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Abstract: Radiomic analysis allows for the detection of imaging biomarkers supporting decision-
making processes in clinical environments, from diagnosis to prognosis. Frequently, the original set
of radiomic features is augmented by considering high-level features, such as wavelet transforms.
However, several wavelets families (so called kernels) are able to generate different multi-resolution
representations of the original image, and which of them produces more salient images is not yet
clear. In this study, an in-depth analysis is performed by comparing different wavelet kernels and
by evaluating their impact on predictive capabilities of radiomic models. A dataset composed of
1589 chest X-ray images was used for COVID-19 prognosis prediction as a case study. Random
forest, support vector machine, and XGBoost were trained (on a subset of 1103 images) after a
rigorous feature selection strategy to build-up the predictive models. Next, to evaluate the models
generalization capability on unseen data, a test phase was performed (on a subset of 486 images). The
experimental findings showed that Bior1.5, Coif1, Haar, and Sym2 kernels guarantee better and similar
performance for all three machine learning models considered. Support vector machine and random
forest showed comparable performance, and they were better than XGBoost. Additionally, random
forest proved to be the most stable model, ensuring an appropriate balance between sensitivity
and specificity.

Keywords: radiomic features; machine learning models; wavelet kernels; predictive capability;
wavelet-derived features; chest X-ray images; COVID-19 prognosis

1. Introduction

Quantitative imaging biomarkers, i.e., radiomic features, can be used to extract infor-
mation complementary to the visual approach of the radiologist [1]. Radiomics has been
exploited in different scenarios to support the decision making of clinicians at different
stages of the care process, from diagnosis to prognosis. With more details, radiomic signa-
tures can be used for the diagnosis of several pathologies, to predict response to therapy,
and to categorize clinical outcomes in general. Although several best practices [2] and
standardization initiatives [3] have been proposed, full reproducibility of the radiomic
process is still lacking. The imaging used, acquisition protocol, feature extraction setting,
preprocessing, and the machine learning (ML) workflow are variables undermining the
reproducibility of the radiomic process. Several researchers have tried to evaluate the
robustness and the predictive capabilities of radiomic features, depending on specific
external parameters (e.g., segmentation method, quantization level, and preprocessing
steps) [4–6]. This already complex scenario becomes even more complicated when the
classical radiomic feature set is extended by also considering high-level features, such as
wavelet transforms, Laplacian filters (LoG), and intensity transformation (e.g., logarithm,
exponential, gradient, etc.)
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Wavelet-derived features showed strong predictive capabilities in several contexts:
tumor-type prediction of early stage lung nodules in CT [7], neoadjuvant chemotherapy
treatment prediction for breast cancer in MRI [8], low-dose rate radiotherapy treatment re-
sponse prediction of gastric carcinoma in CT [9], liver cirrhosis detection [10], glioblastoma
multiforme differentiation from brain metastases in MRI [11], and grading of COVID-19
pulmonary lesions in CT [12]. The wavelet-derived features are calculated on the image
decompositions—four for 2D images (e.g., X-ray, mammography, ultrasound, etc.) and
eight for 3D volumes (e.g., CT, MRI, etc.)—providing multi-resolution images. This leads
to a substantial increase in the number of features that, if not properly managed, can bring
predictive systems to incur the curse of dimensionality [13]. In addition, several families of
wavelet transforms exist, some improved for noise reduction, others for image compres-
sion; however, in general, all provide a multi-resolution representation of the initial image.
Considering that the predictive ability of wavelet-derived features overcomes the original
ones, analyzing and comparing the behavior of wavelet kernels are worthwhile to provide
a recommendation for their use.

In radiomics, wavelets are often used without paying attention to the type of kernel
involved: the commonly followed approach is to use the default kernel for feature extrac-
tion, without evaluating a-priori which is more suitable for the specific clinical scenario.
Few researchers have approached this problem. In [14], wavelet kernels were compared to
evaluate the role of the CT radiomic features for lung cancer prediction: In [15], a similar
approach was used for the diagnosis of colorectal cancer patients in contrast-enhanced CT.
Both studies used CT imaging, a modality that can provide images with higher resolution
and more defined details, compared with CXR projective imaging.

In this study an in-depth analysis is performed by comparing different wavelet kernels
and by evaluating their impact on predictive capabilities of radiomic models. As case study,
three machine learning radiomics models were implemented to predict the prognosis of
COVID-19 patients from chest X-ray (CXR) images. The Biorthogonal, Coiflets, Daubechies,
Discrete Meyer, Haar, Reverse Biorthogonal, and Symlets wavelet families were considered to
quantify and compare the predictive performance of the radiomic features. The radiomic
features were extracted from the decomposed images, preprocessed, selected, and then used
to train several ML models, including random forest (RF), XGBoost (XGB), and support
vector machine (SVM). The models and the different wavelets were compared to evaluate
the most predictive kernel.

The remainder of this paper is structured as follows: Section 2 describes the dataset
used, the extraction and preprocessing of radiomic features, and the model training.
Section 3 provides the results obtained for the wavelet kernels and trained models. Section 4
discuss the experimental findings. Finally, Section 5 outlines the study conclusions.

2. Materials and Methods
2.1. Dataset Characteristics and Lung Delineation

The dataset used is composed of 1589 CXR images of COVID-19 patients, labeled
as ’SEVERE’ and ’MILD’ disease, according to [16]. This dataset is split into 1103 and
486 patients used for the training and test phases, respectively. This partition was es-
tablished by the organizing committee of the COVID CXR Hackathon competition [17],
who made these datasets available. In more detail, the training dataset (1103 samples)
include 568 severe and 535 mild; the test dataset (486 samples) include 180 severe and
306 mild. From a visual evaluation, it was possible to note that the multicentric dataset
(collected by six different hospitals) is heterogeneous in terms of image size, quality,
gray levels distribution, and origin (some are native digital images, whereas others are
obtained by scanning traditional X-ray films). In particular, regarding the size: for
the training dataset, the most frequent size is 2336× 2836 pixels (35.7%); the other im-
ages have variable sizes (1396− 4280× 1676− 4280 pixels). For the test set (composed of
486 images), 88.27% of the images have 2336× 2836 pixels; the others have variable sizes
(1648− 3027× 1440− 3000 pixels). According to [16], in our study, all the images were re-
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sized at 1024× 1024. The CXR images were stored in .PNG format with a 96 DPI resolution
(pixel size' 0.265× 0.265 mm), and no metadata related to acquisition details are available.

To extract the radiomic features, the regions of interest (ROIs) containing the lungs
have to be identified. To achieve this, a MATLAB®-coded custom tool was implemented
to delineate the lung ROIs: in particular, a semi-automatic delineation modality for the
identifying of the maximum elliptical ROI contained within the lung was implemented.
This choice was motivated by the need to focus the attention on the central region of the
lung, excluding peripheral zones. In Figure 1 two segmentation examples. Due to the
excessive heterogeneity of the CXR dataset, automatic lung segmentation approaches did
not provide satisfactory results. For this reason, it was decided to implement a tool that can
easily support clinicians during the image annotation procedure. Specifically, the imple-
mented semi-automatic algorithm allows the automatic identification of the bounding-box
containing the lung and determining the maximum elliptical ROI contained within it.
The clinician can decide whether to accept it, if the result is satisfactory, or to modify it
to find a more suitable fitting between the elliptic ROI and the lung area by changing
orientation and size of the ellipse. Because this is a supervised semi-automatic approach
(each segmentation is directly validated), and considering the experience of the clinicians
who supported this study, no evaluation step was performed. We decided to implement an
ad hoc computer-assisted tool that can simply and intuitively guide clinicians through the
steps of lung segmentation, from CXR image selection to segmentation mask storage.

Figure 1. Two examples of segmentation obtained by means of the semi-automatic tool able to assist
clinician to detect the elliptical ROIs (highlighted in red) within lungs: in the upper row a MILD
sample; in the lower row a SEVERE sample.
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2.2. Wavelet Transform

The widespread use of wavelet transforms—used in several applications concerning
signal and image processing—is due to their ability to capture information in both the fre-
quency and time domains. In this study, discrete wavelet transform (DWT) was applied to
CXR images. The image passed through high-pass hψ and low-pass hφ filtering operations,
decomposing the images into high-frequency (details) and low-frequency components
(approximation). The decomposition of the image into subimages at different resolution
allows for multi-resolution analysis [18,19]. For this reason, DWT has found numerous
applications in image processing, focusing on denoising [20] and compression [21,22]. DWT
is computed through two functions, the scaling function and the wavelet function [23]. For a
2D signal f (x, y) of size M×N (such as the CXR images considered in this study), the DWT
is defined as:

Wφ(jo, m, n) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)φjo,m,n(x, y) (1)

W I
ψ(j, m, n) =

1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)ψI
j,m,n(x, y) (2)

where:

• Equation (1) represents the scaled version of the image, computed with the scaling
function defined in Equation (3);

• Equation (2) defines the horizontal (H), vertical (V), and diagonal (D) representation of
image (I = {H, V, D}), computed with the wavelet function defined in Equation (4)).

φjo,m,n(x, y) = 2j/2φ(2jx−m, 2jy− n) (3)

ψI
j,m,n(x, y) = 2j/2ψ(2jx−m, 2jy− n) (4)

Finally, the combined application of the scaling function (φ) and the wavelet function (ψ)
obtains four image decompositions (LL, LH, HL, and HH) for 2D transforms, as indicated
in Equations (5)–(8). The same formulas can be adapted and extended for the 3D case,
to consider volumetric imaging (e.g., MRI, CT, etc.). DWT then depends on the low-pass hφ

and high-pass hψ kernel chosen for decomposition.

LL = φ(x, y) = φ(x)φ(y) (5)

LH = ψH(x, y) = ψ(x)φ(y) (6)

HL = ψV(x, y) = φ(x)ψ(y) (7)

HH = ψD(x, y) = ψ(x)ψ(y) (8)

In this study the Biorthogonal (Bior1.5), Coiflets (Coif1), Daubechies (Db3), Discrete Meyer
(Dmey), Haar, Reverse Biorthogonal (Rbio1.5), and Symlets (Sym2) wavelet families [24] were
considered. The following are the main applications of wavelet families:

• Biorthogonal: commonly used for denoising, in particular when white Gaussian noise
is present [25];

• Reverse Biorthogonal: used for compression [26] and denoising [27];
• Coiflet: used for compression [28] and denoising [29];
• Daubechies: provides excellent performance in compression and are popular choice in

medical imaging applications [30];
• Discrete Meyer: in general used for multi-resolution analysis [31] and some variants

for edge and blocking artifact reduction [32];
• Haar: is the first introduced and several generalizations and modifications were

proposed [33]. It is one of the most widely used and has many medical imaging
applications, including image fusion [34] and compression in radiography [35], CT,
and MRI [36];
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• Symlets: is a modified version of Daubechies wavelets with increased symmetry [37],
used for signal decomposition including characterization of fabric texture [38].

As each wavelet family consists of several kernels, and they were experimentally
selected to qualitatively and visually maintain decomposed images similar to the original
image. Table 1 summarizes the chosen kernels and the respective number of coefficients.
Except for Dmey, kernels with a number of coefficients less than or equal to 10 were chosen.

Table 1. Number of coefficients that define the kernel length.

Wavelet Kernel Coefficients Number

Bior1.5 10
Coif1 6
Db3 6

Dmey 62
Haar 2

Rbio1.5 10
Sym2 4

2.3. Radiomic Features Extraction

The radiomic features were extracted from CXR images using PyRadiomics [39]
and segmentation masks were obtained through the semi-automated tool described in
Section 2.1. The extracted radiomic features belong to the following six categories:

• First order (FO) intensity histogram statistics;
• Gray level co-occurrence matrix (GLCM) [40,41];
• Gray level run length matrix (GLRLM) [42];
• Gray level size zone matrix (GLSZM) [43];
• Gray level dependence matrix (GLDM) [44];
• Neighboring gray tone difference matrix (NGTDM) [45].

Moreover, each ROI was filtered considering all families of the wavelet transforms
discussed above. Specifically, for each image and for each wavelet family, four decom-
positions (LL, LH, HL, and HH) were calculated, and then the features were extracted
by obtaining a total of 93× 4 = 372 features. Finally, the original radiomic features (with-
out wavelet filtering) were also extracted to compare the wavelet-derived vs. original
predictive capabilities.

2.4. Radiomic Features Preprocessing

To obtain a subset of non-redundant features with relevant information content, pre-
processing and selection were performed with the following steps [2]:

• Near-zero variance analysis: aimed at removing features with low information con-
tent. This operation considered a variance cutoff of 0.01: features with a variance less
than or equal to this threshold were discarded;

• Correlation analysis: aimed at removing highly correlated features, by means of the
Spearman correlation for pairwise feature comparison. For each set of N correlated
features, N-1 were removed. Specifically, the correlation matrix was first calculated,
and then it was analyzed according to the following decomposition priority: LH,
HL, HH, and LL. As values larger than 0.80 are commonly used for Spearman
correlation [46–49], and a threshold of 0.85 was chosen.

• Statistical analysis: the Mann–Whitney U test was used to test the difference between
mild and severe distribution, computing the p-value for each features selected from
the previous step. The p-value threshold was set to 0.05.
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2.5. Features Selection and Model Training

To select the most discriminating features, the sequential feature selector (SFS) [50]
algorithm was used. The sequential feature selector was set in forward mode, which, at
each step, includes a feature, and in floating mode, which, after the inclusion, performs the
exclusion, allowing us to consider more feature subset combinations. This allowed for the
selection of the best radiomic signature for each model considered (i.e., RF, SVM, and XGB).
The SFS algorithm was applied considering a 10-fold stratified cross validation (CV) and
using all the selected features in the preprocessing step.

The experiments were conducted in the Python 3.7 environment, using the scikit-learn
1.0.2 and xgboost 1.2.1 libraries for model training. In particular:

• RF was trained using the bootstrap technique with 100 estimators and the Gini criterion.
• SVM was trained setting the regularization parameter C = 1.0, considering the ra-

dial basis function as kernel, the coefficient γ = 1/(n f eatures × σ), the shrinking
method [51], and the probability estimates to enable the AUROC computation. In ad-
dition, for SVM, the features were standardized before the training.

• XGB was trained using 100 estimators, depthmax = 6, and ‘gain’ as the importance
type. In addition, the binary logistic loss function was used to model the binary
classification problem, considering a learning rate of η = 0.3.

Accuracy, sensitivity, specificity, and AUROC were calculated for all the three ML
models and all the wavelet kernels considered. In addition, for a precise estimation of
the trained models, in the training phase, performance was calculated by considering a
stratified CV, repeated 20 times on the 1103 samples dataset. Successively, to evaluate
the models generalization capability on unseen data, a test phase was performed on the
486 samples dataset.

3. Results
3.1. Features Preprocessing

Figure 2 shows the selected radiomic features after each preprocessing step (upper),
considering each wavelet decomposition (lower). After near-zero variance analysis, Dmey,
Bior1.5, and Haar kernels had the most features selected, while, at the end of preprocessing,
the number of features was comparable for each kernel used. As expected, a marked
overlap between the selected features belonging to the LL decomposition was observed
(Table 2). This finding resulted from the nature of the LL decomposition, which is essentially
derived from a resizing. For the other decompositions (LH, HL, and HH), this overlap
decreased because the application of the kernel corrupted the image in different ways
among the various wavelet families. For each kernel, the complete list of radiomic features
remaining after the preprocessing phase is reported in Table 2.

Table 2. Complete lists of radiomic features remaining after the preprocessing step for each of the
wavelet kernels considered.

Wavelet Radiomic Feature Wavelet Kernel
Decomposition Category Name Bior1.5 Coif1 Db3 Dmey Haar Rbio1.5 Sym2

LL FO 10Percentile X X X X X X X
LL FO 90Percentile X X X X X X X
LL FO Kurtosis X X X X X X X
LL FO Minimum X X X X X X X
LL FO Range X X X X X X X
LL FO Skewness X X X X X X X
LL GLRLM GrayLevelNonUniformity X X X X X
LL GLSZM HighGrayLevelZoneEmphasis X X X X X X X
LL GLSZM SmallAreaHighGrayLevelEmphasis X X X X X X
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Table 2. Cont.

Wavelet Radiomic Feature Wavelet Kernel
Decomposition Category Name Bior1.5 Coif1 Db3 Dmey Haar Rbio1.5 Sym2

LH FO Energy X X X X
LH FO Kurtosis X X
LH FO Skewness X X X X
LH GLRLM LongRunEmphasis X X X
LH GLSZM GrayLevelNonUniformity X
LH GLSZM HighGrayLevelZoneEmphasis X X X
LH GLSZM LargeAreaEmphasis X
LH GLSZM SizeZoneNonUniformity X
LH GLSZM SmallAreaHighGrayLevelEmphasis X
LH GLSZM ZoneEntropy X X X X X X
LH GLDM DependenceNonUniformity X X X X X X X
LH GLDM DependenceVariance X X
LH GLDM LargeDependenceEmphasis X X X X X X X
LH GLDM LargeDependenceHighGrayLevelEmphasis X

HL FO Kurtosis X X
HL FO Skewness X X
HL FO Maximum X X
HL GLRLM LongRunEmphasis X X X
HL GLSZM HighGrayLevelZoneEmphasis X
HL GLSZM LargeAreaEmphasis X X
HL GLSZM SizeZoneNonUniformity X
HL GLSZM SmallAreaHighGrayLevelEmphasis X
HL GLSZM ZoneEntropy X X X X X X X
HL GLDM DependenceVariance X

HH FO Minimum X X
HH FO Skewness X
HH FO Range X
HH GLRLM LongRunEmphasis X
HH GLRLM LongRunHighGrayLevelEmphasis X X
HH GLSZM GrayLevelNonUniformity X X X X X
HH GLSZM HighGrayLevelZoneEmphasis X X
HH GLSZM SizeZoneNonUniformity X X
HH GLSZM ZoneEntropy X X X
HH GLDM LargeDependenceHighGrayLevelEmphasis X

TOTAL SELECTED FEATURES 22 21 17 26 22 17 20

Figure 2. Cont.
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Figure 2. Upper: Selected features after near-zero variance analysis (in blue), correlation analysis (in
orange), and statistical analysis (in gray), respectively. Lower: Selected features considering each
wavelet decomposition.

3.2. Features Selection

The radiomic features remaining at the end of the preprocessing phase represented
the input of the SFS wrapper method, which were used to select the most discriminating
radiomic signature for the SVM, RF, and XGB models. The number of features maximizing
accuracy was selected. For equal accuracy among the different radiomic signatures, the one
with the lower standard deviation was selected. The features selection stage allows us to
select only the discriminating features: in fact, considering all available features (at the
end of preprocessing) can lead to a performance degradation. Table 3 summarizes the
number of features for each wavelet kernel and ML model used for training. On average,
a signature consisting of 12–15 features was selected. Additionally, overall, the decision
tree-based models (RF and XGB) performed better, with more features than SVM. The
details of the features selected for each wavelet kernel and for each ML model are reported
in Appendix A (Tables A1–A3).

Table 3. Features selected using the SFS, for each wavelet kernel with the ML models considered.

Wavelet Kernel
Initial Features Machine Learning Model

(After Preprocessing) XGB SVM RF

Bior1.5 22 17 14 15
Coif1 21 15 9 13
Db3 17 10 10 13

Dmey 26 14 15 12
Haar 22 19 15 16

Rbio1.5 17 13 13 10
Sym2 20 16 8 12

no wavelet 11 8 9 9

3.3. Predictive Model Results

Tables 4–7 show the accuracy, sensitivity, specificity, and AUROC obtained in the
experimental trials, both in the training and testing phases. The reported metrics obtained
in the training are represented as mean ± standard deviation, because the averaged values
calculated considering 20 repetitions of the 10-fold stratified CV.

To verify whether the values obtained by CV repetitions are statistically different,
the ANOVA test was used: for each model (i.e., XGB, SVM, and RF), the accuracy values
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obtained for each fold were compared, considering the used kernels as groups, obtaining
the p-values << 0.05.

Table 4. Accuracy values obtained in training (mean ± standard deviation) and in testing phases for
each wavelet kernel, with three ML models considered. Boldface values highlight the best three
obtained results.

Wavelet Kernel

Machine Learning Model

XGB SVM RF
Train Test Train Test Train Test

Bior1.5 0.633± 0.041 0.604 0.671± 0.041 0.641 0.661± 0.043 0.646
Coif1 0.635± 0.042 0.619 0.671± 0.043 0.627 0.662± 0.039 0.631
Db3 0.629± 0.046 0.541 0.655± 0.045 0.641 0.641± 0.040 0.594

Dmey 0.633± 0.047 0.555 0.654± 0.044 0.578 0.624± 0.043 0.592
Haar 0.654± 0.045 0.619 0.683± 0.046 0.673 0.674± 0.044 0.646

Rbio1.5 0.627± 0.047 0.586 0.646± 0.047 0.606 0.647± 0.045 0.600
Sym2 0.644± 0.040 0.611 0.672± 0.041 0.644 0.650± 0.044 0.650

no wavelet 0.611± 0.047 0.567 0.636± 0.042 0.619 0.630± 0.046 0.594

Table 5. Sensitivity values obtained in training (mean ± standard deviation) and in testing phases for
each wavelet kernel, with three ML models considered. Boldface values highlight the best three
obtained results.

Wavelet Kernel

Machine Learning Model

XGB SVM RF
Train Test Train Test Train Test

Bior1.5 0.647± 0.060 0.588 0.660± 0.060 0.633 0.662± 0.066 0.627
Coif1 0.646± 0.064 0.622 0.671± 0.066 0.627 0.655± 0.062 0.616
Db3 0.639± 0.070 0.577 0.643± 0.058 0.683 0.642± 0.059 0.627

Dmey 0.646± 0.070 0.638 0.649± 0.064 0.722 0.623± 0.063 0.738
Haar 0.661± 0.067 0.639 0.660± 0.070 0.628 0.683± 0.062 0.644

Rbio1.5 0.635± 0.062 0.550 0.649± 0.064 0.638 0.637± 0.064 0.616
Sym2 0.651± 0.061 0.644 0.649± 0.063 0.594 0.652± 0.063 0.611

no wavelet 0.619± 0.066 0.655 0.614± 0.065 0.683 0.621± 0.068 0.622

Table 6. Specificity values obtained in training (mean ± standard deviation) and in testing phases for
each wavelet kernel, with three ML models considered. Boldface values highlight the best three
obtained results.

Wavelet Kernel

Machine Learning Model

XGB SVM RF
Train Test Train Test Train Test

Bior1.5 0.618± 0.061 0.614 0.683± 0.062 0.647 0.661± 0.061 0.656
Coif1 0.622± 0.069 0.617 0.671± 0.056 0.627 0.669± 0.063 0.640
Db3 0.618± 0.061 0.519 0.667± 0.065 0.617 0.641± 0.064 0.575

Dmey 0.618± 0.064 0.506 0.658± 0.062 0.493 0.625± 0.063 0.506
Haar 0.646± 0.067 0.608 0.709± 0.065 0.699 0.665± 0.066 0.647

Rbio1.5 0.618± 0.065 0.607 0.643± 0.066 0.588 0.657± 0.060 0.591
Sym2 0.636± 0.056 0.591 0.697± 0.059 0.673 0.648± 0.068 0.637

no wavelet 0.601± 0.067 0.516 0.660± 0.064 0.581 0.640± 0.063 0.578

Focusing on wavelet kernels, Db3, Dmey, and Rbio1.5 proved to be the worst for all
three ML models. This assessment resulted from the high imbalance between sensitivity and
specificity, suggesting overfitted models (high sensitivity vs. low specificity or vice versa).
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The AUROC is the most widely used index of global diagnostic accuracy, since higher
values correspond to a better selective ability of the biomarkers [52]. Excluding Db3, Dmey,
and Rbio1.5 for their unbalanced performance, overlapping AUROC values were obtained
in tests for Bior1.5, Coif1, Haar, and Sym2 kernels.

Focusing on ML models, XGB was the least accurate model, compared with SVM
and RF, which showed comparable accuracy on the test set. Moreover, RF, considering
the smaller gap in training and testing performance, had a strong generalization ability.
In summary, wavelet-derived features were more predictive than the original ones. This
result was confirmed for all three ML models employed.

Figure 3, shows the confusion matrices obtained by the three ML classifiers considering
Haar as the wavelet kernel.

Table 7. AUROC values obtained in training (mean ± standard deviation) and in testing phases for
each wavelet kernel with three ML models considered. Boldface values highlight the best three
obtained results.

Wavelet Kernel

Machine Learning Model

XGB SVM RF
Train Test Train Test Train Test

Bior1.5 0.685± 0.045 0.652 0.725± 0.044 0.689 0.711± 0.047 0.706
Coif1 0.681± 0.046 0.655 0.710± 0.046 0.670 0.708± 0.044 0.679
Db3 0.681± 0.050 0.593 0.708± 0.051 0.676 0.690± 0.044 0.653

Dmey 0.684± 0.052 0.611 0.700± 0.049 0.650 0.678± 0.047 0.662
Haar 0.710± 0.048 0.636 0.734± 0.047 0.677 0.726± 0.046 0.686

Rbio1.5 0.674± 0.049 0.623 0.700± 0.050 0.649 0.697± 0.047 0.649
Sym2 0.694± 0.042 0.678 0.718± 0.044 0.671 0.704± 0.047 0.689

no wavelet 0.651± 0.054 0.602 0.690± 0.046 0.629 0.677± 0.050 0.635

Figure 3. The confusion matrices of the three ML classifiers obtained with the Haar kernel.

4. Discussion

Radiomic features can support the radiologists by providing a quantitative viewpoint
that is complementary to the human visual perspective. Although many researchers have
used classical radiomic features (i.e., FO, GLCM, GLRLM, GLSZM, and GLDM), many oth-
ers have achieved increased predictive power by exploiting high-level features, computed
from filtered images by means of wavelet transforms, LoG filters, and intensity transfor-
mation. In particular, the wavelet-derived features have demonstrated their predictive
capability in several contexts [7–9,11,12]. Despite their widespread use in the literature,
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comparing the different wavelets kernels is difficult because of the few studies [14,15]
focused on the problem. Consequently, which wavelet kernel has stronger discriminatory
power is unclear.

In this study, a CXR dataset was used to evaluate the impact of wavelet kernels on the
radiomic model performance for predicting COVID-19 prognosis. Despite their projective
nature, CXR images (consisting of less detailed images than volumetric CT series) are cru-
cial to sustainably (e.g., cheaply and quickly) support healthcare systems. In this context,
the ability of wavelets to provide multi-resolution imaging can be used to improve the
predictive capabilities of radiographic imaging. Bior1.5, Coif1, Haar, and Sym2 kernels were
the best, in terms of the predictivity for all three ML models used (i.e., XGB, SVM, and RF).
Conversely, Db3, Dmey, and Rbio1.5 showed a serious imbalance between sensitivity and
specificity, suggesting overfitted models. Finally, RF showed the strongest generalization
ability, demonstrating less performance degradation between the training and testing
phases. Figure 4 shows an example of the Haar transform in the four decompositions (LL,
LH, HL, and HH). LL represents the rescaled image, which retains features approximating
the original image. For the other decompositions (LH, HL, and HH), however, the im-
age shows completely different characteristics, especially in the lung regions. The results
obtained encourage the use of higher-level features, such as those obtained by wavelet
transforms. The models trained with wavelet-derived features outperformed the model
trained with original features. This is the proof that the ability to provide a multi-resolution
image representation improves the prediction performance of the ML models. The find-
ings of this study, applied to the prognosis of COVID-19, are a starting point for other
pathologies analyzed by radiographic imaging. However, further analysis is required when
volumetric imaging (e.g., CT and MRI) is used, in which the wavelet transform involves
three spatial components.
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5. Conclusions

Wavelet transforms represent a powerful tool for extracting biomarkers in radiomics.
This study showed how the correct choice of the wavelet kernel used for the filtering
and extraction of radiomic features improves the classification process, with respect to
the use of the original features. At present, the discussion between shallow learning and
deep learning is still open, especially in clinical scenarios, where the amount of available
samples is not sufficient to train and use deep architectures. In this context, traditional ML
techniques are also experiencing a second wave, in relation to the increased possibility of
obtaining interpretable features and explainable models. In addition, traditional ML does
not require a large amount of data to train the model.

Wavelet-derived features must be used wisely. In fact, having a reduced dataset
limits the number of features that can be extracted and used to avoid incurring the ‘curse
of dimensionality’ [13]. This phenomenon shows that, with a fixed number of training
samples, the average (expected) predictive power of a classifier improves as the dimen-
sion and the number of used features increase. This is due to the model’s overfitting
on high-dimensionality and redundant data, which leads to improved performance on
train data, but reduces the generalization capabilities on unseen test data. Although the
study mainly focuses on evaluating how predictivity impacts the wavelet kernel changes,
the interpretability of radiomic features must also be studied. In clinical contexts, explain-
able models are crucial, so that the models can be clinically validated and compared with
the medical literature. Explainability improves the usability and acceptability of artificial
intelligence (AI) models, as it allows the users to be involved in the debugging and model
building processes [53]. In many intensive decision-based tasks, the interpretability of an
AI-based system may emerge as an indispensable feature [54]. However, radiomic features
have the disadvantages of being low-level, less abstract than deep features, and less in-
formative, which can degrade model performance. This phenomenon can be mitigated
by considering higher-level radiomic features, such as wavelet-derived ones, where the
interpretability is sacrificed for the benefit of performance. If correlating the quantitative
value with clinical meaning is easy with the original radiomic features, for wavelet-derived
features, this task becomes more complicated because the physician does not use a wavelet
transform in regular activities. However, their use achieves a trade-off between perfor-
mance and interpretability.
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CT Computed Tomography

CV Cross Validation

CXR Chest X-ray

Db Daubechies Wavelet Kernel

Dmey Discrete Meyer Wavelet kernel

DPI Dots Per Inch

DWT Discrete Wavelet Transform

FO First Order

GLCM Gray Level Co-occurrence Matrix

GLDM Gray Level Dependence Matrix

GLRLM Gray Level Run Length Matrix

GLSZM Gray Level Size Zone Matrix

Haar Haar Wavelet Kernel

LoG Laplacian of Gaussian

MRI Magnetic Resonance Imaging

NGTDM Neighboring Gray Tone Difference Matrix

Rbio Reverse Biorthogonal Wavelet Lernel

RF Random Forest

ROI Region Of Interest

SVM Support Vector Machine

Sym Symlets Wavelet kernel

XGB XGBoost

Appendix A

Table A1. Complete list of radiomic features selected via SFS, considering XGB model for each
wavelet kernel considered.

Wavelet Radiomic Feature Wavelet Kernel
Decomposition Category Name Bior1.5 Coif1 Db3 Dmey Haar Rbio1.5 Sym2

LL FO 10Percentile X X X X X X
LL FO 90Percentile X X X X X
LL FO Kurtosis X X X X X
LL FO Minimum X X X
LL FO Range X X X X X X X
LL FO Skewness X X X X X X X
LL GLRLM GrayLevelNonUniformity X X
LL GLSZM HighGrayLevelZoneEmphasis X X X X
LL GLSZM SmallAreaHighGrayLevelEmphasis X X X X X

LH FO Energy X X X X
LH FO Kurtosis X
LH FO Skewness X X X
LH GLRLM LongRunEmphasis X X
LH GLSZM GrayLevelNonUniformity X
LH GLSZM HighGrayLevelZoneEmphasis X X
LH GLSZM LargeAreaEmphasis X
LH GLSZM SizeZoneNonUniformity
LH GLSZM SmallAreaHighGrayLevelEmphasis
LH GLSZM ZoneEntropy X X X
LH GLDM DependenceNonUniformity X X X X X
LH GLDM DependenceVariance X
LH GLDM LargeDependenceEmphasis X X X X
LH GLDM LargeDependenceHighGrayLevelEmphasis
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Table A1. Cont.

HL FO Kurtosis X X
HL FO Skewness X X
HL FO Maximum X X
HL GLRLM LongRunEmphasis X
HL GLSZM HighGrayLevelZoneEmphasis X
HL GLSZM LargeAreaEmphasis X X
HL GLSZM SizeZoneNonUniformity X
HL GLSZM SmallAreaHighGrayLevelEmphasis X
HL GLSZM ZoneEntropy X X X X X X
HL GLDM DependenceVariance X

HH FO Minimum X X
HH FO Skewness
HH FO Range X
HH GLRLM LongRunEmphasis X
HH GLRLM LongRunHighGrayLevelEmphasis X
HH GLSZM GrayLevelNonUniformity X X
HH GLSZM HighGrayLevelZoneEmphasis X X
HH GLSZM SizeZoneNonUniformity X X
HH GLSZM ZoneEntropy X X
HH GLDM LargeDependenceHighGrayLevelEmphasis X

TOTAL SELECTED FEATURES 17 15 10 14 19 13 16

Table A2. Complete list of radiomic features selected via SFS, considering SVM model for each
wavelet kernel considered.

Wavelet Radiomic Feature Wavelet Kernel
Decomposition Category Name Bior1.5 Coif1 Db3 Dmey Haar Rbio1.5 Sym2

LL FO 10Percentile X X X X
LL FO 90Percentile X X
LL FO Kurtosis X X X X
LL FO Minimum X X X
LL FO Range X X X X
LL FO Skewness X X X X X X X
LL GLRLM GrayLevelNonUniformity X
LL GLSZM HighGrayLevelZoneEmphasis X X X X X X
LL GLSZM SmallAreaHighGrayLevelEmphasis X X X

LH FO Energy X
LH FO Kurtosis X X
LH FO Skewness X X X
LH GLRLM LongRunEmphasis X X
LH GLSZM GrayLevelNonUniformity X
LH GLSZM HighGrayLevelZoneEmphasis
LH GLSZM LargeAreaEmphasis X
LH GLSZM SizeZoneNonUniformity
LH GLSZM SmallAreaHighGrayLevelEmphasis
LH GLSZM ZoneEntropy
LH GLDM DependenceNonUniformity X
LH GLDM DependenceVariance X X
LH GLDM LargeDependenceEmphasis X X X X
LH GLDM LargeDependenceHighGrayLevelEmphasis X

HL FO Kurtosis X X
HL FO Skewness X X
HL FO Maximum X X
HL GLRLM LongRunEmphasis X X
HL GLSZM HighGrayLevelZoneEmphasis X
HL GLSZM LargeAreaEmphasis X X
HL GLSZM SizeZoneNonUniformity X
HL GLSZM SmallAreaHighGrayLevelEmphasis
HL GLSZM ZoneEntropy X X X X
HL GLDM DependenceVariance X
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Table A2. Cont.

HH FO Minimum X X
HH FO Skewness X
HH FO Range X
HH GLRLM LongRunEmphasis X
HH GLRLM LongRunHighGrayLevelEmphasis X X
HH GLSZM GrayLevelNonUniformity X X
HH GLSZM HighGrayLevelZoneEmphasis X X
HH GLSZM SizeZoneNonUniformity X
HH GLSZM ZoneEntropy X X
HH GLDM LargeDependenceHighGrayLevelEmphasis X

TOTAL SELECTED FEATURES 14 9 10 15 15 13 8

Table A3. Complete list of radiomic features selected via SFS, considering RF model for each wavelet
kernel considered.

Wavelet Radiomic Feature Wavelet Kernel
Decomposition Category Name Bior1.5 Coif1 Db3 Dmey Haar Rbio1.5 Sym2

LL FO 10Percentile X X X X
LL FO 90Percentile X X X
LL FO Kurtosis X X X X X X
LL FO Minimum X X X X X X
LL FO Range X X X
LL FO Skewness X X X X X X X
LL GLRLM GrayLevelNonUniformity X X
LL GLSZM HighGrayLevelZoneEmphasis X X X X X
LL GLSZM SmallAreaHighGrayLevelEmphasis X X X

LH FO Energy X
LH FO Kurtosis X X
LH FO Skewness X X X
LH GLRLM LongRunEmphasis X
LH GLSZM GrayLevelNonUniformity
LH GLSZM HighGrayLevelZoneEmphasis X X X
LH GLSZM LargeAreaEmphasis
LH GLSZM SizeZoneNonUniformity
LH GLSZM SmallAreaHighGrayLevelEmphasis
LH GLSZM ZoneEntropy X X
LH GLDM DependenceNonUniformity X X
LH GLDM DependenceVariance X X
LH GLDM LargeDependenceEmphasis X X X X X X
LH GLDM LargeDependenceHighGrayLevelEmphasis

HL FO Kurtosis X X
HL FO Skewness X X
HL FO Maximum X X
HL GLRLM LongRunEmphasis
HL GLSZM HighGrayLevelZoneEmphasis X
HL GLSZM LargeAreaEmphasis X
HL GLSZM SizeZoneNonUniformity X
HL GLSZM SmallAreaHighGrayLevelEmphasis X
HL GLSZM ZoneEntropy X X X X X X
HL GLDM DependenceVariance

HH FO Minimum X X
HH FO Skewness X
HH FO Range X
HH GLRLM LongRunEmphasis X
HH GLRLM LongRunHighGrayLevelEmphasis X X
HH GLSZM GrayLevelNonUniformity X X
HH GLSZM HighGrayLevelZoneEmphasis X
HH GLSZM SizeZoneNonUniformity X
HH GLSZM ZoneEntropy X X X
HH GLDM LargeDependenceHighGrayLevelEmphasis

TOTAL SELECTED FEATURES 15 13 13 12 16 10 12
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