464,653 research outputs found

    Tactical AI in Real Time Strategy Games

    Get PDF
    The real time strategy (RTS) tactical decision making problem is a difficult problem. It is generally more complex due to its high degree of time sensitivity. This research effort presents a novel approach to this problem within an educational, teaching objective. Particular decision focus is target selection for a artificial intelligence (AI) RTS game model. The use of multi-objective evolutionary algorithms (MOEAs) in this tactical decision making problem allows an AI agent to make fast, effective solutions that do not require modification to the current environment. This approach allows for the creation of a generic solution building tool that is capable of performing well against scripted opponents without requiring expert training or deep tree searches. The experimental results validate that MOEAs can control an on-line agent capable of out performing a variety AI RTS opponent test scripts

    Impact of Wavelet Kernels on Predictive Capability of Radiomic Features: A Case Study on COVID-19 Chest X-ray Images

    Get PDF
    Radiomic analysis allows for the detection of imaging biomarkers supporting decision-making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set of radiomic features is augmented by considering high-level features, such as wavelet transforms. However, several wavelets families (so called kernels) are able to generate different multi-resolution representations of the original image, and which of them produces more salient images is not yet clear. In this study, an in-depth analysis is performed by comparing different wavelet kernels and by evaluating their impact on predictive capabilities of radiomic models. A dataset composed of 1589 chest X-ray images was used for COVID-19 prognosis prediction as a case study. Random forest, support vector machine, and XGBoost were trained (on a subset of 1103 images) after a rigorous feature selection strategy to build-up the predictive models. Next, to evaluate the models generalization capability on unseen data, a test phase was performed (on a subset of 486 images). The experimental findings showed that Bior1.5, Coif1, Haar, and Sym2 kernels guarantee better and similar performance for all three machine learning models considered. Support vector machine and random forest showed comparable performance, and they were better than XGBoost. Additionally, random forest proved to be the most stable model, ensuring an appropriate balance between sensitivity and specificity

    More than one way to see it: Individual heuristics in avian visual computation

    Get PDF
    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally

    An account of cognitive flexibility and inflexibility for a complex dynamic task

    Get PDF
    Problem solving involves adapting known problem solving methods and strategies to the task at hand (Schunn & Reder, 2001) and cognitive flexibility is considered to be “the human ability to adapt the cognitive processing strategies to face new and unexpected conditions of the environment” (Cañas et al., 2005, p. 95). This work presents an ACT-R 6.0 model of complex problem solving behavior for the dynamic microworld game FireChief (Omodei & Wearing, 1995) that models the performance of participants predisposed to behave either more or less flexibly based on the nature of previous training on the task (Cañas et al., 2005). The model exhibits a greater or lesser degree of cognitive inflexibility in problem solving strategy choice reflecting variations in task training. The model provides an explanation of dynamic task performance compatible with the Competing Strategies paradigm (Taatgen et al., 2006) by creating a second layer of strategy competition that renders it more flexible with respect to strategy learning, and provides an explanation of cognitive inflexibility based on reward mechanism

    Cognitive finance: Behavioural strategies of spending, saving, and investing.

    Get PDF
    Research in economics is increasingly open to empirical results. The advances in behavioural approaches are expanded here by applying cognitive methods to financial questions. The field of "cognitive finance" is approached by the exploration of decision strategies in the financial settings of spending, saving, and investing. Individual strategies in these different domains are searched for and elaborated to derive explanations for observed irregularities in financial decision making. Strong context-dependency and adaptive learning form the basis for this cognition-based approach to finance. Experiments, ratings, and real world data analysis are carried out in specific financial settings, combining different research methods to improve the understanding of natural financial behaviour. People use various strategies in the domains of spending, saving, and investing. Specific spending profiles can be elaborated for a better understanding of individual spending differences. It was found that people differ along four dimensions of spending, which can be labelled: General Leisure, Regular Maintenance, Risk Orientation, and Future Orientation. Saving behaviour is strongly dependent on how people mentally structure their finance and on their self-control attitude towards decision space restrictions, environmental cues, and contingency structures. Investment strategies depend on how companies, in which investments are placed, are evaluated on factors such as Honesty, Prestige, Innovation, and Power. Further on, different information integration strategies can be learned in decision situations with direct feedback. The mapping of cognitive processes in financial decision making is discussed and adaptive learning mechanisms are proposed for the observed behavioural differences. The construal of a "financial personality" is proposed in accordance with other dimensions of personality measures, to better acknowledge and predict variations in financial behaviour. This perspective enriches economic theories and provides a useful ground for improving individual financial services

    Efficiency Gains from Team-Based Coordination: Large-Scale Experimental Evidence

    Get PDF
    The need for efficient coordination is ubiquitous in organizations and industries. The literature on the determinants of efficient coordination has focused on individual decision-making so far. In reality, however, teams often have to coordinate with other teams. We present an experiment with 825 participants, using six different coordination games, where either individuals or teams interact with each other. We find that teams coordinate much more efficiently than individuals. This finding adds one important cornerstone to the recent literature on the conditions for successful coordination. We explain the differences between individuals and teams using the experience weighted attraction learning model.coordination games, individual decision-making, team decision-making, experience-weighted attraction learning, experiment

    A Monte Carlo tree search algorithm for optimization of load scalability in database systems

    Get PDF
    A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Information Technology at Strathmore UniversityVariable environmental conditions and runtime phenomena require developers of complex business information systems to expose configuration parameters to system administrators. This allows system administrators to intervene by tuning the bottleneck configuration parameters in response to current changes or in anticipation of future changes in order to maintain the system’s performance at an optimum level. However, these manual performance tuning interventions are prone to error and lack of standards due to varying levels of expertise and over-reliance on inaccurate predictions of future states of a business information system. The purpose of this research was therefore to investigate on how to design an algorithm that proactively reconfigures bottleneck parameters without over-relying on an accurate model of a stochastic environment. This was done using a comparative experimental research design that involved quantitative data collection through simulations of different algorithm variants. The research built on the theoretical concepts of control theory and decision theory, coupled with the estimation of unknown quantities using principles of simulation-based inferential statistics. Subsequently, Monte Carlo Tree Search, with a variant of the selection stage, was used as the foundation of the designed algorithm. The selection stage was variated by applying a “lean Last Good Reply with Forgetting” (lean-LGRF) strategy and first tested in the context of a strategy board game, Reversi. The lean-LGRF selection strategy applied over 1,000 playouts against the baseline Upper Confidence Bound applied to Trees (UCT) selection strategy recorded the highest number of wins. On the other hand, the Progressive Bias selection strategy had a win-rate of 45.8% against the UCT selection strategy. Lastly, as expected, the UCT selection strategy had a win-rate of 49.7% (an almost 50-50 win-rate) against itself. The results were then subjected to a Chi-square (χ2) test which provided evidence that the variation technique applied in the selection stage of the algorithm had a significantly positive impact on its performance. The superior selection variant was then applied in the context of a distributed database system. This also provided compelling results that indicate that applying the algorithm in a distributed database system resulted in a response-time latency that was 27% lower than the average response-time latency and a transaction throughput that was 17% higher than the average transaction throughput
    corecore