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Encouraging Attention and Exploration
in a Hybrid Recommender System
for Libraries of Unfamiliar Music

John R. Taylor and Roger T. Dean

Abstract
There are few studies of user interaction with music libraries comprising solely of unfamiliar music, despite such music
being represented in national music information centre collections. We aim to develop a system that encourages
exploration of such a library. This study investigates the influence of 69 users’ pre-existing musical genre and feature
preferences on their ongoing continuous real-time psychological affect responses during listening and the acoustic fea-
tures of the music on their liking and familiarity ratings for unfamiliar art music (the collection of the Australian Music
Centre) during a sequential hybrid recommender-guided interaction. We successfully mitigated the unfavorable starting
conditions (no prior item ratings or participants’ item choices) by using each participant’s pre-listening music preferences,
translated into acoustic features and linked to item view count from the Australian Music Centre database, to choose their
seed item. We found that first item liking/familiarity ratings were on average higher than the subsequent 15 items and
comparable with the maximal values at the end of listeners’ sequential responses, showing acoustic features to be useful
predictors of responses. We required users to give a continuous response indication of their perception of the affect
expressed as they listened to 30-second excerpts of music, with our system successfully providing either a “similar” or
“dissimilar” next item, according to—and confirming—the utility of the items’ acoustic features, but chosen from the
affective responses of the preceding item. We also developed predictive statistical time series analysis models of liking and
familiarity, using music preferences and preceding ratings. Our analyses suggest our users were at the starting low end of
the commonly observed inverted-U relationship between exposure and both liking and perceived familiarity, which were
closely related. Overall, our hybrid recommender worked well under extreme conditions, with 53 unique items from 100
chosen as “seed” items, suggesting future enhancement of our approach can productively encourage exploration of
libraries of unfamiliar music.
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Introduction

Art music, such as historic or post-serial Western Classical

composition and improvisation, is a minority interest. For

example, Schedl et al. (2018) find that in a diverse

(although mainly Australian sample), the median listening

time per week to classical music is 1 hour, compared with 8

hours for other genres: as they summarise, “participants

either love classical music and devote a lot of time to it,

or do not listen to it at all” (p. 6). Similarly, we find here

(Appendix S1 in Supplemental Materials) that both

Classical-Historic and Classical-Contemporary have

median familiarity ratings of only 3, on a 1–7 scale (where

1 ¼ “not familiar” or “not likeable” and 7 ¼ “familiar” or

“likeable”). Yet, past history shows that music previously

perceived as inaccessible (such as that of Xenakis, or Stra-

vinsky’s The Rite of Spring), often becomes the canonic
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music of the future. Additionally, because artists usually

strive to develop their own voices in expressing their view

and responses to contemporary life, it is necessary for

national artistic communities to promote their own work,

and to encourage community access. Consequently, the

International Association of Music Information Centres

exists to represent numerous national collections of such

music, as held in various countries’ music information

centers.

Another reason for attempting to elicit interest in such

collections is the general observation that independent

music of unfamiliar cultures can be pro-social. This can

apply also to unfamiliar artistic allure within a given com-

munity. The music of these collections usually contains

music that is deeply unfamiliar to most potential users. In

a similar way, one can anticipate that specialised libraries

of jazz, free improvisation, electroacoustic composition

(Bailes & Dean, 2012), noise music or music of a particular

culture, such as that of Iran, would be experienced as totally

unfamiliar by the average new Western listener visiting the

collection. Thus, there is a need to develop conditions

within these music information centers and other collec-

tions that encourage exploration of their music—a main

aim of our work here.

In terms of conventional recommender system

approaches (for general reviews, see Aggarwal, 2016;

Ricci, Rokah, & Shapira, 2015; Schedl, Knees, McFee,

Bogdanov, & Kaminskas, 2015), because our corpus con-

tains predominantly new items and genres, and because

there are very few users of the database, we cannot rely

on any familiarity with (or ratings of) the music, because

there are very few item ratings or user history to make use

of. Therefore, we must predict the relationship between

users’ stated preferences before exposure and their

responses upon listening. We used stated user preferences

amongst a small group of labelled genres, and a small group

of musical features, to obtain an estimate of the diversity of

each individual’s musical taste and the likely acoustic fea-

tures that might make a seed item (the first music to be

auditioned) reasonably appealing. We then encouraged

musical attention by requiring participants (in a lab-based

setting) to register their continuous perception of affect

(arousal and valence) expressed in the music over a 30-

second sample and to indicate after each item the liking

and familiarity they felt towards it, and also their choice as

to whether the next item should be “similar” or “dissimilar”

(note that the participants’ impression of familiarity essen-

tially relates to stylistic familiarity, since there is little like-

lihood that they would have heard these pieces before; see

also the Content-Based Similarity Measures of Music sec-

tion). For each individual, our system translated their final

dominant affective response into an acoustic preference,

and then selected a “similar” next item, if requested, on

the basis of that preference, and conversely for a

“dissimilar” request. Participants were not presented with

any specific choice of item among potential next items,

rather the single item was provided automatically on the

basis of similar or dissimilar.

Our exemplar music library is the not-for-profit Austra-

lian Music Centre Ltd (AMC), which aims to promote and

support domestic composers and their music (Australian

Music Centre Ltd, 2019), and makes use of FRBR (Func-

tional Requirements for Bibliographic Records) metadata

to add value to its community of represented musical art-

ists. AMC’s financial resources are limited, and the AMC

online music database comprises over 13,000 digital music

files containing varying amounts of solely high-level meta-

data (mostly using descriptive categories based on instru-

mentation and period), thus limiting the possibilities to

engage users. Despite this, the database has linkage, topic,

and historical information, which allows the exploration of

styles, composers, influences, periods, and ethnicities.

Consequently, in comparison with Spotify or iTunes, the

AMC and related specialist libraries face four main chal-

lenges: firstly, almost all of the musical items available on

the AMC database are unfamiliar (thus the music, even if

presented on Spotify or iTunes, is in the “long tail” of usage

(Celma, 2010), such as “sound art”); secondly, the AMC’s

diverse database contains substantial proportions of genres

and musical forms that are even more unfamiliar than his-

toric Western Classical music (such as improvised music

and electroacoustic music); thirdly, the AMC database

descriptors are limited; and finally, the AMC needs to rec-

ommend diverse music, even during the exploration of

music that is already unfamiliar to listeners. This ideally

requires an extended duration of engagement, even under

the harshest of “cold start” conditions, where there is nor-

mally no historical usage data for either items or users. We

attempt to combat the first to third challenges, above, and to

accommodate the fourth.

Aim, Design and Hypothesis

For the purposes of music recommendation, we sought to

predict a user’s liking and familiarity responses to unfami-

liar music from their prior preferences for genre and musi-

cal feature and their ongoing continuous affect assessment

of each auditioned item. We assess all these data, together

with acoustic features of the items as potential predictors in

statistical models of user responses, specifically proposing

that our system will have potential utility if:

H1: The use of information on participants’ pre-

listening genre preferences will mitigate the cold-start

problem and achieve seed item ratings comparable to

later ratings, rather than dramatically worse.

H2: Familiarity (and to a lesser extent liking) will

increase during a listening session as a person’s item

and style exposure increases. We expected to trace the

early part of the normal inverted-U dependence of these

parameters upon exposure, even though the items were

likely to be deeply unfamiliar and potentially quite
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challenging for many listeners. Commonly, some

increase in familiarity is required before there are

increases in liking. Chmiel and Schubert (2018) have

recently reviewed the psychology of exposure and

familiarity in the context of music recommender

systems.

H3: When a “similar” item is requested, liking and

familiarity of the present and the subsequently provided

item will be higher than when a “dissimilar” item is

chosen (because of the mechanism by which we select

items).

H4: Liking and familiarity responses to the items will be

highly correlated and show positive mutual influences in

statistical models of response sequences.

H5: Participants’ expressed prior preferences for musi-

cal features (such as “bass”) will predict their individua-

lised liking and familiarity responses to the items (by

virtue of our interpreting them during recommendation

in terms of the items’ acoustic features).

The use of acoustic features will be intrinsic to any

success our model displays in relation to H1 to H5. Never-

theless, we also predict:

H6: Statistical models of sequential liking and familiar-

ity will show additional roles of acoustic features as

predictors.

To assess the efficacy of our approach, our experimental

scenario required sequential responses, and thus it is clearly

inappropriate to treat all responses as being independent

and identically distributed, as is commonly done. Rather,

each individual’s responses have a potential time series

dependency, which we consider in some models, using

cross-sectional time-series analysis to maintain every series

as a distinct data set, allowing assessment of both fixed and

random effects in mixed effects models.

This paper is organised as follows: in the Related Work

section we present a brief overview of recommender sys-

tems and of methods for obtaining content-based similarity

measures of music. The Participants, Methods, Materials,

and Procedures section describes our experimental

approach. In the Results, we present the results of our

experimentation and the associated analytical models, and

finally, in the Discussion section, we draw conclusions and

discuss potential future work.

Related Work

Recommender Systems

There are five predominant recommender system

approaches: (1) collaborative filtering (CF), (2) content-

based (CB), (3) utility-based, (4) knowledge-based, and

(5) hybrid (Burke, 2002; Jannach, Zanker, Felfernig, &

Friedrich, 2010). In CF techniques, recommendations are

based upon aggregated user-purchase history and simila-

rities between users’ ratings or recommendations. Widely

used, CF techniques can suffer from the cold-start prob-

lem (when there are sparse ratings), and from the “grey

sheep” problem (e.g., user profiles that deviate from exist-

ing user classifications; Burke, 2002). Content-based rec-

ommendation systems (type 2) use the similarity between

items which, for music, exploits measures of acoustic

content (e.g., MPEG-7 descriptors), often combined with

semantic labels such as those Spotify attempts to provide

(e.g., danceability) or high-level tags (such as the words

“happy” or “sad”).

CB systems often omit user ratings data. Acoustic mea-

sures are used widely in music information retrieval (MIR)

(Knees & Schedl, 2016; Lartillot, Toiviainen, & Eerola,

2008) as well as recommender systems (Bogdanov, Serra,

Wack, Herrera, & Serra, 2010). Utility-based recommender

systems (UBRS: type 3) and knowledge-based recommen-

der systems (KBRS: type 4) evaluate whether the specifi-

cation of a product satisfies the user’s requirements (Burke,

2002; Huang, 2011). KBRS focus on satisfying customer

requirements from item descriptions, whereas UBRS focus

on the utility of the product to the user (Aggarwal, 2016).

Neither suffer from the cold-start problem because they do

not need historical usage data, although to infer relevance

and similarity they need item and user requirement

information.

Hybrid recommender systems (HRS: type 5) employ

combinations of the systems described above. They per-

form better than the individual methods described above

(Burke, 2002), making them a popular technique. The suc-

cess of a hybrid approach is dependent on application, the

items, the users, and the system’s existing knowledge: ulti-

mately, on the datasets used. HRS have successfully been

augmented with large datasets of music preference and

consumption patterns (such as the LFM-1b dataset; Schedl,

2017).

Currently, these recommender systems are often supple-

mented by “context-awareness”, in which information

about time, environment, user activity, and perhaps char-

acter is determined and used. The only aspect of context

which could have been used in our study is that of a user’s

personality (beyond taste for musical feature or genre).

Schedl et al. (2018), for example, use the standardised Ten

Item Personality Instrument, and demonstrate some modest

correlations (largest absolute magnitude 0.222) between

these features and propensities for post-listening retrospec-

tive ratings among 11 emotion descriptors. Our intent was

to use continuous affect responses (rather than discrete

retrospective ratings), on the basis of ecological relevance

and to focus attention during listening. It has been found

that with both unfamiliar and familiar music presented in

this way to non-musicians, trained musicians, and specialist

electroacoustic musicians, inter-personal differences in

responses are far greater than inter-group differences, and

that inter-personal differences are just as pronounced in
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each expertise group (Dean, Bailes, & Dunsmuir, 2014a,

2014b). Therefore, we chose not to include a personality

instrument in our study.

In our experimental situation, of a library entirely com-

prised of unfamiliar music to which the participants have

not been exposed, and on which there is little prior usage

information, a content-based approach is essentially the

only applicable one from types 1 to 4, above. We hybri-

dised this with pre-listening user preference data, to create

a type 5 system. We also used the extremely limited current

AMC data on item usage (simply the sum of view counts by

item). As noted already, the library does provide some

facilities for utility or knowledge-based interrogation, for

example via individually specified composers (e.g., Peter

Sculthorpe), or via topics such as indigenous music or envi-

ronmental music. We do not pursue these here.

The recommender system types described above have

limited application to the AMC online database: the AMC

has limited users, and ratings data comes from web page

hits and item purchases. The latter are unrepresentative of

typical consumption patterns, because many items are man-

datory in the Australian Music Examination Board

(AMEB) syllabus (AMEB, 2019), and thus purchased for

educational rather than general consumption purposes.

Consequently, a CF technique solely using these data

would recommend AMEB items rather than new unfamiliar

music. Our approach to personalising the recommendation

attempts to use a basic CF technique, by linking item view

count from AMC data with the diversity/homogeneity of

the user’s musical taste in order to recommend relatively

appealing seed items, given that our items are predomi-

nantly unfamiliar music. Thereafter, CF is not used in our

prototype system.

In music recommender systems, CB approaches often

fail because acoustic similarity measures are not univer-

sally comparable between songs/genres. We expect similar

difficulties with the diverse AMC library, especially given

the types of users (e.g., the content and context; Knees &

Schedl, 2016). Nevertheless, we use auditory content infor-

mation in order to repeatedly choose “similar” or

“dissimilar” items. We aim with our content-based

approach to acoustic similarity, to facilitate a noticeable

improvement of liking and familiarity of the requested and

auditioned “similar” items, compared to chosen

“dissimilar” items (H3), although this assumes that a choice

of “similar” by a participant indicates that they liked the

present item more than average, which we can assess from

our data.

Although the study of users and their reactions is begin-

ning to attract attention, few suggestions specific to

libraries of uniformly unfamiliar music can be gleaned

from the literature (e.g., see the review by Weigl & Guas-

tavino, 2011). Given that we aim to encourage universal

exploration of an unfamiliar library (i.e., where most peo-

ple are non-musicians), we assessed participants’ prior pre-

ferences for genres and musical features (such as

preferences for “bass” or “melody”’) and used these to

personalise the seed item. Using a musical sophistication

scale would have been alienating for most participants and

was not adopted. Thus, our system interprets information

about prior preferences in terms of acoustic content to drive

the seed recommendations. It also interprets users’ contin-

uous affective responses to a piece in acoustic terms in

order to make the subsequent recommendation.

Music Genre and Feature Classification

Several of the recommender system types described above

attempt to use self-identified musical preferences

expressed by participants, alongside their demographic

information. Genre taxonomies derived from the semantic

web, such as those of DBpedia, offer numerous musical

categories in hierarchies (Schreiber, 2016), while others

offer rather few parent/root genre similarities (Sturm,

2013b; Tzanetakis & Cook, 2002). These inconsistencies

lead to misclassification and confusion (Sturm, 2013a) and

poor content-based recommendation (Bogdanov, Porter,

Urbano, & Schreiber, 2017; Sturm, 2013b). An additional

problem is that the taxonomy employed by the AMC is

often vague and not explicitly focused on genre (e.g.,

orchestral music, which can appear as “instrumental” and

“orchestral” and does not circumscribe a genre), and many

of the diverse music genres in the AMC corpus, such as

electroacoustic, art, choral, chamber, and jazz music

among others are unfamiliar.

Thus, rather than employing an item taxonomy-based

approach, we estimated each user’s general music diver-

sity. This was done by asking them to rate, on a Likert scale

of 1-7, their enjoyability of and familiarity with the follow-

ing genres: Acoustic, Blues, Classical–Contemporary,

Classical–Historic, Country, Electronic, Experimental,

Jazz/Improvisation, Pop, Rock, Urban, and World. These

music genres were adapted from a taxonomy previously

used in a large study of Australian cultural tastes in relation

to socioeconomic groupings (Bennett, Emmerson, & Frow,

1999).

Content-Based Similarity Measures of Music

MPEG-7, the international standard for audio content

description under ISO/IEC 15938:2002 (International

Organization for Standardization (ISO), 2002) contains

seventeen hierarchic spectral and temporal descriptors of

music acoustics and instrumental timbres based on per-

ceptual knowledge: such as acoustic intensity, spectral

flatness and centroid, log attack time, and brightness

(Casey, 2001; Dean & Bailes, 2011). This has led to many

applications in MIR (Kim, Moreau, & Sikora, 2006)

including audio analysis techniques and machine listening

(Jehan, 2005); audio content matching and comparison

(Allamanche et al., 2001); automatic classification (Tza-

netakis & Cook, 2002); and music recommendation
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systems (Aggarwal, 2016; Celma, 2010). One predomi-

nant challenge in MIR and in psychoacoustics is ade-

quately associating the perceived timbral aspects with

the acoustic features of audio signals because of timbre’s

multidimensional nature. For instrumental classification,

some acoustic features are more suitable, the extent of

which can vary between genres and within songs

(Tzanetakis & Cook, 2002).

Even with short sounds, substantial inter-participant dif-

ferences of dissimilarity ratings depend on the relative sal-

ience of timbral features (Caclin, McAdams, Smith, &

Winsberg, 2005). For example, the detection of musical

transitions is related to the conspicuousness of the phrase

(Bailes & Dean, 2007b), the segment length (Bailes &

Dean, 2007a) and the speed of transition (Bailes & Dean,

2009). More recently, Olsen, Dean, and Leung (2016)

showed substantial differences in how acoustic features

predicted perceptions of segmentation in sound-based

music extracts (that is, music primarily focused on conti-

nually varying timbres, such as noise, rather than instru-

mental note-based events; Landy, 2009) and in note-based

music extracts (e.g., canonical classical, popular instru-

mental, vocal music).

Nevertheless, listeners’ may be attracted to similar

musical acoustic features irrespective of genre (Rentfrow,

Goldberg, & Levitin, 2011), hence our hypotheses suggest-

ing a predictive influence of acoustic features on liking and

familiarity even across different genres. Participants’ prior

preferences for musical features may encompass those

acoustic features (Hypothesis 5); furthermore, in using

acoustic similarities in our similar/dissimilar recommenda-

tion step, we may transfer the predictive impact of this

parameter somewhat onto the liking/familiarity and affect

parameters themselves. Our core measure of acoustic fea-

ture similarity is the Mahalanobis (M) distance between

each item and the mean acoustic feature set of the whole

current corpus of extracts. M distance is a multivariate

measure of distance between a single observation and a

set of observations. For example, for a data matrix of

musical items X (n � p), containing n items indexed by

i with p acoustic measures (such that xi,p is the pth acoustic

measure of the ith musical item), we can calculate the

Mahalanobis distance distM between the ith row vector

xi of X and the mean row vector �x where Cx is the var-

iance-covariance matrix, and T is the transposed vector as:

distMðxi; �xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � �xÞC� 1

x ðxi � �xÞT
q

for i ¼ 1 to n;

ð1Þ

(De Maesschalck, Jouan-Rimbaud, & Massart, 2000;

see also Mahalanobis (1936) for a more detailed expla-

nation). This approach takes account of the individual

variabilities of all the acoustic dimensions, hence is suit-

able for our dataset of multiple acoustic features.

M values range from 0 (identity) to an unbounded

positive upper (extreme dissimilarity) (Komkhao, Lu,

Li, & Halang, 2013).

Information compressibility can significantly impact

pattern recognition, similarity measures, liking and famil-

iarity (Hudson, 2011; Schmidhuber, 2009). Extreme musi-

cal pattern complexity is perceived as uninteresting, as

compressibility is either impossible or trivial (Hudson,

2011). Schmidhuber (2009) posits that the brain com-

presses auditory information more efficiently for familiar

stimuli (e.g., has perceived similarity to a prior listening

experience), because of prior history in compressing simi-

lar information, although other psychological mechanisms

might explain such an effect. Since this study’s corpus is

limited to domestic art music, we expect diverse patterns of

complexity, and significant unfamiliarity. Hence our H2

suggests that liking and familiarity will be higher when a

“similar” item is requested and proffered than a

“dissimilar” item. Predicting a recommendation’s success

based upon acoustic similarity is difficult, particularly

when songs and genres are unfamiliar. Thus, we also incor-

porate participants’ continuous measures of perception of

affect for recommendation, and in the longer term for

understanding their acoustic preferences more comprehen-

sively than they can self-describe. Note that we provide no

guidance to participants as to the interpretation of ‘famil-

iarity’: since no item is heard by an individual more than

once, there can be no real measure of familiarity with an

individual item, but participants may feel increasingly

familiar with styles that recur in the dataset (e.g., minim-

alism), which is then reflected in a rising familiarity rating.

Perception of Affect and its Use for
Recommendations

In the long run, we aim to interpret users’ real-time con-

tinuous affect responses towards in depth prediction of their

preferences and hence towards recommendation. With data

on a large enough body of users and given that the contin-

uous responses (sampled at 2 Hz) provide far more data per

item than the simple post-audition ratings, this should allow

a more powerful system even with data from a relatively

small number of users. The continuous affective response

reflects the variable contextual influences upon the percep-

tion of the acoustic features. As a first step towards this

long term aim, here we use the two-dimensional circum-

plex model of affect (Russell, 1980) because of its suitabil-

ity and common prior usage as a continuous self-report

method (Schubert, 2010), particularly continuous ratings

of perceived affect (Bailes & Dean, 2012; Olsen, Dean,

& Stevens, 2014; Schubert, 2004). Work on continuous

responses demonstrates that acoustic intensity is a signifi-

cant modeling predictor that is also causal of listeners’

perception of arousal (Dean, Bailes, & Schubert, 2011),

and that acoustic features such as spectral flatness (Weiner

entropy) modulate perception of structural change, arousal

and valence (Bailes & Dean, 2012; Olsen et al., 2014).
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Such continuous behavioural response measures do not

seem to have been used in conjunction with recommender

systems, though continuously measured facial expressions

have been used to provide discrete measures then applied

predictively through random forest and gradient boosting

training (Tkalčič et al., 2019). Thus, here we employ con-

tinuous ratings of arousal and valence in a limited way to

provide discrete measures to drive our RS.

Instrumental performance factors, such as articulation

(e.g., staccato and legato) can be associated with contrast-

ing perceptual effects (in this case, gaiety and solemnity)

(Gabrielsson, 2016). Again, the perceptual relevance of

acoustic features depends on context, in part due to the

multidimensional nature of timbre. Thus, in previous work

modeling continuous perception of musical phrases (seg-

ments) based upon acoustic features, dominant influences

of the last 5 seconds of sound on overall phrase perception

have been observed, as judged by time-dependent predic-

tions using contemporary versions of Cox survival analysis

(Olsen, Dean, & Leung, 2016). Correspondingly, in the

present study the next item recommendations are partly

based upon the terminal portion of an individual listener’s

continuous ratings. We used these to assess the likely domi-

nant spectral features in the individual’s perception, to rec-

ommend a “similar” next item with analogous feature and

magnitude. Conversely, the “dissimilar” item was identi-

fied by evaluating whether the Mahalanobis (M) distance

of the “similar” item was above or below the mean M for

the current corpus and by selecting the item with the most

antagonistic M value from the available corpus.

Participants, Materials, Methods,
and Procedure

Participants

This experiment was approved by our University’s

Human Ethics Committee and participants provided

informed written consent (approval number: H12015).

Sixty-nine non-musicians were recruited via our Univer-

sity’s online participation system SONA. First year stu-

dents received course credit in return for participation,

and participants conducted the test properly. Initially, par-

ticipants completed a questionnaire (see Appendix S2) to

obtain demographic and socioeconomic data together with

music genre and feature preferences (these demographic,

socioeconomic music genre and feature data are shown in

Appendix S1, see online Supplemental Materials). The

main demographic and socioeconomic data are not ana-

lysed in this study but were collected as they may be of use

in further work.

The group was made up of 69.56% female, 30.43%
male. The percentage of participants in each age group was

(years): 17–21 (63.76%); 22–34 (27.53%); 35–44 (4.34%);

45–54 (4.34%), >54 (0). Ethnicity1 percentages were Aus-

tralian (62.31%); Arab (8.69%); South-East Asian–

Vietnamese (4.34%); and South-Asian–Indian (4.34%)—

the remaining 20.3% of respondents identified as either

Aboriginal Australians (1.45%), Torres Strait Islander per-

sons, New Zealand Peoples, and Other North African/Mid-

dle Eastern (all at 2.89%), or rest of the world (10.14%
combined). Participants were prompted to select one option

from the ethnic categories list (see Appendix S2), and the

term “ethnicity” was not described to participants. Thus,

although 90% of participants were aged between 17 and 34

years, they were otherwise diverse. The second part of the

questionnaire concerned participants’ musical tastes, ask-

ing them to rate their experience of enjoyability of (Q7) and

familiarity with (Q8) different genres of music; and how

important different features of music are to them (Q9) (all

were Likert scales of 1, not very enjoyable/familiar/impor-

tant, to 7, very enjoyable/familiar/important; midpoint 4).

The questionnaire used the term enjoyability to avoid ambi-

guity with the contemporary usage of the word “like” in

social media. Here we use the terms “liking” and

“enjoyability” interchangeably.

Table 1 shows the musical features whose personal

importance was evaluated by participants, and how we trans-

lated these features into acoustic parameters in our recom-

mender system. Neither the genres nor musical feature terms

were explained to participants. When more than one feature

scored the same maximal value, the first in the list was used.

This avoided adding further emphasis to loudness, which we

used separately after the choice of the seed item in any case

(see below). We considered the possible alternative

approach to eliciting user pre-listening preferences proposed

by Bogdanov et al. (2013), in which users present a small

group or liked items which are then interpreted for semantic

audio content cues to subsequent recommendations: we

viewed it as highly unlikely, given the totally unfamiliar

music collection, that this approach would be very helpful,

and it was consequently not assessed.

Materials and Design

Stimuli. We randomly selected recordings from the AMC

collection, so as to reflect the collection’s distributions

across instrumentation and year.2 Extracts were 30 seconds

in duration.

Acoustic Analysis. We performed acoustic analysis on our

corpus. Previous work has found that some acoustic features

contribute more toward continuous perceptions of arousal

and valence than others (Bailes & Dean, 2012; Dean et al.,

2011, Dean & Bailes, 2010; Olsen et al., 2014). Here we use

the acoustic features to drive the recommendation system

successfully, and also assess whether such features can pre-

dict liking and familiarity time-series (H6).

Seven acoustic features and two measures which aim to

model perceptual parameters on the basis of acoustic infor-

mation (roughness, and rhythmic density) were analysed.

For simplicity we refer to this whole set of measures below
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as ‘acoustic measures’. MaxMSP software (Cycling ’74)

was chosen for analysis because in the future we intend

to run these analyses in real-time when a new (previously

unused) item is introduced to a listening session. Our

acoustic analysis used a combination of the Zsa.descriptors

library for MaxMSP (Malt & Jourdan, 2008), CNMAT

externals (University of California, Berkeley; Puckette,

Apel, & Zicarelli, 1998), and Alex Harker’s

[descriptorsrt*] object (Harker, 2017), to obtain

window-by-window (sampling rate 2 Hz) measures of the

following spectral features: spectral centroid, spectral flat-

ness (Wiener entropy), spectral flux, inharmonicity, log

kurtosis, log skewness, roughness, and rhythmic density.

For rhythmic density, we used the MaxMSP [fzero*]

object, which detects new notes if either the peak amplitude

or pitch changes more than a specified amount, to simulate

the rhythmic density described in Olsen et al. (2016). We

adopted this approach in light of our diverse corpus of

Western classical music and sound art, for example: music

with a higher number of onsets per 500 ms window (onse-

tRate) and with a higher current maximum number of

onsets per 500 ms (maxOnsets) is suggestive of complex

musical phrases associated with multi-instrument or vocal

music, rather than sound art where phrase segmentation

based on timbre rather than onsets; and music with less

difference in running mean average of onsets per 500 ms

(runningMeanOnsetRate) suggests onset pattern stability

(although this should also take into account onsetRate and

maxOnsets, as a zero value could also apply to both music

with consistent onsets and no onsets).

We chose these spectral features based on their previous

utility (compared to Mel Frequency Cepstral Coefficients

(MFCC)) in studies of both sound- and note-based music

(McAdams, 1999; Olsen et al., 2016). We calculated the

absolute differences frame by frame for the acoustic fea-

tures (bar spectral flux, which is already a measure of

change between frames) of all items. Then we derived our

item-level feature vectors as the absolute mean difference

(absmeandiff) between successive samples of the resultant

2 Hz time series.3 A detailed description of the acoustic

analysis can be found in Appendix S3 (online Supplemental

Materials).

The Prototype Recommender System Design

Our prototype recommender system comprises of two

parts: firstly, each individual’s two “diversity indices”

(detailed in the next section), based on questionnaire data,

to address the “cold-start” problem and provide a persona-

lised seed recommendation; secondly, ongoing item recom-

mendations, based on prior continuous affect responses and

the (assumed) related acoustic features. This section briefly

describes these aspects of our recommender system (see

Appendix S4 for a detailed process-flow), although a com-

parison with other approaches is outside the scope of this

study.

The Diversity Indices and the Seed Item Recommendation. We

inferred each participant’s diversity of musical taste from

their liking and familiarity ratings in the pre-experiment

questionnaire, with higher ratings for multiple genres indi-

cating more diverse listening habits than lower ratings. The

100 excerpts were sorted in descending order according to

the individual’s main musical feature preference (as in

Table 1). For the Diversity Index: Enjoyability (DI:E), each

participant’s genre enjoyability ratings from the question-

naire were summed (to a potential maximum score of 84;

12 items receiving the maximum 7 rating) where greater

diversity (above the midpoint score, 48) was used to

increase the number of potential seed items available for

random selection (and vice versa) (see Supplemental Mate-

rials). For the Diversity Index: Familiarity (DI:F), (maxi-

mum score again 84; 12 items receiving a maximum 7

rating), when a participant’s summed genre familiarity rat-

ings exceeded the midpoint, seed item choice was restricted

to items in our corpus whose AMC website view count was

less than our corpus mean of 1,227 views, and vice versa.

This procedure sought to maximise the likelihood that users

with low diversity scores were presented an acceptable

seed item (serendipity), but also that users with high scores

were exposed to items that are relatively infrequently

accessed in the AMC dataset, to encourage these partici-

pants to experience the long-tail items even among the

uniformly unfamiliar library. The liking and familiarity

ratings that we achieved (see Results) confirmed that our

seed recommendations were appropriate, even though we

did not uniformly optimise the likelihood of high ratings, as

just indicated.

The Subsequent Recurring Recommendation Algorithm. After

the seed item was chosen, it was removed from the avail-

able dataset. Subsequent auditioned items were similarly

removed, so that every item was heard just once (sampling

without replacement). Unlike other music recommender

Table 1. Music descriptors for Q9 and their inferred acoustic
parameter.

Musical
Feature Anticipated acoustic parameter relationship

Bass Spectral centroid (lower values correspond to
greater bass)

Brightness Spectral centroid (higher values correspond to
greater brightness)

Melody Inharmonicity (higher values correspond to greater
melodic content: e.g., passing notes and
dissonances)

Noise Spectral flatness (higher Wiener entropy values
correspond to more noisy sounds)

Rhythm Total onsets per unit time (higher onset rates
correspond to greater rhythmic dynamism)

Loudness Acoustic intensity (higher acoustic intensity
corresponds to greater loudness)
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system, our prototype uses each participant’s continuous

two-dimensional ratings of arousal and valence to provide

customised recommendations during the whole procedure

following the seed item presentation. Consequently, we

used two sorted versions of the item database. One database

was permanently sorted by mean energy, item by item

(descending order), intending to represent the influence

of acoustic intensity on perceived arousal. The other ver-

sion of the database was sorted by the acoustic measure

corresponding to the participant’s chosen most important

musical feature (Questionnaire Q9; Table 1), high to low,

which we chose to represent the key influence on the per-

ceived valence dimension. Where two musical features

were identically rated, the first feature in the questionnaire

was chosen to represent the valence dimension. An alter-

native (which we did not assess) is a random choice

between the tied features. In the case of acoustic intensity

being chosen as a valence parameter, both databases were

sorted according to energy.

From the final 5 seconds of playback for each item,

we took the user ratings for both the arousal and valence

dimensions (sampled at 2 Hz), and then calculated the

mean of for each dimension. To find the “similar” rec-

ommendation, we took the higher of the two mean val-

ues and in the remaining corpus chose the item with the

closest acoustic parameter value (e.g., if valence had the

higher mean, and for the particular participant we had

determined that the valence dimension would be repre-

sented by “bass”, then we found the item with the clo-

sest spectral centroid value). In the event that the mean

values for valence and arousal were identical, valence

was selected given we had relevant personal preferences

for the related acoustic parameter. To select a

“dissimilar” item, we evaluated whether the acoustic

features Mahalanobis distance (M) (described above)

of the chosen “similar” item was above or below the

mean M for the current corpus (i.e., allowing for the fact

that items are progressively removed from the available

dataset as listening proceeds). The recommended dis-

similar item was either the lowest or highest M value

from the available corpus (respectively, when the

“similar” item had an M value above or below the pres-

ent corpus mean). To avoid repeat auditioning of

excerpts, each item and its data was removed from the

corpus after auditioning (i.e., the available corpus pro-

gressively contracted). The original dataset’s mean M

value was 11.88; the median 7.28. Using mean values

avoided interpolating between two values to obtain the

median when the remaining corpus count was even. The

few items with very high M values were generally audi-

tioned within the first ten sequence items, because of a

predominance of requests for dissimilar items. When

only one item remained in the database, that item was

presented regardless of the user’s request for similar or

dissimilar. A detailed description of the system is shown

in Appendix S4.

Linear Mixed Effects (LME) Modeling of Serial Responses to
Items. LME cross-sectional time-series models of serial lik-

ing and familiarity responses to items were constructed in

the lme4 package in R, permitting assessment of both fixed

effects, autoregression, other potential sequential effects,

and random effects by participants and items, to reveal how

these factors themselves varied. Cross-sectional time series

analysis maintains the integrity of very individual time

series of responses, rather than aggregating them, as is

often done. It also avoids the misplaced assumption that

the data are independently and identically distributed. Our

analytical approach allowed the model predicting the

familiarity response to item n to use its liking response,

and vice versa for the liking model. Conversely, a purely

predictive model would normally only permit information

available prior to the event to be used. The data comprised

the complete serial sequences of item responses (100 items,

69 participants) for each participant, analysed in single

models for liking and familiarity. Ordinal Likert data were

treated as continuous, as required by the lme4 package. We

compared two approaches to our models: decremental,

starting from a maximal model containing all hypothesised

and design-driven predictors and then removing unneces-

sary predictors, and additive, using previous best models as

the foundation for a new model and then adding potentially

effective predictors.

In both approaches, we refined the model based upon the

following criteria. We removed statistically or quantita-

tively insignificant predictors progressively, seeking parsi-

mony with the following provisions: minimising the

Bayesian Information Criterion (BIC), while allowing for

the complexities of defining the degree of freedom in ran-

dom effects models. Models that differed in BIC by less

than six were construed as not distinguishable from each

other. We sought to minimise the RMSE (root mean square

error) between the model predictions and the data, and

subject to the BIC, chose the more parsimonious models

for further assessment. Selection among the best perform-

ing models was achieved by the likelihood ratio method.

The quality of the selected model was further assessed by

confirming that its residuals retained no autocorrelation and

by graphical checks, including checking the distributions

using quantile–quantile plots.

Procedure for Real-Time Continuous Perceived Affect Responses
and Post-Listening Liking and Familiarity Responses. Listening

to each item, participants used a computer mouse to con-

tinually represent their perception of valence and arousal in

a two-dimensional “emotion space” (Bailes & Dean, 2009;

Dean & Bailes, 2010; Gabrielsson, 2016; Schubert, 1999,

2004). The emotion space axes were labelled “expressing”

or “not expressing” arousal and expressing “positive” or

“negative” valence, to emphasise our concern with per-

ceived, rather than felt, emotion (Gabrielsson, 2001). The

mouse coordinates and delta values on the emotion space

were logged at 2 Hz as mouse pixel locations in MaxMSP
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relative to the main window (0,0 being top left; both axes

ranging for 0.0 to 1.0, with the centre of the main window at

0.5, 0.5).

Participants first received a verbal description of the

study, and verbal instructions on conducting the study, fol-

lowed by further onscreen instructions for continuously

rating each item played to them. Finally, participants were

given one practice item to familiarise themselves with the

rating process and to experience a musical item. These

three strategies were aimed to mitigate any primacy effect.

Prior to the beginning of each item, a “GO!” button

appeared at the centre point of the emotion space, to centre

the cursor on both axes, and begin a countdown of 3 sec-

onds, to ready them for the next item. After each item,

participants rated their familiarity with, and liking of the

item (Likert scales where 1 ¼ “not familiar” or “not like-

able” and 7 ¼ “familiar” or “likeable”). The post-item rat-

ings of liking and familiarity were not used for the

recommendation: for this, as described above, acoustic fea-

tures were used as recommendation selectors, driven by

participants’ continuous representations of perception of

arousal and valence.

After each item, the participant was then offered two

choices of music: “similar” or “dissimilar”, and the recom-

mender system presented the selected item using the pro-

cess described above. Participant responses to both the

rating of the previous item and their choice of similar/dis-

similar for the next item were saved. This process was

repeated until all 100 items had been auditioned once. The

experiment lasted approximately 1 hour, including ques-

tions, practice, and auditioning the items.

Results

Liking, Familiarity, and Influences of Time and
Seeding: Mitigating the Cold-Start Problem

Figure 1 shows aggregated time courses for all participants’

ratings of liking and familiarity. The first striking observa-

tion is that all the ratings are very low—well below the

midpoint (4) of the scales. This immediately confirms how

different our conditions are from those of most recommen-

der systems, even those in which exploration of a long tail

is encouraged (Celma, 2010). In most systems studied,

mean liking ratings are between 4 and 5 on a 1 to 5-point

scale (our scale is 1 to 7, so these would correspond to 5.6

to 7). Figure 1 also shows that there is hardly any cold-start

issue (arguably supporting H1), as the data remain “cold”

throughout. The first few observations are not the lowest

rated, though the lowest values do occur within the first

dozen or so. This is considered further below.

There is apparently a slight progressive increase in both

ratings across the experiments, with a modest positive lin-

ear regression coefficient between liking or familiarity and

sequence item number (partially supporting H2). Note

again that each sequence item rating represents responses

from 69 people to a maximum of 69 different items.

Regressions indicated a significant moderately positive

predictive influence of sequence item number on familiar-

ity (F(1,98) ¼ 23.06, p <.001), with an R2 of 0.182, and a

less positive insignificant relationship for liking (F(1,98) ¼
2.995, p ¼ .086), with an R2 of .019. This suggests that

exposure to each item marginally increases mean familiar-

ity (ß ¼ .003), with the same (as yet) little effect on liking

(ß ¼ .001). A Spearman two-sided correlation test between

liking and familiarity considered here by sequence item

number is r ¼ .51, p <.001. Further, Spearman two-sided

correlation tests between familiarity and sequence item

number found a stronger positive correlation (r ¼ .05,

p ¼ <.001) than between liking and sequence item number

(r ¼ .02, p ¼ .07).

While liking and familiarity rise slightly in Figure 1 and

are significantly correlated, when the post-item mean liking

and mean familiarity is calculated by item (instead of by

sequence item number), the correlation between them is

much stronger (r ¼ .94, p <.001). The items are irregularly

distributed in time; thus, this result strongly supports H4.

We investigated this relationship further by calculating the

mean expanding window average of post-test liking and

familiarity ratings by sequence number. This also allows

us to assess more closely H1, that ratings of the seed item

chosen using participant profiles are comparable with those

of subsequent items (i.e., mitigating the cold-start prob-

lem). This analysis is shown in Figure 2.

The grand average sequence kinetics show three phases:

an opening phase of *7 items where liking, and familiarity

drop rapidly, followed by a rapid recovery to approximately

item 20, and finally a long subsequent phase in which both

gradually rise. Figure 2 shows that despite this initial sharp

drop, H2 is generally supported, insofar as there is an upward

trend in familiarity (and to a lesser extent liking). Further-

more, the responses to the seed items (which include 53% of

all items) are competitive with the long-term responses. This

additional evidence is again consistent with H4, that liking,

and familiarity are closely related.

We then performed similar mean expanding window

averages of post-test liking and familiarity ratings by

sequence number, separated by whether the user previously

requested a similar or dissimilar item. This is shown in

Figure 3.

Figure 3 reveals the origins of the trends in Figure 2

more clearly, by indicating the distinctive behaviours fol-

lowing “similar” versus “dissimilar” user requests. Simi-

lar requests show an immediate rise in familiarity and

liking (though followed in this case by a transient drop),

reaching overall maximal values within 25 items (suggest-

ing that we quite rapidly identify the items a particular

user will find most appealing). Consequently, there is a

slow drop in both familiarity and liking ratings for the

“similar” items thereafter, plateauing at about sequence

item 50. Dissimilar request items show the initial drop

already apparent in Figure 2 (being the dominant response
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choice throughout). Whereas familiarity in the dissimilar

request time series eventually rises to ratings comparable

to those at the outset, liking ratings rise only to a lower

value. These results confirm the limited relevance of the

cold start concept here, because every item and user is

relatively “cold”, and confirm that liking ratings com-

monly lag behind those for familiarity. Overall, we cau-

tiously interpret Figures 2 and 3 as revealing the complex

underpinnings in the early stage of inverted-U responses

for both familiarity and liking (cf., Chmiel & Schubert,

2018) in our unusually and uniformly unfamiliar dataset,

as we next assess further.

A changepoint (cpt package in R software) analysis

based on joint changes in mean and variance of the data

in Figure 2 (asymptotic penalty value ¼ 0.05, AMOC),

revealed changepoint locations of 20 for liking and 21 for

familiarity, thus appropriately amalgamating phases 1 and

2 described above. Spearman correlations for the post-

changepoint segment, 21–100, for both liking and familiar-

ity with sequence item number are shown in Table 2.

This analysis shows the second changepoint segment

encompassing 80% of items and is strongly coherent with

H2 (that familiarity and, to a lesser extent, liking will

increase during a listening session, that is, with extent of

exposure), as the L*S and F*S correlation coefficients

are high and significant. Familiarity for the seed item was

greater than for all later windowed averages, and compet-

itive for liking, and not exceeded until at least 20 items had

been auditioned (i.e., the start of the post-changepoint seg-

ment). Our data are consistent with H1, since our initial

(seed) recommendation (based on participant diversity

indices and corresponding acoustic choices) attracted quite

favorable responses, and consequently, our attempt to

reduce the cold-start effect was beneficial. These results

are also consistent with repeated dissimilar item choices

at outset, which combined with the item selection algo-

rithm meant that items with an M value closest to the mean

(e.g., less acoustically extreme items) were presented later

on. The progressive increase in liking and familiarity across

the sessions also support H5/H6, that choice of acoustic
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Figure 1. Regressions between sequence item number and mean liking and familiarity ratings. The shading around the regression line
represents 95% confidence interval.

10 Music & Science



features, as implied pre-listening preferences, allows us to

enhance the liking and familiarity responses.

To assess this further, we focused on the 53 items

(among the overall 100) which appeared as a seed item (see

also Appendix S5 for some summary statistics on these

seed items) and used a Wilcoxon rank test to determine

whether their ratings as seed differed from their ratings in

the post-seed periods (either 2–100 or 20–100). These tests

(Table 3) showed no significant difference in the ranking

distributions which would agree with H1, that we reduced

the cold-start problem and that seed items were not rated

unfavorably compared to their rating as a non-seed item.

Similar Versus Dissimilar: Recurrent
Recommendations After the Seed Item

The explicit prediction of H3, that an item provided as

“similar” will have higher ratings than one provided as

“dissimilar” (based on acoustic features), is supported by

the data in Table 4. Wilcoxon unpaired rank sum tests of

these liking and familiarity ratings with respect to items

provided as “similar” versus “dissimilar” were significant

(both tests p <.001), confirming support for H3. However,

note that all mean values in Table 4 are below the midpoint

of the Likert scale (i.e., participants felt unfamiliar with and

did not like all items).

Over 75% of participants requested “dissimilar” succes-

sors to the first seven items, concomitant with the descent

in the first phase of the moving window averages for liking

and familiarity. This strategy is unsurprising, as it attempts

to express continued aversion to the material and should

ensure a rapid awareness of the full range of the material.

Appendix S6 shows the similar/dissimilar responses by the

excerpt eliciting the response, and by sequence item num-

ber for each participant. We see that the aversive behaviour

is very strong across our participants, despite the fact that

many of the individual excerpts elicited a similar response

(e.g., they liked the excerpt and wanted a similar one). The

choice of a forthcoming dissimilar item remained predomi-

nant across all 100 sequence item numbers, again consis-

tent with the low ratings. For all participants and all

sequence items, similar items were only chosen 32.8% of

the time. Likewise, for phase 2 sequence item numbers 21–

100, “similar” was chosen 33.8% of the time. Despite the

upward trend of liking and familiarity in this segment, there

was no trend for participants to choose “similar”’ items

more often. This may reflect continued optimism by parti-

cipants that given their ratings of liking were low, there

remained the possibility of finding more appealing items,

which would logically be expected to be dissimilar to the

previous item.

Implicit in H3 is that an item eliciting a request for a

“similar” next item will itself be liked more than when the

request is for a “dissimilar” item. Correspondingly, the

mean liking and familiarity ratings for the items which

elicited similar versus dissimilar requests are shown in

Table 5: Wilcoxon unpaired rank sum tests of these liking

and familiarity ratings with respect to items eliciting sim-

ilar versus dissimilar requests were both significant (both

tests p <.001), confirming further support for H3.

Time Series Models of the Liking and Familiarity
Response Series

The analyses so far suggest that our recommender system

was beneficial, even though liking and familiarity remained

below the median value throughout. The recommendations

were based on acoustic features, either translated from

musical feature preferences of the users indicated in the

questionnaire, or from their affective responses during lis-

tening. Thus, the value of using acoustic features in recom-

mendation, even in these negative conditions, is strongly

supported. In this section, we model the response process

itself, to assess possible cognitive influences of the sequen-

tial ratings choices themselves and of the user preferences

(and other features), and to determine whether additional

specific acoustic influences remain important.

We established previously that there are close correla-

tions between liking and familiarity responses (H4). Here,

we investigate the influences of factors such as autoregres-

sion (the commonly critical sequential influence of mod-

elled responses upon themselves), the user request (0 ¼
“dissimilar”, 1 ¼ “similar”), exposure (i.e., sequence item

number), and acoustic features upon models of liking and

familiarity, using linear mixed effects (LME) cross-

sectional time-series analyses. This allows maintaining the

integrity of all individual response time series. The
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analyses permit the delineation of fixed effects (such as

those aforementioned) as well as random effects (the influ-

ences of inter-individual participant and inter-item differ-

ences upon responses).

The pacf (partial autocorrelation function) across a

random selection of individual response time series

showed significance in lags 1 to 5 for both liking and

familiarity, although varying by participant. This

informed our initial model, which considered autore-

gression, the preceding user request, and sequence item

number. We refined and assessed for quality: see meth-

ods for more detail on model selection. The resultant

selected models are shown in Table 6.

Table 6 shows that liking and familiarity were both

autoregressive and mutually predictive. Given the autore-

gression, and the user request predictors, sequence item

number was not a predictor: in other words, the dependence

of ratings upon exposure described above was explicable in

terms of the other factors. We found a significantly positive

influence of the previous response request for a “similar”
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Figure 3. Mean expanding window (cumulative) averages by sequence item number (1–100) for liking and familiarity, and by previous
choice of similar or dissimilar item. (Since the seed item does not have an eliciting user’s “similar” or “dissimilar” choice, we have used
the choice it elicited to separate the values for the seed, item 1).

Table 2. Spearman correlations tests of post-changepoint segment
of the mean expanding window averages for liking, familiarity and
sequence item number. L¼ liking, F¼ familiarity, S¼ sequence item
number. Note that S ¼ 20–100 where L * S, S ¼ 21–100 where
F * S, and both L and F are length¼ 21 when L * F.

Correlation test Statistic p-value Estimate (rho)

L * S 15,878 <.001 0.81
F * S 4,444 <.001 0.95
L * F 9,714 <.001 0.89
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item on liking. For Familiarity, the influence of the previ-

ous response request was negative, and apparently incon-

sistent with earlier observations. But we note that the

models (see methods) of both liking and familiarity

included a Lag0 contribution from each other, with a high

coefficient: in other words, some information from the item

whose response is being predicted, is already included.

Furthermore, uniquely in the familiarity model, Lag1 of

both liking and familiarity is included, corresponding to

the item eliciting the “previous response” request of the

participant: “similar” or “dissimilar” (note again that this

results in the recommender system providing items based

either on a single acoustic feature for “similar” items, or on

M values for “dissimilar” items). Thus, the selected famil-

iarity model has an overlap of information sources from the

previous item (both its liking and familiarity, and the

request that it elicits). This overlap of information accounts

for the negative coefficient on previous response in the

familiarity model: when all Lag0 and Lag1 information is

removed from the Familiarity model (worsening the

model), the previous response coefficient becomes positive

and of a similar order to the Liking model. Therefore, the

negative coefficient is applicable only in the context of the

larger set of additional predictors, and the earlier observa-

tions are not challenged, rather enhanced by these LME

models.

Our second set of LME time series models appended the

participant ratings for musical feature importance as possi-

ble predictors, to investigate whether pre-listening feature

preference could enhance the models above the previous

models of Table 6. The resultant selected models are shown

in Table 7.

The models of Table 7 improved BICs (compared with

Table 6), without degradation in the RMSE values. Prefer-

ence for rhythm, and additional lags for liking (4) and

familiarity (1) were retained after model selection as a

significant predictor of liking, and preference for noise

contributed to the familiarity model. Other autoregressive

and predictive features were retained from Table 6 with

only slight modification. Likelihood ratio tests compared

the models of Table 7 with the corresponding ones of

Table 6 (though this, and subsequent tests required the

omission of the data from the three participants whose

musical feature preferences were lacking): the later models

were highly preferred (p <.001 in both cases). Pre-listening

musical feature preferences were thus useful predictors of

responses (upholding H5).

Our third set of LME models considered as predictors

acoustic features of the items in addition to the those

included in Table 7. In this additive approach, our best

liking model included spectral kurtosis, although the BIC

(20,881.38) was significantly worse than the previous best

liking model (MLMF13; BIC ¼ 20,867.67). The two mod-

els showed the same RMSE. Our best familiarity model

included roughness although the BIC was significantly

worse (18,197.19) than the previous best model (MFMF10;

BIC ¼ 18,185.57), but again with very similar RMSE.

Likelihood ratio tests on both liking and familiarity models

confirmed that these models with acoustic features did not

improve upon the previous best models in Table 7. This

approach did not support to H6; but it needs to be recalled

that the recommender system already uses acoustic infor-

mation as part of its item selection process, and its success

is already an indication of the impact of that information.

To confirm the validity of these model selection pro-

cesses, we also undertook a decremental modeling

approach (see methods in Participants, Materials, Meth-

ods, and Procedure section), progressively refining an

initial model that included all putative predictors. This

supported our conclusions. Correspondingly, the best

models (Table 7) accounted well even for participants

who failed to complete the experiment (characterised by

predictions, responses and residuals that account for

only a portion of the 100 sequence items), and for a

few cases of monotonous responses (where liking

and/or familiarity responses were rated as consistently

low). Figures 4 and 5 show the actual liking and famil-

iarity responses for participants 21–23, chosen as

Table 3. Results of the Wilcoxon paired one-tailed rank sum tests
for the mean liking and familiarity ratings for the seed item against
the same items in the later changepoint phases (2–100, and 20–100
for liking; 21–100 for familiarity). Thus, our exploitation of user
preferences, and the resultant diversity index and feature
importance rating enhances listener responses to the seed item.

Liking/
Familiarity Condition 1 Mean Condition 2 Mean p-value

Liking Seed item 2.89 Mean 2–100 2.80 .3443
Liking Seed item 2.89 Mean 20–100 2.80 .3034
Familiarity Seed item 2.42 Mean 2–100 2.57 .7794
Familiarity Seed item 2.42 Mean 21–100 2.57 .7575

Table 4. Mean familiarity and liking responses for items following
the similar/dissimilar recommendations, with SD shown in
parentheses.

Liking
M ¼ 2.80

(SD ¼ 1.79)

Familiarity
M ¼ 2.57

(SD ¼ 1.70)

Similar 3.18 (1.87) 2.85 (1.80)
Dissimilar 2.61 (1.73) 2.44 (1.64)

Table 5. Mean (SD) familiarity and liking responses for the items
eliciting requests for “similar” or “dissimilar” recommendations.

Liking
M ¼ 2.80

(SD ¼ 1.79)

Familiarity
M ¼ 2.57

(SD ¼ 1.70)

Similar 3.90 (1.86) 3.32 (1.91)
Dissimilar 2.26 (1.49) 2.20 (1.45)
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representative of a variety of response types we

observed, together with our modelled liking and famil-

iarity and the corresponding residuals for these

individuals. Such comparisons are among our routine

assessments of model quality, together with confirma-

tion that residuals essentially lack autocorrelation.

Table 7. Parameter estimates and fit statistic of the best model (LME, random plus fixed effects) to estimate Liking and Familiarity with
lags based upon acf and pacf assessment. SD¼ Standard deviation, ID¼ Participant ID. Note: User request (previous response) denotes
participant choice of similar item (1) over dissimilar item (0). Lags of Liking and Familiarity are shown as L1Liking¼ Liking with a Lag of 1,
etc. Sequence item number was not statistically significant in either of these models.

Model designation/
Response variable

Effect
(random)

Coefficient
Estimate
(variance) SD t-value p-value sig

BIC
(RMSE)

MLMF13
Liking
þ
Feature importance

(Excerpt no.) (0.06) 0.25 20,867.67 (1.285)
(ID) (0.36) 0.60
User request 0.199 0.044 4.550 <.001 ***
L3Liking 0.044 0.011 3.998 <.001 ***
L4Liking 0.03 0.011 2.759 .00582 **
L0Familiarity 0.568 0.014 40.769 <.001 ***
L1Familiarity -0.039 0.014 -2.732 .00631 **
Rhythm preference 0.195 0.016 12.336 <.001 ***

MFMF10
Familiarity
þ
Feature importance

(Excerpt no.) (0.04) 0.21 18,185.57 (1.024)
(ID) (0.34) 0.58
User Request -0.217 0.037 -5.859 <.001 ***
L0Liking 0.366 0.009 40.284 <.001 ***
L1Liking 0.076 0.011 7.046 <.001 ***
L4Liking -0.035 0.010 -3.484 <.001 ***
L1Familiarity 0.108 0.013 8.497 <.001 ***
L2Familiarity 0.059 0.011 5.430 <.001 ***
L3Familiarity 0.099 0.011 9.085 <.001 ***
L4Familiarity 0.077 0.012 6.342 <.001 ***
Noise preference 0.131 0.020 6.521 <.001 ***

Note. ‘***’ p < 0.001, ‘ ** ’ p < 0.01, ‘ * ’ p < 0.05, ‘ . ’ p < 0.1, ‘ ’ p < 1.

Table 6. Parameter estimates and fit statistic of the selected LME models for Liking and Familiarity. Random effects are shown in
brackets. SD ¼ Standard deviation, ID ¼ Participant ID. Note: User request (previous response) denotes the participant choice of
similar item (1) or dissimilar item (0). Lags are shown as L1Liking ¼ Liking with a Lag of 1, etc. The nomenclature of the models
comprises absolute mean differenced data (M), as well as Liking (L), Familiarity (F), as well as later in the results, genre preferences
(G) acoustic features (A) and musical feature preferences (MF). Sequence item number was not statistically significant in either of
these models.

Model designation/
Response variable

Effect
(random)

Coefficient
Estimate
(variance) SD t-value p-value sig

BIC
(RMSE)

ML10
Liking

(Excerpt no.) (0.06) 0.24 22,169.6 (1.314)
(ID) (1.74) 1.32
User request 0.149 0.042 3.564 <.001 ***
L3Liking 0.058 0.011 5.385 <.001 ***
L0Familiarity 0.551 0.013 41.005 <.001 ***

MF6
Familiarity

(Excerpt no.) (0.05) 0.23 19,262.36 (1.045)
(ID) (0.50) 0.70
User request �0.206 0.037 �5.610 <.001 ***
L0Liking 0.35 0.009 39.301 <.001 ***
L1Liking 0.108 0.010 10.310 <.001 ***
L1Familiarity 0.098 0.012 7.917 <.001 ***
L2Familiarity 0.069 0.010 6.423 <.001 ***
L3Familiarity 0.11 0.010 10.291 <.001 ***
L4Familiarity 0.061 0.011 5.807 <.001 ***

Note. ‘ *** ’ p < 0.001, ‘ ** ’ p < 0.01, ‘ * ’ p < 0.05, ‘ . ’ p < 0.1, ‘ ’ p < 1.
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Discussion

The prototype recommender system seems to successfully

use acoustic features that are “translated” from users’ pre-

exposure preferences, and from their within-experiment

continuous affect responses, so as to make effective pre-

dictions. This can be judged by the relative lack of a cold-

start effect of our recommended seed item, even given our

drastically “cold” and uniformly unfamiliar and unliked

material; the progressive increases in familiarity and lik-

ing even in these circumstances; and the more favourable

responses to items which elicit a request for the next item

to be “similar”, as well as to the items provided in

response to a similar request (compared to corresponding

items eliciting “dissimilar” requests and for their respond-

ing recommendations).

Note that practical considerations (such as cost) pre-

vented us from including a control condition, in which par-

ticipants received random items, indifferent to their choice

of “similar” or “dissimilar”, and so there are necessary lim-

itations on the interpretation of our data. While our system is

in no way yet optimised, it nevertheless behaves differently

from and better than what would be expected of a random

recommendation system. In the circumstances of our experi-

ment, random recommendations would mean that, across

participants, every sequence item number has the same like-

lihood of receiving any of the items. Thus in contrast to what

we observe, and given a large enough participant group,

there could be no utility to the genre and feature preferences

of the users, and no dependence of familiarity and liking on

the user requests (whether for “similar” or “dissimilar”), nor

in all probability would there be the complex two-phase

kinetics we observe. On average, the ratings at each

sequence step would be the mean of all ratings, though they

might conceivably still change slightly as exposure

increased. Modest exposure was accompanied here by an

increase in ratings in our data, but our observations can best

be explained by the autoregression of the ratings themselves,

together with the user choices, and not by the sequence item

number per se, so there is no obvious reason to expect any

upward trend in ratings given random item presentation.

Indeed, in a second study on this music library (submitted),

with recommendations uninfluenced by user responses, we
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found no significant change in familiarity and liking with

respect to sequence item number. Altogether, it is clear that

our system achieves recommendations with some utility. In

the second study we compare four different exposure condi-

tions (cf., Weigl & Guastavino, 2011) for their effects on

user’s duration of attention to presented items, as part of the

process of enhancing our system.

Next, we consider our six hypotheses in turn in more

detail: most are supported, some are not. Clearly the num-

ber of participants in our study is substantial by the stan-

dards of interventional psychology experiments, but it is

skewed strongly towards the undergraduate age range (63%
of participants were aged 17–21 years). Thus, we suggest

caution with the results on demography and pre-exposure

user taste (see Supplemental Materials), and some cases of

a lack of clear-cut result may be due to the sample nature.

H1 proposed that information about participants’ pre-

listening preferences, translated into acoustic features,

could mitigate the cold-start problem and achieve seed item

ratings comparable to later ratings. Our approach using

diversity indices was largely successful as the ratings for

the seed item were generally higher than many of those for

the rest of the items, even though most items were poorly

rated (see Figure 2). This was particularly the case for

liking and occurred even though we balanced our efforts

towards providing an acceptable item to participants with

low diversity preferences, with the provision of low AMC-

user access items to those of our participants with high

diversity preference. Thus, H1 was supported. Future work

could further develop the diversity indices by including

additional variables, such as socioeconomic data (as col-

lected in our questionnaire) and testing whether these new

variables are influential in addition to the current diversity

indices. When enough data becomes available in the future

for collaborative filtering, such approaches will be entirely

appropriate.

H2, which was strongly supported, suggested that famil-

iarity (and to a lesser extent liking) will increase during a

listening session, with item exposure. At the beginning of

the exposure, a notable brief decline (over around seven

successive items) in liking and familiarity was subse-

quently reversed and overcome. This implies a short-term

effect of exposure in a listening session distinct from the

enhancement of ratings after longer term exposure.
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Interestingly, we found a predictive contribution of rating

lags in our mixed effect models of liking and familiarity of

the auditioned items. Not only do liking and familiarity

increase over a listening session, but our models have sig-

nificant autoregressive lags of up to order 4, suggesting that

we may be able to use more information about acoustic

features and individual participant perceived affect from

the immediately preceding four items as part of the

recommendation.

H3 proposed that when listeners request a “similar”

item, liking and familiarity of the subsequently provided

item will be higher than when a “dissimilar” item is

requested; it also implied that the same could be expected

of the item which elicits the “similar” request. H3 was

confirmed in both respects. This supports our approach to

recommending “similar” and “dissimilar” items, making

use of users’ continuous response ratings and acoustic para-

meters (most notably Mahalanobis distance). Further work

may allow us to improve the recommendations. Firstly, our

recommendations used listeners’ affect responses to each

item, but only averages over the last 5 seconds of a 30-

second item, rather than taking coefficients from a full time

series model of the relation between acoustic features and

perceived affect, which we will address in another study.

Secondly, our recommendation approach prevented parti-

cipants actively ending item auditions, and yet the optimum

point at which we measure a response may depend on the

engagement of the user and/or item (Olsen et al., 2014).

Finally, as implied by the serial autoregressive effects

noted above, the sequence of choices of “similar”/

“dissimilar” itself might have predictive power: for exam-

ple, the more previous successive user requests for

“similar”, the more likely the next request will be

“dissimilar”. However, we did not demonstrate such effects

over lags beyond 1. We note also that a participant may be

influenced by their “similar”/“dissimilar” choice per se in

their response to the next item, such that a “similar” request

tends to generate a more positive response regardless of the

proffered item, as might be implied by the serial depen-

dency just mentioned. We cannot presently separate this

possibility entirely from the intended influence of the item

selection itself.

H4, that familiarity and liking are closely related, was

supported by their strong correlations, and by LME models

confirming they are mutually positively predictive.

Encouragingly, this suggests that a participant can be per-

suaded to become familiar with music, and eventually like

it, although the items’ generally low ratings illustrates the

continuing difficulties faced in developing a recommender

system for unfamiliar music.

H5 suggested that participants expressed prior prefer-

ences for musical features (such as ‘bass’) might predict

individualised liking and familiarity responses to items. In

two cases this was upheld: with the feature rhythm, for

item liking, and with noise, for item familiarity. We also

found an interesting phenomenon whereby the feature

preference “noise” as a predictor of familiarity, could be

replaced by pop music familiarity ratings with almost

identical effect (not shown). Although not easily

explained by our data, there may be one plausible expla-

nation: our population is mainly of the 17 to 34 years age

range; a generation whose popular music has been char-

acterised largely by “loudness wars” or a reduction in

dynamic range (Robjohns, 2014). Consequently, we may

find that participants closely associate such a loss of

dynamic range with “noise,” rather than volume (implied

by the absence of the loudness parameter in our selected

LME models).

In our autoregressive models these preference predictors

rendered the acoustic predictors ineffective (contrary to

H6). This is not surprising since both in the seed and the

subsequent recommendations, user responses (prior prefer-

ences or current perceived affect respectively) were inter-

preted in terms of acoustic features that then drove the item

recommendation, so that the influence of acoustic features

had already been built in. The success of the Mahalanobis

distance as a basis for recommendation can be understood

in the light of the fact that it is a relative measure of all

acoustic features, rather than a single feature, and our list of

musical features may comprise, or be interpreted by listen-

ers as conglomerated acoustic features. This again will tend

to over-ride the potential predictive modeling influence of

acoustic features. Clearly the significant impact of the

acoustic features in our system is as yet poorly

characterised.

Most of our hypotheses were supported by the results

presented, and our prototype recommender system already

shows utility. This is despite arbitrary system aspects, con-

structed a priori by necessity: notably, seed item choice and

recommendation precision from participant request, whose

empirical interrogation can be done in future work. More-

over, the full depth of the time series continuous affect

responses remains to be mined. Previous cross-sectional

time-series analyses have shown powerful relationships

between acoustic features and these responses (Bailes &

Dean, 2012; Olsen, Dean, Stevens, & Bailes, 2015). By

extending analyses to obtain model parameters specific to

each participant (perhaps on an ongoing basis during expo-

sure) we could then formulate more precise predictors for

retrospective liking and familiarity responses and thus the

choice between “similar” and “dissimilar” requests (cf.,

Zhao, 2014).

Future work should include developing a similar online

version of our system to enlarge and enhance the interpre-

tation of this study, perhaps overcoming some of the iden-

tified limitations. Such an online system could adopt a

similar approach to that we have taken here, by asking new

users to complete a questionnaire when signing up to the

online database (note that currently an account is required

to purchase items from the music library). This, however,

may prove to be a barrier for the initial engagement of new

users, as this may be perceived as too burdensome to
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complete. This problem could be alleviated by providing

incentives to users to complete the questionnaire (such as

the AMC offering discounts to purchases in their collec-

tion), although this strategy is likely to prove unsustainable

in the long term and indeed largely unnecessary: the AMC

could evaluate user preferences and purchase data as they

become available, with a view to moving towards a more

conventional recommender system type, such as collabora-

tive filtering. One possible way this could be achieved,

could be to make use of social collaborative filtering (Sed-

hain, Sanner, Braziunas, Xie, & Christenson, 2014) where

users link a social media account to their AMC account, so

that similarity measures can be at least partly derived from

side information (basic demographics, “Like” information,

etc.).

However, there are still limitations with such an

approach as there may not be any acoustic preference data

available to link with items. A simple and rapid way of

gaining an impression of the acoustic preferences of a user

may be to ask them to nominate a few composers/artists

whose work they most like (and then gather the correspond-

ing acoustic information, even in real time from iTunes or

Spotify). Additionally, a small group of questions addres-

sing techniques of consumption (not referring to delivery

platforms, but to modes of approach to finding music,

related or unrelated to prior consumption), may be very

valuable in providing recommendation predictors and in

reducing the demands of a questionnaire. Work from our

group by Chambers (submitted) provides support for both

real-time acoustic data analysis, and consumption data, in

the specific context of Australian art music that we focus on

here.

Further useful areas of work may be to evaluate the

effect of the continuous ratings task on participant engage-

ment, or whether this can be enhanced in other ways: a

major barrier to exploration of unfamiliar music is that

people only engage for a few seconds. In a succeeding

experiment, we are consequently assessing the influence

of different experimental conditions on participants’ (vol-

untary) listening time, whereas listening to the whole of

each extract was enforced during the present study.
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Notes

1. The ethnicity categories are as per classification 1249.0 – Aus-

tralian Standard Classification of Cultural and Ethnic Groups

(ASCEG) (Australian Bureau of Statistics, 2011).

2. The AMC repertoire navigator is available at https://www.aus

tralianmusiccentre.com.au/search/search?type¼ish&if

[browse]¼true

3. We chose absolute mean difference between successive sam-

ples as the feature vector measure after assessing the impact of

using mean and absolute mean values in our LME models, and

as seen in previous studies (McAdams, 1999; Olsen et al.,

2016). The flux value is a mean value as this already represents

the absolute difference in change.
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