40 research outputs found

    “Nano”: an emerging avenue in electrochemical detection of neurotransmitters

    Get PDF
    The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attribut,es introduced by nanotechnology

    Laser Scribed Graphene Biosensor for Detection of Biogenic Amines in Food Samples Using Locally Sourced Materials

    Get PDF
    In foods, high levels of biogenic amines (BA) are the result of microbial metabolism that could be affected by temperatures and storage conditions. Thus, the level of BA is commonly used as an indicator of food safety and quality. This manuscript outlines the development of laser scribed graphene electrodes, with locally sourced materials, for reagent-free food safety biosensing. To fabricate the biosensors, the graphene surface was functionalized with copper microparticles and diamine oxidase, purchased from a local supermarket; and then compared to biosensors fabricated with analytical grade materials. The amperometric biosensor exhibits good electrochemical performance, with an average histamine sensitivity of 23.3 ”A/mM, a lower detection limit of 11.6 ”M, and a response time of 7.3 s, showing similar performance to biosensors constructed from analytical grade materials. We demonstrated the application of the biosensor by testing total BA concentration in fish paste samples subjected to fermentation with lactic acid bacteria. Biogenic amines concentrations prior to lactic acid fermentation were below the detection limit of the biosensor, while concentration after fermentation was 19.24 ± 8.21 mg histamine/kg, confirming that the sensor was selective in a complex food matrix. The low-cost, rapid, and accurate device is a promising tool for biogenic amine estimation in food samples, particularly in situations where standard laboratory techniques are unavailable, or are cost prohibitive. This biosensor can be used for screening food samples, potentially limiting food waste, while reducing chances of foodborne outbreaks

    Biosensing the histamine producing potential of bacteria in tuna

    Get PDF
    open6siHistamine poisoning is the most common cause of human foodborne illness due to the consumption of fish products. An enzyme-based amperometric biosensor was developed to be used as a screening tool to detect histamine and histamine-producing bacteria (HPB) in tuna. It was developed by immobilizing histidine decarboxylase and horseradish peroxidase on the surface of screen-printed electrodes through a cross-linking procedure employing glutaraldehyde and bovine serum albumin. The signal generated in presence of histamine at the surface of the electrode was measured by chronoamperometry at in presence of a soluble redox mediator. The sensitivity of the electrode was 1.31–1.59 ”A/mM, with a linear range from 2 to 20 ”g/ml and detection limit of 0.11 ”g/ml. In this study fresh tuna filets purchased in supermarkets in different days (n = 8) were analyzed to detect HPB. Samples with different concentration of histamine were analyzed with culture-based counting methods, biosensor and HPLC and also a challenge test was made. Recovery of histamine from cultures and tuna samples was also assessed. The presence of Morganella psychrotolerans, Photobacterium phosphoreum, P. damselae and Hafnia alvei was detected using culture-and PCR-based methods. At the time of purchase these tuna samples had histamine concentrations from below the limit of detection (LOD) to 60 ”g/g. HPLC and biosensor methods provided similar results in the range from zero to 432 ”g/g (correlation coefficient, R2 = 0.990) and the recovery of histamine from cultures and tuna samples was very high (mean bias −12.69 to 1.63%, with root-mean-square error <12%). These results clearly show that fresh tuna is commonly contaminated with strong HPB. The histamine biosensor can be used by the Food Business Operators as a screening tool to detect their presence and to determine whether their process controls are adequate or not.openTrevisani M.; Cecchini M.; Fedrizzi G.; Corradini A.; Mancusi R.; Tothill I.E.Trevisani M.; Cecchini M.; Fedrizzi G.; Corradini A.; Mancusi R.; Tothill I.E

    APPLICATION OF BIOSENSORS IN FISHERIES: A REVIEW ON REAL-TIME QUALITY ASSESSMENT AND MONITORING FOR SUSTAINABLE AQUACULTURE PRODUCTION

    Get PDF
    This manuscript provides a comprehensive review of the potential and utilization of cassava peel as a fish feeding redient. Agro-industrial activities in Indonesia generate substantial waste, including cassavapeel, which can serve as avaluable carbohydrate source in fish feed. Cassava is the third most important food crop commodity in Indonesia, and its productivity has been increasing over the years. Cassava possesses a good nutritional profile, with high starch content and energy value. Fermentation of cassava peel can enhance its nutritional value by increasing crude protein content and reducing anti-nutrients such as cyanide acid. Fermented cassava peel products have been shown to reduce reliance on imported feed ingredients and lower production costs without compromising fish growth. The utilization of fermented cassava peel waste presents a sustainable solution for converting agro-industrial waste into a suitable fish feed ingredient.        &nbsp

    Development of Bio-based Nanocomposites for Biosensor and Indicator Applications in Smart Food Packaging

    Get PDF
    Smart food packaging based on biosensors has been attracting more and more interest to the industrial community because of the concerns of food quality and safety. A food packaging with biosensor has a scope to enable real-time monitoring of microbial breakdown products of packaged foods. Furthermore, one of the biggest challenges in implementing biosensor for smart packaging materials is the development of bio-sensing active materials that can leverage their electrical, thermal, biodegradable and other functional properties. In this regard, nanocellulose-based activated carbon (NAC) nanocomposite was developed using the activated carbon and nanocellulose gel using the casting method with their different concentrations (15% to 50% of nanocellulose corresponding to 85% to 50% activated carbon). The developed NAC nanocomposites were electrically tested via cyclic voltammetry and results showed that 30% NAC nanocomposite consisted of good electrical properties compared to 30 and 50% of NAC nanocomposite for biosensor developments. Metal nanoparticle enriched natural biopolymer has attained significant attention in the research community, because they can create high specific surface area, adsorption capability, and gas sensing properties into polymer composite or nanocomposites. Different contents of AgNPs with 10-500 ppm were synthesized with 30% NAC nanocomposite and optimized their electrical properties. The results showed that AgNPs/NAC nanocomposite with optimum 450 ppm of AgNPs contained the good electrical properties for biosensor development. The biosensor developed with optimized AgNPs/NAC nanocomposite resulted in good sensitivity and selectivity to detect microbial breakdown products as a spoilage indicator. Ammonia (NH3) is one of the microbial breakdown products that released from protein rich food products (such as meat, fish, sea foods etc.) and had a good response in monitoring meat spoilage. The developed biosensor was utilized to monitor NH3, and the sensor showed good sensitivity over the range of 5-100 ppm and selectivity to detect the NH3. Biochar is one of the carbon-based materials that belongs a high specific surface area, highly porous structure, good stability, and cost-effectiveness over other carbon items (single or multi carbon nanotubes and graphene). The activated biochar (ABC)-based composite was developed with different ABC and polylactic acid (PLA) levels and the electrical properties of the developed ABC/PLA composite was determined via cyclic and differential voltammograms (CV and DPV). The results showed that 85% ABC/PLA composite has a good electrical property for biosensor development. To improve the gas sensing properties, 85% ABC/PLA composite was further synthesized with 450 ppm of AgNPs (v/v) and casted AgNPs/ABC/PLA nanocomposite. The biosensor was developed with casted AgNPs/ABC/PLA nanocomposite and tested for ammonia over the range of 5-60 ppm. The results revealed that the sensitivity of the developed biosensor increased as the concentrations of NH3 increased over the range of 5-60 ppm. An indicator with food packaging has the ability to monitor microbial contaminations in food products. A color indicator film was developed by a film casting method using an ultrasonic suspension of nanocellulose/chitosan blends doped with methyl red synthesis followed by PLA coating (named PLA/NCM film). The color modulation of the PLA/NCM films was processed via the colorimetric device and revealed considerable color changes (ΔEs) dependent on the meat spoilage. The PLA/NCM film changed its color upon exposure to different pH buffer solutions (2−10). The total viable microbial counts (TVC) and pH of the beef sample were determined, and the findings showed that the TVC and pH increased simultaneously depending on the state of the beef spoilage

    Nanotechnology-based electrochemical biosensors for monitoring breast cancer biomarkers

    Get PDF
    Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socio-economic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types

    Fundamentals, Applications, and Future Directions of Bioelectrocatalysis

    Get PDF
    Bioelectrocatalysis is an interdisciplinary research field combining bio-catalysis and electrocatalysis via the utilization of materials derived from biological systems as catalysts to catalyze the redox reactions occurring at an electrode. Bioelectrocatalysis synergistically couples the merits of both biocatalysis and electrocatalysis. The advantages of biocatalysis include high activity, high selectivity, wide substrate scope, and mild reaction conditions. The advantages of electrocatalysis include the possible utilization of renewable electricity as an electron source and high energy conversion efficiency. These properties are integrated to achieve selective biosensing, efficient energy conversion, and the production of diverse products. This review seeks to systematically and comprehensively detail the fundamentals, analyze the existing problems, summarize the development status and applications, and look toward the future development directions of bioelectrocatalysis. First, the structure, function, and modification of bioelectrocatalysts are discussed. Second, the essentials of bioelectrocatalytic systems, including electron transfer mechanisms, electrode materials, and reaction medium, are described. Third, the application of bioelectrocatalysis in the fields of biosensors, fuel cells, solar cells, catalytic mechanism studies, and bioelectrosyntheses of high-value chemicals are systematically summarized. Finally, future developments and a perspective on bioelectrocatalysis are suggested

    Potential use of electronic noses, electronic tongues and biosensors, as multisensor systems for spoilage examination in foods

    Get PDF
    Development and use of reliable and precise detecting systems in the food supply chain must be taken into account to ensure the maximum level of food safety and quality for consumers. Spoilage is a challenging concern in food safety considerations as it is a threat to public health and is seriously considered in food hygiene issues accordingly. Although some procedures and detection methods are already available for the determination ofspoilage in food products, these traditional methods have some limitations and drawbacks as they are time-consuming,labour intensive and relatively expensive. Therefore, there is an urgent need for the development of rapid, reliable, precise and non-expensive systems to be used in the food supply and production chain as monitoring devices to detect metabolic alterations in foodstuff. Attention to instrumental detection systems such as electronic noses, electronic tongues and biosensors coupled with chemometric approaches has greatly increased because they have been demonstrated as a promising alternative for the purpose of detecting and monitoring food spoilage. This paper mainly focuses on the recent developments and the application of such multisensor systems in the food industry. Furthermore, the most traditionally methods for food spoilage detection are introduced in this context as well. The challenges and future trends of the potential use of the systems are also discussed. Based on the published literature, encouraging reports demonstrate that such systems are indeed the most promising candidates for the detection and monitoring of spoilage microorganisms in different foodstuff
    corecore