29 research outputs found

    Schema architecture and their relationships to transaction processing in distributed database systems

    Get PDF
    We discuss the different types of schema architectures which could be supported by distributed database systems, making a clear distinction between logical, physical, and federated distribution. We elaborate on the additional mapping information required in architecture based on logical distribution in order to support retrieval as well as update operations. We illustrate the problems in schema integration and data integration in multidatabase systems and discuss their impact on query processing. Finally, we discuss different issues relevant to the cooperation (or noncooperation) of local database systems in a heterogeneous multidatabase system and their relationship to the schema architecture and transaction processing

    Safe Locking Policies for Dynamic Databases

    Get PDF
    AbstractYannakakis showed that a locking policy is not safe if and only if it allows a canonical nonserializable schedule of transactions in which all transactions except one are executed serially (Yannakakis, 1982). In the present paper, we study the generalization of this result to a dynamic database, that is, a database that may undergo insertions and deletions of entities. We illustrate the utility of this generalization by applying it to obtain correctness proofs of three locking policies that handle dynamic databases

    Supporting Altruistic Protocol in Multidatabase System

    Get PDF
    Computer Science

    A Survey of Traditional and Practical Concurrency Control in Relational Database Management Systems

    Get PDF
    Traditionally, database theory has focused on concepts such as atomicity and serializability, asserting that concurrent transaction management must enable correctness above all else. Textbooks and academic journals detail a vision of unbounded rationality, where reduced throughput because of concurrency protocols is not of tremendous concern. This thesis seeks to survey the traditional basis for concurrency in relational database management systems and contrast that with actual practice. SQL-92, the current standard for concurrency in relational database management systems has defined isolation, or allowable concurrency levels, and these are examined. Some ways in which DB2, a popular database, interprets these levels and finesses extra concurrency through performance enhancement are detailed. SQL-92 standardizes de facto relational database management systems features. Given this and a superabundance of articles in professional journals detailing steps for fine-tuning transaction concurrency, the expansion of performance tuning seems bright, even at the expense of serializabilty. Are the practical changes wrought by non-academic professionals killing traditional database concurrency ideals? Not really. Reasoned changes for performance gains advocate compromise, using complex concurrency controls when necessary for the job at hand and relaxing standards otherwise. The idea of relational database management systems is only twenty years old, and standards are still evolving. Is there still an interplay between tradition and practice? Of course. Current practice uses tradition pragmatically, not idealistically. Academic ideas help drive the systems available for use, and perhaps current practice now will help academic ideas define concurrency control concepts for relational database management systems

    Oze: Decentralized Graph-based Concurrency Control for Real-world Long Transactions on BoM Benchmark

    Full text link
    In this paper, we propose Oze, a new concurrency control protocol that handles heterogeneous workloads which include long-running update transactions. Oze explores a large scheduling space using a fully precise multi-version serialization graph to reduce false positives. Oze manages the graph in a decentralized manner to exploit many cores in modern servers. We also propose a new OLTP benchmark, BoMB (Bill of Materials Benchmark), based on a use case in an actual manufacturing company. BoMB consists of one long-running update transaction and five short transactions that conflict with each other. Experiments using BoMB show that Oze keeps the abort rate of the long-running update transaction at zero while reaching up to 1.7 Mtpm for short transactions with near linear scalability, whereas state-of-the-art protocols cannot commit the long transaction or experience performance degradation in short transaction throughput
    corecore