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Abstract
Wedevelop an efficient quantum implementation of an important signal processing algorithm for
line spectral estimation: thematrix pencil method, which determines the frequencies and damping
factors of signals consisting offinite sums of exponentially damped sinusoids. Our algorithmprovides
a quantum speedup in a natural regimewhere the sampling rate ismuch higher than the number of
sinusoid components. Along theway, we develop techniques that are expected to be useful for other
quantumalgorithms aswell—consecutive phase estimations to efficientlymake products of
asymmetric low rankmatrices classically accessible and an alternativemethod to efficiently
exponentiate non-Hermitianmatrices. Our algorithm features an efficient quantum–classical division
of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step,
requiringmuch fewer parameters, can operate classically.We show that frequencies and damping
factors can be obtained in time logarithmic in the number of sampling points, exponentially faster
than known classical algorithms.

1. Introduction

Algorithms for the spectral estimation of signals consisting offinite sums of exponentially damped sinusoids
have a vast number of practical applications in signal processing. These range from imaging andmicroscopy [1],
radar target identification [2], nuclearmagnetic resonance spectroscopy [3], estimation of ultrawide-band
channels [4], quantum field tomography [5, 6], power electronics [7], up to the simulation of atomic systems [8].
If the damped frequencies (poles) are known andmerely the concomitant coefficients are to be identified, linear
methods are readily applicable. In the practically relevant task inwhich the poles are to be estimated from the
data aswell, however, one encounters a nonlinear problem, and significantlymore sophisticatedmethods have
to be employed.

There are various so-called high resolution spectral estimation techniques that provide precisely such
methods: they includematrix pencilmethods(MPM) [9],Prony’smethod [10],MUSIC [11],ESPRIT [12], and
atomic norm denoising [13]. These techniques are superior to discrete Fourier transform (DFT) in instances with
damped signals and close frequencies or small observation time >T 0 [14–16] and are preferred over of the
Fourier transform in those applications laid out in [1–5, 7, 8]: theDFT resolution in the frequency domain wD is
proportional to T1 , which is especially critical for poles that are close to each other. If the poles are sufficiently
damped and close, they cannot be resolved byDFT independently ofT. Nonlinear least-squares fitting of the
poles or considering higher-order derivatives of the Fourier transform is in general relatively imprecise, sensitive
to noise, or unefficient. Nonlinear algorithms such as theMPMcan still detect poles, whereDFT fails, but are
limited to signals composed offinitelymany damped sinusoids.

With regard to quantum algorithms dedicated to tasks of spectral estimation—algorithms to be run on a
quantum computer—the celebrated quantumFourier transform (QFT) [17] provides an exponential speedup
towards the fastest known classical implementations ofDFT for processing discretized signals ofN samples:
classical fast Fourier transform algorithms, on the one hand, takeQ N Nlog( ) gates [18], whereasQFT takes
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Q Nlog2( ) gates to produce a quantum state encoding the Fourier coefficients in its amplitudes. TheQFT
constitutes a key primitive in various quantum algorithms. In particular, it paved theway for quantum speedups
for problems such as prime factoring or order-finding [19]. Regarding spectral estimation, however, QFT
inherits the abovementioned properties of its classical counterpart.

The aimof this work is to develop a quantum version of a powerful spectral estimation technique, theMPM,
providing an analogous quantum speedup from O Npoly( ) to O Npoly log( ) for data given in a suitable format.
Hereto, wemake use of the fact that establishing eigenvalues and eigenvectors of low-rankmatrices—
constitutingmajor steps in this algorithm—can be achieved very fast on quantum computers [20]. Given signal
data either via the amplitudes of a quantum state or stored in a quantum randomaccessmemory (QRAM) [21–
23], phase estimation of thesematrices can be performed directly. For exponentiating non-sparse operators for
phase estimation, we employ quantumprincipal component analysis (QPCA) [20] and a recently developed
oracle-basedmethod [24]. In an additional step, we employ a quantum linearfitting algorithm [25, 26] to
determine the summing coefficients and hence all parameters that determine the signal function. In this sense,
we can understand our algorithm also as an instance of a nonlinear quantumfitting algorithm in contrast to
linear curve fitting algorithms [25, 26]. Furthermore, our algorithm can also be employed as a sub-routine in a
higher quantum algorithm that requires spectral estimation as an intermediate step.We expect the developed
methods to provide valuable novel primitives to be used in other quantumalgorithms aswell.

2. The classicalmatrix pencil algorithm

We start by briefly recapitulating the original (classical)matrix pencil algorithmbefore in section 3, we turn to
showing how to implement a quantum version of this algorithm in order to gain an exponential speedup.MPM
[9] comprise a family of efficient signal processing algorithms for spectral estimation and denoising of
equidistantly sampled complex-valued functions f of the type

 å å= l a b

= =

-f t c c t Te e e , 0 , 1
k

p

k
t

k

p

k
t t

1 1

ik k k( ) ≕ ( )

with the poles l a b= - + Îik k k , damping factors a Î +k , frequencies b Îk , and coefficients Îck

for = ¼k p1, , , where Îp is the number of poles. The damping results in a broadening of the spectral lines
towards Lorentzian curves. Real-valued functions as a special case can be analyzed aswell: here, for each
= ¼k p1, , either l Îc,k k —these terms are non-oscillatory—or there exist l ¢ ¢c,k k such that *l l=¢k k and
*=¢c ck k . Clearly, such signals, inwhich the number of poles p is small andfinite, are ubiquitous, or in other

instances provide an exceedingly well approximation of the underlying signal.

Algorithm1.Matrix pencil algorithm.

Data:Discretized signal with components = å l
=

Df c ej k
p

k
t j

1
k · , = ¼ -j N0, , 1,

Re l lÎc , , 0k k k( ) .

Result: Frequencies l =k k
p

1{ } and coefficients =ck k
p

1{ } .

begin

Create theHankelmatrices + - =F fj k j k
N1

2 , 1
2≔ ( )( ) and + - =F fj k j k

N2
1 , 1

2≔ ( )( ) from the signal and compute their (truncated) singular decom-
positions = =F U S V i, 1, 2i i i i( ) ( ) ( ) ( ) † .

Solve the generalized eigenvalue problem m=U F V w S wk k k
1 2 1 1( ) † ( ) ( ) ( ) . The p frequencies lk{ } can directly be obtained from the p eigen-

values mk{ }.
Create theVandermondematrixW from the eigenvalues mk{ }and invert the linear equation system =Wc fj( ) to obtain the coeffi-
cients ck{ }.

The idea ofMPM is to determine the poles lk{ } independently from the coefficients ck{ }and compare the
discretized signal with its translates. Assume that all ck are nonzero and l l¹j k for ¹j k. First, sample the
function f equidistantly,

å= l
=
-

=

Df f f c, e , 2j j
N

j
k

p

k
t j

0
1

1

k( ) ( )·

with sampling intervalD >t 0. In general, the higher the number of samplesN, themore robust the procedure
becomes towards noise and the higher the frequencies that can be reconstructed (Nyquist–Shannon sampling
theorem [27])—at the expense of computational effort. For clearness, assume thatN is even. From the sampled
signal, create theHankelmatrices Î ´F F, N N1 2 2 2( ) ( ) , defined as
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Note that for complex signals, thematrices F 1( ) and F 2( ) are symmetric but in general notHermitian. In other
implementations, F 1( ) and F 2( ) do not even need to be square. To keep the notation clear, we proceedwith
squarematrices as just defined. Set m l Dek

tk≔ for = ¼k p1, , . It is easy to see that F 1( ) can be factorized as

=F M D M 5c
T1 ( )( )

with theVandermondematrix Î ´M N p2 ,

⎡

⎣
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2
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and diagonalmatrix Î=
´D cdiagc k k

p p p
1≔ (( ) ) . Thematrix F 2( ), on the other hand, can be decomposed as

= mF M D D M 7c
T2 ( )( )

with m Îm =
´D diag k k

p p p
1≔ (( ) ) . Note that equations (5) and(7) are neither the eigenvalue nor the singular

value decomposition of F 1( ) and F 2( ), respectively; the column vectors ofM do not even have to be orthogonal.
We can see from these equations that both F 1( ) and F 2( ) have rank p, whichwill in general also be the case for the
linearmatrix pencil [28]

g g- = -m F F M D D M , 8c
T2 1 ( ) ( )( ) ( )

unless g Î matches an element of the set m =k k
p

1{ } . Hence, all mk are solutions of the generalized eigenvalue
problem (GEVP)

g=F v F v, 92 1 ( )( ) ( )

with Îv N 2. Thematrix pair F F,2 1( )( ) ( ) is in general regular and accordingly results in N 2 generalized
eigenvalues [29]—not all of these correspond to a mk. There are different extensions that take care of this issue
and increase algorithmic stability (see, e.g., [30]). Tomake the algorithm accessible to an efficient quantum
implementation, wewill consider a specificMPMvariant, the directMPM [9]: wemake use of the singular value
decompositions of F 1( ) and F 2( ), keeping only the nonzero singular values and the corresponding singular
vectors,

= Î ´F U S V U V, , , 10i i i i i i N p2 ( )( ) ( ) ( ) ( ) † ( ) ( )

with Î ´S i p p( ) for =i 1, 2. This singular value decomposition of aHankelmatrix of size orderN×N is the
time-critical step of the entire algorithm and it scales withQ N Nlog2( ) using state-of-the-art classical
algorithms [31, 32].WemultiplyU 1( ) † from the left andV 1( ) from the right to

g g- = -F F F U S V 112 1 2 1 1 1 ( )( ) ( ) ( ) ( ) ( ) ( ) †

and see that the resulting equivalent GEVP

g=U F V w S w, 121 2 1 1 ( )( ) † ( ) ( ) ( )

with Îw p, yields exactly m =k k
p

1{ } as eigenvalues and via l m= Dtlogk k( ) the corresponding poles. The
eigenvalues can be retrieved inQ p3( ) steps using theQZ algorithm [33]. Although in general it can be
numerically favorable to solve theGEVPdirectly [29], S 1( ) is an invertible diagonalmatrix and it is in practice
sufficient to solve the equivalent ordinary eigenvalue problem

g=-S U F V w w. 131 1 1 2 1( ) ( )( ) ( ) † ( ) ( )

The coefficients ck{ }are linearly related to the signal and can be obtained by plugging m =k k
p

1{ } into an
overdeterminedVandermonde equation system,
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and computing the least squares solution


-

Î
 c W c farg min 15

c
2

p

ˆ ≔ ˜ ( )
˜

in terms of the 2-norm, 2· , e.g. via applying theMoore–Penrose pseudoinverse + -W W W W1≔ ( )† † to the
signal vector f. Thus, all parameters that determine the signal are reconstructed.

3.Quantum implementation

In the following, we describe how to implement an efficient quantum analogue of theMPM.

Algorithm2.Quantummatrix pencil algorithm.

Data:Discretized signal with components = å l
=

Df c ej k
p

k
t j

1
k · , = ¼ -j N0, , 1,

Re l lÎc , , 0k k k( ) either fromQRAMor encoded in a quantum state.

Result: Frequencies l =k k
p

1{ } and coefficients =ck k
p

1{ } .

begin

Perform concatenated phase estimations via exponentiatingHermitianmatrices  F F,1 2( ) ( ) that contain thematrices F 1( ), F 2( ), respectively,

yielding the p biggest singular values and the overlaps á ñu uj k
1 2{ ∣ }( ) ( ) and á ñv vj k

1 2{ ∣ }( ) ( ) of the according left and right singular vectors.

Construct the accordingmatrices and solve the eigenvalue problem classically to obtain the poles lk{ }.
Build a fittingmatrix from the poles and obtain the coefficients ck{ }via quantum linearfitting.

For an efficient quantumalgorithm,we assume that the number of poles p is constant and small relative to
the number of samplesN, which is a natural setting since in practice, we are often interested in damped line
spectrawith fewer constituents and higher sampling rates for robustness towards noise. The guiding idea is to
condense all arrays of size O N( ) in equation (13) into arrays of size O p( ) by rewriting the first term in
equation (12),

as

⎡
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⎤
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1
2

1
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1
1

2 1 2

1
2

2

1
2

1
1

1
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2
1
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2

∣ ∣

∣ ∣

∣ ∣
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≕ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

with   Î ´, p p. The singular values sk
j{ }( ) will be obtained via quantumphase estimation [34, 35], the

overlaps á ñv vk
i

l
j∣( ) ( ) via two concatenated quantumphase estimations. The eigenvalue problem equation (13),

  g=-S S w w, 171 1 2( ) ( )( ) ( )

is nowdetermined by p2 2 complex and p2 real numbers, and can easily be evaluated classically inQ p3( )
operations, yielding the required poles l m= Dtlogk k( ) for = ¼k p1, , . Thus, as other efficient quantum
algorithms [36, 37], the classical result is a low-dimensional read-out quantity. Otherwise, the read-out costs
would neutralize any performance gain in the algorithm. After that, the poles are used as input for a quantum
linearfitting algorithm yielding the coefficients ck{ }. In the following, we describe the individual steps of the
quantumalgorithm in detail.We start by discussing the quantumpreparation of theHankelmatrices.

3.1. Accessing the data
In order to realize a quantum speedup, the signal has to be accessible in a fast and coherent way—otherwise, the
read-in process alonewould be too costly. The data input for thematrix pencil algorithm consists of a time series
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=
-fj j

N
0
1( ) .We consider two crucially different approaches of data access/availability for the quantumalgorithm,

with themain focus of this work being on thefirst approach:

(i) The signal is stored in a quantum accessible form such as quantum RAM. In other words, we are provided
with access to the operation

ñ ñ ñ ñj j f0 18j∣ ∣ ∣ ∣ ( )

for = ¼ -j N0, , 1, with the signal values encoded in binary form in the second quantum register. In

order to create theHankelmatrix = Î+ + - =
´F fi

j k i j k
N N N

3 , 1
2 2 2( )( ) and =i 1, 2, we can perform the

following operationwith straightforward indexmanipulations,

ñ ñ ñ ñ ñ ñ ñ ñ+ + -j k i j k i f0 19j k i 3∣ ∣ ∣ ∣ ⟼ ∣ ∣ ∣ ∣ ( )

for = ¼j k N, 1, , 2. The ancilla prepared in ñi∣ , =i 1, 2, will be used in an entirely classicalmanner. This
operation can be used to simulateHankelmatrices via the non-sparsematrix simulationmethods of
[24, 38].
Oneway to implement signal access in equation (18) is viaQRAM [21, 22]. As discussed in [21, 22], the
expected number of hardware elements that are activated in aQRAMcall is O Npoly log( ). For each
memory call, the amount of required energy and created decoherence thus scales logarithmically with the
memory size. Note that because of their peculiar structure, ´N N( )-Hankelmatrices require only O N( )
elements to be stored. In comparison, a general s-sparsematrix requires storage of O Ns( ) elements.

(ii) As a second approach, we have been givenmultiple copies of particular quantum state vectors encoding the
data in their amplitudes. This approach does not require quantumRAMandoperates using the quantum
principal component algorithm(QPCA). Importantly, ourmethod then compares to theQFT in the sense
that it operates on a given initial state that contains the data to be transformed.
The states that are processed byQPCA correspond to positive semidefinitematrices, which is in general not
the case for theHankelmatrices F i( ). Adding a sufficiently scaled unitmatrix would enforce positivity, but
the resultingmatrix would not have the required low rank anymore. It turns out, however, that by
employing a new type of extendedmatrix, we can useQPCA to compute singular value decompositions of
indefinitematrices andmake it applicable for our algorithm, as isfleshed out in appendix B. The given state
vectors have to be of a particular form such as

åc ñ = ñ ñ ñ + ñ
=C

j k F a F F
1

0 1 , 20i

i
j k

N

j k
i i i i

j k
, 1

2

, ,∣ ∣ ∣ ( ∣ ( ) ∣ ) ( )( )
( )

( ) ( ) ( ) † ( )

with = +   C F a F Fi i i i i
2
2 2

2
2( )( ) ( ) ( ) ( ) † ( ) and a known scaling constant a i( ) such that

=-a O F Fmaxi
j k

i i
j k

1
, ,( ) ( ∣( ) ∣)( ) ( ) † ( ) , where F i

2
( ) is the Frobenius normof F i( ). This state includes in its

amplitudes information about theHankelmatrix F i( ) and F Fi i( ) † ( ). The particular formof c ñi∣ ( ) will become
clear in the next section. The advantages of thematrix pencil algorithmover the usual Fourier transform
come at a price in the quantum algorithm:we require availability of the state vectors c ñi∣ ( ) instead of the
signal state vector å ñf jj j∣ .

In the next section, we showhow the operation in equation (18) or, alternatively,multiple copies of c ñi∣ ( ) can
be used to efficiently simulate aHermitianmatrix that encodes the eigenvalues and associated eigenvectors of the
Hankelmatrices.

3.2. Simulating theHankelmatrices
Wewould like to obtain the singular values and vectors of F 1( ) and F 2( ) with a quantum speedup via phase
estimation, which for real signals correspond, up to signs, to their eigenvalues and vectors. Since the procedure is
the same for F 1( ) and F 2( ), for clarity wewill drop the index in this section and use F for bothmatrices. Phase
estimation requires the repeated application of powers of a unitary operator generated by aHermitianmatrix to
find the eigenvalues and eigenvectors of thatmatrix. Thus, we need to connect bothHankelmatrices, generally
non-Hermitian, toHermitianmatrices. Depending on the input source discussed in the previous section, this is
done in different ways.

Generally, since F is not sparse, we cannotmake use of the sparse simulation techniques described in [39].
Although bothmatrices have low rank p N , theywill in general not be positive definite, so thatQPCA [20]
cannot readily be used either. Note that although F F† and FF† are positive definite, provide the correct singular
vectors of F, and can be efficiently exponentiated, the phase relations between left and right singular vectors,
which are necessary for thematrix pencil algorithm, are not preserved. This insight can be taken as yet another

5
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motivation to look formore general efficientmethods to exponentiatematrices that exhibit a suitable structure,
such as being low-rank, sparse or having a low tensor rank.

For the oracular setting (i), we construct aHermitianmatrix F and apply the unitary operator - e F ti to an
initial quantum state. Hereto, we employ the ‘extendedmatrix’

⎡
⎣⎢

⎤
⎦⎥ Î ´F F

F
0

0
, 21N N≔ ( )†

which isHermitian by construction. Its eigenvalues correspond to the singular values = ¼s j N, 1, , 2j , of F
and its eigenvectors are proportional to  Îu v,j j

N( ) . Importantly, the phase relations between left and right
singular vectors are preserved. Note that an operation analogous to equation (18) for the extendedmatrix can be
easily constructed from equation (18). Themethod developed in [24] allows us to exponentiate non-sparse
Hermitianmatrices in this oracular setting. Following their discussion, equation (19) ismapped to the
corresponding entry of amodified swapmatrix SF , resulting in thematrix

å ñá Ä ñá Î
=

´S F k j j k . 22F
j k

N

j k
N N

, 1
,

2 2≔ ∣ ∣ ∣ ∣ ( )

In [24], it is shown that performing infinitesimal swap operations with SF on an initial state r sÄ with auxiliary
state r =N1 j k

N
, 1≔ ( ) is equivalent to just evolvingσ in timewith theHamiltonian F for smallD >t 0, i.e.

r s sÄ »- D D - D D  tr e e e e . 23S t S t F t N F t N
1

i i i iF F( ) ( )

Themodified swapmatrix SF is one-sparse within a quadratically larger space and can be efficiently
exponentiatedwith themethods in [39–41]with a constant number of oracle calls and run time

~
O Nlog( ),

wherewe omit polylogarithmic factors inO by use of the symbol
~
O . Achieving an accuracy e > 0 for the

eigenvalues requires

⎛
⎝⎜

⎞
⎠⎟e

 
O

F
24max

2

2
( )

steps in the algorithm [24], where F max denotes themaximal absolute element of F . The phase estimation is
performed as discussed in [42] to obtain the e1 2 scaling compared to the e1 3 scaling of the original work
[20, 24]. Note that in our setting = QF 1j k,∣ ∣ ( ) and in particular = Q F 1max ( ). The run time is the number of

stepsmultiplied by the run time of the swapmatrix simulation, i.e. e~
O Nlog 2( ). In appendix A, we discuss an

alternative approach for efficientmatrix exponentiation developed in [38], and check its applicability to our
algorithm.

In setting (ii), wherewe are givenmultiple copies of state vectors, we proceed in a different way employing
QPCA. The state vector cñ∣ can be reduced to a particular quantumdensitymatrix as

⎡
⎣⎢

⎤
⎦⎥c cñá

C

FF a F F F

a F F F a F F F F
G

1
. 25

2
∣ ∣ ⟼ ( )

( ) ( )( )
≕ ( )

† †

† † † †

With quantities = +   C F a F F2
2 2

2
2( )† and =-a O F Fmaxj k j k

1
, ,( ∣( ) ∣)† as before. In the sameway,

⎡
⎣⎢

⎤
⎦⎥


C

a F F F F a F F F

a F F F FF
G

1
26

2 ( )( ) ( )
( )

≕ ( )
† † †

† † †

can be prepared froma permuted state vector cñ∣ . Thematrix

+ Z G G 2 27≔ ( ) ( )

is positive semi-definite with unit trace by construction, just as required by theQPCA. Invoking the singular
value decomposition of =F USV †, its eigenvalues in terms of the singular values of F are given by

s as C1 2j j
2 2( ) ( ), its eigenvectors are  Îu v,j j

N( ) . ThematrixZhas twice the rank of F. The application of
QPCA then allows resolving its eigenvalues to an accuracy e > 0 using

⎜ ⎟⎛
⎝

⎞
⎠e

O
1

28
2

( )

copies of cñ∣ and cñ∣ [20] for a total run time of again e~
O Nlog 2( ). In appendix B, we provide further details on

thismethod.
Both the oracular and theQPCA setting can be employed in quantumphase estimation to obtain the

singular values and associated singular vectors of theHankelmatrices in quantum form. Phase estimation allows
the preparation of
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å b ñ ñ
=

s u v, , 29
k

p

k k k k
1

2

∣ ∣ ( )

where =F USV † is the singular value decompositionwith right and left singular vectors uk and vk. The
associated singular value sk is encoded in a register. The bk arise from the choice of the initial state. The next
section describes concretely how consecutive phase estimation steps are used for thematrix pencil algorithm as a
building block to obtain the signal poles and expansion coefficients.

3.3. Twofold phase estimation
In this section, we describe how to obtain the singular vector overlaps j k,{ }and j k,{ }. Hereto, we perform two
concatenated phase estimation procedures to obtain states that encode these overlaps in their amplitudes, which
are essentially determined by tomography. It is important to pay attention to the correct phase relations between
the overlaps. Phase estimation is applied to a specific initial state and an additional eigenvalue register. Initial
states with large overlapwith the eigenstates of F , equation (21), orZ, equation (27), respectively, can be
prepared efficiently. For example, ñáFF FFtr 0 0( )∣ ∣† † or ñáF F F Ftr 1 1( )∣ ∣† † are suitable initial states and can be
prepared from the oracle equation (18) [20]. For both initial states, the trace with an eigenvector ñu v,k k∣ is
s så2k j j

2 2( ). Alternatively, if we have been givenmultiple copies of cñ∣ , we can simply takeZ to be the initial
state [20].

We append two registers for storing the singular values to the initial state, obtaining yñ ñ ñ0 0 0∣ ∣ ∣ with the
notation ñ ¼ ñ0 0, , 0∣ ≔ ∣ , and perform the phase estimation algorithmwith - De S ti

F
2˜( ) as a unitary operator to

obtain a state proportional to

å yá ñ ñ ñ ñ
=

u v s u v, 0 , , 30
k

p

k k k k k
1

2
2 2

0
2 2 2∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( )

where for clarity we order the eigenspaces such that positive singular values are putfirst, i.e. = -+s sk p k
2 2( ) ( ),

=+u uk p k
2 2( ) ( ), and = -+v vk p k

2 2( ) ( ) for = ¼k p1, , . To obtain the overlaps of thematricesU 1( ) andU 2( ), the v-part

of the eigenvector of F 2( ) is projected out, yielding

å åy
n

yñ = á ñ ñ ñ ñ ñ ñ ñ
= =

u v s u g s u
1

, 0 , 0 0 , 0 31
k

p

k k k k
j

p

k k k1
1 1

2
2 2

0
2 2

1

2
2 2∣ ∣ ∣ ∣ ∣ ≕ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( )

with normalization factor n Î +1 and å == g 1k
p

k1
2 2∣ ∣ . Each singular value Î +sk

2( ) can be determined

efficiently from this with accuracy es in a runtime of esO Nlog 3˜ ( ) (see section 3.2).We need to determine the
amplitudes gk{ }, which have to be removed from the overlap values. For this, we essentially perform standard
tomography of the quantum state equation (31). The singular register vectors ñ =sk k

p2
1

2{∣ }( ) are pairwise
orthogonal, so that the amplitudes =gk k

p
1{ } can be efficiently obtained—up to a global complex phase Jei 1—via

measurements e.g. of the form

ñá ñá ñ + ñ á + á ñ - ñ á + ás s s s s s s s s s s s, , , i i , 32k k k k k k k k k k k k
2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 2 1 2 1 2 1 2 1 2

∣ ∣ ∣ ∣ (∣ ∣ )( ∣ ∣) (∣ ∣ )( ∣ ∣) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

with probabilities

Re Im* *+ + + +g g g g g g g g g g, , 2 , 2 , 33k k k k k k k k k k
2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( ) ( )

respectively. Suppose gk1
is known. Then gk2

can easily be obtained from equation (33). Hence, byfixing one

global phase Jei 1 (e.g. corresponding to = +g g1 1
! ∣ ∣ ), all values =gk k

p
1

2{ } are unambiguously determined.
Requiring an accuracy

 e = g g 34g
1 2( ) ( ) ( )

of the probabilities in equation (33) for = ¼k p1, , , denoting expected value and variance with  and ,
respectively andwith xg the reciprocal of the smallest probability, we require x eO g g

2( )measurement repetitions
for each amplitude.We thus have established the values

y
n

= á ñ = ¼J
J

g u v k pe ,
e

, 1, , 2 . 35k k k
i 2 2

0

i

1

1
1

∣ ( )( ) ( )

Next, the state vector y ñ1∣ is used as input for a second phase estimation procedure with - De S ti
F

1( ) as unitary
operator, yielding
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å

å

y
n

yñ = á ñá ñ ñ ñ ñ

ñ ñ ñ

=

=

u v u v u s s u v

h s s u v

1
, , , 0 ,

, 36

j k

p

k k j j k j k j j

j k

p

j k j k j j

2
2 , 1

2
2 2

0
1 1 2 1 2 1 1

, 1

2

,
1 2 1 1

∣ ∣ ∣ ∣ ∣ ∣

≕ ∣ ∣ ∣ ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

with normalization factor n Î +2 andå == h 1j k
p

j k, 1
2

,
2∣ ∣ . The inner product á ñu v u, , 0j j k

1 1 2∣( ) ( ) ( ) reduces to

á ñu uj k
1 2∣( ) ( ) with vectors in N . The sameway as above, we determine the singular values sj

1{ }( ) and the values

y
n

= á ñá ñ = ¼J
J

h u v u u j k pe ,
e

, , 1, , 2 , 37j k k k j k,
i 2 2

0
1 2

i

2

2
2

∣ ∣ ( )( ) ( ) ( ) ( )

up to eh with global phase Jei 2 with x eO h h
2( ) repetitions for each amplitude.Dividing the values in equation (37)

by the ones in equation (35), we obtain

   n n= á ñ = ¼J Ju u j k pe e , , 1, , 2 , 38j k j k,
i 1 2 i∣ ( )( ) ( )

with J J J-2 1≔ , n n n1 2≔ and accuracy e e~ +g h. The established overlaps

á ñ á ñ á ñ á ñ+ + + +u u u u u u u u, , , 39j k j p k j k p j p k p
1 2 1 2 1 2 1 2∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

correspond to the samematrix entry of  for = ¼j k p, 1, , and can be averaged over. This way, thematrix  is
determined up to a global phase and a normalization factor. Repeating the entire procedure, butwith projecting
out the u-part,

ñ ñ = ¼u v v k p, 0, , 1, , 2 , 40k k k
2 2 2∣ ∣ ( )( ) ( ) ( )

yields all overlaps á ñ =v vj k j k
p1 2
, 1{ ∣ }( ) ( ) , the entries of  , up to a factor  n Jei . Note that

á ñ = -á ñ = -á ñ = á ñ+ + + +v v v v v v v v 41j k j p k j k p j p k p
1 2 1 2 1 2 1 2∣ ∣ ∣ ∣ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

for = ¼j k p, 1, , because the v-parts of the F i( ) eigenvectors from = ¼k p1, , and = + ¼k p p1, , 2 have
opposite signs. For real-valued signals andHermitian F i( ), we can perform the procedure with - De S ti F i( ) instead
of - De S ti

F
i( ) and do not need to project the u- and v-parts.

In summary, we have determined the singular values formingmatrix S i( ) to accuracy es in time e~
sO p 2( ). In

addition, we have determined the overlaps of the right and left singular vectors of the twoHankelmatrices F 1( )

and F 2( ). The required number of repetitions is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

e
x

e
x= +n O

p p
42

g
g

h
h2

2

2
( )

for obtaining the entries of  and analogously n for obtaining the entries of  .With

⎛
⎝⎜

⎞
⎠⎟e

= ~
fn O

Nlog
43

2
( )

for the cost of the phase estimation, this leads to a total run time of

⎛
⎝⎜

⎞
⎠⎟ 

x
e

+ = ~
fn n n n O

p
Nlog , 44

2

4
≔ ( ) ( )

with x x xmax ,g h≔ { }. The performance scales as =n O Npoly log( ) for example in the following regime:
first, the number of poles is small compared toN, which is a natural regime, asmentioned above; second,
regarding ξ, if the overlaps are not too small, x = O Npoly log ;( ) and third, an error e = O N1 poly log( ) can
be tolerated.

3.4. Solving the small classical problem
Having determined the values via phase estimation, the reconstructed eigenvalue equation (17)now reads

     n n g=J J+ -w S S w we . 45i 1 1 2ˆ ≔ ( ) ( )( ) ( ) ( )

All (scaled)matrix entries of equation (45) are available classically andwe can solve the problemwith a classical
algorithm [33] runningwith time O p3( ). The errors in thematrix entries are amplifiedwithin the entries of the
matrix product entries j k,

ˆ by a factor of ppoly at worst. Taking the inverse of S 1( ) amounts to inverting its
diagonal entries, hence the relative errors of -S j j

1
,
1( )( ) are unchanged. These are only small if the effective singular

values of F 1( ) (the ones bigger than a suitable threshold q1) are sufficiently bigger than zero, resulting in a
condition number of S 1( ) bounded by qSmaxj j j,

1
1( )( ) .  as well as the perturbedmatrix   = + Dˆ will in

general not be normal, but diagonalizable:  l= -X Xdiag j
1( ) . According to the Bauer–Fike theorem [43], we

can order the eigenvalues lj{ ˆ }of ̂ such that
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 l l k- - X 46j j 2∣ ˆ ∣ ( ) ˆ ( )

for = ¼j p1, , , where k -   X X X2
1

2( ) ≔ is the condition number ofX, which represents the amplification
factor of thematrix perturbation towards the perturbation of the eigenvalues. Thematrix perturbation
contributes linearly, while the condition number ofX, which is independent of the perturbation D , is related
to the condition of the underlying inverse spectral estimation problem. This could in principle be ill-conditioned
(e.g. for the reconstruction of extremely small or highly damped spectral components relative to the other ones),
but we aremore concernedwith problems that are also of interest in the classical world and hence sufficiently
well-conditioned. Note that p, the number of poles, is small by assumption so that this classical step does not
pose a computational bottleneck for the algorithm. For noisy signals, the rank of F i( ) will in general be larger
than p, F i( ) could even be full rank—for not too large noise, however, the additional noise components will
remain small such that the effective rankwill still be at p. Since only the biggest components of F i( ) are taken into
account, this results in a rank-p approximation that is best in the Frobenius norm sense (Eckart–Young theorem
[44]) and an effective noisefiltering of the underlying signal.

The eigenvalues gk of equation (45) are determined up to    j j n n- + -e i log( ) ( ), which corresponds to a
uniform translation of all poles.We can take care of this ambiguity by introducing an additional reference pole
l 0ref ≔ (corresponding to the eigenvalue m = 1ref ) that has to be incorporated into the original signal. This can
easily be achieved by adding any constant to the original signal vector (its normalizability is not affected). Since
for exponentially damped signalsRe l 0k( ) holds for each k, the eigenvalue gref corresponding to the
reference polewill still be identifiable as the onewith the biggest absolute value gk∣ ∣. Simply dividing all gk by gref
(corresponding to the transformation    l l j j n nD D + + +t t i logk k ( ) ( ) for each k) then yields the
correct values mk{ }and poles.

3.5.Quantum linearfitting
We feed the poles back into the quantumworld by using the quantumfitting algorithmdescribed in [25, 26] to
obtain the coefficients ck{ } in O N plog( ( ) ) steps and hence the entire parametrization of the input function.We
consider real and imaginary parts of the signal f, the poles l a bD - +t ik k k≕ and the coefficients

= +c a bik k k separately, and equation (14) becomes

=~
W c f 47˜ ˜ ( )

with

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

b b b b

b b b b

b b b b

b b b b

=

- -

- -~ ~ ~ ~

~ ~ ~ ~

~

a a a a

a a a a

a a a a

a a a a

- - - -

- - - -

- - - -

- - - -

~ ~ ~ ~

~ ~ ~ ~

   

   

W
N N N N

N N N N

:

e cos 0 ... e cos 0 e sin 0 ... e sin 0

e cos ... e cos e sin ... e sin

e sin 0 ... e sin 0 e cos 0 ... e cos 0

e sin ... e sin e cos ... e cos

,

p p

N N
p

N N
p

p p

N N
p

N N
p

0
1

0 0
1

0

1 1

0
1

0 0
1

0

1 1

p p

p p

p p

p p

1 1

1 1

1 1

1 1

( · ) ( · ) ( · ) ( · )

( · ) ( · ) ( · ) ( · )
( · ) ( · ) ( · ) ( · )

( · ) ( · ) ( · ) ( · )

· · · ·

· · · ·

· · · ·

· · · ·

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

Re Im

Im Re

Re

Re

Im

Im

Re

Re

Im

Im

  
m m

m m
=

-
Î Î Î~

- -

- -
´

~

~









W w c

c

c

c

c

f

f

f

f

f

, , ,j k
k
j

k
j

k
j

k
j

N p p

p

p N

N

N
,

1 1

1 1
2 2

1

1

2

0

0

2≔ ( )
( ) ( )

( ) ( )
˜ ≔ ˜ ≔

and -~
N N 1≔ . The vector 2-normof the kth columnof

~
W can be established in closed form as

a a
-
-

> =
a

a

-

-
N

1 e

1 e
, if 0, and , if 0. 48

N

k k

2

2

k

k
( )

Hence,
~ W 2 can be computed in time O p( ).Wewill rescale the solution for c such thatwe can assume that

=~ W 12 . The norms ofmatrices
~ W 2 for real-valued signals can be calculated aswell by combining the

norms of the kthwith the +k p( )th column. Since each row consists of p2 elements, the rownorms can be
computed in O p( ) aswell.

Since a a b b,k k≔ ( ) ≔ ( ) are known,we can construct a quantumoracle, providing quantum access to the
matrix entries a bw ,j k, ( ),

a b a b a bñ ñ ñ ñ ñ ñ ñ ñ ñ ñj k j k w0 , . 49j k,∣ ∣ ∣ ∣ ∣ ⟼ ∣ ∣ ∣ ∣ ∣ ( ) ( )
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Thematrix
~
W can be prepared as a state vector

å åñ = ñ ñ
= =

w w j k 50
j

N

k

p

j k
1

2

1

2

,∣ ∣ ∣ ( )

following the procedure described in [26]with time x z~
O N ppoly log log 1W( ( ) ( )), where ζ is the accuracy of

the preparation of ñw∣ and

x    w wmax min . 51W j j2 2≔ ( )

Here, we set
~
O g N O g N g Npoly log( ( )) ≔ ( ( ) ( ( ))) for functions g. For the preparation of ñf∣ ˜ , we require time

x z~
O Npoly log log 1f( ( ) ( ))with

x f fmax min . 52f j j≔ ∣ ˜ ∣ ∣ ˜ ∣ ( )

With ñw∣ and ñf∣ prepared, we then can proceed as described in [26, theorems2 and 3] and obtainwith
probability bigger than 2/3 an estimate ĉ in time

k x e k x k x e e+ F + F F
~
O N p p ppoly log 2 2W f W f W W

3 2 2 6 5 4( ( ) ( ( ) ) ), with 2-norm accuracy ε,

k = ~ ~+   W WW 2 2, and normΦ of the projection of f̃ onto the column space of
~
W , thefit quality.

Importantly, we can estimate the quality of thefit with time x x k e e+
~
O N ppoly log 2f W W

3 4( ( )( ( ) ) ). Note
that sampling ĉ is efficient because it comprises O p( ) components. Altogether, we have determined the sought-
after coefficients and hence all parameters that characterize the signal f in Npoly log . This concludes the
description of the quantummatrix pencil algorithm.

4. Summary anddiscussion

Wehave developed a quantum implementation of an important algorithm for spectral estimation, theMPM,
taking a tool from signal processing to the quantumworld and significantly improving upon the effort required.
Given the arguable scarcity of quantum algorithmswith this feature, progress in this respect seems highly
desirable. The quantumMPM is a useful alternative toQFT inmany practical applications such as imaging or
simulation of atomic systems, in the sameway that classicalMPMs and related algorithms are useful alternatives
to the classical Fourier transform. This is especially the case for signals with close damped poles and limited total
sampling time. The presented algorithm can be applied to classical data to solve the classical problem at hand.

For a signal given byN equidistant samples, we havemade use of the fact that the eigenvalue problem
equation (17) consisted of largematrices of size O N( ) that could, however, be contracted intomanageable
matrices of size O p( ) via concatenated use quantumphase estimations in O Npoly log( ). This justifies the use
of a quantumversion of theMPMas opposed to quantum versions of related algorithms like Pronyʼsmethod,
where the p quantities leading the corresponding poles are determined in a later step, during the fitting of the
coefficients, and the critical stepwould already be O Npoly( ).

The quantumphase estimationwas shown to be implementable in two complementary ways: either by
retrieving the input signal via quantumoracle calls such as quantumRAM, or by usingmultiple copies of a state
with the signal encoded in its amplitudes forQPCA. The developed extendedmatrix construction for indefinite
matrices significantly expands the set ofmatrices that can be exponentiated viaQPCA. SinceQPCA so far solely
relied on positive semidefinitematrices, we expect this to be a useful newprimitive also for other quantum
algorithms.

The actual step to determine the poles from an eigenvalue problemof a p×pmatrix can be performed
classically since p is assumed to be small. Subsequently, feeding back the established poles into a quantum fitting

algorithm allows the coefficients of the signal again to be determined efficiently in
~
O Npoly log( ). This way, we

have an effective division of labor between classical and quantum algorithms, to the extent that such a hybrid
algorithm is possible efficiently. Classical intermediate steps are for example reminiscent of quantum error
correction, where error syndromes aremeasured and the quantum state is processed according to the classical
measurement results [45].

In order to create an efficient quantum algorithm, it is essential to adress certain caveats, which are succinctly
listed inAaronson [46] using the example of the groundbreakingwork in [47]: both for theQRAMand the
QPCA setting, the input data can be accessed quickly enough and theHankelmatrices can be exponentiated
efficiently—due to being sparse in a quadratically larger space or by fulfilling theQPCA requirements,
respectively. For this, it is necessary that the entries of theHankelmatrices and hence the input signal have a
similarmagnitudeQ 1( ). Furthermore, for twofold phase estimation, as for general phase estimation, we need to
be able to prepare initial states that provide sufficiently large overlapwith the states we use for further processing.
In theQRAMsetting as well as in theQPCA setting, one can employ initial states that are closely related to the
input signal. Analogously, the overlaps in thematrices  and  need to be sufficiently large. Reading-out the
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O N( ) components of the state vectors would foil the achieved quantum speedup; however, as in [36, 37], the
number of necessary output quantities in our algorithm is condensed down to O p( ). Each output can be
determinedwith time

~
O Npoly log( ( )), provided that Vandermondematrix

~
W from the established

frequencies is sufficiently well-conditioned, analogous to the requirements related to the condition number in
thematrix inversion algorithm [47]. Naturally, we are interested in sufficiently well-behaved signals where a
classicalMPMalgorithm could in principle reconstruct all of its components, excluding e.g. highly damped or
relatively small terms, whichmanifest themselves again in the conditioning of thematrix inversion. In this
respect, the quantumMPM inherits the properties related to the conditioning of its classical analogue.

The outlined procedure is generalizable to arbitrary signal dimensions d, i.e. signals of the type
¼ = å l l

¼ = ¼
+ +f t t c, , ed k k

p
k k

t t
1 , , 1 , ,

...
d d

k kd d

1 1
1 1( ) , with Îc pd by suitable tensor contractions of the array of

signal samples ¼ =
-fj j j

N
, , 0

1

d l1
( ){ } [5] orfixing all time indices but one and applying theMPMon the remaining

vector. This yields the sought-after poles since they are the same for the different time indices ti. For time index-
dependent poles, one can consider ‘enhancedmatrices’—embeddings ofHankelmatrices that correspond to
one-dimensional projections of themultidimensional signal within a larger blockHankelmatrix—as in [48].
There aremany potential applications for this, e.g. in radar imaging and geophysics [49].

Beyond the potential use of reducing the computation time of theMPM in its classical applications or
classical postprocessing in quantum applications, it is alsoworthwhile to consider the possibilities in a pure
quantum setting: these include the examination of quantum systems that feature a discrete set of damped
oscillations such as the vibronicmodes ofmolecules in a condensed-phase environment where the data—as
opposed towhat is usually done—would also have to be taken in a quantum coherentmanner in order to replace
quantumRAMor to build a state as in appendix B and subsequently be processed by the quantumMPM.

We expect themethods and primitives thatwe develop and introduce here to be highly useful alsowhen
devising other quantumalgorithms. This includes the new ideas on the computation of overlaps by suitably
concatenating quantumphase estimation procedures and on the efficient exponentiation of a novel type of
structuredmatrices on a quantum computer.We hope that the present work stimulates such further research.
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AppendixA. Alternative non-sparse quantumoraclemethod

Berry et al present amethod to exponentiatematrices sublinear in the sparsity [38]. In this section, we
summarize the performance and requirements of thismethod and the application to the low-rankHankel
matrices of the present work. The number of oracle queries for simulating amatrix such as theHermitian F i( ) in
equation (21) is given by

eLO t s , A13 2
tot( ) ( )

where s is the sparsity and ε is the error. The quantity L > 0tot depends on the norms of thematrix as
L = LLLtot 1 max with the spectral norm L = ¥ F i( ) , themaximumcolumn sumnorm L =  F i

1 1
( ) , and the

maximummatrix element L =  F i
max max

( ) . The conditions for this towork are given by  eLt ,

 L
L L

t
s

, A2
max 1

( )

and L L1.
We confirm that under reasonable assumptions the low-rank non-sparseHankelmatrices under

consideration in this work can be simulatedwith O Nlog( ) queries. Assume that the signal is reasonably small

with not toomany zeros. This implies that thematrix F i( ) is non-sparse with = Qs N( ) and the individual
elements scale as = QF 1jk

i ( )( )
. If we assume that the signal is generated by a few (in fact, p) components, then the

matrix is low rankwith rank p2 . Since l= å =   F N Ftr i
j
p

j
i2

1
2 2 2

max
2(( ) )( ) ( ) , we have that the significant

eigenvalues scale as l = Q Nj ( ), =j p1, ..., 2 . These assumptions have the following straightforward
implications:

(i) The spectral norm (largest eigenvalue) is L = Q N( ),
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(ii) the induced 1-norm (maximum column sum) is L = Q N1 ( ), and

(iii) themaximumelement is L = Q 1max ( ).

Thus, L = Q Ntot
2( ) and the total number of queries is eQO t N3 2 3( ( ) ).We need time = Qt N1( ) to

resolve the eigenvalues l = Q Nj ( ) via phase estimation. Thus, at an error ε, we need eO 1( ) queries, which is
again efficient.

We show thatwe can satisfy the conditions as follows. Sincewe have = Qt N1( ) already fromphase
estimation, we can assume that with constant effort  e eL = Qt N( ). Next, by using (i)–(iii) and
= Qs N( ), we have

⎜ ⎟⎛
⎝

⎞
⎠ L

L L
= Qt

s N

1
. A3

max 1

( )

The third criterion L L1 is satisfied byGershgorinʼs theorem, since the eigenvalues are bounded by the
maximum sumof the absolute elements in a row/column.

Appendix B.Matrix exponentiation viaQPCA

In this appendix, we present an alternative way to efficiently exponentiate indefinitematrices, in order to give
more substance to ideas of exponentiating structuredmatrices while at the same time preserving a phase
relationship. Since exponentiatingmatrices Î ´F N N2 2 while a preserving phase relationship is key to the
above algorithm and is expected to be important in other quantumalgorithms, we briefly present an alternative
method that accomplishes this task viaQPCA. Thismethod compares to theQFT in the sense that it operates on
a given initial state that contains the data to be transformed in its amplitudes without queryingQRAM.We
assume thatwe have been presentedwithmany copies of the state vector

åcñ = ñ ñ ñ + ñ
=C

j k F a F F
1

0 1 , B.1
j k

N

j k j k
, 1

2

, ,∣ ∣ ∣ ( ∣ ( ) ∣ ) ( )†

with +   C F a F F2
2 2

2
2≔ ( )† and -a O F Fmaxj k j k

1
, ,≔ ( ∣( ) ∣)† . Thematrix F takes the role of F 1( ) and F 2( ) of the

main text, so again the classical index i is suppressed. Note that even though a is exponentially small, the
individual amplitudes of this state are of similar size. Reducing the state in terms of the k index leads to

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟* *å åc cñá = ñá ¢ ñ + ñ á + á

¢ =
¢ ¢

C
j j F a F F F a F Ftr

1
0 1 0 1 .

j j k

N

j k j k j k j k2
, 1

2

, , , ,(∣ ∣) ∣ ∣ ( ∣ ( ) ∣ )( ∣ ( ) ∣)† †

Inmatrix form, this reduced densitymatrix is written as

⎡
⎣⎢

⎤
⎦⎥G

C

FF a F F F

a F F F a F F F F

1
. B.2

2
≔ ( )

( ) ( )( )
( )

† †

† † † †

By the use of the singular value decomposition of =F USV †, thismatrix—positive semi-definite by
construction—can bewritten as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=G

C
U

V
S a S

a S a S
U

V

1 0
0

0
0

. B.3
2 3

3 2 4
( )

†

†

In precisely the sameway, we are givenmultiple copies of the state

åcñ = ñ ñ ñ + ñ
=


C

j k a FF F
1

0 1 . B.4
j k

N

j k j k
, 1

2

, ,∣ ∣ ∣ ( ( ) ∣ ∣ ) ( )† †

Again reducing the state in terms of the k index leads to

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟* *å åc cñá = ñá ¢ ñ + ñ á + á

¢ =
¢ ¢ 

C
j j a FF F a FF Ftr

1
0 1 0 1 ,

j j k

N

j k j k j k j k2
, 1

2

, , , ,(∣ ∣) ∣ ∣ ( ( ) ∣ ∣ )( ( ) ∣ ( ) ∣)† † † †

leading to thematrix

⎡
⎣⎢

⎤
⎦⎥

G
C

a FF FF a FF F

a F FF F F

1
, B.5

2

≔ ( )( ) ( )
( )

( )
† † †

† † †
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which can be decomposed as

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥=G

C
U

V
a S a S
a S S

U
V

1 0
0

0
0

. B.6
2 4 3

3 2
( )

†

†

Thematrix

+ Z G G
1

2
B.7≔ ( ) ( )

has still low rank, as it has just twice the rank of F. Its eigenvectors are  Îu v,j j
N( ) and its eigenvalues in

terms of the singular values of F are given by s as C1 2j j
2 2( ) ( ) since

⎡
⎣⎢

⎤
⎦⎥=

+
+

Z
C

FF a FF FF a FF F

a F FF a F F F F F F

1

2

2

2
B.8

2

2

( )( )
( )( )

( )
† † † †

† † † † †

and

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣⎢

⎤
⎦⎥

+
+ 

=
+ 

 
=  

C

FF a FF FF a FF F

a F FF a F F F F F F

u

v

C

s a s as u

as s a s v C
s as

u

v

1

2

2

2

1

2

2

2

1

2
1 . B.9

j

j

j j j j

j j j j
j j

j

j

2

2

2 2 4 3

3 2 2 4
2 2

( )( )
( )( )

( )

( )
( ) ( )

† † † †

† † † † †

This renders standardQPCA [20] readily applicable and allows us to determine the singular spectra ofmatrices
F, even if they are indefinite, by constructing the positive semidefinitematrixZ.
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