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1. Introduction 

Molecular imprinting is a recent new and rapidly evolving technique which allows the 

creation of synthetic receptors (MIPs) consisting of highly cross-linked porous-rich polymers 

with recognition properties comparable to the biological systems related to the presence of 

specific recognition sites complementary in shape, size and functional groups to a target 

molecule. It is a facile concept, which involves the construction of sites of specific 

recognition, commonly within synthetic polymers. The template of choice is entrapped 

within a pre-polymerization complex, consisting of functional monomers with good 

functionality, which chemically interacts with the template. Polymerization in the presence 

of crosslinker serves to freeze these template-monomer interactions and subsequent removal 

of the template results in the formation of a molecularly imprinted polymer matrix. Due to 

the  advantages of MIPs such as low cost, stability, and easy preparation compared with 

natural molecular recognition products (e.g. antibody), Molecular imprinting is a well-

developed tool in the analytical field, mainly for separating and quantifying very different 

substances, including drugs and bio-active molecules contained in relatively complex 

matrices. Despite the application of MIPs as sensor matrices or separation materials, they 

suffer from basic limitations associated with the limited concentration of imprinted sites, 

and the bulk volume of the polymer matrices that requires long diffusion paths of the 

imprinted host molecules. These limitations lead to inefficient sensing or separation 

processes. MIP nanomaterials are proposed as a pain reliever for headache by improving the 

accessibility and the homogeneity of the binding sites. In particular, with high strength, the 

extremely large surface area and unique chemical properties, Carbon nanotubes (CNTs) 

could serve as the reinforcing element or core in fabricating core–shell structural MIPs. 

Since their discovery in 1991, CNTs have attracted great attention because of their unique 
properties (high electrical conductivity, chemical stability, mechanical strength, large 
specific surface area, and high thermal stability) indicating potential for various 
applications.  
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CNTs represent a new carbon material that has been widely recognized as the quintessential 
nanomaterial and, because the hexagonal arrays of carbon atoms of the CNTs surface have a 
strong interaction with other molecules or atoms, CNTs show a great analytical potential as 
a solid-phase extraction adsorbent. Additionally, CNTs’ surfaces can be modified by 
introducing various organic functional groups, thus providing a strongly physic sorbing 
surface area, adjustable surface charge, and a source of protons for chemical ionization. It 
has been demonstrated that the surfaces of CNTs can be easily modified in numerous ways, 
either by covalent or non-covalent functionalization. All the facts mentioned before reveal 
that carbon nanotubes, and specially multiwalled carbon nanotubes, have great analytical 
potential as an effective solid-phase extraction adsorbent for chelates or ion pairs of metal 
ions, organic compounds, and organometallic compounds. 

Based on these considerations, it could be summarized that MIPs-CNTs composites 

represent useful innovative materials for analytical determination of target analytes in 

complex matrices.  

2. Molecularly Imprinted Polymers (MIPs): highly selective materials 

Molecular imprinting is a very useful technique to incorporate specific substrate recognition 

sites into polymers (Puoci et al., 2010). In particular, by this polymer synthesis technique, the 

formation of macromolecular networks characterized by specific recognition sites for a 

desired target molecule, named template could be obtained (Byrne & Salian, 2008). The 

specific binding properties of MIP must be attributed to specific interactions between the 

template and the functional groups in the polymeric network, thus the choice of the 

functional monomers is of primary importance to obtain performing imprinted materials 

(Puoci et al., 2007; Cirillo et al, 2010, 2011a) 

In the synthesis of these macromolecular system, many parameters involved can affect the 

information associated with the binding sites, such as functional monomers/polymers, 

crosslinkers and solvents/porogens. Thus, both the feasibility of imprinting and the 

proper preparation conditions need exploration for the preparation of efficient imprinted 

materials (Liu Z. et al., 2010). It is important to state that MIP can be obtained in different 

formats, depending on the preparation method followed. To date, the most common 

polymerizations for preparing MIPs involve conventional solution, suspension, 

precipitation, multi-step swelling and emulsion core-shell. There are also other methods, 

such as aerosol or surface rearrangement of latex particles, but they are not used routinely 

(Puoci et al., 2011). 

MIPs are stable polymers with molecular recognition abilities and resistant to a wide range 

of conditions (pH, organic solvents, temperature, pressure), and were used for several 

different applications, such as chromatographic stationary phases (Hishiya et al., 2003), 

enantiomeric separation (Adbo & Nicholls, 2001), solid-phase extraction (SPE) (El-Sheikh et 

al., 2010), and catalysis (Anderson et al., 2005); they were also used as receptors (Haupt, 

2003), antibodies (Svitel et al., 2001), enzyme mimics (Nicholls et al., 1996), affinity and 

sensing materials (Syu et al., 2006), and, in recent years, pharmaceutical applications, such 

as drug discovery, drug purification, or drug delivery (Mosbach, 2006; Yu Y. et al., 2002; 

Caldorera-Moore & Peppas, 2009; Hilt & Byrne, 2004). 
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MIPs can be synthesized following three different imprinting approaches named covalent, 
non-covalent and semi-covalent procedure, according to the kind of interaction between a 
template and functional groups during the synthesis and recognition phases (Caro et al., 
2002). 

In the non-covalent procedure (Figure 1), non-covalent interactions (hydrogen bonding, p-p 
interactions, Van der Waals forces, etc.) are involved in both the synthesis and the 
recognition step (Joshi et al., 1998). This method is still the most widely used method to 
prepare MIP because of the advantages that it offers from the point of view of synthesis. The 
covalent protocol requires the formation of covalent bonds between the template and the 
functional monomer prior to polymerization, as well as between template and functional 
group in the imprinted cavities during the re-binding process (Ikegami et al., 2004). Finally, 
the semi-covalent approach is a hybrid of the two previous methods. Specifically, covalent 
bonds are established between the template and the functional monomers before 
polymerization, while, once the template has been removed from the polymer matrix, the 
subsequent re-binding of the analyte to the MIP exploits non-covalent interactions (Curcio et 
al., 2010). 

 

Fig. 1. Schematic representation of Non-Covalent Molecular Imprinting Process. Adapted 
from Liu Z. et al., 2010. 

The binding sites obtained by molecular imprinting show different characteristics, 
depending on the type of imprinted approach. The average affinity of binding site prepared 
using bonding by non-covalent forces is generally weaker than those prepared using 
covalent methods because electrostatic, hydrogen bonding, π-π and hydrophobic 
interactions, between the template and the functional monomers, are used exclusively in 
forming the molecular assemblies (Hwang & Lee, 2002). However, when covalent bonds are 
established between the template and the functional monomer prior to polymerization, this 
gives rise to better defined and more homogeneous binding sites than the non-covalent 
approach, since the template-functional monomer interactions are far more stable and 
defined during the imprinting process.  
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It should also be mentioned that, as a control in each polymerization, a non-imprinted 
polymer (NIP) is also synthesised in the same way as the MIP but in absence of the template. 
To evaluate the imprinting effect, the selectivities of the NIP and MIP are then compared. 

3. Carbon nanotubes: fascinating nano-objects 

In the last decade, the dramatic development of nanotechnology in material science and 
engineering has led to the study and the development of innovative nanostructured 
materials (Xu T. et al., 2007; Niemeyer, 2001; Cui & Gao, 2003; Whitesides, 2003): certain 
materials with delicate structures of “small” sizes, falling in the 1–100 nm range, and specific 
properties and functions related to the “size effect” (Safarik & Safarikova, 2002; Laval et al., 
1999). In particular, extensive researches have been focused on medicine and biomedical 
engineering for the investigation of the interactions between nanomaterials and biological 
systems (Foldvari & Bagonluri, 2008; Bianco et al., 2005; Desai, 2000). Potential products of 
bionanotechnology in the pharmaceutical and biomedical industry are refered as 
nanomedicines, including materials to be employed as clinical bio-analytical diagnostics 
(Bianco et al., 2005; Pantarotto et al., 2003), carriers to improve controlled and targeted drug 
release (Leary et al., 2006; Sinha & Yeow, 2005) and additives to improve solubility and 
bioavailability of poorly soluble drugs (Ajayan et al., 1993), novel tissue engineered scaffolds 
and devices (Bauer et al., 2004; Mazzola, 2003; Kikuchi et al., 2004). 

Within the realm of bionanotechnology, carbon nanotubes (CNTs), a major class of carbon-
based tubular nanostructures have been denoted great interest in the scientific community 
(Ke & Qiao, 2007; Klingeler & Sim, 2011).  

The walls of CNTs are made up of a hexagonal lattice of carbon atoms analogous to the 
atomic planes of graphite (Dresselhaus et al., 2004). CNTs can be imaginatively produced by 
rolling up a graphene sheet (a single layer of graphite) forming a single-walled CNTs 
(SWCNTs), or by rolling up many graphene layers to form concentric cylinders (multi-
walled CNTs; MWCNTs). The ends of CNT may be closed with halfspheres of fullerens. 
MWNTs are comprised of two up to several to tens of concentric carbon cylinders and thus 
generally have a larger outer diameter (2.5–100 nm) than SWNTs (0.6–2.4 nm) (Joselevich, 
2004) (Figure 2). 

 

Fig. 2. Schematic representation of SWNTs and MWNTs. 
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Although there have been many interesting and successful attempts to grow CNTs by 
various methods (Klingeler et al., 2008; Vyalikh et al., 2008), the three most widely used 
techniques are: arc discharge, laser ablation, and chemical vapor deposition (CVD) (Ando et 
al., 2004). 

The arc-discharge method is the one by which CNTs were first produced and recognized. In 
a model system, a dc arc voltage is applied between two graphite rods in the presence of an 
appropriate ambient gas. This method is useful for the production of both CNTs and 
fullerenes. In particular, when pure graphite rods are used, fullerenes are deposited in the 
form of soot in the chamber (Saito et al., 1992). However, a small part of the evaporated 
anode is deposited on the cathode, which includes CNTs (Iijima, 1991). As described by 
Ando et al., 2004, these CNTs represent MWNTs. They are found not only on the top surface 
of the cathode deposit (Ando, 1993) but also deep inside the deposit (Ando & Iijima, 1993). 
Large-scale synthesis of MWNTs by arc discharge has been achieved (Ebbesen & Ajayan, 
1992; Colbert et al., 1994) in He gas. The same methodology could be applied to the 
synthesis of SWNTs  if a graphite rod containing metal catalysts (Fe, Co, etc.) is used as the 
anode with a pure graphite cathode (Iijima & Ichihashi, 1993; Bethune et al., 1993). By using 
a dc pulsed arc discharge inside a furnace, homogeneous conditions in arc discharge are 
achieved and high-quality DWNTs are synthesized by  a method called high-temperature 
pulsed arc discharge (Sugai et al., 1999, 2000, 2003; Shimada et al., 2004).  

The laser ablation, based on the high energy density of lasers (typically a YAG or CO2 laser) 
which is suitable for materials with a high boiling temperature such as carbon, was 
developed for fullerene and CNT production by Smalley’s group (Guo T. et al., 1992; Thess 
et al., 1996). The laser has sufficiently high energy density not to cleave the target into 
graphite particles but to vaporize it at the molecular level converting the graphite vapor into 
amorphous carbon as the starting material of SWNTs (Puretzky et al., 2000;  Sen et al., 2000; 
Kokai et al., 2000). The annealing conditions of the amorphous carbon in the laser ablation 
method are more homogeneous than those of the arc-discharge method, in which the 
electrodes and the convection flow disturb the homogeneity of the temperature and flow 
rate (Zhao X. et al., 2003; Kanai et al., 2001).  

Chemical Vapor Deposition (CVD) is a simple and economic technique for synthesizing 
CNTs at low temperature and ambient pressure. Usually, a carbon feedstock is thermally 
decomposed in the presence of a metal catalyst (Cirillo et al., 2011b). The generated carbon 
dissolves in the catalyst particles and, after saturation, is deposited in the shape of CNTs.  

To be distinguished from the many kinds of CVD used for various purposes, the method is 
also known as thermal or catalytic. Compared with arc-discharge and laser methods, CVD is 
more versatile because it offers better control over growth parameters. Furthermore, it 
harnesses a variety of hydrocarbons in any state (solid, liquid, or gas), enables the use of 
various substrates, and allows CNTs growth in a variety of forms, such as powder, thin or 
thick films, aligned or entangled, straight or coiled, or even a desired architecture of 
nanotubes at predefined sites on a patterned substrate. MWNTs were grown from benzene, 
ethylene, methane, and many other hydrocarbons (Endo et al., 1993; José-Yacamán et al., 
1993; Satiskumar et al., 1999; Hernadi et al., 1996). SWNTs were first produced by Dai et al. 
from disproportionation of CO, and SWNTs were also produced from benzene, acetylene, 
ethylene, and methane using various catalysts. (Cheng et al., 1998; Satishkumar et al., 1998; 
Hafner et al., 1998; Kong J. et al., 1998; Flahaut et al., 1999).  Due to lower synthesis 
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temperatures CVD grown CNTs exhibit a lower crystallinity than tubes produced using the 
two alternative methods mentioned above. 

When considering the whole of CNTs applications, the solubilization of pristine CNTs in 
aqueous solvents remains an obstacle to realizing their potential, due to the rather 
hydrophobic character of the graphene sidewalls. To successfully disperse CNTs the 
dispersing medium should be capable of both wetting the hydrophobic tube surfaces and 
modifying the tube surfaces to decrease tube aggregation. Four basic approaches have been 
used to obtain a dispersion: surfactant-assisted dispersion (Ham et al., 2005; Islam et al., 
2003; Moore et al.,  2003; Yurekli et al., 2004; Vaisman et al., 2006), solvent dispersion (Fu & 
Sun, 2003; Ausman et al., 2000; Kim D.S. et al., 2005), functionalization of CNT sidewalls 
(Dyke & Tour 2004; Fernando et al., 2004; Peng et al., 2003), and biomolecular dispersion 
(Gigliotti et al., 2006). 

4. Chemical sensing 

Before exploring the use of CNTs in chemical and electrochemical sensing it should be 
pointed out that the term sensor refers to a device that responds to a physical or chemical 
stimulus by producing a signal, usually an electrical one (Hillberg et al., 2005), while a 
biosensor is a sensor that uses biological selectivity to limit perception to the specific 
molecule of interest. A typical biosensor consists of two main components: the 
chemosensory materials (receptors) that can selectively bind target analytes and the efficient 
transducer that can transform the binding events into a readable signal output related to the 
analyte concentration in the sample (Eggins, 2002). The efficiency of chemosensors is largely 
dependent on the selectivity and sensitivity of the used sensory materials to a target species. 
In the traditional approaches a biological or biologically derived sensing element acting as a 
receptor is immobilized on the surface of a physical transducer to provide selective binding 
of analytes (Orellana & Moreno-Bondi, 2005; Jiang & Ju, 2007). As a sensing element, it is 
possible to use either biological macromolecules (e.g. antibodies, enzymes, receptors and ion 
channel proteins, nucleic acids, aptamers and peptide nucleic acids) or biological systems 
(e.g. ex vivo tissue, microorganisms, isolated whole cells and organelles). However, the 
small surface area and non-tunable surface properties of transducers greatly limit the 
efficiency of chemosensors, especially for the detection of ultratrace analytes. Recently, 
nanomaterials have found a wide range of applications as a material foundation of 
chemosensors, and have exhibited various degrees of success in the improvement of 
detection sensitivity and selectivity (Gao D. et al., 2007; Xie et al., 2006; Banholzer et al., 
2008) due to their unique electrical, optical, catalytic or magnetic properties (Chen J.R. et al., 
2004) and large surface-to-volume ratio (Xie et al., 2008). 

4.1 CNTs in chemical sensing 

Among nanomaterials, carbon surfaces represent very attractive materials for 
electrochemical studies, such as biosensor applications, due to their different allotropes 
(graphite, diamond and fullerenes/nanotubes). Carbon electrodes are well polarizable. 
However, their electrical conductivity strongly depends on the thermal treatment, 
microtexture, hybridization and content of heteroatoms. Additionally, the amphoteric 
character of carbon allows use of the rich electrochemical properties of this element from 
donor to acceptor state. Application of recently developed carbon materials include, 
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environment-friendly and energy-saving automotive parts, high-purity components in 
semiconductor manufacturing equipment for highly integrated chips, internal walls of 
vacuum vessels in the nuclear fusion reactors expected to be an energy source in the 21st 
century, and negative electrodes of lithium ion secondary batteries, of which demand is 
rapidly increasing with the popularization of mobile electronic instruments (Kazua, 1999). 
During the last years a great interest has been focused on the application of carbons (Flavel 
et al., 2009; Ma G.P. et al., 2009) as electrode materials because of their accessibility, easy 
processability and relatively low cost. They are chemically stable in different solutions (from 
strongly acidic to basic) and able to show performance in a wide range of temperatures. 
Already well-established chemical and physical methods of activation allow for the 
production of materials with a developed surface area and a controlled distribution of pores 
that determine the electrode/electrolyte interface for electrochemical applications.  

The possibility of using the activated carbon without binding substances (e.g. fibrous fabrics 
or felts) gives an additional advantage from the construction point of view. Unique 
properties of ultra-microelectrodes (UMEs) make them very attractive in electroanalytical 
measurements which require high spatial and temporal resolution (Wigthman, 1988). At 
ultra-microelectrodes, at typical slow scan rates of voltammetry, signal to noise ratios (S/N) 
can increase up to one decade due to efficient mass transportation to the electrode resulting 
from edge effects. In addition, because of the small dimensions and low IR drop, fast scan 
voltammetric measurements (Garreau et al., 1990; Hsueh et al., 1993) and measurements in 
highly resistive media are possible at UMEs (Howell & Wightman, 1984) while high spatial 
resolution and minimal tissue damage (Musallam et al., 2007). can be achieved in vivo 
analysis. Microelectrodes are useful for measurements for changes in easily oxidized 
neurotransmitter concentrations in extracellular brain fluid (Kawagoe et al., 1993) as they 
provide a way to observe the rapid chemical changes associated with the release of 
neurotransmitters from neurons and their subsequent removal from the extracellular fluid 
(Atesa & Sarac, 2009). 

The nanodimensions of CNTs guarantee a very large active surface area and are especially 
suited for the conception of miniaturized sensors. In addition to the high porosity and 
reactivity, this makes them ideal candidates for the storage of neutral species as well as 
electron donors, when used as electrodes in electrochemical reactions, for which they may 
also be called “nanoelectrodes” (Basabe-Desmonts et al., 2007; Daniel et al., 2007; Guo et al., 
2004). Hence, it is not surprising that gas sensors made from individual nanotubes show 
good sensitivities at room temperature (J. Kong et al., 2001; Vasanth Kumar et al., 2010, 
2011) in comparison to commercially available classical semiconductor sensors, which in 
general operate above 200°C. However, a necessary prerequisite is that the molecules to be 
detected must have a distinct electron donating or accepting ability, which is fulfilled, for 
example, by ammonia (NH3) as a donor and nitrogen dioxide (NO2) as an acceptor. The 
adsorption of these molecules on the nanotubes is associated with a partial charge transfer, 
which alters the charge-carrier concentration or, alternatively, the adsorbed molecules may 
affect the potential barriers present at the tube–electrode contacts. In any event, the resulting 
change in the electrical resistance of the nanotube is utilized as a sensor signal. However, for 
the detection of molecules that are only weakly adsorbed (e.g., carbon monoxide and 
hydrogen), the change in resistance is often too small. A possible method to overcome this 
drawback is accomplished by the modification of the nanotube sidewalls with nanoparticles 
made of a suitable metal. For instance, sensitive hydrogen sensors operating at room 
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temperature can be obtained via the deposition of palladium nanoparticles either by direct 
evaporation (Kong J. et al., 2000) or through electrodeposition (Geng et al., 2004; Teles et al., 
2008). Electrodeposition offers the specific advantage of site-selectivity, since the metal 
decoration is restricted to the current-carrying tubes, so that the remaining substrate surface 
is unaffected. An example is a semiconducting SWCNT with electrodeposited Pd particles 
upon exposure to hydrogen. The operation mechanism is largely analogous to that of a 
palladium gate field-effect transistor realized within classical silicon technology 
(Lundstroem et al., 1975). Specifically, molecular hydrogen is split on the surface of a Pd 
particle into atomic hydrogen, which diffuses to the Pd/SWCNT interface. At this interface, 
a dipole layer is formed, which acts like a microscopic gate electrode that locally changes the 
charge-carrier concentration. It should be mentioned that the recovery of this type of room-
temperature-operated hydrogen sensor requires a supply of oxygen to remove the hydrogen 
atoms in the form of water (Balasubramanian & Burghard, 2005). Carbon nanotubes exhibit 
high electron transfer rates for different redox couples in various media (Balasubramanian 
et al., 2004) which has stimulated an increasing amount of research into CNT based 
amperometric sensors for the detection of specific analytes in solution. The length scales of 
CNTs are similar to that of typical biological molecules, which gives CNTs an edge over 
other materials in functioning as effective electrodes in bioelectrochemical sensing 
(Guiseppi-Elie et al., 2002). In particular, their high aspect ratio and their diameter in the 
nanometer range make CNTs particularly well suited for direct electrochemical 
communication with the redox site of a protein, without requiring any mediator. When 
properly arranged, a nano- tube should have the capability to act as a 1D channel that 
guides electrons towards the redox center. These materials can be used to preconcentrate 
analytes and for the magnetic separation and molecular identification of biomolecules, and 
organic and inorganic species (AguilarArteaga et al., 2010). 

The application of CNTs as absorption and/or transducing materials was shown in several 
different works. Recently, a critical review dealing with the adsorption mechanism of 

analytes of different nature on carbon nanotubes was published (Cruz et al., 2010; Fontanals 
et al., 2007; See et al., 2010; Petrovic et al., 2010; Zeng J. et al., 2009; Augusto et al., 2010; 

Lucena et al., 2011;). The authors stated that this procedure cannot be explained by a single 
mechanism but through a combination of mechanisms. Indeed, the introduction of 

functional groups on the surface can facilitate the selective interaction with a given family of 
compounds. However, this fact has not yet been exploited for the analysis of urine samples. 

MWCNTs are proposed as a sorbent in an off-line SPE method for the determination of 
antidepressants using LC and UV detection (Bakker & Qin, 2006). MWCNTs have been 

applied as adsorbents for preconcentration of sulfonylurea herbicides (Lemos et al., 2008; 
Zhou Q. et al., 2006a, 2007), bisphenol A, 4-n-nonylphenol, 4-tert-octylphenol (Cai et al., 

2003a), dichlorodiphenyltrichloroethane and its metabolites (Zhou Q. et al., 2006b); atrazine, 
simazine (Zhou Q.  et al., 2006c), and trihalomethanes (Lu et al., 2005) in environmental 

water samples, barbiturates determination in pork (Zhao H. et al., 2007), for simultaneous 
determination of 10 sulfonamides in eggs and pork (Fang et al., 2006), for trapping volatile 

organic compounds in a purge-and trap GC system (Li Q. et al., 2004), to extract di-
ethylphthalate, di-n-propyl-phthalate, di-iso-butyl-phthalate, and di-cyclohexylphthalate 

from aqueous solutions (Cai et al., 2003b).  

Direct electron transfer has been achieved with various types of CNT electrodes for 
cytochrome c (Wang J. et al., 2002), horseradish peroxidase (Zhao Y. et al., 2002), myoglobin 
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(Zhao G.C. et al., 2003), as well as glucose oxidase (Guiseppi-Elie et al., 2003). It is 
noteworthy that in the latter case, the redox-active center is deeply embedded within the 
protein. In some cases, an oxidative pretreatment that introduces negatively charged surface 
groups on the CNTs was necessary to achieve high electron transfer rates. In a strategy to 
optimize the accessibility of the redox center, aligned CNT arrays have been fabricated 
using self-assembly techniques, followed by the covalent attachment of microperoxidase to 
the tube ends (Gooding et al., 2003). On this basis, various types of amperometric biosensors 
have been fabricated (Rubianes et al., 2003; Wang J. & Musameh, 2003; Wang J. et al., 2003). 
A glucose sensor, for example, is obtained by immobilizing glucose oxidase onto SWCNTs 
deposited on a glassy carbon surface (Davis et al., 2003). Hrapovic et al., 2004 combined 
platinum nanoparticles with carbon nanotubes and developed a new approach for the 
electrochemical detection of glucose (Aponte et al., 2006). Effective deposition of Pt 
nanoparticles on SWCNT was achieved by using a negatively charged polymer, Nafion, to 
dissolve and disperse SWCNT. Pt nanoparticles can easily be deposited on the Nafion-
modified CNT due to charge interactions. Compared to the sensors containing only Pt or 
CNT, the integration of Pt and CNT lead to improved sensitivity and detection limit. 

Zhang and Gorski used carbon nanotubes and redox mediators dispersed into a polymeric 
matrix for NADH detection and found a reduction of the overpotential (by 0.3 V), a higher 
sensitivity, and faster response times (Zhang M. & Gorski,  2005). Wang J. & Musameh, 2004 
reported on the use of carbon nanotubemodified glassy carbon electrodes in order to 
accelerate the electrooxidation of insulin, which resulted in a lowering of the required 
detection potential and a 14 nM detection limit as studied by flow injection analysis. Wang 
K. et al., 2005 proposed a potentiometric sensor for ascorbic acid on the basis of cobalt 
phthalocyanine nanoparticles directly coated on a glassy carbon electrode by drop coating. 
The authors explained the selective and rapid response to ascorbic acid on the basis of the 
redox potential, with cobalt acting as the mediator.  

Kerman et al., 2004 also described the label-free electrochemical detection of DNA based on 
the direct attachment of adenine probes to the sidewall and end of functionalized MWCNTs. 
The MWCNTs were attached onto the carbon paste electrode surface modified with thymine 
probes by hybridization between adenine and thymine. The combination of sidewall and 
end functionalization of MWNT showed enhancement of the guanine oxidation signal in the 
direct measurement compared to the ones from only end-modified MWCNT.  

The attachment of numerous enzymes on a single carbon nanotube label provided for 
enormous signal enhancement. Wang J. et al., 2004 reported on a novel method to 
dramatically amplify enzyme-based DNA sensing by using carbon nanotubes. In the new 
sensing scheme, the DNA duplex acted as connectors between microbeads and CNTs. The 
CNT loaded with enzymes linked to the magnetic microbeads through the interaction of 
complementary oligonucleotides. Without the recognition event, the CNT cannot attach to 
the particles and is removed during the magnetic separation. The CNTs function as carriers 
for enzyme tags, and the enzyme reaction products were also accumulated in the CNTs. The 
coupling of enzyme-tagged CNTs provided a better detection limit than single-enzyme 
labels and a conventional glassy carbon transducer. 

4.2 MIPs in chemical sensing 

In the sensors and biosensors technology, often there is the overriding complication that it is 
unusual, in “real” samples, for there to be a single species present. More commonly an 
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analyte of interest is accompanied by a number of different species, all present at different 
concentrations and all adding to the complexity of the analytical problem. 

All over the world, billions of dollars are spent annually on chemical/biological detections 
related to medical diagnosis, environmental monitoring, public security and food safety 
because lab analysis using expensive equipment is usually cumbersome and time-
consuming. Therefore, there has been a pressing societal need for the development of 
chemo/biosensors for the detection of various analytes in solution and atmosphere, which 
are both less expensive and simpler to construct and operate. Although considerable 
progress was made in the past several decades, the chemo/biosensor field remains 
underdeveloped and at a low level of commercialization because of the lack of alternative 
strategies and multidisciplinary approaches (Guan et al., 2008). 

The standard approach to the analytical analysis of complex matrices is the separation of the 
different components. Typically, therefore, before a sensor can be used to perceive and 
quantify one component in a mixed solution, the various components of the complex 
mixture must be separated, usually by a chromatographic process, so that some form of 
non-selective sensor, e.g. UV absorbance measurements, can be used to detect and quantify 
each individual component. In order to improve the performance of chemical sensors, an 
improvement of their selectivity is required, so that a particular chemical species can be 
detected and assayed without the need for a possibly lengthy separation stage. In this 
direction, a technological approach is the development of the biosensor (Updike & Hicks, 
1967).  

Molecular imprinting is one of the most efficient strategies that offer a synthetic route to 
artificial recognition systems by a template polymerization technique (Ye & Mosbach, 2001; 
Spivak, 2005; Zhang H.Q. et al., 2006). While most research in this direction is targeted to the 
design of chromatographic stationary phases, their use in electrochemical sensors is 
expanding for electroactive analytes. In convincing work, the group of Mandler explored 
sol-gel polymers imprinted with the organophosphate pesticide parathion and performed 
gasphase and liquid-phase partitioning experiments as well as cyclic voltammetric studies 
(Marx et al., 2004). Imprinted films showed a more than 10-fold increased equilibrium 
binding over nonimprinted polymers and discriminated well against a range of other 
structurally similar organophosphates. 

To date molecularly imprinted polymers have been successfully used with most types of 
transduction platforms and a range of methods have been used to bring about close 
integration of the platform with the polymer (Adhikari & Majumdar 2004). By using MIP it 
is possible to overcome the commonly founded limitations in the traditional biosensor 
approach (Orellana & Moreno-Bondi, 2005; Jiang & Ju, 2007), based on the use of biological 
macromolecules (e.g. antibodies, enzymes, receptors and ion channel proteins, nucleic acids, 
aptamers and peptide nucleic acids) or biological systems (e.g. ex vivo tissue, 
microorganisms, isolated whole cells and organelles) as sensing element. In the last years, 
indeed, although biological receptors have specific molecular affinity and have been widely 
used in diagnostic bioassays and chemo/biosensors, great affords have been made in 
synthesizing artificial recognition receptors to overcome the limit in the efficiency of 
chemosensors, especially for the detection of ultratrace analytes due to the small surface 
area and non-tunable surface properties of transducers. Another limitation of traditional 
biosensors is that often natural receptors for many detected analytes do not exist; 

www.intechopen.com



 
Carbon Nanotubes – Imprinted Polymers: Hybrid Materials for Analytical Applications 

 

191 

furthermore, they are produced via complex protocols with a high cost and require specific 
handling conditions because of their poor stability (Whitcombe et al., 2000; Wulff, 2002; 
Haupt & Mosbach, 2000; Ye & Haupt, 2004).  

During the past ten years, the literatures on the development of MIP-based sensors, in 
particularly electrochemical (Riskin et al., 2008;) and optical (McDonagh et al., 2008; Basabe-
Desmonts et al., 2007; Li J. et al., 2007a; Feng et al., 2008) sensors, have been dramatically 
growing (Nilsson et al., 2007; Ramanavicius et al., 2006). It was found that the manufacture 
of composites consisting of molecularly imprinted conducting polymers results in obtaining 
materials that exhibit both predetermined selective molecular recognition and electrical 
conductivity (Deore et al, 2000). This type of materials, mostly frequented based on 
overoxidized polypyrrole, is of special interest for use in the field of sensor technology 
(Shiigi et al., 2003). 

MIP-based electrochemical sensors were first reported in the early 1990s by Mosbach’s 
group (Andersson et al., 1990), and to date, remarkable progress in MIP-based 
electrochemical sensors have been achieved in the use and the performance of 
conductometric/potentiometric MIP nanomaterials (Zhou Y.X. et al., 2003), which were 
used to detect many different analytes (Augisto et al., 2010) such as barbituric acid (Mirsky 
et al., 1999), amino acid derivatives (Panasyuk et al., 1999), morphine (Kriz et al., 1995), 
atrazine (Kim Y. et al., 2007), benzyltriphenylphosphonium chloride (Kriz & Mosbach, 1995), 
thiophenol (Kröger et al., 1999), glutamic acid (Ouyang et al., 2007), folic acid (Prasad et al., 
2010a; Prasad et al., 2010c), tolazoline (Zhang Z. et al., 2010a), tryptophan (Prasad et al., 
2010d; Kong Y. et al., 2010), clindamycin (Zhang J. et al., 2010), 2,4-dichlorophenoxy acetic 
acid (Xie et al, 2010), histamine (Bongaers et al., 2010), caffeine (Alizadeh et al., 2010; 
Vinjamuri et al., 2008), theophylline (Kan et al., 2010) uracil and 5-fluorouracil (Prasad et al., 
2009), salicylic acid (Kang et al., 2009), uric acid (Patel et al., 2009), resveratrol (Xiang & Li, 
2009), hydroquinone (Kan et al., 2009; Kan et al., 2008a), bisphenol (Kolarz & Jakubiak, 
2008), and dopamine (Kan et al., 2008b).  

Despite the application of MIPs as sensor matrices or separation materials, they suffer from 
basic limitations associated with the limited concentration of imprinted sites, and the bulk 
volume of the polymer matrices that requires long diffusion paths of the imprinted host 
molecules. These limitations lead to inefficient sensing or separation processes (Shi et al., 
2007). In order to increase the efficiency of MISPE, a method is increasing the surface area of 
polymer. Higher surface area can contain more functional groups, thus the interaction 
between polymer and bioactive compounds will be increased accordingly (Tian et al., 2011). 
A useful approach is the fabrication of robust multilayer structures by the photo-
crosslinking of the layers (Sun et al., 1998, 2000). This process transformed the electrostatic 
interlayer stabilizing interactions into covalent bonds. This achievement, together with the 
stated limitations of MIPs, suggested that the surface imprinting of LbL nanostructured 
films might be a viable technique to fabricate effective MIP matrices. 

5. CNTs-MIPs composites: innovative materials for analytical determinations 

Among the different applications of CNTs in nanotechnology, polymer composites, consisting 
of additives and polymer matrices, including thermoplastics, thermosets and elastomers, are 
considered to be an important group of relatively inexpensive materials for many engineering 
applications (Ma et al., 2010; Yang et al., 2007). The technology implications are significant to 
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many fields, from semiconductor device manufacturing to emerging areas of 
nanobiotechnology, nanofluidics, and chemistry where the ability to mold structures with 
molecular dimensions might open up new pathways to molecular recognition, drug discovery, 
catalysis, and molecule specific chemio-biosensing (Hua et al., 2004). 

The main approaches for the fabrication of these materials can be divided into “grafting to” 
and “grafting from” approaches (Liu M. et al., 2009; Baskaran et al., 2004).  

The “grafting to” approach involves pre-formed polymer chains reacting with the surface of 
either pristine or pre-functionalized carbon nanotubes. (See Figure 3). The main approaches 
exploited in this functionalization strategy are radical or carbanion additions as well as 
cycloaddition reactions to the CNT double bonds. Since the curvature of the carbon 
nanostructures imparts a significant strain upon the sp2 hybridized carbon atoms that make 
up their framework, the energy barrier required to convert these atoms to sp3 hybridization 
is lower than that of the flat graphene sheets, making them susceptible to various addition 
reactions. Therefore, to exploit this chemistry, it is only necessary to produce a polymer 
centered transient in the presence of CNT material. Alternatively, defect sites on the surface 
of oxidized CNTs, as openended nanostructures with terminal carboxylic acid groups, allow 
covalent linkages of oligomer or polymer chains. The “grafting to” method onto CNT defect 
sites means that the readymade polymers with reactive end groups can react with the 
functional groups on the nanotube surfaces. An advantage of the “grafting to” method is 
that preformed commercial polymers of controlled molecular weight and polydispersity can 
be used. The main limitation of the technique is that initial binding of polymer chains 
sterically hinders diffusion of additional macromolecules to the CNT surface, leading to a 
low grafting density. Also, only polymers containing reactive functional groups can be used. 

 

Fig. 3. Synthesis of CNTs-polymer composites by “Grafting to” approach as reported by 
Venkatesan & Kim, 2010. 
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The “grafting from” approach involves the polymerization of monomers from surface-
derived initiators on CNTs. These initiators are covalently attached using the various 
functionalization reactions developed for small molecules, including acid-defect group 
chemistry and side-wall functionalization of CNTs. (See Figure 4). The advantage of 
“grafting from” approach is that the polymer growth is not limited by steric hindrance, 
allowing high molecular weight polymers to be efficiently grafted. In addition, nanotube–
polymer composites with quite high grafting density can be prepared. However, this 
method requires strict control of the amounts of initiator and substrate as well as accurate 
control of conditions required for the polymerization reaction. Moreover, the continuous π-
electronic properties of CNTs would be destructed by the acid oxidation, even worse, CNTs 
may be destroyed to several hundred nanometers in length. As a result, compared with the 
“grafting from”, the “grafting to” has much less alteration of the structure of CNTs (Yan & 
Yang, 2009; Mylvaganam & Zhang, 2004; Zhang M.N. et al., 2004). 

 

Fig. 4. Synthesis of CNTs-polymer composites by “Grafting from” approach as reported by 
Balasubramanian & Burghard, 2005. 

Many techniques including esterification (Gao C. et al., 2007; Sano et al., 2001; Kahn et al., 
2002; Huang W. et al., 2003; Lin et al., 2003), “click” chemistry (Li H.M. et al., 2005), layer-by-
layer self-assembly (Kong H. et al., 2005; He & Bayachou, 2005; Qin et al., 2005; Artyukhin et 
al., 2004), pyrene moiety adsorption (Bahun et al., 2006; Martin et al., 2004; Qu et al., 2002; 
Petrov et al., 2003; Gomez et al., 2003), radical coupling (Liu Y.Q. et al., 2005; Lou et al., 
2004), anionic coupling (Huang H.M. et al.,2004), radical polymerization (Qin et al., 2004a; 
Shaffer & Koziol, 2002), supercritical CO2-solubilized polymerization or coating (Wang J.W. 
et al., 2006; Dai et al., 2004), γ-ray irradiation (Xu H.X. et al., 2006), cathodic electrochemical 
grafting (Petrov et al., 2004) polycondensation (Zeng H.L. et al., 2006a; Gao C. et al., 2005; 
Nogales et al., 2004), reversible addition fragmentation chain-transfer (RAFT) 
polymerization (Xu G.Y. et al., 2006; You et al., 2006; Cui H. et al., 2004; Hong et al., 2005, 
2006), anionic polymerization (Chen S.M. et al. 2006; Liu I.C. et al., 2004), ring-opening 
polymerization (Zeng H.L. et al., 2006b; Qu et al., 2005; Buffa et al., 2005; Gao J.B. et al., 2005) 
and atom transfer radical polymerization (ATRP) (Kong H. et al., 2004; Qin et al., 2004b; Yao 
et al., 2003) have been employed to functionalize CNTs with polymers.  

CNTs exhibit a high aspect ratio and high conductivity, which makes CNTs excellent 
candidates for conducting composites (Sahoo et al., 2010) (Figure 5). 

The observation of an enhancement of electrical conductivity by several orders of 
magnitude of CNTs in polymer matrices without compromising other performance aspects 
of the polymers such as their low weight, optical clarity, low melt viscosities, etc., has  
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Fig. 5. Schematic representation of electrochemical detection by CNTs composite electrode. 
Adpted from Teles & Fonseca, 2008. 

triggered an enormous activity worldwide in this scientific area (Spitalsky et al., 2010). 
Nanotube-filled polymers could potentially, among the others, be used for transparent 
conductive coatings, electrostatic dissipation, electrostatic painting and electromagnetic 
interference shielding applications (Bauhofer & Kovacs, 2009; Breuer & Sundararaj, 2004; 
Moniruzzaman & Winey, 2006; Winey et al., 2007). The electrical conductivity in CNTs-
polymer nanocomposites depends on dispersion (Sandler  et al., 2003; Li J. et al., 2007b; Song 
& Youn, 2005), alignment (Choi et al., 2003; Fangming et al., 2003), aspect ratio (Bai & 
Allaoui, 2003; Bryning et al., 2005), degree of surface modification (Georgakilas et al., 2002) 
of CNTs, polymer types (Ramasubramaniam et al., 2003) and composite processing methods 
(Li J. et al., 2007b). Based on their characteristic, CNTs-polymer composites can behave as 
conductors, semiconductors or insulators (Maruccio et al., 2004). 

CNTs-polymer composites were successfully synthesized and employed for different 
applications, both in biomedical and engineering fields. One of the most representative 
example is a study regarding an ammonia gas sensors based on single-walled carbon 
nanotubes functionalized with covalently attached poly(m-aminobenzenesulfonic acid). The 
sensor was operated as a chemiresistor, with the carbon nanotubes forming a random 
network between interdigitated electrodes, and improved response and recovery times were 
observed (on the order of 15 min) (Bekyarova et al., 2004). In another work, a carbon 
nanotube/poly(ethylene-co-vinyl acetate) composite electrode was developed for 
amperometric detection in Capillary Electrophoresis (Frost et al., 2010). The new electrode 
also generated improved S/N, decreased fouling, and resulted in better long-term stability 
(Chen Z. et al., 2009). Zhou D. et al., 2008 describes a novel sieving matrix composed of both 
a quasi-interpenetrating polymer network (IPN) and PDMA functionalized MWNTs. Atom 
transfer radical polymerization was used to graft PDMA on MWNTs. The functionalized 
MWNTs were compatible with the quasi-IPN network. The rigid structure of MWNTs 
increased the stability and sieving ability of the matrix. Results showed that this novel 
matrix was advantageous in terms of resolution, speed, and reproducibility. Carbon 
nanotubes have been used to improve the efficiency of Ru(bpy)32+ modified polyacrylamide 
electrode because of their high conductivity (Xing & Yin, 2009). Carbon nanotubes modified 
with polypyrrole-silica nanocomposites seem very promising for electrochemical DNA 
sensor design (Ramanacius et al., 2006). MWCNTs were also grafted with poly(acrylamide) 
(PAAM) and with poly(N,Ndimethylacrylamide) (PDMA) at same grafting percentage by 
using N2 plasma technique and used in the removal of Pb2+ from aqueous solution under 
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ambient conditions (Shao et al., 2010). Authors found that the grafted PAAM and PDMA 
improved MWCNT adsorption capacity in the removal of Pb2+ from large volumes of 
aqueous solutions. Furthermore, MWCNTgPAAM had much higher adsorption capacity 
than MWCNT-g-PDMA, which was attributed to higher amide group content in acrylamide 
than that in N,N-dimethylacrylamide. 

A particular kind of CNTs-polymer composites is represented by CNTs-MIPs composites, in 

which the polymer part is a molecularly imprinted polymer (Chang et al., 2011; Walcarius et 

al., 2005). CNTs impart electrical conductivity to MIPs, while molecular imprinting on these 

one-dimensional nanostructures will endow the nanotubes with molecular recognition 

functions, further expanding their application fields (Guan et al., 2008). Several example of 

using these materials are reported in literature for biomedical, pharmaceutical and 

environmental applications (Figure 6). 

In pharmaceutical fields, in Zhang Z. et al., 2010b, a novel sensitive and selective imprinted 

electrochemical sensor was constructed for the direct detection of L-histidine by 

combination of a molecular imprinting film and MWNTs. The sensor was fabricated onto an 

indium tin oxide electrode via stepwise modification of MWNTs and a thin film of MIPs via 

sol–gel technology. The introduced MWNTs exhibited noticeable enhancement on the 

sensitivity of the MIPs sensor, meanwhile, the molecularly imprinted film displayed high 

sensitivity and excellent selectivity for the target molecule. H. Y. Lee & Kim, 2009 reports of 

the synthesis of CNTs-MIP composite to be potentially applied to probe materials in 

biosensor system for theophylline recognition based on CNT field effect. Hydroxyl- 

 

Fig. 6. Schematic representation of CNTs-MIPs recognition process. Adapted from Z. Zhang 
et al., 2010d. 

functionalized CNT was modified by silanisation with 3-chloropropyl trimethoxysilane. 
The iniferter groups were then introduced by reacting the CNT-bound chloropropyl 
groups with sodium N,N-diethyldithiocarbamate. UV light-initiated copolymerization of 
ethylene glycol dimethacrylate (crosslinking agent) and methacrylic acid (functional 
monomer) resulted in grafting of MIP on CNT for theophylline as a model template. The 
theophylline-imprinted polymer on CNT showed higher binding capacity for 
theophylline than non-imprinted polymer on CNT and selectivity for theophylline over 
caffeine and theobromine (similar structure molecules). Another theophylline sensor 
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based on CNTs-MIPs composites is shown in Lee E. et al., 2008. In this study acrylated 
Tween 20 was used as a linking molecule of MIPs to CNT. MIPs were formed for 
theophylline as a model template on the surface of CNT with methacrylic acid (functional 
monomer) and ethylene glycol dimethacrylate (crosslinking agent) using a photografting 
polymerization technique. The adsorbed layer of 2,2-dimethoxy-2-phenylacetophenone 
initiated a radical polymerization near the surface by UV-light irradiation. The 
theophylline-imprinted polymer on CNT showed higher binding capacity for 
theophylline than non-imprinted polymer (NIP) on CNTand selectivity for theophylline 
over caffeine (similar structure molecules). 

In another work (Prasad et al., 2010a), MIP–carbon composite is prepared via in situ free 
radical polymerization of a synthetic monomer and subsequent crosslinkage with ethylene 
glycol dimethacrylate, in the presence of carbon powder and folic acid  as template . The 
detection of folic acid with the MIP fiber sensor was found to be specific and quantitative in 
aqueous, blood serum and pharmaceutical samples, without any problem of nonspecific 
false positive contribution and crossreactivity.  

An insulin imprinted polymer (Prasad et al., 2010b) was synthesized over the surface of 
vinyl group functionalized MWCNTs using phosphotidylcholine containing functional 
monomer and crosslinker. Phosphotidylcholine is a major component of all biological 
membrane; its incorporation in polymer backbone assures water compatibility, 
biocompatibility and specificity to molecularly imprinted nanomaterials, without any 
crossreactivity or interferences from biological sample matrices. An electrochemical sensor 
fabricated by modifying multiwalled carbon nanotubes molecularly imprinted polymer onto 
the pencil graphite electrode, was used for trace level detection of insulin in aqueous, blood 
serum, and pharmaceutical samples by differential pulse anodic stripping voltammetry. 

A sensitive molecularly imprinted electrochemical sensor has been developed in Huang J. et 
al., 2011a for the selective detection of tyramine by combination of MWCNTs-gold 
nanoparticle composites and chitosan. Chitosan acts as a bridge for the imprinted layer and 
the nanocomposites. The molecularly imprinted polymer (MIP) was synthesized using 
tyramine as the template molecule, silicic acid tetracthyl ester and triethoxyphenylsilane as 
the functional monomers. The molecularly imprinted film displayed excellent selectivity 
towards tyramine. A thymidine sensor (Zhang Z.H. et al., 2010) was developed by casting 
thin film of molecularly imprinted sol–gel polymers with specific binding sites for 
thymidine on carbon electrode by electrochemical deposition. The excellent performance of 
the imprinted sol–gel/MWCNTs electrode towards thymidine can be ascribed to the 
MWCNTs functional layer with electrochemical catalytic activities and the porous imprinted 
film with plentiful selective binding sites. Under the optimized analytical conditions, the 
peak current was linear to thymidine concentration from 2 to 22 µmol-1 with the detection 
limit of 1.6 10-9 mol L-1. 

A different MWNTs-MIPs composites was prepared by using dopamine as a template 
molecule by the selective copolymerization of methacrylic acid and trimethylolpropane 
trimethacrylate in the presence of the template and vinyl group functionalized MWNT 
surface (Kan et al., 2008b). In this work, for grafting MIPs on MWNTs, the vinyl group 
was first introduced on the surface of MWNTs, which directed the selective 
polymerization of functional monomers and cross linkers in the presence of DA on the 
MWNTs surface. The thickness of the MIPs can be adjusted by changing the concentration 
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of prepolymerization monomers. The resulting MWNTs-MIPs possessed a faster 
adsorption dynamics, higher selectivity for the template. The modified electrode 
fabricated by modifying the MWNTs-MIPs on the glassy carbon electrode can recognize 
dopamine with a linear range from 5.0 10-7 to 2.0 10-4 mol/L. 

A sensor for the detection of Uric acid was proposed in (Yu J.C.C. & Lai, 2006) by 
polymerization of polymethacrylic acid on the surface of vinyl-functionalized CNTs in the 
presence of the template. The MIP adsorbs more Uric acid than NIP and the imprinting 
efficiency was found to be about 4.41. The MIP modified MWCNTs can be deposited on the 
MWCNTs electrode surface and used for the electrochemical detection for the template. The 
differences of adsorption amounts between MIP and NIP electrodes were determined by 
CVs with different adsorption times. The adsorption reached saturation after 5min of 
adsorption and the result was close to the rebinding experiments. The sensitivities of the 
MIP and NIP modified electrodes were about 11.03 and 5.39 mAM−1 cm−2, respectively, and 
the difference mainly came from the affinity cavities which were created by the imprinted 
template. 

A novel protein molecularly imprinted membrane (PMIM) was synthesized in Zhang M. et 

al., 2010 on the surface of MWNTs through a surface molecular imprinting technique by 

using bovine serum albumin as the template molecule, acrylamide as the functional 

monomer, N,N′methylenebisacrylamide as the crosslinker. The selectivity adsorption 

experiments showed that the PMIM/MWNTs also had higher adsorption capacities for BSA 

than for such molecules, as HSA, HB, pepsin and HRP. The PMIM/MWNTs displayed a 2.6 

fold increase in affinity to BSA compared to the nPMIM/MWNTs. The PMIM/MWNTs, on 

the other hand, did not exhibit any significant change in affinity to other molecules 

compared to the nPMIM/MWNTs. 

An estrone sensor was developed in Gao R. et al., 2011 by using a semicovalent imprinting 
strategy, which employed a thermally reversible covalent bond at the surface of silica coated 
CNTs. The synthesis of the nanocomposites involves silica shell deposition on the surface of 
CNTs, MIPs functionalized onto the silica surface, and final extraction of estrone by thermal 
reaction and generation of the recognition site. Authors state that the core–shell 
CNTs@MIPs nanocomposites developed in this work can also be applied as a selective 
coating for electrochemical or quartz crystal microbalance sensors to monitor for estrone 
residue in environmental water 

MIP-CNTs nanocomposites are also proposed as innovative drug delivery devices (Yin et 
al., 2010). MIP nanotubes were fabricated by atom transfer radical polymerization (ATRP) 
and applied in enantioselective drug delivery and controlled release. Authors found that S-
propranolol imprinted nanotubes provided differential release of enantiomers, whereby the 
release of the more therapeutically active S-propranolol (eutomer) is greatly promoted 
whilst the release of the less active R-enantiomer (distomer) is retarded. 

In environmental field, a recent work (Zhang Z. et al., 2010c) a novel MIPs with core–shell 
structure is fabricated by using MWNTs as the core material. Prior to polymerization, the 
silicon–oxygen group was grafted onto the MWNTs surface, then silicon–oxygen groups 
grafted onto the MWNTs surface could copolymerize directly with functional monomers 
and crosslinkers in the presence of the template molecules by hydrolysis and condensation, 
which can lead to the formation of MIPs on the surface of MWNTs. The imprinted material, 
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which showed a good selective recognition to Sudan IV with Qmax of 63.2mmol g−1, was 
applied as sorbets for the enrichment and determination of trace Sudan IV in real samples 
by online SPE–HPLC.  

CNTs were used successfully to enhance the binding capacity of a molecularly imprinted 
polypyrrole modified stainless steel frit for determination of ochratoxin A in red wines (Yu 
J.C.C. & Lai, 2007; Wei et al., 2007). In a different work (Li Y. et al., 2010), a molecularly 
imprinted polymer–graphene oxide hybrid material  was synthesized by reversible addition 
and fragmentation chain transfer (RAFT) polymerization for the selective detection of  2,4-
dichlorophenol in aqueous solution with an appreciable selectivity over structurally related 
compounds.  

Diaz-Diaz et al., 2011 describes an electrochemical sensors based on a catalytic 2,4,6-
trichlorophenol molecularly imprinted microgel that mimics the dehalogenative function of 
the natural enzyme chloroperoxidase for p-halophenols. Two strategies were explored: a 
carbon paste modified with the polymer and the drop-coating of screen-printed electrodes 
with powder suspensions of the polymer and carbon nanotubes. With this last design, 2,4,6-
trichlorophenol concentrations above 25 mM could be detected. 

In similar studies, an electrochemical imprinted sensor for sensitive and convenient 

determination of Bisphenol A (Huang J. et al., 2011b) and clindamycin (Zhang Z. et al., 

2010a) were developed. In both the cases, MWCNTs and gold nanoparticles were 

introduced for the enhancement of electronic transmission and sensitivity, while thin film of 

molecularly imprinted sol-gel polymers with specific binding sites for the templates were 

cast on gold electrode by electrochemical deposition. The resulting composites displayed 

excellent selectivity towards. 

A simple method was developed (Gao R. et al., 2010) to synthesize core–shell molecularly 

imprinted polymers for the extraction of triclosan with fast kinetics, high capacity and 

favorable selectivity by combining a surface molecular imprinting technique with a sol–gel 

process based on carbon nanotubes coated with silica. 

By a surface imprinting technique, in Zhang H. et al., 2011, a composite imprinted material, 

on the basis of a MWCNTs-incorporated layer using melamine as a template, methacrylic 

acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linker, was 

synthesized. In this work, the poly(acrylic-acid)-functionalized CNTs were synthesized to 

increase the diameter of CNTs. Then, the vinyl group was introduced to the surface of 

poly(acrylic-acid)-functionalized CNTs by an amidation. Using Melamine as a template 

molecule, imprinted CNT composite material was fabricated by a thermal polymerization. 

Applied as a sorbent, the imprinted materials were used for the determination of Melamine 

in the spiked sample by online SPE combined with HPLC. 

By the same approach, Ga(III)imprinted-CNTs sorbent was prepared in Zhang Z. et al., 

2010d by using Ga(III) ion-8hydroxyquinoline complex as a template molecule. The 

imprinted sorbent was applied successfully for extraction of Ga(III) ion from fly ash 

lixivium followed by FAAS detection. Authors state that compared with the others literature 

methods for Ga determination, their method is sufficiently accurate and precise to be used 

for Ga(III) ion analysis in fly ash samples, and performed better characteristics such as 

selectivity and cleanliness of the extracts. 
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