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Abstract

We develop an efficient quantum implementation of an important signal processing algorithm for
line spectral estimation: the matrix pencil method, which determines the frequencies and damping
factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides
aquantum speedup in a natural regime where the sampling rate is much higher than the number of
sinusoid components. Along the way, we develop techniques that are expected to be useful for other
quantum algorithms as well—consecutive phase estimations to efficiently make products of
asymmetric low rank matrices classically accessible and an alternative method to efficiently
exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-—classical division
of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step,
requiring much fewer parameters, can operate classically. We show that frequencies and damping
factors can be obtained in time logarithmic in the number of sampling points, exponentially faster
than known classical algorithms.

1. Introduction

Algorithms for the spectral estimation of signals consisting of finite sums of exponentially damped sinusoids
have a vast number of practical applications in signal processing. These range from imaging and microscopy [1],
radar target identification [2], nuclear magnetic resonance spectroscopy [3], estimation of ultra wide-band
channels [4], quantum field tomography [5, 6], power electronics [7], up to the simulation of atomic systems [8].
If the damped frequencies (poles) are known and merely the concomitant coefficients are to be identified, linear
methods are readily applicable. In the practically relevant task in which the poles are to be estimated from the
data as well, however, one encounters a nonlinear problem, and significantly more sophisticated methods have
to be employed.

There are various so-called high resolution spectral estimation techniques that provide precisely such
methods: they include matrix pencil methods (MPM) [9], Prony’s method [10], MUSIC[11], ESPRIT[12], and
atomic norm denoising [13]. These techniques are superior to discrete Fourier transform (DFT) in instances with
damped signals and close frequencies or small observation time 7' > 0 [14—16] and are preferred over of the
Fourier transform in those applications laid out in [1-5, 7, 8]: the DFT resolution in the frequency domain Aw is
proportional to 1/T, which is especially critical for poles that are close to each other. If the poles are sufficiently
damped and close, they cannot be resolved by DFT independently of T. Nonlinear least-squares fitting of the
poles or considering higher-order derivatives of the Fourier transform is in general relatively imprecise, sensitive
to noise, or unefficient. Nonlinear algorithms such as the MPM can still detect poles, where DFT fails, but are
limited to signals composed of finitely many damped sinusoids.

With regard to quantum algorithms dedicated to tasks of spectral estimation—algorithms to be run on a
quantum computer—the celebrated quantum Fourier transform (QFT) [17] provides an exponential speedup
towards the fastest known classical implementations of DFT for processing discretized signals of N samples:
classical fast Fourier transform algorithms, on the one hand, take © (N log N) gates [ 18], whereas QFT takes

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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O (log? N) gates to produce a quantum state encoding the Fourier coefficients in its amplitudes. The QFT
constitutes a key primitive in various quantum algorithms. In particular, it paved the way for quantum speedups
for problems such as prime factoring or order-finding [19]. Regarding spectral estimation, however, QFT
inherits the above mentioned properties of its classical counterpart.

The aim of this work is to develop a quantum version of a powerful spectral estimation technique, the MPM,
providing an analogous quantum speedup from O (poly N) to O (poly log N) for data given in a suitable format.
Hereto, we make use of the fact that establishing eigenvalues and eigenvectors of low-rank matrices—
constituting major steps in this algorithm—can be achieved very fast on quantum computers [20]. Given signal
data either via the amplitudes of a quantum state or stored in a quantum random access memory (QRAM) [21—
23], phase estimation of these matrices can be performed directly. For exponentiating non-sparse operators for
phase estimation, we employ quantum principal component analysis (QPCA) [20] and a recently developed
oracle-based method [24]. In an additional step, we employ a quantum linear fitting algorithm [25, 26] to
determine the summing coefficients and hence all parameters that determine the signal function. In this sense,
we can understand our algorithm also as an instance of a nonlinear quantum fitting algorithm in contrast to
linear curve fitting algorithms [25, 26]. Furthermore, our algorithm can also be employed as a sub-routinein a
higher quantum algorithm that requires spectral estimation as an intermediate step. We expect the developed
methods to provide valuable novel primitives to be used in other quantum algorithms as well.

2. The classical matrix pencil algorithm

We start by briefly recapitulating the original (classical) matrix pencil algorithm before in section 3, we turn to
showing how to implement a quantum version of this algorithm in order to gain an exponential speedup. MPM
[9] comprise a family of efficient signal processing algorithms for spectral estimation and denoising of
equidistantly sampled complex-valued functions fof the type

p P A
F@) =) ceM = e el 0<r<T, 6))
k=1 k=1

with the poles \y = —oy + i B € C, damping factors i € R, frequencies §; € R, and coefficients ¢, € C
fork = 1,...,p,where p € Nisthe number of poles. The damping results in a broadening of the spectral lines
towards Lorentzian curves. Real-valued functions as a special case can be analyzed as well: here, for each

k = 1,...,p either \;, ¢t € R—these terms are non-oscillatory—or there exist A/, ¢ such that Ay = Af and
¢ = ¢ . Clearly, such signals, in which the number of poles p is small and finite, are ubiquitous, or in other
instances provide an exceedingly well approximation of the underlying signal.

Algorithm 1. Matrix pencil algorithm.

Data: Discretized signal with components f] =3 eMA =10, ,N—1,
o A € C, Re(N\p) < 0.
Result: Frequencies { \¢}f_ | and coefficients {ci}f_ .

begin
Create the Hankel matrices F( := (]j+k72)f,{i] and F® := (fine l)fk/il from the signal and compute their (truncated) singular decom-
positions F® = UOsOy®O T j =1, 2,

Solve the generalized eigenvalue problem UM TFOV® 1y = 4y, SO 1. The p frequencies { A¢} can directly be obtained from the p eigen-
values {4 }.

Create the Vandermonde matrix W from the eigenvalues { /1, } and invert the linear equation system We¢ = ( fj) to obtain the coeffi-
cients {cx}.

The idea of MPM is to determine the poles { A;} independently from the coefficients { ¢} and compare the
discretized signal with its translates. Assume that all ¢; are nonzero and A\; = Ay for j = k. First, sample the
function fequidistantly,

P ,
fe U, fi =D aea, @)
k=1

with sampling interval At > 0.In general, the higher the number of samples N, the more robust the procedure
becomes towards noise and the higher the frequencies that can be reconstructed (Nyquist—Shannon sampling
theorem [27])—at the expense of computational effort. For clearness, assume that Nis even. From the sampled
signal, create the Hankel matrices F), F@ ¢ CN/2 % N/2 defined as

2



10P Publishing

NewJ. Phys. 19 (2017) 033005 A Steffens et al

fo J fN/z—1

FO = (EM,Z);Y{;:](} fz fN/Z 3)
fN/2—1 fN/z fN—z
and
ho Lo fap

VA S | W

2) .= N/2 o
F® = (fj+k71)j,k:1 I
Inn Inpn - faa
Note that for complex signals, the matrices F"’ and F® are symmetric but in general not Hermitian. In other

implementations, F(") and F® do not even need to be square. To keep the notation clear, we proceed with
square matrices as just defined. Set i, := eM® for k = 1,...,p.Itis easy to see that F) can be factorized as

FO =M D, MT ®)
with the Vandermonde matrix M € CN/2 % »,
1 1 1
‘ :u’l 'u,z eee ,Uzp
M := (,ui)j:o ,,,,, N/2-1 = : : : ©
k=1,....p M{\r/z—l MQI/Z—I ,ugﬁ—l

and diagonal matrix D, := diag((cx)f_,) € CP*P. The matrix F®), on the other hand, can be decomposed as
F® =M D. D, MT ?)

with D, := diag((,uk)fz ) € CP*P Note that equations (5) and (7) are neither the eigenvalue nor the singular
value decomposition of F™V and F®, respectively; the column vectors of M do not even have to be orthogonal.
We can see from these equations that both F® and F® have rank p, which will in general also be the case for the
linear matrix pencil [28]

F@ — y FO = M D, (D, — v 1) MT, (€))

unless v € C matches an element of the set {4, }{_,. Hence, all 14, are solutions of the generalized eigenvalue
problem (GEVP)

F®y =~ FOy, ©)]

with v € CN/2. The matrix pair (F®, F(!) is in general regular and accordingly results in N /2 generalized
eigenvalues [29]—not all of these correspond to a ;.. There are different extensions that take care of this issue
and increase algorithmic stability (see, e.g., [30]). To make the algorithm accessible to an efficient quantum
implementation, we will consider a specific MPM variant, the direct MPM [9]: we make use of the singular value
decompositions of FV and F?, keeping only the nonzero singular values and the corresponding singular
vectors,

FO = yOshyht yo vy e CN/2xp, (10)

with S € CP*P fori = 1, 2. This singular value decomposition of a Hankel matrix of size order N X Nis the
time-critical step of the entire algorithm and it scales with © (N? log N') using state-of-the-art classical
algorithms [31, 32]. We multiply U ¥ from the leftand V® from the right to

F@ _— v FD = F® — UuMsOym ¥ (11)
and see that the resulting equivalent GEVP

UDTFOVM 4y = 4 §O 4y, (12)

with w € CP?,yields exactly {11, }7_, as eigenvalues and via Ay = log(s;,) /At the corresponding poles. The
eigenvalues can be retrieved in © (p?) steps using the QZ algorithm [33]. Although in general it can be
numerically favorable to solve the GEVP directly [29], SI is an invertible diagonal matrix and it is in practice
sufficient to solve the equivalent ordinary eigenvalue problem

(S(U)’lU(l) TFQYVD 4y = vy w. (13)

The coefficients { ¢} are linearly related to the signal and can be obtained by plugging { 11, }7_, into an
overdetermined Vandermonde equation system,

3
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1 | | a £,
oy My iy c
We=|: : : : 2 = ﬁ > (14)
N-1 , N—-1 N—1 :
Hy Hy My r i

and computing the least squares solution

¢:=arg min||W ¢ — f|, (15)
cecr

in terms of the 2-norm, ||-||,, e.g. via applying the Moore—Penrose pseudoinverse W+ := (W W)~ 'W to the
signal vector f. Thus, all parameters that determine the signal are reconstructed.

3. Quantum implementation
In the following, we describe how to implement an efficient quantum analogue of the MPM.

Algorithm 2. Quantum matrix pencil algorithm.

Data: Discretized signal with components f; = S-f_ ¢ eM2, j=0,..,N — 1,
e M € C, Re(M) < 0 either from QRAM or encoded in a quantum state.
Result: Frequencies { \¢}{_, and coefficients {¢i}f_,.
begin
Perform concatenated phase estimations via exponentiating Hermitian matrices £, F® that contain the matrices F(), F®, respectively,
yielding the p biggest singular values and the overlaps { <u}1) [uf?) }and { (v}”lv,f”) } of the according left and right singular vectors.
Construct the according matrices and solve the eigenvalue problem classically to obtain the poles { A }.
Build a fitting matrix from the poles and obtain the coefficients { ¢} via quantum linear fitting.

For an efficient quantum algorithm, we assume that the number of poles p is constant and small relative to
the number of samples N, which is a natural setting since in practice, we are often interested in damped line
spectra with fewer constituents and higher sampling rates for robustness towards noise. The guidingidea s to
condense all arrays of size O (V) in equation (13) into arrays of size O (p) by rewriting the first term in
equation (12),

<“1(1)| s 0 <V1(2) ‘
Co ) ) . : ) ) |
(2)
() 0 |
as

M) e P | [s2 o [P i)

: : : =USOY, (16)
() Py ([0 ] P e )

with U, V € CP*P. The singular values { s,fj )} will be obtained via quantum phase estimation [34, 35], the
overlaps (v |y’ )} via two concatenated quantum phase estimations. The eigenvalue problem equation (13),

SEHYTYSDVw = v w, (17)

is now determined by 2p? complex and 2p real numbers, and can easily be evaluated classically in © (p?)
operations, yielding the required poles Ay = log(y1,)/At for k = 1,...,p. Thus, as other efficient quantum
algorithms [36, 37], the classical result is a low-dimensional read-out quantity. Otherwise, the read-out costs
would neutralize any performance gain in the algorithm. After that, the poles are used as input for a quantum
linear fitting algorithm yielding the coefficients { ¢}. In the following, we describe the individual steps of the
quantum algorithm in detail. We start by discussing the quantum preparation of the Hankel matrices.

3.1. Accessing the data
In order to realize a quantum speedup, the signal has to be accessible in a fast and coherent way—otherwise, the
read-in process alone would be too costly. The data input for the matrix pencil algorithm consists of a time series

4
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(f; )?’:’OI. We consider two crucially different approaches of data access/availability for the quantum algorithm,
with the main focus of this work being on the first approach:

(i) The signal is stored in a quantum accessible form such as quantum RAM. In other words, we are provided
with access to the operation

17)10) = 1)1 (18)

for j = 0,...,N — 1, with the signal values encoded in binary form in the second quantum register. In
frk/il € CN/2xN/2and i = 1, 2, we can perform the
following operation with straightforward index manipulations,

1) VM EVI0) —> IR D)1 i pvis) (19)

for j, k = 1,...,N /2. Theancilla prepared in |i), i = 1, 2, will be used in an entirely classical manner. This
operation can be used to simulate Hankel matrices via the non-sparse matrix simulation methods of
[24,38].

One way to implement signal access in equation (18) is via QRAM [21, 22]. As discussed in [21, 22], the
expected number of hardware elements that are activated ina QRAM call is O (poly log N). For each
memory call, the amount of required energy and created decoherence thus scales logarithmically with the
memory size. Note that because of their peculiar structure, (N x N)-Hankel matrices require only O (V)
elements to be stored. In comparison, a general s-sparse matrix requires storage of O (Ns) elements.

order to create the Hankel matrix F¥ = (f;,;,; 5)

(if) Asasecond approach, we have been given multiple copies of particular quantum state vectors encoding the
data in their amplitudes. This approach does not require quantum RAM and operates using the quantum
principal component algorithm (QPCA). Importantly, our method then compares to the QFT in the sense
that it operates on a given initial state that contains the data to be transformed.

The states that are processed by QPCA correspond to positive semidefinite matrices, which is in general not
the case for the Hankel matrices F®). Adding a sufficiently scaled unit matrix would enforce positivity, but
the resulting matrix would not have the required low rank anymore. It turns out, however, that by
employing a new type of extended matrix, we can use QPCA to compute singular value decompositions of
indefinite matrices and make it applicable for our algorithm, as is fleshed out in appendix B. The given state
vectors have to be of a particular form such as

N/2 _

> IR EDI0) + a®@(FOTFD); 1)), (20)
k=1

IX®) =

Cc®

with C® = (|[FD|5 + a® 2|[F®TFD|]) and a known scaling constant a” such that

(@)1 = O (max; | (FOTFD); (|), where || F?||, is the Frobenius norm of F®. This state includes in its
amplitudes information about the Hankel matrix F®” and F®F®. The particular form of | ) will become
clear in the next section. The advantages of the matrix pencil algorithm over the usual Fourier transform
come ata price in the quantum algorithm: we require availability of the state vectors | y”) instead of the
signal state vector 3, f:| ).

In the next section, we show how the operation in equation (18) or, alternatively, multiple copies of | () can
be used to efficiently simulate a Hermitian matrix that encodes the eigenvalues and associated eigenvectors of the
Hankel matrices.

3.2. Simulating the Hankel matrices

We would like to obtain the singular values and vectors of F") and F® with a quantum speedup via phase
estimation, which for real signals correspond, up to signs, to their eigenvalues and vectors. Since the procedure is
the same for FV'and F, for clarity we will drop the index in this section and use F for both matrices. Phase
estimation requires the repeated application of powers of a unitary operator generated by a Hermitian matrix to
find the eigenvalues and eigenvectors of that matrix. Thus, we need to connect both Hankel matrices, generally
non-Hermitian, to Hermitian matrices. Depending on the input source discussed in the previous section, this is
done in different ways.

Generally, since Fis not sparse, we cannot make use of the sparse simulation techniques described in [39].
Although both matrices have lowrank p < N, they will in general not be positive definite, so that QPCA [20]
cannot readily be used either. Note that although F'F and FF" are positive definite, provide the correct singular
vectors of F, and can be efficiently exponentiated, the phase relations between left and right singular vectors,
which are necessary for the matrix pencil algorithm, are not preserved. This insight can be taken as yet another
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motivation to look for more general efficient methods to exponentiate matrices that exhibit a suitable structure,
such as being low-rank, sparse or having a low tensor rank.

For the oracular setting (i), we construct a Hermitian matrix F and apply the unitary operator e~ F* to an
initial quantum state. Hereto, we employ the ‘extended matrix’

T = 0 F NxN
Fe|p bleco 1)
which is Hermitian by construction. Its eigenvalues correspond to the singular values £s;, j = 1,...,N /2,0f F
and its eigenvectors are proportional to (1, +v) € CN.Importantly, the phase relations between left and right
singular vectors are preserved. Note that an operation analogous to equation (18) for the extended matrix can be
easily constructed from equation (18). The method developed in [24] allows us to exponentiate non-sparse
Hermitian matrices in this oracular setting. Following their discussion, equation (19) is mapped to the
corresponding entry of a modified swap matrix Sz, resulting in the matrix

N
St = > Fx lk){jl ® |j)kl € CN>N", (22)
jk=1

In [24], it is shown that performing infinitesimal swap operations with Sg on an initial state p ® o with auxiliary
state p == (1/N)},_, is equivalent to just evolving o in time with the Hamiltonian F for small At > 0, i.e.

trl(efiSﬁAt PR o eiSﬁAt) ~ efiﬁ At/N eif At/N (23)

The modified swap matrix S is one-sparse within a quadratically larger space and can be efficiently
exponentiated with the methods in [39-41] with a constant number of oracle calls and run time O (log N),
where we omit polylogarithmic factors in O by use of the symbol 0. Achieving anaccuracy € > 0 for the

eigenvalues requires
2
O(II [ ) (24)

52

steps in the algorithm [24], where || F || denotes the maximal absolute element of F. The phase estimation is
performed as discussed in [42] to obtain the 1 /&2 scaling compared to the 1/&? scaling of the original work
[20, 24]. Note that in our setting |F;,k| = O(1)andin particular ||F ||.x = ©(1). The run time is the number of
steps multiplied by the run time of the swap matrix simulation, i.e. 0 (log N /&?). In appendix A, we discuss an
alternative approach for efficient matrix exponentiation developed in [38], and check its applicability to our
algorithm.

In setting (ii), where we are given multiple copies of state vectors, we proceed in a different way employing
QPCA. The state vector | x) can be reduced to a particular quantum density matrix as

1 FF? a F(F'F
N d— | e FER g (25)
C|a (FFH)Ft % (F'F)(F'F)
With quantities C = (||F|; + a?||F'F|[3)and a~! = O (max; | (F'F);x|) as before. In the same way,
2 (@t T ¥ _
1 [@ FBEF) aFER] _ & -
c| a@EPF FFT
can be prepared from a permuted state vector |Y). The matrix
Z:=(G+G)/2 27)

is positive semi-definite with unit trace by construction, just as required by the QPCA. Invoking the singular
value decomposition of F = USV'T, its eigenvalues in terms of the singular values of Fare given by

sz (as; = 1)? / (2C), its eigenvectors are (u;, v;) € CN. The matrix Z has twice the rank of F. The application of
QPCA then allows resolving its eigenvalues to an accuracy € > 0 using

1
o(—z) (28)

9

copies of | ) and | Y) [20] for a total run time of again O (log N /2). In appendix B, we provide further details on
this method.

Both the oracular and the QPCA setting can be employed in quantum phase estimation to obtain the
singular values and associated singular vectors of the Hankel matrices in quantum form. Phase estimation allows
the preparation of
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2p
> Brlsi) ks v (29)

where F = USVT is the singular value decomposition with right and left singular vectors u; and v. The
associated singular value s; is encoded in a register. The [y arise from the choice of the initial state. The next
section describes concretely how consecutive phase estimation steps are used for the matrix pencil algorithm as a
building block to obtain the signal poles and expansion coefficients.

3.3. Twofold phase estimation
In this section, we describe how to obtain the singular vector overlaps {I/; x} and { V) x}. Hereto, we perform two
concatenated phase estimation procedures to obtain states that encode these overlaps in their amplitudes, which
are essentially determined by tomography. It is important to pay attention to the correct phase relations between
the overlaps. Phase estimation is applied to a specific initial state and an additional eigenvalue register. Initial
states with large overlap with the eigenstates of F, equation (21), or Z, equation (27), respectively, can be
prepared efficiently. For example, FF'/tr(FF)|0)0] or F'F/tr(F'F)|1){1| are suitable initial states and can be
prepared from the oracle equation (18) [20]. For both initial states, the trace with an eigenvector |uy, vi) is
ot / (2% 0?). Alternatively, if we have been given multiple copies of | ), we can simply take Z to be the initial
state [20].

We append two registers for storing the singular values to the initial state, obtaining |0) |0) |¢/) with the

notation |0) := |0, ...,0), and perform the phase estimation algorithm with e~ S#® £ as a unitary operator to
obtain a state proportional to

2p

§j s v 10) 10) 152 s vi), (30)
where for clarity we order the eigenspaces such that positive singular values are put first, i.e. s,ﬁ)p = —5,52),
u,ﬁ)p = u®,and V,E?P = —v{Pfork = 1,...,p. To obtain the overlaps of the matrices U" and U®, the v-part
of the eigenvector of F® is projected out, yielding

1 & 2 ,,@ (2) 2) (2) (2)
) = — > v W) 10) 15”) i?, 0) = me ), 0) (1)
1 k=1

with normalization factor v; € R and Zi": g /> = 1.Each singular value s{ ¢ ) € R, canbe determined

efficiently from this with accuracy €, in a runtime of O(log N/2) (see section 3.2). We need to determine the
amplitudes {g, }, which have to be removed from the overlap values. For this, we essentially perform standard
tomography of the quantum state equation (31). The singular register vectors {|s{*) }i‘; | are pairwise

orthogonal, so that the amplitudes {g, }/_, can be efficiently obtained—up to a global complex phase e' "'—via
measurements e.g. of the form
Is) (21 152 521 As) + 1N U1+ (5200 (152) — ils@N @1+ 2D, (32)
with probabilities
|gk1|2, |gk2|2 > |gk1|2 + |gk2|2 +2 i)%(gkl g,::), |gk1|2 + |gk2|2 +2 jm(gkl g::)) (33)

respectively. Suppose g; is known. Then gk can easily be obtained from equation (33). Hence, by fixing one

global phase e (e.g. corresponding to g = + |g| ), all values {g, };* | are unambiguously determined.
Requiring an accuracy

g = V(@) /E(g) (34)

of the probabilities in equation (33) for k = 1, ..., p, denoting expected value and variance with Eand V,
respectively and with £, the reciprocal of the smallest probability, we require O (§, / gé) measurement repetitions
for each amplitude. We thus have established the values

. i
gel = (u®, v ey_ k=1,...,2p. (35)
1

Next, the state vector [1);) is used as input for a second phase estimation procedure with e~ Sz &

operator, yielding

as unitary
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= 1 3 (2, vl (vl 0) )12 ), v
LP) jk=1
2p
w3 Bl ), ) 6o
k=1

with normalization factor v, € R, and 32 h «[* = 1. The inner product (u (1) (1) u®, 0) reduces to
+ jok=11""1 P k
<u}1) |uf?) with vectors in CN. The same way as above, we determine the smgular Values {s}l) } and the values
iv
' ) @ n,,o 8
h]‘,kelﬁ2 = <u]5 ): V]E )|¢0> <Ll]( )|”1£ )>I/—’ 7> k= 1) ~~’2P: (37)
2

up to &, with global phase e' "2 with O (¢, /£},) repetitions for each amplitude. Dividing the values in equation (37)
by the ones in equation (35), we obtain

Ujrvy ellu = <u;1)|u,§2)>uu el g, k=1,..2p, (38)
with ¥y = ¥, — ¥y, vy == v1 /vy and accuracy ~¢, + &. The established overlaps
Dy, Q2 D@ Dy, @ D q,,Q
(@), W @), (WP, () lu® ) (39)

correspond to the same matrix entry of U for j, k = 1, ..., p and can be averaged over. This way, the matrix I/ is
determined up to a global phase and a normalization factor. Repeating the entire procedure, but with projecting
out the u-part,

lu®, v®) 10, v®), k=1,...,2p, (40)
yields all overlaps {(vj(l) |v,52)> %4 ik=p the entries of V, up to a factor vy, e'”v. Note that
Dy, Q@ D.,Q Dy, Q@ D.,Q
Pw?) = =i Iv?) = =P, = (v Ivd) (41)

for j, k = 1,...,p because the y-parts of the F” eigenvectorsfromk = 1,...,pand k = p + 1,...,2p have
opposite signs. For real-valued signals and Hermitian F”), we can perform the procedure with e~ s 0 A instead
of 715+ A and do not need to project the u- and v-parts.

In summary, we have determined the singular values forming matrix S® to accuracy &, in time O( p / €2).In
addition, we have determined the overlaps of the right and left singular vectors of the two Hankel matrices F(
and F®. The required number of repetitions is

2
my = O(%sg + p—th] 42)
3 g En
for obtaining the entries of I/ and analogously ), for obtaining the entries of V. With
~Y 1
ng = o( ngN) (43)
5

for the cost of the phase estimation, this leads to a total run time of

1= ny (ny + ny) = O(P £ logN) (44)
5

with £ == max{¢,, &,}. The performance scalesas n = O (poly log N) for example in the following regime:
first, the number of poles is small compared to N, which is a natural regime, as mentioned above; second,
regarding &, if the overlaps are not too small, £ = O (poly log N); and third, an error 1/e = O (poly log N) can
be tolerated.

3.4. Solving the small classical problem
Having determined the values via phase estimation, the reconstructed eigenvalue equation (17) now reads

Fw = vyuyel@ut) (SO)=17/ §@ Yy = ~ 4. (45)
All (scaled) matrix entries of equation (45) are available classically and we can solve the problem with a classical
algorithm [33] running with time O (p?®). The errors in the matrix entries are amplified within the entries of the
matrix product entries f-] x by a factor of poly p at worst. Taking the inverse of S!’ amounts to inverting its
diagonal entries, hence the relative errors of (S(V )]’]1 are unchanged. These are only small if the effective singular
values of F(V (the ones bigger than a suitable threshold 6)) are sufficiently bigger than zero, resulting in a
condition number of S bounded by maxj(S}j-)) / 0,. F aswell as the perturbed matrix F = F+ AF willin
general not be normal, but diagonalizable: 7 = X diag(\;) X '. According to the Bauer—Fike theorem [43], we
can order the eigenvalues { j\j} of F such that
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N — Nl < kO|F = Fll (46)

for j = 1,...,p, where £ (X) := ||X||;|[X!||, is the condition number of X, which represents the amplification
factor of the matrix perturbation towards the perturbation of the eigenvalues. The matrix perturbation
contributes linearly, while the condition number of X, which is independent of the perturbation AF, is related
to the condition of the underlying inverse spectral estimation problem. This could in principle be ill-conditioned
(e.g. for the reconstruction of extremely small or highly damped spectral components relative to the other ones),
but we are more concerned with problems that are also of interest in the classical world and hence sufficiently
well-conditioned. Note that p, the number of poles, is small by assumption so that this classical step does not
pose a computational bottleneck for the algorithm. For noisy signals, the rank of F® will in general be larger
thanp, F ® could even be full rank—for not too large noise, however, the additional noise components will
remain small such that the effective rank will still be at p. Since only the biggest components of F®) are taken into
account, this results in a rank-p approximation that is best in the Frobenius norm sense (Eckart—Young theorem
[44]) and an effective noise filtering of the underlying signal.

The eigenvalues ~, of equation (45) are determined up to e~i(#u %) ~log(uiv) which corresponds toa
uniform translation of all poles. We can take care of this ambiguity by introducing an additional reference pole
Aref := 0 (corresponding to the eigenvalue p ., = 1) that has to be incorporated into the original signal. This can
easily be achieved by adding any constant to the original signal vector (its normalizability is not affected). Since
for exponentially damped signals SRe(Ar) < 0 holds for each k, the eigenvalue ¢ corresponding to the
reference pole will still be identifiable as the one with the biggest absolute value |,|. Simply dividing all y, by 7,
(corresponding to the transformation Ay At — A At + i(¢,, + ¢y,) + log(vyvy) for each k) then yields the
correct values { 14 } and poles.

3.5. Quantum linear fitting

We feed the poles back into the quantum world by using the quantum fitting algorithm described in [25, 26] to
obtain the coefficients { ¢} in O (log(IN)p) steps and hence the entire parametrization of the input function. We
consider real and imaginary parts of the signal f, the poles A\ At == — oy + 1 F and the coefficients

cx = ay + 1 by separately, and equation (14) becomes

~ ~

We=f (47)
with
[e00cos(B) - 0) ... e~? cos(fy - 0) —e sin(fy - 0) ... —e % Osin(F, - 0) 1
W e’al'ﬁcos(ﬂl Ny .. e N COS(ﬂp-f\\f) — e’“l'ﬁsin(ﬁl Ny .- e*“P‘ﬁsin(ﬂpof\\f)
" le@0in(B - 0) ... e %in(B, - 0) e “%cos(By-0) .. e *%cos(f, - 0)
e*al'ﬁsin(ﬁl-lf\?) e*aﬂ'ﬁsin(ﬂp'lf\\f) e*(‘l‘ﬁcos(ﬂl . N) e*“ﬂ'ﬁcos(ﬂp . N)
[ Re q | [ Re f, |
N Re ) (—Tm ! Re c o | ery
Wm0 = || Nk.fl) ( " Nerman, | 7% cpm, Fouc | 7/F | o,
Ompul™) (Repl ) Jn.1 a Jm f,
| Jm cp | Jm fy

and N := N — 1. The vector 2-norm of the kth column of W can be established in closed form as

1 — e72akN
— if ax >0, and N, if o = 0. (48)

1 — e 2
Hence, || ||, can be computed in time O (p). We will rescale the solution for ¢ such that we can assume that
[W|l» = 1. The norms of matrices || W |, for real-valued signals can be calculated as well by combining the
norms of the kth with the (k + p)th column. Since each row consists of 2p elements, the row norms can be
computed in O (p) as well.

Since «v = (ag), B := (Bk) are known, we can construct a quantum oracle, providing quantum access to the

matrix entries wj i (o, 3),

la) 18)17) 1k} 10) — 1) 18) 1) 1K) Iwjk (v, B3)). (49)
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The matrix W can be prepared as a state vector

2N 2p

w) =23 wialj) 1k) (50)
j=1k=1
following the procedure described in [26] with time O (poly log(N) p &y log(1 / ()), where (is the accuracy of
the preparation of |w) and

&y = max ||wj||,/ min ||w; ;. (51)

Here, we set 0 (g(N)) = O(g(N)poly log(g (N))) for functions g. For the preparation of|]~f>, we require time
O (poly log(N) ff log(l/g)) with

¢ = max|f| / min|f}. (52)

With |w) and | f) prepared, we then can proceed as described in [26, theorems 2 and 3] and obtain with
probability bigger than 2/3 an estimate ¢ in time

5(poly log(N) kyy p>/2 (@éf/s + /ﬁ‘z,vgf/CI) + K3 2p)° §W/E4CI>)/€<I>), with 2-norm accuracy,

rw = | W] / | W+H2, and norm @ of the projection of f onto the column space of W, the fit quality.
Importantly, we can estimate the quality of the fit with time 0] (poly log(N) (¢ ;T & (2p)? Ky / €) / ). Note
that sampling ¢ is efficient because it comprises O (p) components. Altogether, we have determined the sought-

after coefficients and hence all parameters that characterize the signal fin poly log N. This concludes the
description of the quantum matrix pencil algorithm.

4. Summary and discussion

We have developed a quantum implementation of an important algorithm for spectral estimation, the MPM,
taking a tool from signal processing to the quantum world and significantly improving upon the effort required.
Given the arguable scarcity of quantum algorithms with this feature, progress in this respect seems highly
desirable. The quantum MPM is a useful alternative to QFT in many practical applications such as imaging or
simulation of atomic systems, in the same way that classical MPMs and related algorithms are useful alternatives
to the classical Fourier transform. This is especially the case for signals with close damped poles and limited total
sampling time. The presented algorithm can be applied to classical data to solve the classical problem at hand.

For asignal given by N equidistant samples, we have made use of the fact that the eigenvalue problem
equation (17) consisted of large matrices of size O (IN) that could, however, be contracted into manageable
matrices of size O (p) via concatenated use quantum phase estimations in O (poly log N). This justifies the use
of a quantum version of the MPM as opposed to quantum versions of related algorithms like Prony’s method,
where the p quantities leading the corresponding poles are determined in a later step, during the fitting of the
coefficients, and the critical step would already be O (poly N).

The quantum phase estimation was shown to be implementable in two complementary ways: either by
retrieving the input signal via quantum oracle calls such as quantum RAM, or by using multiple copies of a state
with the signal encoded in its amplitudes for QPCA. The developed extended matrix construction for indefinite
matrices significantly expands the set of matrices that can be exponentiated via QPCA. Since QPCA so far solely
relied on positive semidefinite matrices, we expect this to be a useful new primitive also for other quantum
algorithms.

The actual step to determine the poles from an eigenvalue problem ofap X p matrix can be performed
classically since p is assumed to be small. Subsequently, feeding back the established poles into a quantum fitting
algorithm allows the coefficients of the signal again to be determined efficiently in 0 (poly log N). This way, we
have an effective division of labor between classical and quantum algorithms, to the extent that such a hybrid
algorithm is possible efficiently. Classical intermediate steps are for example reminiscent of quantum error
correction, where error syndromes are measured and the quantum state is processed according to the classical
measurement results [45].

In order to create an efficient quantum algorithm, it is essential to adress certain caveats, which are succinctly
listed in Aaronson [46] using the example of the groundbreaking work in [47]: both for the QRAM and the
QPCA setting, the input data can be accessed quickly enough and the Hankel matrices can be exponentiated
efficiently—due to being sparse in a quadratically larger space or by fulfilling the QPCA requirements,
respectively. For this, it is necessary that the entries of the Hankel matrices and hence the input signal have a
similar magnitude © (1). Furthermore, for twofold phase estimation, as for general phase estimation, we need to
be able to prepare initial states that provide sufficiently large overlap with the states we use for further processing.
In the QRAM setting as well as in the QPCA setting, one can employ initial states that are closely related to the
input signal. Analogously, the overlaps in the matrices I/ and V need to be sufficiently large. Reading-out the

10
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O (N) components of the state vectors would foil the achieved quantum speedup; however, asin [36, 37], the
number of necessary output quantities in our algorithm is condensed down to O (p). Each output can be
determined with time O (poly log(N)), provided that Vandermonde matrix W from the established
frequencies is sufficiently well-conditioned, analogous to the requirements related to the condition number in
the matrix inversion algorithm [47]. Naturally, we are interested in sufficiently well-behaved signals where a
classical MPM algorithm could in principle reconstruct all of its components, excluding e.g. highly damped or
relatively small terms, which manifest themselves again in the conditioning of the matrix inversion. In this
respect, the quantum MPM inherits the properties related to the conditioning of its classical analogue.

The outlined procedure is generalizable to arbitrary signal dimensions d, i.e. signals of the type
fty..oty) = Z£ kd 1 ckh ok, @At with ¢ € Cp? by suitable tensor contractions of the array of
signal samples ( f i b
vector. This y1elds the sought-after poles since they are the same for the different time indices ;. For time index-
dependent poles, one can consider ‘enhanced matrices’—embeddings of Hankel matrices that correspond to
one-dimensional projections of the multidimensional signal within a larger block Hankel matrix—as in [48].
There are many potential applications for this, e.g. in radar imaging and geophysics [49].

Beyond the potential use of reducing the computation time of the MPM in its classical applications or
classical postprocessing in quantum applications, it is also worthwhile to consider the possibilities in a pure
quantum setting: these include the examination of quantum systems that feature a discrete set of damped
oscillations such as the vibronic modes of molecules in a condensed-phase environment where the data—as
opposed to what is usually done—would also have to be taken in a quantum coherent manner in order to replace
quantum RAM or to build a state as in appendix B and subsequently be processed by the quantum MPM.

We expect the methods and primitives that we develop and introduce here to be highly useful also when
devising other quantum algorithms. This includes the new ideas on the computation of overlaps by suitably
concatenating quantum phase estimation procedures and on the efficient exponentiation of a novel type of
structured matrices on a quantum computer. We hope that the present work stimulates such further research.

veey

} !, [5] or fixing all time indices but one and applying the MPM on the remaining
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Appendix A. Alternative non-sparse quantum oracle method

Berry et al present a method to exponentiate matrices sublinear in the sparsity [38]. In this section, we
summarize the performance and requirements of this method and the application to the low-rank Hankel
matrices of the present work. The number of oracle queries for simulating a matrix such as the Hermitian F
equation (21) is given by

Din

O(ta/zv sAot/€)s (A1)

where sis the sparsity and ¢ is the error. The quantity A,; > 0 depends on the norms of the matrix as

Avor = AN Aoy with the spectralnorm A = ||F (’)HOO, the maximum column sum norm A; = ||F (’)Hl, and the
maximum matrix element A = ||F (')Hmax . The conditions for this to work are given by At > /¢,
A
z—, (A2)
AmaxA15
and A < A,

We confirm that under reasonable assumptions the low-rank non-sparse Hankel matrices under
consideration in this work can be simulated with O (log N') queries. Assume that the signal is reasonably small

with not too many Zeros This implies that the matrix F* is non-sparse with s = © () and the individual
elements scale as F' ]k = O(1). If we assume that the signal is generated by a few (in fact, p) components, then the
matrix is low rank with rank 2p. Since tr((F*)2) = Zzp X < NYF @12, » we have that the significant

eigenvaluesscaleas \; = ©(N), j = 1, ...,2p.These assumptions have the following straightforward
implications:

(i) The spectral norm (largest eigenvalue)is A = ©(N),

11
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(ii) theinduced 1-norm (maximum columnsum)is A; = ©(N), and

(iii) the maximum elementis A, = ©(1).

Thus, Ay = ©(N?) and the total number of queries is O (t*/2/© (N?) /¢ ). We need time t = ©(1/N) to
resolve the eigenvalues \; = © (V) via phase estimation. Thus, at an error €, we need O (1/+/€) queries, which is
again efficient.

We show that we can satisfy the conditions as follows. Since we have t = ©(1/N) already from phase
estimation, we can assume that with constant effort t > /¢ /A = © (/e /N). Next, by using (i)—(iii) and

s = O(N), wehave
t> A =0 (i) (A3)
AmaxAls N

The third criterion A < A, is satisfied by Gershgorin’s theorem, since the eigenvalues are bounded by the
maximum sum of the absolute elements in a row/column.

Appendix B. Matrix exponentiation via QPCA

In this appendix, we present an alternative way to efficiently exponentiate indefinite matrices, in order to give
more substance to ideas of exponentiating structured matrices while at the same time preserving a phase
relationship. Since exponentiating matrices F € CN/2*N/2while a preserving phase relationship is key to the
above algorithm and is expected to be important in other quantum algorithms, we briefly present an alternative
method that accomplishes this task via QPCA. This method compares to the QFT in the sense that it operates on
a given initial state that contains the data to be transformed in its amplitudes without querying QRAM. We
assume that we have been presented with many copies of the state vector

1 N2

) = 75 20 1R ELO) + aETR)x1)), (B.1)
k=1

with C := (||F|} + a?|FF|}) and a~! :== O (max; | (F'F);x|). The matrix F takes the role of F) and F® of the
main text, so again the classical index 7 is suppressed. Note that even though 4 is exponentially small, the
individual amplitudes of this state are of similar size. Reducing the state in terms of the k index leads to

1 R

tr2(Ix) (xI) = Fel (Z|]><]I|Z(Fj,k|0> + a(F’F)j,k|1>)(Ff,k<0|+a(F’F);-Ff,k<1|)]-
i k=1

In matrix form, this reduced density matrix is written as

T T
oo ] [ FF a F(F'F) ]

C |a (FIF)FT a2 (FF)(F'F) (8.2

By the use of the singular value decomposition of F = USV7, this matrix—positive semi-definite by

construction—can be written as
LU ol 2 aS||U" o
G— _[ ][ ] , (B.3)
CcLO V]las® a%s4fl 0 V¥

In precisely the same way, we are given multiple copies of the state

1 N2

%)== > i) k) (@ (EF);410) + FJiJ1)). (B.4)
k=1

Again reducing the state in terms of the k index leads to

N/2 ,
tra (%) (XD = % [Zm (1S @EFD;40) + FL1)@(EF (0] + (B 51D |,
iN4 k=1

leading to the matrix

il T T
~'=é [az (FFY)(FF") a (EF )F], B5)

G: .
a FT(FFY) F'F
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which can be decomposed as

~ 1[Uu 0][a254 a53] Ut o
G=— . B.6
C[O Viass 2o vt (B.6)
The matrix
7= %(G +3) (B.7)

has still low rank, as it has just twice the rank of F. Its eigenvectors are (1), £v;) € CN and its eigenvalues in
terms of the singular values of Fare given by s (as; + 1)*/(2C) since

1 | FF'+ a® (FFY)(FF") 2a FF'F (B.8)
2C 2a FiFF? a* F'F + (F'F)(F'F) | '
and
1 | FFT + a2 (FF")(FFY) 2a FF'F uj |
2C 2a F'FF a® F'F + (F'F)(F'F) || £ ]
(s? + a%?t + 2as))u; u;
R R Aol e (B.9)
2C | (2as] + s7 £ a’s})v; 2C Vi

This renders standard QPCA [20] readily applicable and allows us to determine the singular spectra of matrices
F, even if they are indefinite, by constructing the positive semidefinite matrix Z.
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