63 research outputs found

    Music recommendation: audio neighbourhoods to discover music in the long tail.

    Get PDF
    Millions of people use online music services every day and recommender systems are essential to browse these music collections. Users are looking for high quality recommendations, but also want to discover tracks and artists that they do not already know, newly released tracks, and the more niche music found in the 'long tail' of on-line music. Tag-based recommenders are not effective in this 'long tail' because relatively few people are listening to these tracks and so tagging tends to be sparse. However, similarity neighbourhoods in audio space can provide additional tag knowledge that is useful to augment sparse tagging. A new recommender exploits the combined knowledge, from audio and tagging, using a hybrid representation that extends the track's tag-based representation by adding semantic knowledge extracted from the tags of similar music tracks. A user evaluation and a larger experiment using Last.fm user data both show that the new hybrid recommender provides better quality recommendations than using only tags, together with a higher level of discovery of unknown and niche music. This approach of augmenting the representation for items that have missing information, with corresponding information from similar items in a complementary space, offers opportunities beyond content-based music recommendation

    CSM-H-R: An Automatic Context Reasoning Framework for Interoperable Intelligent Systems and Privacy Protection

    Full text link
    Automation of High-Level Context (HLC) reasoning for intelligent systems at scale is imperative due to the unceasing accumulation of contextual data in the IoT era, the trend of the fusion of data from multi-sources, and the intrinsic complexity and dynamism of the context-based decision-making process. To mitigate this issue, we propose an automatic context reasoning framework CSM-H-R, which programmatically combines ontologies and states at runtime and the model-storage phase for attaining the ability to recognize meaningful HLC, and the resulting data representation can be applied to different reasoning techniques. Case studies are developed based on an intelligent elevator system in a smart campus setting. An implementation of the framework - a CSM Engine, and the experiments of translating the HLC reasoning into vector and matrix computing especially take care of the dynamic aspects of context and present the potentiality of using advanced mathematical and probabilistic models to achieve the next level of automation in integrating intelligent systems; meanwhile, privacy protection support is achieved by anonymization through label embedding and reducing information correlation. The code of this study is available at: https://github.com/songhui01/CSM-H-R.Comment: 11 pages, 8 figures, Keywords: Context Reasoning, Automation, Intelligent Systems, Context Modeling, Context Dynamism, Privacy Protection, Context Sharing, Interoperability, System Integratio

    Factual and Personalized Recommendations using Language Models and Reinforcement Learning

    Full text link
    Recommender systems (RSs) play a central role in connecting users to content, products, and services, matching candidate items to users based on their preferences. While traditional RSs rely on implicit user feedback signals, conversational RSs interact with users in natural language. In this work, we develop a comPelling, Precise, Personalized, Preference-relevant language model (P4LM) that recommends items to users while putting emphasis on explaining item characteristics and their relevance. P4LM uses the embedding space representation of a user's preferences to generate compelling responses that are factually-grounded and relevant w.r.t. the user's preferences. Moreover, we develop a joint reward function that measures precision, appeal, and personalization, which we use as AI-based feedback in a reinforcement learning-based language model framework. Using the MovieLens 25M dataset, we demonstrate that P4LM delivers compelling, personalized movie narratives to users

    Encouraging attention and exploration in a hybrid recommender system for libraries of unfamiliar music

    Get PDF
    There are few studies of user interaction with music libraries comprising solely of unfamiliar music, despite such music being represented in national music information centre collections. We aim to develop a system that encourages exploration of such a library. This study investigates the influence of 69 users’ pre-existing musical genre and feature preferences on their ongoing continuous real-time psychological affect responses during listening and the acoustic features of the music on their liking and familiarity ratings for unfamiliar art music (the collection of the Australian Music Centre) during a sequential hybrid recommender-guided interaction. We successfully mitigated the unfavorable starting conditions (no prior item ratings or participants’ item choices) by using each participant’s pre-listening music preferences, translated into acoustic features and linked to item view count from the Australian Music Centre database, to choose their seed item. We found that first item liking/familiarity ratings were on average higher than the subsequent 15 items and comparable with the maximal values at the end of listeners’ sequential responses, showing acoustic features to be useful predictors of responses. We required users to give a continuous response indication of their perception of the affect expressed as they listened to 30-second excerpts of music, with our system successfully providing either a “similar” or “dissimilar” next item, according to—and confirming—the utility of the items’ acoustic features, but chosen from the affective responses of the preceding item. We also developed predictive statistical time series analysis models of liking and familiarity, using music preferences and preceding ratings. Our analyses suggest our users were at the starting low end of the commonly observed inverted-U relationship between exposure and both liking and perceived familiarity, which were closely related. Overall, our hybrid recommender worked well under extreme conditions, with 53 unique items from 100 chosen as “seed” items, suggesting future enhancement of our approach can productively encourage exploration of libraries of unfamiliar music

    Adaptive intelligent personalised learning (AIPL) environment

    Get PDF
    As individuals the ideal learning scenario would be a learning environment tailored just for how we like to learn, personalised to our requirements. This has previously been almost inconceivable given the complexities of learning, the constraints within the environments in which we teach, and the need for global repositories of knowledge to facilitate this process. Whilst it is still not necessarily achievable in its full sense this research project represents a path towards this ideal.In this thesis, findings from research into the development of a model (the Adaptive Intelligent Personalised Learning (AIPL)), the creation of a prototype implementation of a system designed around this model (the AIPL environment) and the construction of a suite of intelligent algorithms (Personalised Adaptive Filtering System (PAFS)) for personalised learning are presented and evaluated. A mixed methods approach is used in the evaluation of the AIPL environment. The AIPL model is built on the premise of an ideal system being one which does not just consider the individual but also considers groupings of likeminded individuals and their power to influence learner choice. The results show that: (1) There is a positive correlation for using group-learning-paradigms. (2) Using personalisation as a learning aid can help to facilitate individual learning and encourage learning on-line. (3) Using learning styles as a way of identifying and categorising the individuals can improve their on-line learning experience. (4) Using Adaptive Information Retrieval techniques linked to group-learning-paradigms can reduce and improve the problem of mis-matching. A number of approaches for further work to extend and expand upon the work presented are highlighted at the end of the Thesis

    Creating Coherent Incidental Learning Journeys on Smartphones Using Feedback and Progress Indicators:

    Get PDF
    Although the motivating role of feedback and progress indicators is understood in formal learning, their role in supporting incidental mobile learning is less well understood. In this paper we argue that well-designed feedback and progress indicators (FPIs) offer guidance and structure that may encourage mobile app users to move from fragmented learning episodes towards a longer term, reflective learning journey. Drawing from relevant literature we consider how FPIs can be used in the EU-funded MASELTOV project which explores how a suite of smartphone apps can support recent immigrants to Europe to become integrated in their new cities. These apps allow learning episodes to be part of daily activities and interactions. The authors discuss what kinds of FPIs should be provided and introduce the SCAMP model which emphasises five types of FPIs-Social, Cognitive, Affective, Motivational and Progress. Finally, the authors provide examples of FPIs that will be used in the MASELTOV project

    Overview of the CLEF 2022 JOKER Task 3: Pun Translation from English into French

    Get PDF
    The translation of the pun is one of the most challenging issues for translators and for this reason has become an intensively studied phenomenon in the field of translation studies. Translation technology aims to partially or even totally automate the translation process, but relatively little attention has been paid to the use of computers for the translation of wordplay. The CLEF 2022 JOKER track aims to build a multilingual corpus of wordplay and evaluation metrics in order to advance the automation of creative-language translation. This paper provides an overview of the track’s Pilot Task 3, where the goal is to translate entire phrases containing wordplay (particularly puns). We describe the data collection, the task setup, the evaluation procedure, and the participants’ results. We also cover a side product of our project, a homogeneous monolingual corpus for wordplay detection in French

    Social contextuality and conversational recommender systems

    Get PDF
    As people continue to become more involved in both creating and consuming information, new interactive methods of retrieval are being developed. In this thesis we examine conversational approaches to recommendation, that is, the act of suggesting items to users based on the system’s understanding of them. Conversational recommendation is a recent contribution to the task of information discovery. We propose a novel approach to conversation around recommendation, examining how it is improved to work with collaborative filtering, a common recommendation algorithm. In developing new ways to recommend information to people we also examine their methods of information seeking, exploring the role of conversational recommendation, using both interview and sensed brain signals. We also look at the implications of the wealth of social and sensed information now available and how it improves the task of accurate recommendation. By allowing systems to better understand the connections between users and how their social impact can be tracked we show improved recommendation accuracy. We look at the social information around recommendations, proposing a directed influence approach between socially connected individuals, for the purpose of weighting recommendations with the wisdom of influencers. We then look at the semantic relationships that might seem to indicate wisdom (i.e. authors on a book-ranking site) to see if the ``wisdom of the few'' can be traced back to those conventionally considered wise in the area. Finally we look at ``contextuality'' (the ability of sets of contextual sensors to accurately recommend items across groups of people) in recommendation, showing that different users have very different uses for context within recommendation. This thesis shows that conversational recommendation can be generalised to work well with collaborative filtering, that social influence contributes to recommendation accuracy, and that contextual factors should not be treated the same for each user

    Similarity and explanation for dynamic telecommunication engineer support.

    Get PDF
    Understanding similarity between different examples is a crucial aspect of Case-Based Reasoning (CBR) systems, but learning representations optimised for similarity comparisons can be difficult. CBR systems typically rely on separate algorithms to learn representations for cases and to compare those representations, as symbolised by the vocabulary and similarity knowledge containers respectively. Deep Metric Learners (DMLs) are a branch of deep learning architectures which learn a representation optimised for similarity comparison by leveraging direct case comparisons during training. In this thesis we explore the symbiotic relationship between these two fields of research. Firstly we examine what can be learned from traditional CBR research to improve the training of DMLs through training strategies. We then examine how DMLs can fill the traditionally separate roles of the vocabulary and similarity knowledge containers. We perform this exploration on the real-world problem of experience transfer between experts and non-experts on service provisioning for telecommunication organisations. This problem is also revealing about the requirements for practical applications to be explainable to their intended user group. With that in mind, we conclude this thesis with work towards the development of an explanation framework designed to explain the recommendations of similarity-based classifiers. We support this practical contribution with an exploration of similarity knowledge to support autonomous measurement of explanation quality

    Inclusiveness Matters: A Large-Scale Analysis of User Feedback

    Full text link
    In an era of rapidly expanding software usage, catering to the diverse needs of users from various backgrounds has become a critical challenge. Inclusiveness, representing a core human value, is frequently overlooked during software development, leading to user dissatisfaction. Users often engage in discourse on online platforms where they indicate their concerns. In this study, we leverage user feedback from three popular online sources, Reddit, Google Play Store, and Twitter, for 50 of the most popular apps in the world to reveal the inclusiveness-related concerns from end users. Using a Socio-Technical Grounded Theory approach, we analyzed 23,107 posts across the three sources and identified 1,211 inclusiveness related posts. We organize our empirical results in a taxonomy for inclusiveness comprising 6 major categories: Fairness, Technology, Privacy, Demography, Usability, and Other Human Values. To explore automated support to identifying inclusiveness-related posts, we experimented with five state-of-the-art pre-trained large language models (LLMs) and found that these models' effectiveness is high and yet varied depending on the data source. GPT-2 performed best on Reddit, BERT on the Google Play Store, and BART on Twitter. Our study provides an in-depth view of inclusiveness-related user feedback from most popular apps and online sources. We provide implications and recommendations that can be used to bridge the gap between user expectations and software so that software developers can resonate with the varied and evolving needs of the wide spectrum of users
    corecore