27 research outputs found

    Aplicações De Métodos De Sensoriamento De Vibração Baseados Em Técnicas

    Get PDF
    Orientadores: Fabiano Fruett, Claudio FloridiaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Sensores à fibra óptica distribuídos têm sido empregados para monitorar vários parâmetros, tais como temperatura, vibração, tensão mecânica, campo magnético e corrente elétrica. Quando comparados a outras técnicas convencionais, tais sensores são vantajosos devido a suas pequenas dimensões, imunidade a interferências eletromagnéticas, alta adaptabilidade, robustez a ambientes nocivos, dentre outros. Sensores acústicos distribuídos em particular são interessantes devido a sua capacidade em serem usados em aplicações tais como monitoração de saúde de estruturas e vigilância de perímetros. Através da análise em frequência da estrutura, por exemplo uma aeronave, uma ponte, um edifício ou mesmo máquinas em uma fábrica, é possível avaliar sua condição e detectar danos e falhas em um estágio primário. Tais soluções podem cobrir ambas as aplicações de detecção de intrusão e monitoração estrutural com mínimas adaptações no sistema sensor. Desta forma, vibrações e distúrbios pequenas estruturas com resolução de dezenas de centímetros e em grandes estruturas ou perímetros com alguns metros de resolução espacial e centenas de quilômetros de alcance podem ser detectadas. Outra característica útil desta solução baseada em fibra óptica é a possibilidade de ser combinada com técnicas de processamento digital de sinais, permitindo a detecção e localização de perturbações rápidas, reconhecimento de padrões de intrusão em tempo real e multiplexação de dados de superfícies estruturais para aplicações SHM. O principal objetivo desta tese é fazer uso desses recursos para empregar técnicas de DAS como soluções de tecnologias- chave para várias aplicações. Neste trabalho, as técnicas de phase-OTDR foram estudadas e as principais contribuições da tese focaram em trazer soluções inovadoras e validações para aplicações de vigilância e vigilância. Este doutorado teve um período sanduíche nas instalações da RISE Acreo AB, Estocolmo, Suécia, onde experimentos foram realizados e foi parte da 42ª Chamada CISB/Saab/CNPqAbstract: Distributed optical fiber sensors have been increasingly employed for monitoring several parameters, such as temperature, vibration, strain, magnetic field and current. When compared to other conventional techniques, these sensors are advantageous due to their small dimensions, lightweight, immunity to electromagnetic interference, high adaptability, robustness to hazardous environments, less complex data multiplexing, the feasibility to be embedded into structures with minimum invasion, the capability to extract data with high resolution from long perimeters using a single optical fiber and detect multiple events along the fiber. In particular, distributed acoustic sensors (DAS) based on optical time domain reflectometry (OTDR), are of high interest, due to their capability to be used in applications such as structural health monitoring (SHM) and perimeter surveillance. Through the frequency analysis of a structure, for instance an aircraft, a bridge, a building or even machines in a workshop, it is possible to evaluate its condition and detect damages and failures at an early stage. Also, OTDR based solutions for vibration monitoring can be easily adapted with minimum setup modifications to detect intrusion in a perimeter, a useful tool for surveillance of military facilities, laboratories, power plants and homeland security. The same OTDR technique can be used as a non-destructive diagnostic tool to evaluate vibrations and disturbances on both small structures with some dozens of centimeters¿ resolution and in big structures or perimeters with some meters of spatial resolution and hundreds of kilometers of reach. Another useful feature of this optical fiber based solution is the possibility to be combined with high-performance digital signal processing techniques, enabling fast disturbance detection and location, real-time intrusion pattern recognition and fast data multiplexing of structure surfaces for SHM applications. The main goal of this thesis is to make use of these features to employ DAS techniques as key enabling technologies solutions for several applications. In this work, OTDR based techniques were studied and the thesis main contributions were focused on bringing innovative solutions and validations for SHM and surveillance applications. This PhD had a sandwich period at Acreo AB, Stockholm, Sweden, where experimental tests were performed and it was part of the 42ª CISB/Saab/CNPq CalDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutora em Engenharia Elétrica202816/2015-0CAPESCNP

    Distributed Fiber Ultrasonic Sensor and Pattern Recognition Analytics

    Get PDF
    Ultrasound interrogation and structural health monitoring technologies have found a wide array of applications in the health care, aerospace, automobile, and energy sectors. To achieve high spatial resolution, large array electrical transducers have been used in these applications to harness sufficient data for both monitoring and diagnoses. Electronic-based sensors have been the standard technology for ultrasonic detection, which are often expensive and cumbersome for use in large scale deployments. Fiber optical sensors have advantageous characteristics of smaller cross-sectional area, humidity-resistance, immunity to electromagnetic interference, as well as compatibility with telemetry and telecommunications applications, which make them attractive alternatives for use as ultrasonic sensors. A unique trait of fiber sensors is its ability to perform distributed acoustic measurements to achieve high spatial resolution detection using a single fiber. Using ultrafast laser direct-writing techniques, nano-reflectors can be induced inside fiber cores to drastically improve the signal-to-noise ratio of distributed fiber sensors. This dissertation explores the applications of laser-fabricated nano-reflectors in optical fiber cores for both multi-point intrinsic Fabry–Perot (FP) interferometer sensors and a distributed phase-sensitive optical time-domain reflectometry (φ-OTDR) to be used in ultrasound detection. Multi-point intrinsic FP interferometer was based on swept-frequency interferometry with optoelectronic phase-locked loop that interrogated cascaded FP cavities to obtain ultrasound patterns. The ultrasound was demodulated through reassigned short time Fourier transform incorporating with maximum-energy ridges tracking. With tens of centimeters cavity length, this approach achieved 20kHz ultrasound detection that was finesse-insensitive, noise-free, high-sensitivity and multiplex-scalability. The use of φ-OTDR with enhanced Rayleigh backscattering compensated the deficiencies of low inherent signal-to-noise ratio (SNR). The dynamic strain between two adjacent nano-reflectors was extracted by using 3×3 coupler demodulation within Michelson interferometer. With an improvement of over 35 dB SNR, this was adequate for the recognition of the subtle differences in signals, such as footstep of human locomotion and abnormal acoustic echoes from pipeline corrosion. With the help of artificial intelligence in pattern recognition, high accuracy of events’ identification can be achieved in perimeter security and structural health monitoring, with further potential that can be harnessed using unsurprised learning

    Optical fiber sensors and sensing networks: overview of the main principles and applications

    Get PDF
    Optical fiber sensors present several advantages in relation to other types of sensors. These advantages are essentially related to the optical fiber properties, i.e., small, lightweight, resistant to high temperatures and pressure, electromagnetically passive, among others. Sensing is achieved by exploring the properties of light to obtain measurements of parameters, such as temperature, strain, or angular velocity. In addition, optical fiber sensors can be used to form an Optical Fiber Sensing Network (OFSN) allowing manufacturers to create versatile monitoring solutions with several applications, e.g., periodic monitoring along extensive distances (kilometers), in extreme or hazardous environments, inside structures and engines, in clothes, and for health monitoring and assistance. Most of the literature available on this subject focuses on a specific field of optical sensing applications and details their principles of operation. This paper presents a more broad overview, providing the reader with a literature review that describes the main principles of optical sensing and highlights the versatility, advantages, and different real-world applications of optical sensing. Moreover, it includes an overview and discussion of a less common architecture, where optical sensing and Wireless Sensor Networks (WSNs) are integrated to harness the benefits of both worlds.This work was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Vlaknasto-optički senzori za vibraciju i mjerenje naprezanja - pregled

    Get PDF
    This article presents a brief overview of fiber-optic sensors and their development in the past 30 years. The new technologies like FBG or OTDR sensing principles have formed an entirely new generation of sensors. Some of these sensors, depending on their applications and measurands, have been successfully commercialized and they are shown in this article. Also, a multimode fiber optical sensor that measures vibrations, is presented. Multimode fiber has a relatively large number of modes that travel simultaneously through the fiber and interfere with each other. By applying various forces upon the fiber, mode’s way of propagation will be changed, consequently their interference distribution will be changed, therefore generating a different field pattern at the fiber end. Difference in field pattern can be used for obtaining vibration parameters such as the amplitude and the frequency.Ovaj članak prikazuje kratak pregled vlaknasto-optičkih senzora i njihov razvoj u proteklih 30 godina. Nove tehnologije kao FBG ili OTDR osjetilni principi, oblikovali su novu generaciju senzora. Neki od ovih senzora, ovisno o svojoj primjeni i mjerama, uspješno su komercijalizirani, pa su prikazani u ovom članku. Također je prikazan vlaknasti optički sustav senzor koji mjeri vibracije. Multimodalno vlakno ima relativno velik broj načina da simultano putuje vlaknom i interferira jedno s drugim. Primjenjujući različite sile na vlakno, način propagiranja će se promijeniti, pa će se njihova distribucija interferencije promijeniti, stoga generirajući različit uzorak polja na kraju vlakna. Razlika u polju uzorka može se upotrijebiti za dobivanje parametara vibracije kao što su amplituda i frekvencija

    Fiber Optic Sensors for Extreme Environments

    Get PDF
    Optical fiber based sensors offer several important advantages over electronic sensors, including low manufacturing cost, miniature and flexible structures, immunities to electromagnetic fields, and the capability of distributive and multi-parameter sensing on a single fiber. Extreme harsh environments such as temperature >800°C or as low as a few Kelvin, present unique challenges and opportunities to fiber optic sensors. For example, hydrogen gas leak detection in cryogenic environment is critically important in the production and use of liquid hydrogen fuels. But the sensitivity of conventional Palladium (Pd) coated hydrogen sensors degrade rapidly when temperature decreases. Another example is the quick diminishing of conventional type-I gratings with temperature range beyond 500°C, which prevent the FBG implementation in numerous high temperature applications. The objective of this thesis is to explore new fiber sensing technologies that have significant performance enhancements, or were previously not possible in extreme environment applications. Optically heated fiber sensors were developed for cryogenic Hydrogen gas and liquid level sensing in environments as well as room temperature gas flow sensing. Regenerated gratings were developed for high temperature pressure sensing. Novel in-fiber sensing techniques such as Rayleigh and Raman scattering were also exploited for fully distributed sensing operations. These technologies and devices offer reliable and flexible sensing solutions extreme environments in energy, transportation and telecom industry

    Distributed optical fibre sensing system for civil and geotechnical Infrastructures

    Get PDF
    Les capteurs à fibre optique distribués (DFS) tirant parti des mécanismes de diffusion se produisant dans l’élément détecteur de fibre, à savoir la diffusion de Rayleigh, Raman et Brillouin, ont été un sujet de recherche intense au cours des trois dernières décennies. Ils offrent de nombreuses applications pratiques classées en raison des avantages inhérents, tels que la petite taille, le poids léger, la sensibilité élevée, les performances excellentes, la durabilité intrinsèque dans des environnements difficiles, l’immunité aux interférences électromagnétiques (EMI), etc. En particulier, le DFS basé sur le processus de diffusion stimulée de Brillouin (SBS), appelé analyse temporelle optique de domaine de Brillouin (BOTDA), présente la capacité potentielle de réaliser la télédétection sur de longues distances, typiquement des dizaines de kilomètres et des centaines de kilomètres récemment. La fibre optique servant non seulement d’élément de détection, mais également de moyen de guidage de la lumière, est capable de détecter divers paramètres physiques d’intérêt, tels que la température, les contraintes, les pressions et les champs acoustiques. Ces measurandes peuvent être détectés directement ou indirectement le long de la fibre entière. Les systèmes de pergélisol dans le Nord canadien sont fortement perturbés par les changements climatiques dus au réchauffement de la planète; le dégel du pergélisol affecte à son tour les environnements et les communautés. Afin de réaliser une surveillance en temps réel de la stabilité des infrastructures, un réseau de détection BOTDA doté d'un nouveau transducteur à fibre optique est proposé pour surveiller les modifications physiques, notamment les pressions interstitielles, la température et le déplacement dans le pergélisol. Le principal défi consiste à mesurer simultanément les pressions d’eau interstitielle positive et négative, et à faire la distinction entre ces measurandes au sein d’un même transducteur. Lors de la première tentative, un polymère d'hydrogel est utilisé pour construire le transducteur, qui peut se dilater ou se contracter du fait de l'absorption ou de la libération d'eau par le matériau afin de détecter les pressions positives et négatives dans la plage cible de -100 kPa à +100 kPa le long d'un pergélisol système. Une fibre multi-cœur (MCF) bien conçue, incorporée dans le transducteur polymère, sera développée dans le but ultime de disposer de fonctionnalités de détection simultanée de plusieurs paramètres.Distributed optical fibre sensors (DOFS) taking advantage of the scattering mechanisms occurring within the fibre sensing element, i.e. Rayleigh, Raman and Brillouin scattering, have been an intense research subject over the last three decades. They offer widespread practical in-filed applications due to the inherent advantages possessed, such as small size, light weight, high sensitivity, excellent performance, intrinsic durability to harsh environment, immunity to electromagnetic interference (EMI), and so on. Particularly, the one based on stimulated Brillouin scattering (SBS) process, so-called Brillouin optical time-domain analysis (BOTDA), presents the potential capability to perform remote sensing over long distance, typically tens of kilometres and extended to hundreds of kilometres recently. Optical fibre acting as not only a sensing element but also as a light guidance medium is able to detect a variety of physical parameters of interest, such as temperature, strain, pressure and acoustic fields to name a few. These measurands can be sensed either by directly or indirectly along the whole fibre. Permafrost systems in Northern Canada are strongly disturbed by the climate changes due to global warming; the thawing permafrost is in turn affecting the environments and communities. In order to achieve real-time surveillance of the stability of infrastructures, a BOTDA sensing network with novel fibre transducer is proposed to monitor the physical changes including positive/negative pore water pressures, temperature and displacement along permafrost environments. The main challenge is to measure simultaneously the positive and negative pore water pressures and to discriminate among those measurands within a single transducer. As an initial attempt, a hydrogel polymer is deployed to build the transducer, which can expand or shrink due to water absorption or release by the material to detect positive and negative pressures in the target range of -100 kPa to +100 kilopascal along a permafrost system. A well-designed multi-core fibre (MCF) incorporated into the polymer tran

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF

    Novel Specialty Optical Fibers and Applications

    Get PDF
    Novel Specialty Optical Fibers and Applications focuses on the latest developments in specialty fiber technology and its applications. The aim of this reprint is to provide an overview of specialty optical fibers in terms of their technological developments and applications. Contributions include:1. Specialty fibers composed of special materials for new functionalities and applications in new spectral windows.2. Hollow-core fiber-based applications.3. Functionalized fibers.4. Structurally engineered fibers.5. Specialty fibers for distributed fiber sensors.6. Specialty fibers for communications

    Multimode fibre broadband access and self-referencing sensor networks

    Get PDF
    Future Internet Access technologies are supposed to bring us a very performing connection to the main door of our homes. At the same time, new services and devices and their increase use will require data transfers at speeds exceeding 1Gbps inside the building or home at the horizon 2012. Both drivers lead to the deployment of a high-quality, futureproof network inside buildings and homes. This environment may end up taking advantage of optical cabling solutions as an alternative to more traditional copper or pure wireless approaches. Related to this latter fact, the objectives of this work are: • The achievement of a full convergence scenario between optical networks from the telecommunication services providers to the end users underscores the necessity of accurate and realistic fibre models in assessing the performance of broadband access networks with the premises of high-capacity and total compatibility. Silicabased MMFs and PF GIPOFs are the most promising candidates for such a convergence within the in-building/home scenario. Contributions to a better understanding of the possibilities of signal transmission outside the baseband of such fibres are investigated, in order to extend their capabilities, together with the evaluation of current fibre frequency response theoretical models by means of an extensive set of measurements. • The achievement of a full convergence scenario between optical networks from the telecommunication services providers to the end users is also contingent on research and development in the field of optical fibre sensors, mainly driven by the growing demand of fully building/home and industry automation, leading to a reliable integration of the optical networks. Related to this, development of multiplexing and measurement techniques for fibre-optic intensity-based sensors are analyzed and experimentally investigated. In the sensor network topology proposed, by replacing the fibre delay line with an electronic delay in the reception stage, it is possible to avoid long fibre delay coils in the remote sensing points and achieving a compact, flexible and re-configurable self-referencing technique. Applications in both scenarios can be considered, on the one hand the in-building/home network and on the other hand the WDM-PON access network topology through which operators provision the different services. -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------La demanda e incursión en la sociedad de nuevos servicios multimedia, tales como televisión por Internet (IPTV, Internet Protocol Television) o video-bajo-demanda (VoD, Video on Demand) junto con el incremento del tráfico de datos requerido para nuevas aplicaciones como la televisión por alta definición (HDTV, High-Definition Television) y transferencias P2P (Peer-to-Peer) exigen un aumento de la capacidad de las redes de datos desplegadas hoy en día. Para hacer frente a este aumento de la demanda de capacidad de las redes de acceso, los proveedores de estos servicios multimedia están reemplazando las infraestructuras de las redes de acceso basadas en cable coaxial, tales como xDSL (x- Digital Subscriber Line), por otras nuevas de mayor capacidad desplegadas en fibra óptica, permitiendo la interconexión de los nodos de red con los múltiples hogares y negocios de los abonados, constituyendo el núcleo de lo que es conocido como “fibra hasta el hogar/nodo/edificio” o redes FTTx. Tradicionalmente el despliegue de las redes ópticas se ha realizado mediante fibra óptica monomodo de sílice (SMF, Singlemode Fibre). Ello es debido a su gran ancho de banda que permite una gran capacidad de transporte de servicios y datos. Es por ello que en base a este tipo de fibra se ha realizado el despliegue de redes de distribución y metropolitanas y, de un tiempo a esta parte, incluso penetrando su instalación en las redes de acceso. Junto con lo anteriormente expuesto, existe una necesidad de convergencia de servicios e infraestructuras dentro de las redes de acceso. Actualmente, cables coaxiales, par trenzado de cobre e incluso señales inalámbricas se encuentran entremezcladas dentro del hogar proporcionando servicios diferentes con apenas cooperación entre ellos. Una infraestructura común dentro del hogar en el que una gran cantidad de servicios pudieran ser integrados y soportados por la misma sería un aspecto deseable. Y es más, frente a las desventajas de infraestructuras basadas en cable de cobre (cable coaxial y par trenzado) como son susceptibilidad a interferencias electromagnéticas, presencia de crosstalk y relativa baja capacidad de transporte de datos, las fibras ópticas (tanto en su versión monomodo como multimodo) presentan las ventajas de un menor volumen, mayor flexibilidad y menor peso junto con una capacidad mayor de transmisión de datos sobre distancias mayores. Es por esto que éstas últimas constituyen la base para las futuras redes de acceso en el hogar
    corecore