwidth. Although the discussion and
analysis of these concepts are considered the main contributions and their proof requires
a considerable investment of time, we shall not leave the reader without any proof of
concept. Therefore, in Appendix C we discuss such a proof.

5.1 Conclusions
To conclude this thesis, we summarize our contributions below.

•We have identified two generic classes of algorithms that together cover a wide range
of applications. The first class contains block-based motion estimation/compensation and
the second one, pixel-based content-adaptive filtering. Both of them enable high quality
video post processing functions to be implemented at a favorable cost level.

1. Block-based motion estimation, particularly the 3DRS [23], enables a substantially
better price/performance than other approaches throughout the application domain
[21, 22, 35–43, 87, 89]. For the reader’s convenience, we have included a summary
of 3DRS in Section 2.4.

2. Content-adaptive filtering has been selected as the second distinct approach for
two reasons. The first reason is that a number of video post processing functions
can be implemented as a content-adaptive filtering providing a high picture quality
[44, 45, 82, 99]. The biggest drawback of content-adaptive filtering, the large Look-
Up-Table (LUT), has been addressed in recent publications [77, 78]. The second
reason is that content-adaptive filtering is generic and also covers algorithms that
obtain a good quality with fixed coefficients [100, 101, 113, 115, 116, 118, 119]
[Chapter 2].

• We have analyzed the representative algorithms from both algorithmic classes to
determine their requirements for a common architecture. This analysis has shown that
both classes require un-aligned accesses to a one- or two-dimensional groups of pixels.
The group of accessed pixels spreads over multiple time references, adding another di-
mension, time. Within a particular time instance, this group has a rectangular shape and
we call it a Block-Of-Interest (BOI). Using representative algorithms, we demonstrate
how both algorithmic classes can be vectorized. The approach we adopt here is to fetch
from a local memory subsystem a relatively large BOI, for example containing 16 or 32
pixels. The number of pixels within a BOI equals the width of the vector datapath. After
being fetched from the memory subsystem, the BOI is directly processed by the datapath
using the vector instruction set. For the sake of demonstration, the used instruction set is
generic. We show how the software can be written regardless of any algorithmic peculiar-
ity, such as the number of pixels in the support, the shape of the support, etc. Customized
instructions can be added to further improve the performance [Chapter 3].



5.1 Conclusions 139

• We have proposed a scratchpad architecture that enables one-dimensional and two-
dimensional accesses to arbitrarily positioned blocks of data. This has been achieved
through a customized memory architecture that is based on a specific pixel organization.
Pixels are skewed during writing in order to enable parallel access to multiple pixel-lines.
Our solution is based on multi-pixel wide memory banks, which results in an efficient
implementation. The proposed solution is parametric, based on three main parameters,
the number of sets NS , the number of banks per set NB and the number of pixels per
addressable location within a memory bank NP . We have defined a guideline for selection
of these parameters according to different specifications. The specifications include the
number of pixels in a BOI, the aspect ratio of a BOI, the dimensions of the stored area
or Window-Of-Interest (WOI), etc. Finally, instantiating a number of scratchpads enables
concurrent access to a three-dimensional group of pixels [Section 4.4].

• We have proposed the sliding-L1 concept, a scratchpad organization and addressing
technique to minimize the off-chip memory bandwidth. The sliding-L1 concept enables
the tradeoff between the scratchpad capacity and off-chip memory bandwidth. The mini-
mal bandwidth where each pixel in the off-chip memory is accessed only once is achieved
in case the width of the scratchpad is equal to the width of the picture. According to the
proposed concept, the scratchpad width, and thereby the capacity, can almost be halved if
the bandwidth requirements increase by typically 10% or less. If the bandwidth require-
ments further increase by the same percentage, the scratchpad capacity further reduces.
The tradeoff curve is exponential and saturates for high bandwidth, the scratchpad capac-
ity remains the same regardless of bandwidth increase. This makes our proposal applica-
ble to various use cases and the system architect can select the optimal point on the curve.
In all cases, the bandwidth requirement is known at compile time since the system is pre-
dictable. Lastly, the flexibility is enabled through a software-based addressing which only
uses aligned accesses [Section 4.5].

• We have discussed the number of memory hierarchy levels. The proposed architec-
ture, which enables un-aligned 1D and 2D accesses and the technique for bandwidth re-
duction, naturally map onto two levels of memory hierarchy. We show, however, that it is
possible to design a memory subsystem based on just one level of memory hierarchy that
uses both proposed techniques. The advantages include a reduced software complexity,
which has an impact on the overall performance and cost, an improved algorithmic per-
formance and, in most cases, a reduced power dissipation and area. The power dissipation
is lower for the 2-level memory subsystem when the processing element requires a large
number of accesses per processed block. The number of accesses, which determines the
crossover point, depends on the capacity. Our experiments for a given technology show
that in the case of a small WOI, it is typically larger than 64. In cases of medium to large
WOI, the crossover point is located between 16 and 64 accesses [Section 4.6].

• We have included a benchmark of our memory subsystem. In order to rank a mem-
ory subsystem, we have proposed a set of six criteria: Minimal off-chip memory band-
width, Predictability, High processing element bandwidth (high performance), Flexibility,
Efficiency and, Scalability. Our memory subsystem is benchmarked against the cache-
based solutions and against the customized solutions that use single-pixel wide memory
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banks using the proposed six criteria. Our proposal proves to be better on the average than
the other solutions. Per individual criterion, our subsystem is better or equal than other
solutions as well [Subsection 4.7].

• We have included a proof of concept. A processor that implements the three-
dimensional recursive search motion estimation algorithm [23] and processes HDTV ma-
terial (1920*1080) in real-time, has been developed and synthesized. Comparison of the
performance per square millimeter with the Trimedia TM3270 processor shows that our
implementation is eight times more efficient [Appendix C].

5.2 Future work
A number of possibilities exist for further extension of this work. A few that we identified
as the most promising, are outlined as Subsections in the text to follow.

5.2.1 Improved user interaction
In this thesis, we have proposed a method for off-chip memory bandwidth minimization
and a data organization that enables efficient un-aligned accesses. However, the user inter-
action with the proposed memory subsystem, or the Application Programming Interface
(API), can further improve. Namely, the application programmer is responsible for plac-
ing the scratchpad read and write operations. Here we list the problems and propose a
research direction to address them.

1. During the read operations, the eventual pixel padding has to be taken care of ex-
plicitly in software. Pixel padding is typically needed at picture borders and its
implementation in software causes several negative effects: Conditional code exe-
cution, increased complexity of software, increased program memory capacity, per-
formance penalties, longer software design and verification time, etc. One of the
possibilities is to store the padded pictures in the off-chip memory. This solution
increases the off-chip memory bandwidth and is therefore particularly inadequate
in case of larger WOI dimensions. Somewhat better solution would be that the
DMA interface performs the padding. This does not increase the off-chip memory
bandwidth, but still requires larger on-chip memory bandwidth and capacity. An
alternative solution is to implement the pixel padding during reading from the low-
est level of the memory subsystem (L0/L01M). This solution leaves the off-chip
memory bandwidth, the on-chip memory bandwidth and capacity intact.

2. The application programmer places the store commands at proper locations in soft-
ware. The 1-level memory subsystem greatly reduces this task by omitting the
unnecessary store commands from higher to lower level of memory hierarchy.
The DMA helps further from a performance point of view. However, the appli-
cation programmer must have in-depth knowledge of the memory subsystem and
the DMA. This problem can be addressed by a software template approach. The
application programmer would start from a generic software template that already
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has loop structure and positions of the DMA requests set in accordance with the
sliding-L1 method. We could go one step further and envisage a complete Graphi-
cal User Interface (GUI) that will enable the application programmer to graphically
enter the picture scanning structure with dimensions of the sliding-L1. Based on the
graphically entered input, a software template can be generated with loops struc-
ture and dimensions, as well as the code fragments related to memory subsystem
loads. The additional output of the GUI may be the cost information such as the
bandwidth towards the off-chip memory, the required capacity and the estimated
area and power of the memory subsystem, etc.

5.2.2 On-chip improvements

On-chip bandwidth reduction:
Chapter 4 shows that due to four major reasons, the 1-level memory subsystem outper-

forms the 2-level memory subsystem. Probably, the only exception is power dissipation,
which is lower for the 2-level memory subsystem in cases where the processing element
issues a large number of block accesses. This happens only beyond a certain number of
block accesses because the data traffic from the L1 to the L0 scratchpad causes signif-
icant power dissipation. We did not investigate techniques for reducing this bandwidth.
Further research might go into the direction of on-chip memory bandwidth reduction and
thereby reduce power dissipation of the 2-level memory subsystem. Additional argument
that goes in favor of the 2-level memory subsystem is that a small L0 scratchpad could be
faster, since it has significantly smaller capacity than the L1 scratchpad.

On-chip memories:
The selected technology influences the on-chip memory subsystem. For example, in

smaller technology nodes, such as 65 nm, the leakage power is larger. Significant differ-
ences exist even for the same technology node, between different vendors. Additionally,
memory banks can be optimized for speed or power dissipation and there are also different
memory technologies, such as SRAM and DRAM. Design parameters, such as the pixel
encoding precision, the supported BOIs and the instantiated on-chip memory capacity
coupled with specific memory technology can lead to different applications of the pro-
posed pixel skewing during writes. This thesis analyzed only a subset of the mentioned
technologies. Further research could focus to effects of various technologies to efficient
configuring the parameters of the L0/L01M scratchpads.

Technology also influences the decision considering on-chip integration of reference
pictures. The miniaturization has led to the integration of tens and hundreds of millions
of transistors on a single chip, implementing multiple processors. This trend may further
continue and include the integration of the off-chip memory, which contains the picture
references. The dominant factor that prevents this from massively happening is cost.
The technology has been advancing to smaller and smaller nodes (e.g. 65 nm or 45 nm
CMOS process) resulting in increased density of components. However, the additional
consequence of that miniaturization is increased cost. In the move from 0.5 µm to 90 nm
technology, the mask costs have increased by a factor of 45 [177]. In addition, the cur-
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rent technology has a miniaturization limit. New technologies, like hafnium, are pushing
the limits to 45 nm and beyond, and enable both faster and more energy efficient chips.
However, even such advanced technologies eventually will stop since the thickness of the
transistor structure is already measured in number of molecules [178]. On the other side,
the picture resolutions have already increased from SD to HD Ready and full HD. There
are indications that this trend may continue beyond full HD to resolutions such as quad
HDTV (3840*2160). In addition to higher resolution, the drive for higher picture quality
may cause further increase of the number of used picture references.

On the other side, the memory technology is also improving. For example, some
studies from Intel discuss the 3D stacking, i.e. mounting the CPU on a RAM, which is
expected to provide an order of magnitude more bandwidth and lower power dissipation.
However, in spite of trends to improve the current memory technology, it is not likely
that in the near future the picture references will be stored on-chip in case of large picture
resolutions (HD-like). The probability that this integration massively happens for smaller
picture sizes and refresh rates is higher. This will enable faster accesses and also wider
access points, which alleviates the bandwidth problem. Although for power reasons, the
memory hierarchies will remain interesting, this integration will bring a new light onto
the problems analyzed in this thesis.

5.2.3 Video coding
Even though not directly targeted by this work, video coding is an important video ap-
plication of today’s world. Many, international, national and proprietary video coding
standards exist. At product level, whether it is a video recorder or player, portable or
not, digital camcorder or still image camera, it almost always contains a video coder, or a
decoder. There are two major common ingredients of a majority of coding standards:

• They are based on motion estimation/compensation, and
• They use some sort of pixel interpolation.

Since the proposed memory organization strongly supports (block-based) motion com-
pensated processing as well as pixel interpolation and filtering with a flexible shape of the
filter footprint, our architecture is a good candidate for video coding. Future work could
investigate how well the proposed concepts fit in the video coding application domain.
One of the questions is how efficient are the proposed ideas in comparison to hardwired
solutions. The proposed memory subsystem in combination with the programmable ar-
chitecture offers flexibility, but the specifications of a video standard are rather fixed.
Furthermore, there are only a limited number of international standards that are currently
in use or emerging. The additional price of programmability compared to hardwired solu-
tions includes the cost of the program memory, additional register files of uniform width,
connectivity. etc. This cost can be reduced (loosing flexibility) if some parts of the algo-
rithm are realized in hardwired logic. An example may be that the output of our memory
subsystem goes directly to the hardwired interpolation unit and the hardwired unit that
computes the sum-of-absolute-differences value (or some other error criterion).
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The second level of the memory hierarchy

THIS appendix quantifies the need for the second level of memory hierarchy. In the
text below, we derive the equation for number of accesses, NA, within the off-chip

memory (denoted as L2). We analyze two common scanning traces of the L0 scratch-
pad, left-to-right-top-to-bottom (LRTB) and meandering. The equations show that the
number of accesses in both cases is few times bigger than the minimal one. Finally, we
quantify the difference between the meandering and LRTB scanning traces in terms of
bandwidth requirement. The results show that typically, the LRTB scanning trace results
in 5-10% more bandwidth towards the upper level of the hierarchy. The equations are
derived assuming that the upper level of the memory hierarchy is the off-chip memory. If
the L1 scratchpad is present in the system, the computed bandwidth would be exposed to
it instead.

NALRTB =
= L2Y (L2X − 1)L0Y

+ L2Y L0XL0Y

= L2Y (L2X − 1 + L0X)L0Y (A.1)

NAMEAND =
= L2Y (L2X − 1)L0Y

+ (L2Y − 1)L0X

+ L0XL0Y
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= L2Y (L2X − 1)L0Y + L2Y L0X + L0XL0Y − L0X

= L2Y ((L2X − 1)L0Y + L0X) + L0X(L0Y − 1)

≈ L2Y ((L2X − 1)L0Y + L0X)(1 +

<1︷ ︸︸ ︷
L0Y − 1

L2Y

≈0︷ ︸︸ ︷
L0X

(L2X − 1)L0Y + L0X
) ≈

≈ L2Y ((L2X − 1)L0Y + L0X)
(A.2)

In the last approximation we made, the following two properties have been used:
L2Y > L0Y − 1 and L2X � 1 ; L0X ≈ L0Y . The consequence of the last two
properties is that L2XL0Y � L0X . Finally, (L2X − 1)L0Y + L0X � L0X .

Note that the above two equations are derived according to the L0 scratchpad’s input
bandwidth. Namely, they assume transfers of even those blocks that are located ”outside”
the picture. The pixels close to picture border should be read from the L1 scratchpad,
conditionally padded outside the picture, and stored in the L0 scratchpad. This border
effect is present regardless of the scanning order and increases the bandwidth towards the
L0 scratchpad. When computing the ratio between two approaches, for example the ratio
between the bandwidth caused by the LRTB and meandering scan, these border effects
will partly cancel each other.

Alternative solution would be to clip the read coordinates provided to the L0 scratch-
pad. To compute the bandwidth and bandwidth differences according to this solution,
the equations would stay similar, only the picture dimensions should be reduced to the
left and right by L0X/2 blocks and to the top and bottom by L0Y /2 blocks. However,
clipping the read coordinates near the picture borders might not be allowed in some cases
because it modifies the algorithm behavior. Example is motion estimation where condi-
tional clipping of motion vectors might not be allowed.

The ratio between the computed number of accesses for the LRTB scanning style and
the minimal number of accesses is defined with the following equation.

NALRTB

NAMIN
=

=
L2Y (L2X − 1 + L0X)L0Y

L2Y L2X

=
(L2X − 1 + L0X)L0Y

L2X

= L0Y (1 +
L0X − 1

L2X
) ≈ L0Y (A.3)

The equation L2X > L0X is always valid and in the first order approximation,
L2X � L0X . Note that this is not always the case. Should that not be the case, the
above ratio is even bigger than L0Y which even more emphasizes the need for the second
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level of memory hierarchy. Similarly is defined the ratio between the computed number
of accesses for the meandering scanning style and the minimal number of accesses:

NAMEAND

NAMIN
=

=
L2Y ((L2X − 1)L0Y + L0X)

L2Y L2X

=
L2XL0Y + L0X − L0Y

L2X
≈ L0Y +

L0X

L2X
− L0Y

L2X

= L0Y (1 +

≈0︷ ︸︸ ︷
1

L2XL0Y /L0X
−

≈0︷ ︸︸ ︷
1

L2X
) ≈ L0Y (A.4)

In the last approximation we made, we used the following property: L2X � 1 ;
L0X ≈ L0Y . Both equations result with the same ratio, being equal to the vertical
dimension of the L0 scratchpad, L0Y .

In the following text, we investigate the bandwidth differences between the LRTB and
meandering scanning orders. In the case of the LRTB scanning order, the full refill occurs
at the beginning of each block line, while in the case of meandering, only once, at the
beginning of the scanning trace. In the following equations, we quantify that difference.
We use Equations A.1 and A.2

NALRTB

NAMEAND
=

=
L2Y (L2X − 1 + L0X)L0Y

L2Y ((L2X − 1)L0Y + L0X)

=
(L2X − 1)L0Y + L0XL0Y

(L2X − 1)L0Y + L0X

=
(L2X − 1)L0Y + L0X + L0X(L0Y − 1)

(L2X − 1)L0Y + L0X

= 1 +
L0X(L0Y − 1)

(L2X − 1)L0Y + L0X

= 1 +
L0Y − 1

L2X − 1
L0X

L0Y + 1

≈ 1 +
L0Y − 1

L2X

L0X
L0Y + 1

(A.5)
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Figure A.1: The difference in bandwidth requirements between the LRTB and meandering scanning order as
a function of the ratio between the picture width and the width of the L0 scratchpad. The results for two heights
of the L0 scratchpad are provided.

Based on Equation A.5, it is possible to compute the difference between the number
of accesses between the LRTB and meandering scanning traces. The difference, showing
for how many percents is the bandwidth of the LRTB scanning order larger than the
meandering one is computed as follows.

NALRTB −NAMEAND

NAMEAND
=

=
NALRTB

NAMEAND
− 1

= 1 +
L0Y − 1

L2X

L0X
L0Y + 1

− 1

=
L0Y − 1

L2X

L0X
L0Y + 1

(A.6)

This difference is computed as a function of L2X

L0X
and L0Y . Figure A.1 illustrates this

difference for two values of L0Y . The LRTB scanning trace typically requires 5-10%
more bandwidth than the meandering.
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Capacity and bandwidth of the L1 scratchpad

THIS appendix provides the derivation of equations related to the capacity and band-
width requirements of the stripe-based, region-based and sliding-L1 scratchpads.

As stated in Subsection 4.5.7, we analyze two cases, L0X = L2X/10 ; L0Y = L2Y /10
and L0X = L2X/20 ; L0Y = L2Y /20. In this appendix, we also use the approxima-
tion that one block-line is equal to 1% L2Y . Example of usage of this approximation
is given here for the case of the vertical dimension of the sliding-L1 scratchpad where
L0Y = 1/10 ∗ L2Y : L1Y = L0Y + 1 = 1/10 ∗ L2Y + 1/100 ∗ L2Y = 11/100 ∗ L2Y .

B.1 Case 1: L0X = L2X/10 ; L0Y = L2Y /10

For the case of the region-based and sliding-L1 approaches, we assume that all regions
have the same dimensions. This should be the goal of the architect as the number of
regions defines the number of region overlaps and thereby the bandwidth overhead. For
the case of L0X = L2X/10 ; L0Y = L2Y /10, the number of region overlaps is de-
fined with the following equation. This derivation is performed replacing the selected L0
scratchpad’s dimensions in Equation 4.16:

nx = d L2X − L1X

L1X − 1/10 ∗ L2X
e = 10d L2X − L1X

10L1X − L2X
e (B.1)

In case all regions are identical, the same value for nx and ny is computed with and
without the usage of the ceiling function. Thereby, from the above equation, the ceiling
function is omitted and L1X can be derived:

nx(10L1X − L2X) = 10(L2X − L1X) =⇒ L1X =
10 + nx

10(nx + 1)
L2X (B.2)
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Similar equations can be derived for the case of L1Y (every occurrence of nx has to be
replaced by ny).

CAPSTRIPE−L1 = L2X(L0Y + 1) =
11
100

L2XL2Y

CAPREGION−L1 = L1XL1Y =
10 + nx

10(nx + 1)
10 + ny

10(ny + 1)
L2XL2Y

CAPSLIDING−L1 = L1X(L0Y + 1) =
11
100

10 + nx

10(nx + 1)
L2XL2Y

(B.3)

Subsection 4.5.7 compares the three approaches using the generic numbers. The com-
parison is performed with respect to the reference point, which is the stripe-based ap-
proach. We continue with that here. Thereby, relative capacities of the region-based and
the sliding-L1 scratchpad are given with the following equations.

CAPREGION−L1

CAPSTRIPE−L1
=

100
11

10 + nx

10(nx + 1)
10 + ny

10(ny + 1)
=

1
11

10 + nx

nx + 1
10 + ny

ny + 1

CAPSLIDING−L1

CAPSTRIPE−L1
=

10 + nx

10(nx + 1)

(B.4)

Bandwidth overhead towards the off-chip memory of the region-related approaches is
already defined with Equations 4.17, 4.19 and 4.21. Here we just replace the dimensions
of the L0 scratchpad with the chosen values.

NASTRIPE−L2−L1

NAMIN−L2−L1
= 1

NAREGION−L2−L1

NAMIN−L2−L1
= 1 + ny

L0Y

L2Y
= 1 +

1
10

ny

NASLIDING−L2−L1

NAMIN−L2−L1
= 1 + nx

L0X

L2X
= 1 +

1
10

nx

(B.5)

Here we analyze the data traffic between the L1 and L0 scratchpads. We start from
the generic equation of the region-based approach, Equation 4.18. This traffic is minimal
in case of the stripe-based approach. The reason is that this approach utilizes only one
region. In such a case, nx = ny = 0. Based on this and Equation A.1, the number
of accesses (transfers) between the stripe-based L1 scratchpad and the L0 scratchpad for
the LRTB scanning order is equal to (nx + 1)(ny + 1)L2Y (L2X − 1 + L0X)L0Y =
L2Y (L2X − 1 + L0X)L0Y . The following equation computes how many times is the
number of accesses between the region-based L1 and the L0 scratchpad bigger then the
number of accesses between the stripe-based L1 and the L0 scratchpad.
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NAREGION−L1−L0

NASTRIPE−L1−L0
=

= (nx + 1)(ny + 1)
L1Y (L1X − 1 + L0X)
L2Y (L2X − 1 + L0X)

= (nx + 1)(ny + 1)
10 + ny

10(ny + 1)

(
10 + nx

10(nx + 1)
− 1/100 + 1/10)L2X

L2X − 1/100L2X + 1/10L2X

= (nx + 1)(ny + 1)
19nx + 109
109(nx + 1)

10 + ny

10(ny + 1)

=
1

1090
(19nx + 109)(10 + ny)

(B.6)

The matching equation for the sliding-L1 scratchpad is obtained based on the previous
one for the case of ny = 0.

NASLIDING−L1−L0

NASTRIPE−L1−L0
= (nx + 1)

19nx + 109
109(nx + 1)

=
1

109
(19nx + 109) (B.7)

B.2 Case 2: L0X = L2X/20 ; L0Y = L2Y /20

We repeat the same process for the smaller L0 scratchpad. Similar to the first case, we
use the property that one block-line is equal to 1% L2Y on few occasions, for example,
L0Y + 1 = 1/20 ∗ L2Y + 1/100 ∗ L2Y = 6/100 ∗ L2Y . Let us first derive the set of
dimensions of the L1 scratchpad. We start again from Equation 4.16 and replace L0X =
1/20 ∗ L2X :

nx = d L2X − L1X

L1X − 1/20 ∗ L2X
e = 20d L2X − L1X

20L1X − L2X
e (B.8)

Assuming the same region dimensions, from the above equation the ceiling function is
omited and the width of the L1 scratchpad L1X can be derived.

nx(20L1X − L2X) = 20(L2X − L1X) =⇒ L1X =
20 + nx

20(nx + 1)
L2X (B.9)

Similar equations can be derived for the case of L1Y (every occurrence of nx has to be
replaced by ny). Based on these equations, we derive capacities of the three approaches.

CAPSTRIPE−L1 = L2X(L0Y + 1) =
6

100
L2XL2Y

CAPREGION−L1 = L1XL1Y =
20 + nx

20(nx + 1)
20 + ny

20(ny + 1)
L2XL2Y

CAPSLIDING−L1 = L1X(L0Y + 1) =
6

100
20 + nx

20(nx + 1)
L2XL2Y

(B.10)
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Thereby, relative capacities of the region-based and the sliding-L1 scratchpad are
given with the following equations.

CAPREGION−L1

CAPSTRIPE−L1
=

100
6

20 + nx

20(nx + 1)
20 + ny

20(ny + 1)
=

5
120

20 + nx

nx + 1
20 + ny

ny + 1

CAPSLIDING−L1

CAPSTRIPE−L1
=

20 + nx

20(nx + 1)

(B.11)

Similar as in the first case, we compute the bandwidth overheads towards the off-chip
memory.

NASTRIPE−L2−L1

NAMIN−L2−L1
= 1

NAREGION−L2−L1

NAMIN−L2−L1
= 1 + ny

L0Y

L2Y
= 1 +

1
20

ny

NASLIDING−L2−L1

NAMIN−L2−L1
= 1 + nx

L0X

L2X
= 1 +

1
20

nx

(B.12)

Finally, we analyze the data traffic from L1 to L0 scratchpad.

NAREGION−L1−L0

NASTRIPE−L1−L0
=

= (nx + 1)(ny + 1)
L1Y (L1X − 1 + L0X)
L2Y (L2X − 1 + L0X)

= (nx + 1)(ny + 1)
20 + ny

20(ny + 1)

(
20 + nx

20(nx + 1)
− 1/100 + 1/20)L2X

L2X − 1/100L2X + 1/20L2X

= (nx + 1)(ny + 1)
9nx + 104

104(nx + 1)
20 + ny

20(ny + 1)

=
1

2080
(9nx + 104)(20 + ny)

(B.13)

The matching equation for the sliding-L1 scratchpad is obtained based on the previous
one for the case of ny = 0.

NASLIDING−L1−L0

NASTRIPE−L1−L0
= (nx + 1)

9nx + 104
104(nx + 1)

=
1

104
(9nx + 104) (B.14)
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Proof of concept

THIS appendix consists of two parts. The first (larger) part presents a processor that
is based on the 2-level memory hierarchy presented in this thesis, and, a mapping

of a motion estimation algorithm. It also compares the achieved efficiency against the
well-known media processor. The second part presents the stand-alone synthesis results
of the L0 scratchpad, which show the percentage of logic used in the L0 scratchpad.

Processor and mapped algorithm characterization
To demonstrate the results achieved by applying the concepts presented in this thesis,

a processor has been designed that can execute algorithms from the application domain.
As an illustration, the 3DRS motion estimation algorithm is mapped onto this proces-
sor. In many applications, this estimator is an inevitable ingredient for achieving high
quality output pictures. From an implementation point of view, it is a challenging algo-
rithm, since it is recursive, implying data dependencies. The input resolution was set to
1920*1080. The 3DRS estimator evaluates 7 quarter-pel accurate motion vector candi-
dates per block of 8*8 pixels. The sum-of-absolute-differences (SAD) was used as the
error criterion comparing interpolated blocks of 8*8 pixels. This implementation did not
use any algorithmic technique for operation count reduction, such as pixel subsampling
at the SAD level or block subsampling at the picture level [120]. In other words, each
block of 8*8 pixels within a picture was evaluated using all its pixels. In addition to
the best vector computation, the visualization of computed vector values is performed as
well [34]. The reason is that one of the targets of this implementation is an FPGA-based
demonstrator system connected to an HDTV panel. The vector visualization requires ad-
ditional computation, on-chip memory storage (double buffering) and off-chip memory
bus traffic (storing the U/V components to the off-chip memory).
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Table C.1 The details of the functionally correct 3DRS motion estimation al-
gorithm implementation.

Resolution and picture-rate 1920*1080p @ 60fps
Effective search area 224*96

Algorithm details

7 quarter-pel accurate cand., 8*8 SAD,
no sub-sampling of any kind,

vector visualization

CMOS Technology TSMC 90nm, WCC
Frequency 250 MHz
Program memory (PMEM) RAM, 512 bits wide, 1024 (850 used) words
ILP at vector datapath 93%
Datapath configuration 4 scalar and 4 16-way vector issue slots
Area logic [mm2] 1.54
Area PMEM (64 Kbytes) [mm2] 1.1
Area 32-bit mem. (4 Kbytes) [mm2] 0.078
Area L0 mem. (32 Kbytes) [mm2] 0.624
Area L1 mem. (88 Kbytes) [mm2] 1.1
Area total [mm2] 4.442
BW towards the off-chip mem. read: 1.29 access/pixel

The processor characteristics are summarized in Table C.1, based on scheduling re-
sults and synthesis reports. The processor’s datapath consists of 4 vector and 4 scalar issue
slots. Vector issue slots are 16-way. The scalar and vector instruction set implements ba-
sic instructions such as addition, subtraction, multiplication, shifting, comparison, etc.
The memory hierarchy enables access to an arbitrarily positioned block of pixels, which
may contain 4*4, 8*2 or 16*1 pixels. In this particular implementation, we only used 8*2
access patterns. Each pixel from the off-chip memory is on the average accessed 1.29
times. The processor was designed using a Silicon Hive technology [18].

The results of this thesis suggest that a 1-level memory subsystem offers a number
of advantages, which are applicable to this particular algorithm as well. However, this
processor is based on a 2-level memory hierarchy, since a functionally correct HDL de-
scription of a 1-level memory subsystem was not available at the time of writing. This
means that the performance can be increased and the cost reduced by using the 1-level
memory subsystem. The performance can be further boosted by further customizing the
memory subsystem (for example, supporting the on-the-fly (bi)linear interpolation), and
in general, adding custom instruction set.

To judge the efficiency of our implementation, we compare it against the selected
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Table C.2 Stand-alone synthesis of the L0/L01M scratchpad.

Bank depth [words] 256 512 1024 2048 4096

Total capacity [KB] 8 16 32 64 128
Example dim. [pix.] 128*64 256*64 256*128 512*128 1024*128
Total area [mm2] 0.433 0.513 0.672 0.996 1.655
Memory area [mm2] 0.385 0.465 0.624 0.947 1.606
Logic area [mm2] 0.048 0.048 0.048 0.049 0.049
Percentage of logic [%] 11 9.3 7.2 4.9 3.0

state-of-the-art IC. The selected IC should execute similar algorithm, ideally the 3DRS.
One of the programmable ICs that is used for video post-processing (based on the 3DRS
motion estimation as well) that lived long to produce several generations, and received
significant publicity, is the Trimedia family of processors [123, 124, 130]. These facts
make Trimedia a suitable comparison point, and we compare our proposal against the re-
cently published (2007) 3DRS implementation on the Trimedia TM3270 processor [130].
The cited implementation performs two motion estimation scans on progressive HDTV
input film material, 1920*1080 at 24 Hz. This is equivalent to one motion estimation
scan performed at 48 Hz. The motion vectors are quarter-pel accurate and 6-8 of them
are evaluated per block. To process this material real-time, the Trimedia TM3270 needs
1240 Mcycles/sec. For a 60 Hz motion estimation, the requirement increases to 1550
Mcycles/sec. The Trimedia processor includes 128 Kbytes cache and occupies 8 mm2

in 90nm CMOS technology. The synthesis of our solution resulted in 4.442 mm2, also
in 90nm technology. Assuming the layout efficiency of 50%, our solution occupies ap-
proximately 6 mm2. To process 60 Hz material real-time, it requires 250 Mcycles/sec.
Comparing the performance per square millimeter, we conclude that our solution is eight
times more efficient.

In order to achieve real-time, the authors in the cited publication are forced to use
algorithmic modifications to reduce the implementation cost. The following methods are
used: block hopping (only 50% of the blocks are processed), pixel subsampling of the
SAD window by a factor of two, and, picture size reduction by a factor of two. Each of
these methods reduces the cost of implementation by approximately factor of two. Since
our proposal is also based on a programmable architecture, we can implement all of the
mentioned methods. The appropriate software modification would lead to the similar
compute complexity reduction factors.

Stand-alone synthesis of the L0/L01M scratchpad
To complete the story, we provide the stand-alone synthesis results of a L0/L01M

scratchpad. The scratchpad consists of four sets, each containing two banks. A bank is
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Figure C.1: Picture illustrates the synthesis results of the L0/L01M scratchpad.

32-bit, or four 8-bit pixels wide. The scratchpad can deliver a BOI that consists of 16*1,
8*2 or 4*4 pixels. The block was synthesized using the 90nm TSMC technology, WCC
at 200 MHz. The results are summarized in Table C.2 and plotted in Figure C.1. The
table is organized in five columns, each providing the data for a specific depth of a single
bank. In addition to synthesis results, an example dimensions of a WOI are provided. The
synthesis numbers are given for the memory and logic separately. The logic percentage
stays in the range of 3% to 11%, depending on the instantiated memory capacity. This
percentage supports our starting assumption from Section 4.4, that the memory banks are
the dominant cost factor.
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