32,233 research outputs found

    An efficient quantum algorithm for spectral estimation

    Get PDF
    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum–classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms

    A Quasi-Random Approach to Matrix Spectral Analysis

    Get PDF
    Inspired by the quantum computing algorithms for Linear Algebra problems [HHL,TaShma] we study how the simulation on a classical computer of this type of "Phase Estimation algorithms" performs when we apply it to solve the Eigen-Problem of Hermitian matrices. The result is a completely new, efficient and stable, parallel algorithm to compute an approximate spectral decomposition of any Hermitian matrix. The algorithm can be implemented by Boolean circuits in O(log2n)O(\log^2 n) parallel time with a total cost of O(nω+1)O(n^{\omega+1}) Boolean operations. This Boolean complexity matches the best known rigorous O(log2n)O(\log^2 n) parallel time algorithms, but unlike those algorithms our algorithm is (logarithmically) stable, so further improvements may lead to practical implementations. All previous efficient and rigorous approaches to solve the Eigen-Problem use randomization to avoid bad condition as we do too. Our algorithm makes further use of randomization in a completely new way, taking random powers of a unitary matrix to randomize the phases of its eigenvalues. Proving that a tiny Gaussian perturbation and a random polynomial power are sufficient to ensure almost pairwise independence of the phases (mod(2π))(\mod (2\pi)) is the main technical contribution of this work. This randomization enables us, given a Hermitian matrix with well separated eigenvalues, to sample a random eigenvalue and produce an approximate eigenvector in O(log2n)O(\log^2 n) parallel time and O(nω)O(n^\omega) Boolean complexity. We conjecture that further improvements of our method can provide a stable solution to the full approximate spectral decomposition problem with complexity similar to the complexity (up to a logarithmic factor) of sampling a single eigenvector.Comment: Replacing previous version: parallel algorithm runs in total complexity nω+1n^{\omega+1} and not nωn^{\omega}. However, the depth of the implementing circuit is log2(n)\log^2(n): hence comparable to fastest eigen-decomposition algorithms know

    Real-Time Krylov Theory for Quantum Computing Algorithms

    Full text link
    Quantum computers provide new avenues to access ground and excited state properties of systems otherwise difficult to simulate on classical hardware. New approaches using subspaces generated by real-time evolution have shown efficiency in extracting eigenstate information, but the full capabilities of such approaches are still not understood. In recent work, we developed the variational quantum phase estimation (VQPE) method, a compact and efficient real-time algorithm to extract eigenvalues on quantum hardware. Here we build on that work by theoretically and numerically exploring a generalized Krylov scheme where the Krylov subspace is constructed through a parametrized real-time evolution, which applies to the VQPE algorithm as well as others. We establish an error bound that justifies the fast convergence of our spectral approximation. We also derive how the overlap with high energy eigenstates becomes suppressed from real-time subspace diagonalization and we visualize the process that shows the signature phase cancellations at specific eigenenergies. We investigate various algorithm implementations and consider performance when stochasticity is added to the target Hamiltonian in the form of spectral statistics. To demonstrate the practicality of such real-time evolution, we discuss its application to fundamental problems in quantum computation such as electronic structure predictions for strongly correlated systems

    Approximating Fractional Time Quantum Evolution

    Full text link
    An algorithm is presented for approximating arbitrary powers of a black box unitary operation, Ut\mathcal{U}^t, where tt is a real number, and U\mathcal{U} is a black box implementing an unknown unitary. The complexity of this algorithm is calculated in terms of the number of calls to the black box, the errors in the approximation, and a certain `gap' parameter. For general U\mathcal{U} and large tt, one should apply U\mathcal{U} a total of t\lfloor t \rfloor times followed by our procedure for approximating the fractional power Utt\mathcal{U}^{t-\lfloor t \rfloor}. An example is also given where for large integers tt this method is more efficient than direct application of tt copies of U\mathcal{U}. Further applications and related algorithms are also discussed.Comment: 13 pages, 2 figure

    Adiabatic Quantum State Generation and Statistical Zero Knowledge

    Get PDF
    The design of new quantum algorithms has proven to be an extremely difficult task. This paper considers a different approach to the problem, by studying the problem of 'quantum state generation'. This approach provides intriguing links between many different areas: quantum computation, adiabatic evolution, analysis of spectral gaps and groundstates of Hamiltonians, rapidly mixing Markov chains, the complexity class statistical zero knowledge, quantum random walks, and more. We first show that many natural candidates for quantum algorithms can be cast as a state generation problem. We define a paradigm for state generation, called 'adiabatic state generation' and develop tools for adiabatic state generation which include methods for implementing very general Hamiltonians and ways to guarantee non negligible spectral gaps. We use our tools to prove that adiabatic state generation is equivalent to state generation in the standard quantum computing model, and finally we show how to apply our techniques to generate interesting superpositions related to Markov chains.Comment: 35 pages, two figure
    corecore