
Concurrency Control in 
Rule-Based Software Development Environments 

Naser S. Barghouti 

Technical Report CUCS-OOI-92 

Submitted in partial fulftllment of the 
requirements for the degree 

of Doctor of Philosophy 
in the Graduate School of Arts and Sciences. 

COLUMBIA UNIVERSITY 
1992 





Concurrency Control in 
Rule-Based Software Development Environments 

Naser S. Barghouti 

Submitted in partial fulfillment of the 
requirements for the degree 

of Doctor of Philosophy 
in the Graduate School of Arts and Sciences. 

COLUMBIA UNNERSITY 
1992 



Copyright © 1992 

Naser S. Barghouti 
All Rights Reserved 



ABSTRACT 

Concurrency Control in 
Rule-Based Software Development Environments 

Naser S. Barghouti 

This dissertation investigates the concurrency control problem in software development environ

ments (SDEs). The problem arises when multiple developers perfonn activities that 

concurrently access the project's components, stored as database objects. The interleaved execu

tion of the developers' activities leads to interference if they access overlapping sets of objects 

concurrently. An SDE can ensure that activities never interfere by modeling their execution in 

tenns of atomic transactions and allowing only serializable schedules. This prevents 

cooperation, which requires some degree of interference between the activities of multiple 

developers. 

To allow cooperation, an SDE must be provided with semantic infonnation about development 

activities. In rule-based SDEs, the necessary infonnation is readily available in the set of rules 

that defmes the process model of a project. The rules are loaded into the SDE, which provides 

process-specific assistance through a rule chaining engine. A single user command might lead 

the chaining engine to initiate a rule chain. The concurrency control problem in rule-based SDEs 

manifests itself in tenns of interference between concurrent rule chains. We present a 

mechanism that extracts semantic infonnation from the process model to solve the concurrency 

control problem without obstructing cooperation. 

The mechanism is composed of two modules: (1) a conflict detection module, which models 

activities as nested transactions and uses two-phase locking to detect interference; and (2) a 

conflict resolution module, which employs two protocols to resolve interference. The first 

protocol, seep, uses the process model to implement a priority-based scheme that aborts the 

"least important" of the interfering transactions. TIle second protocol, peep, overrides SCCP 

by consulting process-specific control rules, written by the project administration. Each control 

rule describes a specific interference and the actions that resolve it. We have implemented 

SCCP and parts ofPCCP in MARVEL, a multi-user rule-based SDE developed at Columbia. 





Table of Contents 

1. Introduction 1 
1.1. A Motivating Example 3 
1.2. A Software Development Environment Architecture 7 

1.2.1. Supporting Multiple Users in RBDE 8 
1.3. The Concurrency Control Problem 9 
1.4. This Dissertation in Perspective 10 
1.5. Overview of our Approach 13 
1.6. Contributions 17 
1.7. Organization of the Dissertation 19 

2. Multi-User Rule-Based Software Development Environment 21 
2.1. Background: Process-Centered SDEs 21 
2.2. The Architecture 23 
2.3. The EMSL Specification Language 26 

2.3.1. Class Definitions 26 
2.3.2. Composite Objects 29 
2.3.3. Definition of Rules 31 

2.3.3.1. Rule Parameters 34 
2.3.3.2. Rule Conditions as Logical Expressions 35 
2.3.3.3. The Activity 37 
2.3.3.4. Rule Effects 38 

2.4. Rule Execution Model 39 
2.4.1. Evaluation of the Rule's Condition 40 

2.4.1.1. Evaluating the Binding Part 40 
2.4.1.2. Evaluating the Property List 42 
2.4.1.3. Assertion of Effects 47 

2.5. Automated Assistance in RBDE 49 
2.5.1. Compiling Forward and Backward Chains 52 
2.5.2. Backward Chaining 56 
2.5.3. Forward Chaining 58 

2.6. Client/Server Architecture 60 
2.7. Concurrent Rule Execution Model 63 
2.8. Assumptions 70 
2.9. Summary 71 

3. The Concurrency Control Problem in RBDE 73 
3.1. Example of The Concurrency Problem 74 
3.2. Related Work: Transactions in DBSs 76 



3.2.1. The Transaction Concept 77 
3.2.2. Nested Transactions in DBSs 77 

3.3. A Database Model for RBDE 78 
3.3.1. Database Access Units 79 
3.3.2. Definition of Agent 80 

3.4. A Transaction Manager for RBDE 83 
3.4.1. Transaction Operations 83 

3.5. Background: Serializability 86 
3.6. The Concurrency Control Problem in RBDE 87 
3.7. Requirements on our Solution 91 
3.8. Summary 93 

4. Detecting Interference 9S 
4.1. Related Work: Detecting Conflicts in DBSs 95 

4.1.1. Locking Mechanisms 96 
4.2. A Two-Phase Locking Mechanism for RBDE 97 

4.2.1. The Basic 2PL Algorithm in RBDE 97 
4.2.2. Interface Between the Rule Processor and the TM 100 
4.2.3. Determining Lock Types 101 
4.2.4. The Phantom Problem 103 
4.2.5. Recoverability and Strictness 106 
4.2.6. Extending 2PL to Nested Transactions in RBDE 107 

4.3. The Lock Manager 111 
4.3.1. Lock Operations 112 
4.3.2. Related Work: Multiple Granularity Locking 115 
4.3.3. The NGL Protocol in RBDE 116 

4.3.3.1. Extended Lock Types 116 
4.4. Summary 125 

S. Resolving Concurrency Conflicts 127 
5.1. Related Work: Transaction Schedulers in Traditional DBSs 128 

5.1.1. Altruistic Locking: Using Information about Access Patterns 130 
5.1.2. Constraint-Based Schedulers 133 
5.1.3. Semantics-Based Schedulers 134 

5.2. Distinguishing Between Consistency and Automation in RBDE 136 
5.2.1. Extending EMSL to add Consistency Predicates 138 

5.3. Revised Rule Execution Model 142 
5.3.1. CompUing Forward and Backward Chains with Consistency 142 

Predicates 
5.3.2. Consistency and Automation Forward Chaining 144 

5.4. SCCP: A Semantics-Based Concurrency Control Protocol 146 
5.4.1. Transaction Types in RBDE 147 

5.4.1.1. Consistency Forward Chaining Transactions 148 
5.4.1.2. Automation Forward Chaining Transactions 148 
5.4.1.3. Backward Chaining Transactions 149 

5.4.2. States of Transactions 150 
5.4.3. Interference Between Two Transactions 154 

ii 



5.4.4. Priorities of Transactions 156 
5.4.4.1. Priority Based on Transaction Types 157 
5.4.4.2. Priority of Interactive vs. Non-Interactive Transactions 158 
5.4.4.3. Priority-Based Contlict Resolution 159 
5.4.4.4. Details of Aborting Transactions 161 

5.S. Summary 162 
6. Programming The Concurrency Control Policy 166 

6.1. Limitations of the secp protocol 167 
6.2. The Control Rule Language 169 

6.2.1. Control Rule Parameters 170 
6.2.2. The Selection Criterion of a Control Rule 170 
6.2.3. The Binding Part 174 
6.2.4. The Control Rule Body 176 

6.2.4.1. Conditions 176 
6.2.4.2. Actions in CRL 179 

6.3. PCCP: A Programmable Concurrency Control Protocol 182 
6.3.1. Executing a Control Rule 184 

6.4. Extending the TM to Handle CRL Actions 18S 
6.4.1. Suspending Transactions 185 

6.4.1.1. Suspending an Active Transaction 187 
6.4.1.2. Suspending Transactions That are Not Active 190 

6.4.2. Terminating a Transaction 197 
6.4.2.1. Revised Predicate Evaluation Algorithms 198 

6.S. Summary 202 
7. User Sessions and Development Domains: Supporting Team- 204 

work 
7.1. User Sessions and Obligations 20S 

7.1.1. Adding User Sessions to RBDE 206 
7.2. Obligations: Enhancing the Rule Execution Model 207 

7.2.1. Related Work: Other Notions of Obligations 210 
7.2.1.1. Obligations in Inscape 210 
7.2.1.2. Extending Permissions with Obligations 211 

7.2.2. Using Sessions and Obligations in Control Rules 212 
7.2.2.1. Related Work: Sagas 213 
7.2.2.2. Extending CRL to Handle Sessions and Obligations 214 

7.3. Development Domains: Modeling Teamwork 216 
7.3.1. Related Work: Group-Oriented Transaction Models 216 

7.3.1.1. The Group Paradigm 217 
7.3.1.2. Transaction Groups 218 
7.3.1.3. Participant Transactions 220 

7.3.2. Adding Domains to EMSL and RBDE 223 
7.3.3. Integrating Development Domains into CRL 224 
7.3.4. Merging Two Transactions 225 

7.3.4.1. Related Work: Dynamic Restructuring of Transactions 226 
8. Summary, Evaluation and Future Directions 234 

iii 



8.1. Summary 
8.1.1. The Architecture 
8.1.2. The Concurrency Control Problem 
8.1.3. The Solution 

8.2. Implementation of the Thesis Work in MARVEL 
8.2.1. EMSL and RBDE 
8.2.2. The Transaction Model 

8.3. Contributions and Evaluation 
8.3.1. The Importance of Solving the Problem 
8.3.2. The Contributions 
8.3.3. Evaluation 
8.3.4. Comparison to Related Work 
8.3.5. Limitations and Future Directions 

8.3.5.1. Extensions to RBDE 
8.3.5.2. Extensions to the Transactions Manager 
8.3.5.3. Enhancing the Expressive Power of CRL 

8.4. Conclusions 
Bibliography 
Appendix A. Glossary 

A.1. Acronyms 
A.2. General Terms 
A.3. RBDE Terms 

Appendix B. Implementation of Example in MARVEL 
B.1. The Project Type Set 
B.2. The Tool Definitions 
B.3. The Project Rule Set 
B.4. The Project Coordination Model 

IV 

234 
234 
235 
237 
239 
239 
240 
241 
241 
241 
243 
244 
246 
246 
248 
249 
249 
250 
261 
261 
262 
262 
266 
266 
269 
270 
272 



List of Figures 

Figure 1·1: Organization of Example Project 3 
Figure 1·2: Example EMSL Rule 7 
Figure 1·3: The Big Picture 13 
Figure 1·4: Components of the Concurrency Control Mechanism 17 
Figure 2·1: Overall System Architecture 24 
Figure 2·2: Class Definitions in EMSL 27 
Figure 2·3: Composite Object Hierarchy and Links 30 
Figure 2·4: A Rule Template in EMSL 32 
Figure 2·5: Example EMSL Rule 34 
Figure 2·6: Example of Existential Quantifiers 43 
Figure 2·7: Evaluating a Predicate with One Variable 44 
Figure 2·8: Evaluating a Predicate with Two Variables. 45 
Figure 2·9: Asserting the Effects of a Rule 47 
Figure 2·10: Complete Rule Execution Algorithm 48 
Figure 2·11: Rule Chaining Algorithm 50 
Figure 2·12: Example EMSL Rules 52 
Figure 2·13: Revised "Resene" Rule 53 
Figure 2·14: Algorithm for Compiling Forward and Backward 55 

Chains 
Figure 2·15: Backward Chaining Algorithm 57 
Figure 2·16: Forward Chaining Algorithm 58 
Figure 2·17: The Command Execution Algorithm in RBDE 59 
Figure 2·18: Client/Sener RBDE Architecture 61 
Figure 2·19: The First PhaSe of Rule Execution in the Sener 64 
Figure 2·20: The Second Phase of Rule Execution in the Server 66 
Figure 2·21: The Client's Main Algorithm in RBDE 68 
Figure 2·22: The Sener's Main Algorithm in RBDE 69 
Figure 3-1: Example Rules for Testing C Files and Modules 74 
Figure 3·2: Example of Interference 75 
Figure 3-3: The Compile Rule 81 
Figure 3-4: The Agent Representing the Compile Rule 82 
Figure 3-5: The Transaction Encapsulating the Compile Agent of 86 

Figure 3-4 
Figure 3-6: Serializable Schedule of Two Transactions in RBDE 88 
Figure 3·7: Schedule Showing Interference Between Two Trans· 89 

actions 

v 



Figure 4-1: Interface Between the TM, the LM, and the Scheduler 98 
Figure 4-2: Revised First Phase of Rule Execution 104 
Figure 4-3: Revised Second Phase of Rule Execution 105 
Figure 4-4: Execution of Three Rules by the RP, TM, LM, and the 109 

OMS 
Figure 4-5: Setting Locks on Flat Objects 113 
Figure 4-6: Composite Object Hierarchy 114 
Figure 4-7: The NGL Conflict-Detection Protocol 120 
Figure 4-8: Rules Causing a Locking Conflict at the Module Level 122 
Figure 4-9: Object Hierarchy Showing Locks Held by Two Trans- 124 

actions 
Figure 5-1: Example Rules Containing Consistency Predicates 141 
Figure 5-2: Compiling Automation and Consistency Chains 143 
Figure 5-3: Carrying Out Consistency Implications 145 
Figure 5-4: Revised Forward Chaining Algorithm 146 
Figure 5-5: State Diagram of Transaction Encapsulating an Ac- 153 

tivation Rule 
Figure 5-6: State Diagram of Transaction Encapsulating Inference 154 

Rule 
Figure 5-7: Default Conflict Resolution Policy Implemented by 161 

SCCP 
Figure 6-1: The Selection Criterion of a Control Rule 171 
Figure 6-2: The Binding Part of Control Rule 175 
Figure 6-3: Example Control Rule Condition 178 
Figure 6-4: An Example Control Rule 181 
Figure 6-5: The PCCP Protocol 184 
Figure 6-6: Example Rules to Demonstrate the Suspend Action 192 
Figure 6-7: Compile· Archive Conflict Situation 194 
Figure 6·8: Control Rule to Resolve Outdate·Archive Conflict 195 
Figure 6-9: Evaluating a Predicate With Marking 199 
Figure 6-10: Unmarking Objects 200 
Figure 6·11: Control Rule to Resolve Edit·Outdate Conflict 201 
Figure 7·1: A Template for EMSL Rules With Obligations 208 
Figure 7·2: Resene Rule Showing Obligation 210 
Figure 7-3: Control Rule to Resolve Edit·Outdate Conflict with 215 

Obligation 
Figure 7·4: Transaction Groups 219 
Fiaure 7·5: Example of a Participation Schedule 221 
Figure 7·6: Example of a Participation Conflict 222 
Figure 7·7: Control Rule Using Development Domains 224 
Figure 7·8: Example of Split. Transaction 227 
Figure 7·9: Control Rule to Resolve Outdate·Archive Conflict by 231 

Merging 
Figure 7·10: Example of Merging Two Transactions 232 

vi 



List of Tables 

Table 4-1: Lock Compatibility Matrix for MGL protocol 115 
Table 4-2: Lock Compatibility Matrix for NGL Protocol 118 
Table 5-1: Transaction States in RBDE 152 
Table 5-2: Interference Between Active and Pending Transactions 155 
Table 5-3: Interference Between Active and Inactive Transactions 156 
Table 5-4: Resolving Conflicts Between Active and Pending Trans- 164 

actions 
Table 5-5: Resolving Conflicts Between Active and Inactive Trans- 164 

actions 

vii 





Acknowledgements 

I would like to thank. my advisor Gail Kaiser for her guidance, support and encourage

ment for the duration of this research. Gail has taught me a lot about how to conduct 

research, write papers, present talks, and be critical in my thinking. I would also like to 

thank. the other members of my thesis committee: Bob Balzer, Dan Duchamp, Sal Stolfo, 

and Alex Wolf. They have all spent many hours reviewing sections of this dissertation. 

In addition, I would like to acknowledge my colleague George Heinem~, who read a 

complete draft of the dissertation and provided many corrections and suggestions for 

improvements. I would also like to acknowledge my office mates Shu-Wie Chen and 

Felix Wu for putting up with me during the worst of times. Thanks are also due to past 

and present members of the Marvel project: Michael Sokolsky, Israel Ben-Shaul, George 

Heineman, Timothy Jones, Mark Gisi, and Kevin Lam, who implemented the parser for 

control rules. I would also like to thank. my colleagues, especially Wenwey Hseush, 

Steve Popovich, Timothy Balraj, Paul Michelman, Bulent Yener, and others, too many 

to mention here, who have provided me with friendship and support the duration of this 

research. 

viii 





To my homeland, Palestine 

ix 





Chapter 1 

Introduction 

Every software project assumes a specific development process and a particular or

ganization for its components. As software projects become larger and more complex, 

the importance of sophisticated software development environments! (SDEs) that can 

assist in managing a project's data and carrying out its development processes increases. 

Early SDEs were limited in two respects: (1) they were inflexible because they assumed 

either no development process or a fixed hard-wired development process, and (2) their 

data management capabilities were generally limited to either supporting only one 

developer at a time or isolating multiple developers. 

Since the development processes of different projects are different, SDEs must be 

flexible enough to tailor their assistance to support different processes. 

Process-centered SDEs aim at exactly that: they load an encoding of the development 

process of a project, and tailor their assistance to the specified process. The encoding is 

typically written by the project administrator or manager. Process-centered SDEs thus 

overcome one of the limitations of early SDEs. 

Almost any large project involves cooperation among multiple developers who work 

together on developing project components (e.g., source code, documentation, etc.). 

Consequently, it is essential that SDEs allow multiple developers to work on the same 

project concurrently and in a cooperative manner, i.e., not in isolation. The effect of 

concurrency, however, is to allow multiple developers to interleave their access to the 

various components of the project This interleaving can lead to interference that may 

corrupt the project components. A voiding such interference is called the concurrency 

control problem. The problem has been studied extensively in traditional database sys-

1 Appendix A is a glossary of acronyms and all terms shown in bold IlaUcs. 



2 

terns (DBSs)2. Unfortunately, the traditional concurrency control mechanisms 

developed for DBSs are too restrictive for SDEs because they enforce serialization of 

access to data, making cooperation unacceptably difficult. 

In this dissertation, we develop an advanced concurrency control mechanism that 

employs two protocols. The fIrst uses information about the development process, 

specifically the consistency constraints of the process and the structure of data in a 

software project, to provide the default concurrency control policy. The second protocol 

overrides the default policy by using an explicit specification of how to resolve conflict 

situations that result from interference between two transactions. Instead of carrying out 

the default actions to resolve a conflict situation, the second protocol executes actions 

prescribed by the project administrator specifically to resolve that class of conflicts. 

We have chosen the approach of constructing a specific multi-user process-centered 

SDE architecture and developing our concurrency control mechanis'm in the context of 

that architecture. Our architecture is based on the MARVEL system, but it differs from 

the implementation of MARVEL in several respects. The architecture is composed of a 

specification language, EMSL, a rule-based development kernel, RBDE, and a language 

for programming the concurrency control policy, CRL. 

One advantage of the approach we have followed is that we were able to implement our 

solution in a working system. In fact, most of the research described in this dissertation 

has been implemented in MARVEL. It is expected that all the constructs described as 

part of EMSL, RBDE and CRL will be implemented in MARVEL at some point, but not 

necessarily as part of this thesis work. The implementation of parts of the two concur

rency control protocols is significant because most of the other mechanisms that have 

been proposed for advanced database applications, like SDEs, have either not been im

plemented at all or have been implemented only in toy environments. By partially im

plementing our solution, we have proven the practicality of the approach. 

2As in [Bernstein et aI. 87], we use the tenn database system, instead of the more conventional database 
management system, 10 denote any system that uses a database, including a simple fIle system with a 
transaction management facility. 



3 

In the rest of this introductory chapter, we ftrst motivate the need for a programmable 

and flexible concurrency control policy in multi-user SDEs by giving a simple example. 

Variants of this example will be used throughout the dissertation. We then give an over

view of the dissertation. 

1.1. A Motivating Example 

Three programmers, Bob, John and Mary, are working on the same software project3, 

They use the C programming language, and several software tools resident on the 

operating system, such as emacs, cc, and 1 int, to develop a program called P rog. 

Prog consists of three modules: ModA, ModB and ModC, a directory, includes, 

where all the header fIles reside, and three archive libraries: LibA, LibB, and LibC, 

where all object code is archived. Each library stores the archived object code of one 

module (e.g., LibA corresponds to ModA). Each of modules ModA, ModB and ModC 

consists of a set of C source fIles that comprise the main code of the project. 

LibA LibB LibC il.h i2.h i3.h i4.h main.c fl.c f2.c f3.c f4.c f5.c f6.c 

Figure 1·1: Organization of Example Project 

Each of the C source fIles in these three modules includes some of the header files in the 

includes directory: il. h is included in main. c, fl. c, f2. c, and f3. c; i2. his 

included in main. c, fl. c, and f2. c; ftnally, i3. h is included in f4 . c, fS. c and 

f 6 . c. Figure 1-1 depicts the organization and components of the project. 

3We only need John and Mary in this example. but we introduce Bob because he will participate in the 
example later on in the dissertation. 



4 

While testing the project, John and Mary discover two bugs. John is assigned the task of 

fIxing one bug that is suspected to be in module ModA. He starts browsing the C fIles in 

module ModA. Mary's task is to explore a possible bug in the code of module ModB, so 

she starts browsing the C fIles in ModB. After a while, John finds out that there is 

indeed a bug in ModA, caused by a bug in i1.h in the includes directory. John 

modifies a few definitions in i 1 • h, creating a new version of it, and then proceeds to 

finish his modifIcations of module ModA. 

Mary fInds a bug in the code of one of the C flIes in ModB; she modifies various parts of 

the module to fix the bug. Mary now wants to test the new code of ModB. She is not 

concerned with the modifications that John has made in ModA because ModA is unre

lated to ModB. However, the source flIes in ModB include i 1 • h; it makes sense for 

Mary to access the new version of i 1 . h, since that version has the bug fixes that John 

had made. The modifications to the definitions in i 1 . h might have introduced incon

sistencies with the usage of these definitions in the code of the C files in module ModB. 

But since John is still not done with his modification task, of which the modifications in 

i 1 . h were a part, Mary will either have to access i 1 . h at the same time that John is 

accessing it, wait until he is done, or access the old version of the header flIe. 

One trivial solution of the problem is not to have any concurrency control. Basically, 

Mary and John would be allowed to access any objects they want without any con

straints. In this case, John and Mary may not be aware that they are overwriting each 

other's work when they access i 1 • h concurrently. For example, John might change the 

defInition of a data structure in i 1 . h to fix a bug. This change might cause an inconsis

tency with Mary's changes to module ModB. Unaware that John had changed i1. h, 

Mary might think that she has discovered a bug in i 1 . h; she might go ahead and 

change the definition of the same data structure in i 1 . h that John had changed 

previously, in order to remove the inconsistency with the way the data structure is used 

in the code of ModB. John would then suddenly discover that the bug he thought he had 

fIxed has re-occurred. It should be clear from this simple example that having no con

currency control might lead to very confusing and chaotic situations. Yet, this is the 

current state of affairs in many development projects. 



5 

Another solution is to model both tasks in the above example as transactions and use a 

traditional concurrency control scheme, such as strict two-phase locking, to control ac

cess to objects. If locks are at the granularity of modules, then John and Mary will be 

allowed to concurrently lock modules ModA and ModB, respectively, since they work in 

isolation on these modules. Both of them, however, need to access the header files in 

inc 1 ude s at the same time to compile their code, which causes a locking conflict. 

One of the two tasks will be blocked, waiting for the other to finish. Even if the locks 

were at the granularity of files, John and Mary would not be able to access i 1 . h in the 

manner described above. The locks will be released only after reaching a satisfactory 

stage of modification of the code, such as the completion of unit testing. U sing other 

traditional serializability-based concurrency control schemes will not solve the problem 

because these schemes also require the serialization of Mary's work with John's, i.e., 

one appears to complete before the other starts. 

A third solution might be to require John and Mary to "reserve" (also called checkout) 

files before accessing them. Reserving a file prevents other users from accessing it. 

Files are deposited (also called checkin) only when developers have finished working on 

them. In this case, John would reserve i 1 . h, modify it, and then deposit it. John would 

also reserve ModA before modifying it. Suppose that after John had deposited i 1. h, 

Mary reserves both ModB and i 1 . h. Since the changes John makes to i 1 . h affect the 

files in ModA, it is likely that John would need to access i 1 . h again if he discovers that 

some of the changes he made in i 1 • h introduced inconsistencies with the code of 

ModA. However, since Mary has reserved i 1 . h, John will not be able to access it until 

Mary deposit it. This reserve/deposit model prevents John from accessing i 1 • h while 

Mary has it reserved. 

A more satisfactory solution might be to support multiple versions of i 1 . h. When John 

checks out i 1 . h, Mary would still be allowed to access the last version of i 1 . h while 

John works on a new version. But this solution requires Mary to later retest her code 

after the new version of i 1 . h is released, which is really unnecessary if i 1 . h does not 

change again. Supporting parallel versions also introduces the problem of merging. For 

example, Mary and John could have worked for a long time on parallel versions of 



6 

i 1 . h. When it comes time to integrate their work, they might discover that some of the 

changes they made cannot be merged. Thus, any solution that assumes merging of 

parallel versions might be costly. 

None of the solutions discussed above distinguish between cooperative development, 

which requires some degree of interference among the cooperating developers, and iso

lated development, in which interference should not be allowed. What is needed is a 

flexible concurrency control scheme that would allow both John and Mary to access ob

jects concurrently, but yet can detect situations when they are "stepping on each other's 

toes" (e.g., undoing each other's work). The administrator of the project should be able 

to specify certain situations when the concurrency control scheme should allow John and 

Mary to access the same objects at the same time. This might be necessary in a coopera

tive development effort. Furthermore, it might be necessary during some of the phases 

of development (e.g., the release phase) to enforce stricter concurrency control policies. 

It would be advantageous to be able to change the concurrency control policy if the con

sistency requirements of the project change4. Both of these goals, flexibility and 

programmability, are achieved by the concurrency control mechanism we present in this 

dissertation. 

The rest of this chapter is a synopsis of the dissertation. First, we briefly describe our 

multi-user SDE architecture and state the concurrency control problem in it. We then 

overview related work in three areas and show how our work fits into the "big picture" 

of these three areas. Next, we outline the main ideas of our concurrency control 

mechanism, which is the heart of this dissertation. Finally, we overview the contribu

tions of this dissertation and its organization. 

4Changing the consistency requirements of a project cannot, in general, be done on-line since there 
might be some in-progress transactions that support the old requirements. What we mean here is the 
ability to change the requirements off-line and have the concurrency control policy change accordingly 
next time the environment is in use. 



7 

1.2. A Software Development Environment Architecture 

We construct an architecture composed of a specification language, EMSL, and a 

software development kernel, RBDE, that provides automated assistance to developers 

of a software project. EMSL provides constructs for writing a rule-based specification 

of the development process of a project and an object-oriented specification of the 

project's data model. The activities comprising the development process are prescribed 

in terms of rules, while the structure and organization of the project's components are 

specified in terms of classes. The administrator of a project writes these EMSL 

specifications and loads them into RBDE, which tailors its behavior and its data manage

ment capabilities accordingly. The tailored RBDE (the base RBDE plus the EMSL 

specifications) presents the developers with commands that are either built-in (Le., 

shared by all RBDE environments) or correspond to a selected subset of the rules that 

were loaded. RBDE also creates a database for the project, where all project com

ponents will be stored as objects that are instances of the classes defmed by the ad

ministrator. The objects inherit typed aUributes from their classes. 

edit [?c: CFILE]: * 1- the condition. 

(and (?c.reservation_status = CheckedOut) 
(?c.locker = CurrentUser)) 

* 2- the activity. 
{ edit output: ?c.contents } 

* 3- the effects. 
(and (?c.status = NotCornpiled) 

(?c.timestamp a CurrentTime)); 

Figure 1·2: Example EMSL Rule 

Each rule in EMSL has three parts, as is shown in figure 1-2. The first part, the con

dition, must be satisfied before the second part, the development activity, is executed. 

The condition is a logical expression composed of predicates, each of which is essen

tially a query (Le., read operation) on the values of objects' attributes in the database. 

The development activity is generally an invocation of a software tool that resides on the 

operating system (e.g., a compiler or an editor). Since a tool invocation might have 



8 

several possible results (e.g., a compilation might either succeed or discover errors), 

these results are mapped into the third part, a set of mutually exclusive effects. Each 

effect is composed of a set of assignment predicates, each of which changes (i.e., writes) 

the value of an object's attribute. The outcome of the rule's activity determine which 

effect to assert on the objects in the database. 

RBDE provides assistance during the development of a software project. When a user 

requests a command, RBDE automatically ftres a rule that implements the command by 

manipulating the components of the project (Le., by changing the values of attributes of 

the objects representing these components). If the effect of a rule changes the values of 

objects' attributes in the database in such a way that the conditions of other rules become 

satisfted, all of those rules are fued automatically, in a forward chaining manner. Alter

natively if the condition of a rule is not satisfted, backward chaining is performed to 

attempt to make it satisfted. If that fails and the condition remains unsatisfted, then the 

rule cannot be executed at this time. The details of the EMSL language and rule execu

tion are presented in chapter 2. 

1.2.1. Supporting Multiple Users in RBDE 

Large-scale software development efforts often involve . teams of developers who 

cooperate on the same project. Since RBDE stores all project components in a single 

database, these developers must share this common database. In order to allow the 

developers to access the components of the project in the database concurrently, RBDE 

implements a client/server model [Ben-Shaul 91] in which access to the project database 

is controlled by a centralized server that can service concurrent access requests by mul

tiple clients. Each developer interacts with a client process in order to complete an as

signment. Every request by a user to execute a command is sent to the server, which 

provides the client with access to the objects needed to execute the command. Concur

rent requests by multiple users to execute commands might initiate the ftring of multiple 

rule chains, which perform operations on objects in the shared project database. The 

server executes these rule chains concurrently in an interleaved fashion. 



9 

1.3. The Concurrency Control Problem 

Concurrent processing presents several new technical challenges, one of which is inter

ference between concurrent rule chains in tenns of accessing objects in the database. By 

definition, interference between concurrent rule chains can violate the consistency of the 

objects accessed by the chains. Interference (also called concurrency conflict or simply 

conflict) occurs when objects that have been accessed by a rule, r1, are updated by 

another rule, r2, in a concurrent chain. This overlapping access might, for example, 

lead to changing objects that were read during the evaluation of the condition of r 1. 

The validity of r 1 's execution depends on the assumption that these objects will not be 

changed by rules in other rule chains, while the chain containing r 1 is still executing. 

Thus, if any of the objects is actually changed, r1 's execution might have to be in

validated, meaning that its results have to be undone. In addition, all the rules that were 

fired after r 1 in r 1 's chain might have to be invalidated since the reason for firing them 

(i.e., the successful firing of r1) has now been reversed. 

The concurrency control problem arises only if two rule chains access the same objects 

concurrently. There is a need to synchronize such concurrent access in order to avoid 

conflicts. Our solution to the concurrency control problem combines and integrates 

research results and concepts from three areas: SDEs, software process modeling, and 

database concurrency controlS. The progression of research in these three areas points 

toward increasing cross-fertilization to build systems that can support the specific needs 

of applications involving teams of users. Before we explain our concurrency control 

mechanism, we give a brief overview of the relevant research in these three areas and 

show how our work fits into the "big picture." 

SNote that we have also applied many ideas from Artificial Intelligence research. Incorporating AI in 
the picture, however, would complicate the discussion and make it even longer than it is now. 



10 

1.4. This Dissertation in Perspective 

SDEs aim to increase programmer productivity and software reliability. Early research 

focused on exploiting general-purpose file systems and providing a collection of inde

pendent file-based tools for system building [Feldman 79], editing [Stallman 84], 

debugging [Linton 81, Bates and Wileden 83], and version control [Tichy 85, Rochkind 

75]. The invocation of these tools, however, was left up to the user. In addition, the data 

generated by the tools was stored in files managed by the file system, which meant that 

these files could easily be accessed and corrupted by external tools. 

These problems prompted the development of programming environments that appeared 

to be "intelligent" because they automated some of the tool invocation and provided 

object management systems to store and manage a project's data [Dart et al. 87]. The 

"intelligence" of these environments, however, was hard-wired in their code, making 

them difficult to change or adapt to different projects. One approach to overcome this 

difficulty has been to build SDEs that can tailor their behavior by loading a specification 

of the desired development process. 

Providing a complete and efficient formalism for specifying the development process is 

the main problem addressed by the software process modeling community. Early 

research in that field produced "fixed" models that prescribed a particular cycle for 

software development, such as the waterfall model [Royce 87]. This approach had two 

main disadvantages: (1) no single model was found to be appropriate for all development 

efforts, which vary in their development processes; and (2) the models were meant only 

as guidelines to be enforced manually by project personnel and management, and not as 

executable encodings that can be enforced automatically. To solve the first problem, 

researchers proposed meta-models in which more than one process model can be 

described, such as the spiral model [Boehm 88]. 

The second problem was solved by the idea of process programming, which treats 

software processes as programs that can be executed [Osterweil 87, Perry 89a, Katayama 

90]. Several process-centered SDEs that followed this approach were proposed and con

structed, including Arcadia [Taylor et al. 88, Sutton 90], HFSP [Katayama 89], and 



11 

MELMAC [Deiters and Gruhn 90]. One approach to process programming that has 

gained popularity recently is rule-based process modeling, in which each step in the 

process is prescribed in terms of a rule. Some of these steps can then be carried out 

automatically through a rule chaining engine. The RBDE architecture is based on this 

approach. 

Process-centered SDE provide a mechanism for tailoring their behaviors to the needs of 

a particular project. However, having the development process explicitly encoded does 

not alone solve the problem of supporting multiple users, a requirement for any large

scale software development effort. The basic problem is the inability to allow concur

rent access to project components by multiple users while still maintaining the consis

tency of these components. This problem arises in all multi-user SDEs, e.g., 

Darwin [Minsky and Rozenshtein 90], the CommonLisp Framework [Balzer 87, CLF 

Project 88], Oikos [Anibriola et al. 90], and MELMAC [Deiters and Gruhn 90]. In 

general, the proposed solutions fall into two categories: (1) checkoutlcheckin 

mechanisms in which developers work on different versions of the whole database or 

parts of it, which are then merged together; and (2) transaction mechanisms that basi

cally force the serialization of the tasks of concurrent developers. This second approach 

has also been used in rule-based production systems in which multiple rules are fIred in 

parallel [Stolfo 84, Ishida and Stolfo 85, Schmolze 89, Pasik 89, Miranker et al. 90, Kuo 

et al. 90]. The serialization approach is based on research done by the database com

munity. 

The database community has studied the concurrency control problem extensively in the 

context of traditional DBSs. The two main concepts that were developed to solve this 

problem are the transaction and serializllbility [Eswaran et al. 76, Bernstein et aI. 87]. 

A transaction groups together operations comprising a complete task, and when executed 

transfonns the database from one consistent state to another. When multiple trans

actions are executed concurrently, their operations are interleaved. Such interleaving, 

called a schedule, is consistent (Le., does not result in interference among the concurrent 

transactions) if the transactions comprising it are executed serially one after the other. It 

can then be established that a serializable schedule, one that is computationally equiv-



12 

alent to a serial schedule, is also consistent. Using transactions and serializability, the 

concurrency control problem in conventional database systems reduces to that of testing 

for serializable schedules. We explain the concepts of transaction and serializability in 

more detail in chapter 3. 

It was recognized, however, that serializable transactions were too restrictive for ad

vanced database applications, such as CAD/CAM systems and software development en

vironments, that involve long interactive database sessions and cooperation among mul

tiple users [Bernstein 87]. Semantics-based concurrency control [Salem et al. 

87, Garcia-Molina and Salem 87, Beeri et al. 88, Kutay and Eastman 83, Korth and 

Speegle 90, Pu et al. 88] and cooperative transaction models [Bancilhon et al. 85, EI Ab

badi and Toueg 89, Dowson and Nejmeh 89, Klahold et al. 85, Skarra and Zdonik 

89, Kaiser 90] were proposed to overcome some of the limitations of serializable trans

actions. As with software process models, none of the new transaction models was 

found appropriate for all applications. Consequently, Chrysanthis and Ramamritham 

have recently developed a high-level formalism in which many transaction models can 

be defined [Chrysanthis and Ramamritham 90]. Other researchers have developed 

mechanisms for explicitly programming the concurrency control policy [Skarra 91]. For 

a survey of advanced transaction mechanisms, the reader is referred to [Barghouti and 

Kaiser 91a]. 

We have applied the concept of a high-level coordination modeling formalism to rule

lJased SDEs. The result is a language, CRL, in which the project administrator can 

program a range of concurrency control policies, and a conflict resolution protocol, 

which provides the runtime environment that can implement any of these policies in 

RBDE. Figure 1-3 depicts the progression of research in the three areas discussed above 

and shows how our work fits into the "big picture." 



13 

Concurrency control Software development env. Software process modeling 

Serializable transactions File systems Fixed models 

~ ! 
Semantics-based 

~ 
Make 

Fixed enactable Process modeling 

concurrency control 

~ 
Cooperative transactions 

~ 

~ 
Config.&version management 

~ 

process formalisms 

~ 
Process programming 

~ 
Rule-based process modeling 

Transaction formalisms 

PCC P concurrency control protocol 

Figure 1·3: The Big Picture 

1.5. Overview of our Approach 

We develop a concurrency control mechanism composed of a conflict detection module 

and a conflict resolution module. The first module employs a transaction model, which 

encapsulates each individual rule in an atomic transaction, and each rule chain in a 

nesud tnDas«tion [Moss 85], where each rule becomes a subtransaction. A nested 

granulllritJ loc1cing (NGL) protocol, which is based on multiple granularity 

locking [Kim et aI. 87], is then used to detect any interference between concurrent rule 

chains. Interference is defined as any non-serializable interaction among the nested 

transactions encapsulating the concurrent chains. 

Conflict resolution -is carried out by a Scheduler that employs two protocols: (1) a . 



14 

semantics-based concurrency control protocol (Seep), which implements the default 

concurrency control strategy; and (2) a programmable concurrency control protocol 

(peep), which implements a project-specific concurrency control policy. When NGL 

detects a conflict between two transactions, the Scheduler first tries to resolve the con

flict by using peep, which attempts to resolve the conflict according to the project

specific policy. If such a policy was not specified, or if peep cannot resolve the con

flict for reasons explained in chapter 6, then the Scheduler applies seep, which 

guarantees that the conflict will be resolved according to a hard-wired priority scheme. 

The seep protocol, which builds on the mechanisms of semantics-based concurrency 

control [Garcia-Molina 83, Salem et al. 87], uses semantic information about the consis

tency constraints of a project in order to resolve conflicts detected by NGL. To specify 

the consistency constraints of a project's development process, EMSL provides con

structs that can be used to distinguish between consistency predicates and automation 

predicates in both the conditions and effects of rules; a single rule might contain both 

kinds of predicates. The consistency predicates define the consistency constraints of a 

project since they prescribe to RBDE the mandatory steps that RBDE must perform after 

firing a rule. Automation predicates prescribe to RBDE the optional steps that RBDE 

can automatically perform in response to firing a rule. 

seep guarantees that the consistency constraints of a project will be maintained by dis

allowing any concurrent interaction that violates these constraints (Le., that prevents the 

mandatory steps from being carried out). seep resolves a conflict by aborting one of 

the interfering transactions. Aborting a transaction, however, does not automatically re

quire that the whole chain of which the transaction is a part be aborted. If the aborted 

transaction is part of a nested transaction that encapsulates the execution of a rule chain 

initiated by a consistency predicate, then the whole nested transaction must be aborted to 

guarantee the preservation of the consistency constraint implied by the predicate. Other

wise, only one transaction (one of the conflicting transactions) needs to be aborted. 

seep determines which of the two interfering transactions to abort by using information 

about the kind of predicates that triggered the the transactions and the nature of the com

mands encapsulated by the transactions (e.g., whether they are interactive or not). Thus, 



15 

in the absence of a project-specific concurrency control policy, RBDE enforces 

serializability among rule chains, but uses semantic information to abort the least impor

tant of the two interfering transactions and to avoid unnecessarily rolling back other 

transactions. 

In the multi-user RBDE architecture, however, it might be the case that the consistency 

constraints need to be relaxed temporarily in order to allow for cooperation between 

multiple developers. For example, it is sometimes necessary to let one developer access 

a a file that is being modified by another developer, in order for the first developer to be 

able to produce an executable; the first developer might be willing to ignore the 

modifications being done by the second developer because he needs the executable ur

gently in order to give a demonstration of the program to a funding agency. It might.

also be the case that some aspects of consistency might be relaxed for some development 

teams but not for others. Thus, there is a need to specify non-serializable interactions, 

which, although they violate the consistency constraints, should be allowed when the 

rule chains are executed in a concurrent fashion; the consistency constraints can be re

established later after the execution of the rule chains is completed. 

We present a control rule language (CRL), which provides constructs for specifying 

legal (not necessarily serializable) concurrent interactions in multi-user RBDE. The 

specification is written in terms of control rules, which describe specific conflict situa

tions and prescribe actions to resolve conflicts in such situations. The PCCP conflict 

resolution protocol provides the runtime environment for control rules in order to resolve 

conflicts detected by the NGL protocol. The actions prescribed by control rules include 

aborting, and thus undoing, one of the conflicting rule chains (the one that SCCP would 

not have aborted. for example), suspending one of the chains until the other is com

pleted, or prematurely terminating, without undoing, one of the chains; a notification 

action is also provided to inform users of what the control rule prescribed. Prematurely 

terminating a rule chain that was initiated by a consistency predicate can leave objects in 

an inconsistent state with respect to the consistency constraints of the software process. 

RBDE marks these objects and stores information about the nature of the inconsistency 

(Le., the value of an attribute is inaccurate) and how to re-establish consistency. This is 

similar to Balzer's notion of tolerating inconsistency [Balzer 91]. 



16 

Although control rules can prescribe actions that enable RBDE to temporarily tolerate 

the inconsistency of some objects, they have no way of guaranteeing that the consistency 

of these objects will be re-established later. We introduce the notion of obligations, 

which when satisfied re-establish the consistency of objects that were left inconsistent 

because of a concurrency conflict. In order to provide a context for obligations (Le., a 

scope in which obligations much be satisfied), we must provide for a unit on top of rule 

chains. Such a unit, called a user session, is provided by grouping sets of user com

mands, and the rule chains initiated by these commands, that together achieve a develop

ment task. Then, a control rule can prescribe adding an obligation to one or both of the 

user sessions that caused a conflict in order to guarantees the re-establishment of an 

object's consistency before the user sessions are completed. Our notion o.f obligations 

builds on previous notions [Minsky and Lockman 85, Perry 87]. 

To further specialize the concurrency control policy, we extend EMSL with another con

struct: development domains, which can be used to define teams of developers. The 

purpose of domains is to allow the administrator to write control rules that apply to 

specific development teams or to members of the same team, for any team. These con

trol rules use the fact that the two developers that caused the conflict are in the same 

team to prescribe an additional kind of action: merging the two conflicting rule chains 

into one chain. This action is sometimes desirable when two team members are closely 

cooperating, which causes them to access the same objects frequently. By merging their 

chains into one, their access to objects is treated as if it was requested by one developer, 

and thus both developers will be able to interleave their access to the same set of objects 

without introducing any conflicts. The merge action is similar to the join-transaction 

operation introduced by Pu et al. [Pu et al. 88]. The notion of development domains is 

similar to the group paradigm proposed for cooperative transaction management [EI Ab

badi and Toueg 89, Dowson and Nejmeh 89, Skarra and Zdonik 89]. The details of the 

CRL language and PCCP are explained in chapter 6. 

The components of the concurrency control mechanism and the interactions among the 

different protocols are depicted in figure 1-4. The transaction manager and the lock 

manager form the conflict detection module. The Scheduler and control rules form the 

conflict resolution module. 



Command Execution Layer 

Transaction 
Manager 

Lock Manager:NGL protocol Conflict 

Data model 
(project type set) 

Process model 
(project rule set) 

Control rules 

Figure 1·4: Components of the Concurrency Control Mechanism 

1.6. Contributions 

There are four main contributions of the research described in this dissenation: 

1. The flI'St contribution is the database model of RBDE and the decomposi

tion of the concurrency control mechanism into a serializability-based con

flict detection protocol and a semantics-based conflict resolution protocol. 

By separating the concurrency control problem into a conflict detection 

module and a conflict resolution module, we are able to minimize the over

head of monitoring concurrent activities. One of the previous cooperative 

transaction mechanisms that provides for programmability of the concur

rency control policy [Skarra 91] requires monitoring all database activities 

and matching each activity to a step in a state machine. The state machine 

encodes required legal concurrent interactions. This monitoring and 

matching adds significant overhead that renders the idea impractical. We 

instead allow all serializable activities to proceed without much delay, as 

17 



will be explained in chapter 4. Due to the concept of modularity and given 

that a large-scale project usually involves development teams that do not 

interact much with each other, we expect most access to the project 

database to be serializable. Only in the relatively few cases of non

serializable interactions do we require some searching to determine which 

control rule to fIre. 

2. The second contribution is the characterization of the semantic information 

that the concurrency control mechanism in process-centered SDEs can use 

to provide a project-specillc concurrency control policy. This semantic in

formation can be extracted from the encoding of the development process. 

We have identified seven pieces of semantic information that can be ex

tracted from the process model: (1) the distinction between maintaining 

consistency and providing automated assistance; (2) the distinction be

tween interactive and non-interactive activities; (3) the time elapsed since 

the beginning of each on-going activity; (4) the identity of each on-going 

activity (e.g., compiling, editing, sending mail, etc.); (5) the human 

developer who initiated each activity; (6) the development task of which 

the activity is a part; and (7) the development team to which each 

developer belongs. We believe that these seven pieces of information can 

be made available in every process-centered SDE. This semantic infor

mation is the basis for supporting concurrency and cooperation in our ar

chitecture. 

3. The third is the default seep protocol, and the separation between consis

tency predicates and automation predicates, which enable us to implement 

a semantics-based concurrency control policy. By providing language 

constructs in EMSL for distinguishing between consistency predicates and 

automation predicates, we enable the project administrator to define the 

consistency constraints of the software process explicitly. The seep 
protocol then guarantees the maintenance of these constraints. Thus, 

seep replaces the traditional correctness criterion of serializability with 

the semantic correctness criterion defined by the consistency constraints. 

seep also avoids aborting and rolling back transactions unnecessarily. In 

particular, seep does not requires cascaded rollbacks of transactions that 

encapsulate automation rule chains, as will be explained in chapter 5. 

18 



4. The fourth contribution is the programmable concurrency control protocol, 

PCCP, and the CRL language, which together provide a mechanism for 

implementing project-specific and flexible concurrency control policies in 

SDEs. The CRL language for writing control rules provides a mechanism 

for programming the concurrency control policy of a project rather than 

having a fixed policy built into the environment. This ability is important 

for two reasons. First, it encourages experimentation with several concur

rency control policies in the same project in order to find the most ap

propriate one. Such experimentation might require some measurements, 

by which the relative advantages and disadvantages of different policies 

can be evaluated; we do not suggest any specific measurements but 

provide the underlying mechanisms needed for trying different policies. 

Second, the range of actions provided by control rules enables the im

plementation of both cooperative and traditional concurrency control 

policies. Some of these policies have never been implemented before. 

CRL provides a platform for coding these policies. We show how several 

policies can be specified in terms of control rules in chapter 6. 

1.7. Organization of the Dissertation 

19 

The rest of the dissertation is organized as follows: We present the details of EMSL and 

RBDE in chapter 2. Although the work described in chapter 2 is not, strictly speaking, 

part of this thesis work (since it was done earlier in the context of the MARVEL project), 

it provides the platform on which we develop our concurrency control mechanism. In 

chapter 3, we construct a database model of command execution in RBDE and explain 

the concurrency control problem that results from allowing concurrent rule chains in 

RBDE. We also present a list of requirements that any satisfactory solution to this 

problem must meet; this list is based on requirements that other researchers have 

proposed in the literature [Bernstein and Goodman 81, Bancilhon et aI. 85, Yeh et al. 

89]. 

We describe our solution in four chapters. Chapter 4 describes the nested transaction 

model and the NGL locking protocol for detecting serializability conflicts between con

current rule chains. In chapter 5, we extend EMSL with consistency predicates, and 



20 

introduce the SCCP protocol. We also explain how consistency predicates modify the 

chaining algorithms. Next, we present the details of CRL, and explain how PCCP uses 

control rules to resolve conflicts in chapter 6. Chapter 7 extends our mechanism with 

suppon for work units and teamwork. We explain the concepts of user sessions and 

development domains, and discuss how information about these concepts can be used in 

control rules to provide delayed conflict resolution in terms of obligations and team

oriented conflict resolution. 

Finally, we conclude by summarizing the thesis work, describing its implementation, 

and discussing its contributions, its limitations, and suggestions for future work. In this 

final chapter we also evaluate how closely our thesis work meets the requirements we 

present in chapter 3, and compare our results to the results of two other theses that have 

addressed the concurrency control problem in cooperative environments. 

Related work is discussed throughout the dissertation. In panicular, we briefly overview 

some other process-centered SDEs in chapter 2. We explain the notions of transaction 

and serializability in chapter 3 and use them to formalize the concurrency control 

problem in RBDE. Granularity locking, which forms the basis for the conflict detection 

module, is explained in chapter 4. In chapter 5, we overview the concept of semantics

based concurrency control and describe some semantics-based mechanisms that are 

similar to the SCCP protocol. We discuss some cooperative transaction mechanisms and 

show how we can implement them in CRL in chapter 6. In chapter 7, we compare the 

notion of user sessions to sagas, and the concept of development domains to the group 

paradigm in group-oriented mechanisms. We also explain how our notion of obligations 

builds on previous notions of obligations. 



21 

Chapter 2 

Multi-User Rule-Based Software Development Environment 

In this chapter we construct an architecture for software development environments 

based on the MARVEL system developed at Columbia. The architecture is composed of 

a specification language, EMSL, and a software development environment kernel, 

RBDE. RBDE is process-centered in the sense that it can be tailored to support a 

specific development process by loading a rule-based specification of the process written 

in EMSL. EMSL also provides constructs for specifying the data model of a project in 

terms of a class hierarchy. Although many papers have been written about MARVEL, 

none of the papers gives a precise and detailed description of either the rule execution 

model or the MSL specification language, on which EMSL is based. These details are 

essential to understanding the concurrency control problem and our solution. This is the 

reason we decided to include this detailed chapter. 

We first give some background information about the concept of process-centered SDEs. 

We then present the overall architecture, followed by a description of EMSL. We con

centrate on the details that are relevant to the rule execution model and rule chaining. 

We first assume a single-user rule execution model, where only one rule chain is ex

ecuted at a time. We then extend the architecture to support multiple concurrent rule 

chains. It is in this multi-user model that the concurrency control problem arises. 

2.1. Background: Process-Centered SDEs 

Large-scale software development involves managing large amounts of data in the form 

of source code, object code, documentation, test suites, etc. Traditionally, developers of 

such projects have managed this data either manually or by using special-purpose tools, 

such as make [Feldman 79] and res [Tichy 85], which manage the configurations and 

versions of the programs being developed. Releases of the finished project are typically 

stored in different directories manually. 



22 

The only common interface among software tools used in traditional development ef

forts is the me system, which stores project components in text or binary mes regardless 

of their internal structure. This significantly limits the ability to manipulate these objects 

in ways that depend on their structure. It also causes inefficiencies in the storage of 

collections of objects, and leaves data, stored as a collection of related files, susceptible 

to corruption due to incompatible concurrent access by external tools. 

SDEs aim to solve these problems by: (1) abstracting away from fIle systems and 

providing higher-level data management capabilities; (2) providing a platform for in

tegrating sets of software tools; and (3) automating parts of the software development 

process by invoking tools automatically. The first objective can be achieved by utilizing 

database technology to store and manage the data generated and manipulated by SDEs. 

The second objective can be achieved by using information about the inputs, outputs and. 

side effects of tools. The third objective of SDEs can only be achieved by using 

knowledge about the specific development process of a project in order to provide spe

cialized automated assistance to the project's developers. 

A development process is comprised of a set of activities, some of which require the 

invocation of software tools resident on the operating system. Different processes often 

differ from each other in three main respects: (1) the set of tools required to carry out the 

activities comprising the process, (2) the prescription of how to use software tools, and 

(3) the restrictions on when to use these tools to perform the activities. Because of these 

differences, there is no single specification that models all development processes ade

quately. This points to the need for tailorable SDEs that provide assistance in carrying 

out specific development processes rather than SDEs with a hard-wired process. The 

term process-centered is used to describe such SDEs. 

Different process-centered environments represent the software development process 

using different formalisms. Arcadia uses an extension of Ada as a process programming 

language [Sutton 90]. HFSP employs a form of attribute grammars [Katayama 89]. 

MELMAC combines several perspectives on the process into a representation similar to 

Petri nets [Deiters and Gruhn 90]. In one class of process-centered SDEs, called 

rule-based SDEs, the software process is specified in terms of rules that resemble plan

ning systems rules. 



23 

Several rule-based SDEs have been proposed and constructed. Each typically provides 

for one or two fonns of enaction of the development process [Perry 89a, Katayama 90]. 

The CommonLisp Framework [CLF Project 88] supports both consistency maintenance 

and automation of the software development process through consistency and automa

tion rules, respectively [Cohen 86, Cohen 89]. Darwin [Minsky and Rozenshtein 88] 

restricts what programmers can do by treating rules as constraints and automating the 

enforcement of these constraints; Darwin uses Prolog as a base language. Grapple [Huff 

89] uses rules to suggest plans and do plan recognition in order to monitor a user

specified process model. Other rule-based SDE models include E-L [Cheatham 90], 

Workshop [Clemm 88], Oikos [Ambriola et al. 90], and ALP [Benali et al. 89]. 

The details of the process defmition fonnalisms and process enaction mechanisms are 

essential for understanding and solving the concurrency control problem in process

centered SDEs. However, since the SDEs mentioned above implement a variety of 

process specification and enaction mechanisms, it is very difficult to develop a general 

statement of the concurrency control problem in all of these SDEs. It is also difficult to 

construct a concurrency control mechanism that is appropriate for all of them. Thus, we 

have taken the approach of constructing a specific SDE architecture and solving the 

problem in that architecture. The main ideas of our solution can be used to develop 

concurrency control mechanisms for any process-centered SDE. 

2.2. The Architecture 

We construct an SDE architecture based on three concepts: (1) object-oriented data 

modeling; (2) rule-based modeling of the software development process; and (3) high

level integration of commercial off-the-shelf tools. EMSL provides constructs for 

specifying the data model in terms of object-oriented class definitions. The set of 

classes that defines the data model is termed the project type set. EMSL also provides 

constructs for defining the activities that comprise the development process in terms of 

rules. Each rule applies to specific sets of classes in the project type set. The complete 

set of rules is tenned the project rule set. 

Tool integration is carried out by defming interfaces between RBDE and the tools, 



24 

which are called envelopes. The set of envelopes defined for a project is called the 

project tool set. Envelopes are written in an extension of the Unix Shell language called 

SEL. SEL defines constructs to manipulate files in the database and invoke tools. The 

details of SEL and envelopes are irrelevant to concurrency control and thus they are not 

discussed here. For a description of envelopes and SEL, see [Gisi and Kaiser 91]. 

A Projec. 
~ administrator 

set 
RBDE 

User Interface 

Project 
Database 

Figure 2-1: Overall System Architecture 

0.5. 

The administrator of the project under development writes EMSL specifications of the 

project's data and process models, and loads these specifications into RBDE. Given this 

information, RBDE knows 

• the structure and organization of the project's data, 

• the relations that exist between different kinds of components, 



• the activities that can be invoked on each kind of component, and 

• the condition for invoking each activity and the effects of the activity on the 

project components it manipulates. 

25 

This knowledge is used by the various parts of RBDE to provide automated assistance. 

Figure 2-1 depicts the various components of the single-user RBDE arc hitecture6. This 

architecture will be revised in subsequent chapters to add multi-user support and trans

action management. 

The Loader loads and analyzes the EMSL specifications of the project type set and the 

project rule set. If either of the two sets is inconsistent, or if the two sets are inconsistent 

with each other, as explained later, the two sets are rejected, with appropriate error mes

sages. The administrator debugs the specifications and attempts to load them again. 

When RBDE succeeds in loading the two sets, the tailored RBDE environment presents 

the end users (the software developers) with commands corresponding to a selected sub

set of the rules in the project rule set, as will be clarified later. The rule set and the type 

set are project-specific. Consequently, the environments for different projects are likely 

to have different user commands, different behaviors, and different object management 

support. 

All RBDE environments, however, share common built-in commands, which apply to all 

objects. These built-in commands must be directly requested by the user and cannot be 

performed automatically by RBDE. There are five built-in commands that are relevant 

to our discussion here: add, delete, move, copy, and link. Add creates an in

stance of one of the classes in the project type set and inserts the instance in the object 

hierarchy7; delete deletes an object and all of its subobjects; move moves an object 

~ote that there is no direct correlation between the size of the project type set and the database; in 
other words. a small number of classes can be used to produce a huge number of instance. Similarly. the 
size of the project type set is not directly related to the size of the project rule set in the sense that the 
administration can write many rules for a small set of classes or vice versa. 

7In some AI systems. there is an automatic classifier that inserts a new instance (or class) in the class 
hierarchy without having the user specifically indicate to which class the instance belongs. Such an 
automatic classifier might be feasible in RBDE given the o~ject-oriented framework; a discussion of this 
topic. however. is outside the scope of this dissertation. 



-----~" 

26 

from one location to another; copy duplicates an object; finally, link creates a 

relationship between two objects. The details of built-in commands are irrelevant here 

except as far as their access to the database is concerned. Note that add (or delete) is 

the only mechanism provided for creating (or deleting) new objects. The command ex

ecutor (CE) is responsible for executing built-in commands. 

The object management system (OMS) uses the class definitions in the project type set 

to create, store and manipulate objects representing the project's data. The OMS is also 

responsible for storing the objects on the me system to provide persistence. A third 

component, the.rule processor (RP), uses the specification of the project rule set and tool 

set to provide automated assistance. The RP is responsible for selecting (matching) rules 

corresponding to user commands, executing these rules, and initiating rule chains when

ever possible. 

2.3. The EMSL Specification Language 

EMSL, which stands for Extended Marvel §.trategy kanguage for historical reasons, is 

an object-oriented language that provides constructs for defming object classes and rules 

as methods of these classes. We will describe only the constructs of EMSL that are 

relevant to the rule execution model. 

2.3.1. Class Definitions 

The data model is specified in terms of classes, each of which defmes a set of typed 

attributes that can be inherited from multiple superclasses; inheritance conflicts are 

resolved according to a pre-defined strategy whose details are irrelevant here. The class 

hierarchy that results is similar to an IS_A hierarchy in semantic networks. The actual 

components of the project are then created as instances of these classes. Figure 2-2 

depicts example class definitions that a project administrator might write in EMSL [0 

describe the organization and structure of the example project presented in chapter 1. 

Each class definition starts with the name of the class followed by the list of its super

classes. Then follows a list of attribute definitions, each of which consists of a name 

followed by the type of attribute; the type may optionally be followed by an initialization 



PROGRAM :: superclass ENTITY; 
modules : set of MODULE; 
libraries : set of LIB; 
includes : INCLUDE; 
status : (Built, NotBuilt, Error, None) - None; 

end 

RESERVABLE :: superclass ENTITY; 
locker : user; 

end 

purpose: string; 
reservation_status (CheckedOut, Available, None) 

FILE superclass RESERVABLE; 
timestamp : time; 
contents : text; 

end 

HFILE :: superclass FILE; 
contents: text = ".h"; 

end 

CFILE :: superclass FILE; 
contents: text - ".c"; 
error msg : text .. ".err"; 
includes : set of link HFILE; 
status : (NotCompiled, Compiled, NotArchived, 

Archived, Error, Initial) = Initial; 
object_code: binary - ".0"; 

None; 

test status : (Tested, Not Tested, Failed) = NotTested; 
object timestamp : time; 
archive timestamp : time; 
libs : set_of link LIB; 

end 

INCLUDE .. superclass ENTITY; 
hfiles : set of HFILE; 
archive status (Archived,NotArchived,INotArchived) 

- .. NotArchived; 
end 

LIB :: superclass ENTITY; 
afile : binary .. ".a"; 
archive status: (Archived,NotArchived,INotArchived) 

- a NotArchived; 
timestamp : time; 

end 

MODULE :: superclass RESERVABLE; 

end 

archive status : (Archived,NotArchived,None) 
NotArchived; 

test status : (Tested, Not Tested, Failed) .. NotTested; 
cfiles : set of CFILE; 
modules : set of MODULE; 
lib : link LIB; 

Figure 2·2: Class Definitions in EMSL 

27 



28 

value. EMSL provides four kinds of built-in attribute types: status, data, structural, and 

link attributes8. 

Status attributes are used to store infonnation about the state of an object. There are 

seven types of status attributes: integer, string, boolean, real, user, time, 

and enumerated. The flrst four are self-explanatory; user represents a user id and 

time stores a time stamp. An enumerated type is a list of possible values enclosed in 

"( )". For example, in figure 2-2, every instance of FILE has one status attribute, 

timestamp, which can be used to store the modification timestamp of a FILE object 

Every instance of RESERVABLE has three status attributes: locker, whose value is a 

user id, purpose, which is a string, and reservation_status, which can take 

exactly one of the values listed between parentheses (i.e., CheckedOut, Available, 

or None); this attribute is initialized to "None" whenever a new instance of 

RESERVABLE (or any of its subclasses) is created. The locker attribute might be 

used to store the operating system-assigned id of the user who reserved the object. The 

purpose attribute might be used to store a sentence describing the reason for reserving 

the object, and the reservation status attribute might reflect whether or not the 

object is reserved. 

Data attributes store the pathnames of fIles containing the data of an object. There are 

two types: text and binary, which refer to text and binary fIle types, respectively. 

The initializations of attributes of this kind give the fIle name suffixes used in the under

lying fIle system. For example, an instance of CFILE (Le., a C source object) will have 

its data stored in an attribute called contents, which is a text fIle attribute inherited 

from FILE but modified so that the file will have the SUfflX ".c". Every instance of 

CFILE will also have an attribute called object_code, a binary fIle with the suffix 

".0", in which the derived object code of the contents attribute will be stored. 

8Status, data and structural attributes were called small, medium and large awibutes, respectively in 
previous papers on MAR VEL. 



29 

2.3.2. Composite Objects 

Structural attributes define hierarchical relations (i.e., IS_PART_OF relations) between 

objects, and fonn the basis for composite objects. Structural attributes are defined in 

terms of the set _of construct, which is an aggregate of arbitrarily many instances of 

the same class. The class defmitions of figure 2-2 define structural attributes for 

PROGRAM, MODULE and INCLUDE. For example, each instance of INCLUDE is 

defined to contain a set of instances of HFILE via the hfiles attribute. Using struc

tural attributes, a whole object hierarchy (tree), which reflects the desired organization of 

data in the specific project, can be created. 

Strict object hierarchies cannot represent all kinds of relationships between objects in a 

software project. For example, although there might not be a structural relationship be

tween a C source file and a header (".h") file in a typical C programming project (Le., 

one does not contain the other), we might want to represent the fact that the C me in

cludes the header file. EMSL provides 1 ink attributes to model this kind of relation

ship between objects. EMSL supports typed links between two objects (Le., binary 

relationships between two instances of specific classes); each link is syntactically 

unidirectional (Le., it is defined in only one object), but semantically, a link is bidirec

tional. For example, includes is a set of links from a CFILE object to HFILE ob

jects. This attribute can be used to specify which header files are included in a C source 

me. The link might also be used to know which CF I LE objects include a specific 

HFILE object. This kind of infonnation might be needed, as will be discussed shortly, 

for writing a rule specifying that when a header file is modified, RBDE should outdate 

all C flIes that include it. 

Figure 2-3 shows an object hierarchy and several links obtained by instantiating the 

classes shown in figure 2-2. The hierarchy represents the project organization depicted 

in figure 1-1, where each module contains a set of C source files and all the header files 

are stored under one directory. Each MODULE object has a 1 ink to a LIB object, which 

has an a f i 1 e attribute where the object code of the C source me contained in the 

module should be archived. Not all links are shown for simplicity. 



contains 
o structural attribute 

-- link attribute 
o object 

Figure 2·3: Composite Object Hierarchy and Links 

30 

Given a data model written using the constructs described thus far, the project ad

ministrator can now write a specification of the project's software development process. 

For example, given the hierarchy in figure 2-3, the project administrator might want to 

specify that a C source file needs to be compiled if either its contents were edited or if 

one of the header fues it includes has been edited after the last compilation of the C file. 

To prescribe this behavior to RBDE, the administrator must specify the "edit" activity 

for both CFILEs and HFILEs and the "compile" activity for CFILEs. RBDE can then 

use this speciftcation to compile a CFILE automatically without the user having to ex

plicitly request the compilation. Similarly, the administrator can specify all the activities 

that comprise the development process of a project; RBDE uses the specifications to 

provide project-specific assistance by automatically invoking software tools. 



31 

2.3.3. Defmition of Rules 

The software development process of a project is modeled in terms of two kinds of rules: 

activation rules and inference rules. An activation rule controls the initiation of a 

software development activity, typically the invocation of a software tool resident on the 

operating system. It specifies the condition under which it is appropriate to invoke the 

tool and the possible effects of the tool on the values of the attributes of objects that are 

passed as arguments to the tool. Since a tool might have several possible outcomes, 

activation rules typically have a set of multiple mutually exclusive effects, each of which 

maps one of the possible results of the tool to changes in the values of status attributes. 

For example, a compiler might succeed in producing object code, or fail and produce 

error messages - it is not generally possible to determine which without invoking the 

compiler. The activation rule encapsulating the compilation activity must specify at 

least two sets of effects, one to be asserted in case of success and the other in case of 

failure. 

In contrast, inference rules are not associated with activities and each has a single effect, 

which is a logical expression that is a consequence of the condition of the rule. In

ference rules defme relations among attributes of the same or different objects. They 

derive new values for objects' attributes based on the current values of the same or other 

attributes. Inference rules thus defme implications, which are used later on to define the 

consistency model of a particular project; defming the consistency model of a project 

will be explained in chapter 5. 

All activation rules and some inference rules form the user command menu of the 

tailored RBDE environment. The administrator might defme some inference rules to be 

"hidden" in the sense that they are used solely by RBDE during chaining (explained 

later). Thus, each user command. other than built-in commands, corresponds to a set of 

rules; selecting a command causes one of the corresponding rules to be fired. The selec

tion of the appropriate rule depends on the arguments passed to the command. 

In addition to inference and activation rules, the administrator can write rules that spe

cialize anyone of the built-in commands provided by RBDE for particular classes of 



32 

objects. These rules basically add conditions for invoking the built-in command for a 

particular class in the project type set, and specify the effects of executing the built-in 

command on the values of the objects' attributes. For the purpose of our discussion in 

this chapter, these rules are treated like activation rules in terms of rule selection and 

assertion of effects. Unlike activation rules, however, the activity part is implicit in the 

name of the rule, which is the same name as a built-in command. For example, the 

administrator might write a rule that specifies that a user can add a CF I LE object to a 

module only if no other CFILE in the same module has the same name. If a user re

quests to add an instance of CFILE to a MODULE, RBDE automatically fIres this rule, 

and will only allow the add built-in command to be executed if the condition of the rule 

is satisfied. 

# Rule name and parameter list 
1. rulename [?param1 : CLASS1 ; ?param2 : CLASS2; ... ]: 

# Binding part of condition. 
2. (bind (?var1 to_all CLASS 3 suchthat characteristic exp.) 
3. (?var2 to_all CLASS 4 suchthat characteristic exp.) 

( ... )) 
4 . 

# Property list part of condition. 
5. (property list) 

# Activity 
6. {<Envelope> argument 1 ..• argument i ; 

# Effects 
7. (effect1); 
8. (effect2); 

( ... ) ; 

output: argument i +1 ... argument n 

FigUre 2-4: A Rule Template in EMSL 

Figure 2-4 shows a template for EMSL rules. Each rule has a name followed by a list of 

parameters enclosed in square brackets. Rule names can be overloaded: several rules 

with the same name can apply to different sets of classes. Each parameter has a name 

and a type, one of the classes defmed in the project type set. All variables used in the 

body of a rule, including parameters, begin with a "?" to distinguish them from iden-



33 

tifiers. Following the parameter list is the condition of the rule, which is composed of a 

set of bindings (lines 2-3) followed by a property list (line 5). The activity invocation 

(line 6) is enclosed in curly braces "{ ... } ". The outputs of the activity are specified 

after the keyword output; all the arguments are considered inputs to the activity. Fol

lowing is the set of effects (lines 7-8), each of which is a conjunction (and) of assign

ment predicates that assign values to named attributes of the parameter objects. All lines 

beginning with a "#" are comment lines. 

The binding part can be empty, which means that only the parameters are used as vari

ables in the body of the rule. The condition can be empty in the case of an activation 

rule, which means that the activity of the rule is always performed when the user re

quests the command corresponding to the rule. The rule's activity is empty in the case 

of an inference rule. The effects of a rule are empty only in two cases. The first is in the 

case of an activation rule that invokes a tool that does not change any of the contents of 

objects in the database (Le., a tool like cat that reads data attributes of objects and 

outputs information directly to the user). The effects are also empty if a tool changes the 

data attributes of objects but these changes are not mapped explicitly to changes in the 

values of status attributes of the same objects. Such a case is dangerous because RBDE 

is left unaware (RBDE's chaining mechanism considers only status attributes) of the 

changes that a tool made to the contents (data attributes) of objects. 

Figure 2-5 shows an actual rule that prescribes the compile activity discussed earlier. 

This rule is taken (and adapted to EMSL syntax) from a MARVEL environment for C 

programming. The rule specifies that in order to compile an instance of CF I LE, the 

following condition must be satisfied: either the CF I LE, or an HF I LE that is contained 

in one of the INCLUDE objects linked to the CFILE, has been edited after the last com

pilation. If the condition is satisfied, the "compile" envelope is invoked and several of 

the attributes of the CFILE and the HFILEs (if they exist) are passed to it. The at

tributes that will be written by the tool are specified after the keyword output; the 

distinction between arguments that are only read and those that are written by the tool 

will be used in chapter 4 by the transaction manager. 

If the compilation succeeds, then RBDE must change the values of the s tat us and 



1. compile [?f:CFILE]: 

# If C source file has been edited but not yet compiled, 
# or if any of the header files it is linked to has been 
# changed after the last compilation of the CFILE, 
# then RBDE can compile it. 

2. (bind (?h to_all HFILE suchthat (linkto [?f.includes ?h]») 
3 . 
4 • 
5 . 
6 • 
7 • 

(exists ?h): 
(or (?f.status = NotCompiled) 

(?h.timestamp> ?f.object_timestamp» 

8. { compile ?f.contents ?h.contents "-g"; 
output: ?f.object_code ?f.error_msg 

9. (and (?f.status = Compiled) 
10. (?f.object_timestamp = CurrentTime»; 
11. (?f.status = Error); 

Figure 2·5: Example EMSL Rule 

34 

object_timestamp attributes of the CFILE to reflect that. If the compilation failed, 

then the s tat u s attribute is assigned the value "Error". In the rest of this section, we 

explain further details of the rule sublanguage of EMSL and the rule execution model. 

We use the "compile" rule as an example throughout the rest of the chapter. 

2.3.3.1. Rule Parameters 

After RBDE matches a user's command to a rule, the RP (rule processor) must select 

one of possibly many rules that correspond to the command (because of overloading of 

rule names). Rule selection is based on the fact that rules are parameterized to take as 

arguments one or more objects, which may be instances of one or more classes. Rules 

are thus similar to multi-methods in object-oriented programming [Bobrow 86]. Select

ing a rule involves binding an actual object to each parameter of the rule and then flring 

the rule. For example, if a user requests from RBDE to compile an object, main. c, 

which is an instance of class CF I LE, RBDE will select the compile rule shown in flgure 

2-5 and bind the ? f parameter to main. c. Note that there might be several rules whose 

name is "compile" but which apply to different classes of objects. Further details of 

rule selection are not relevant to our discussion here; the reader is referred to [Marvel 

91, Barghouti and Kaiser 90]. 



35 

When a rule has been selected for execution, the first thing RBDE does is evaluate the 

rule's condition. EMSL provides a subset of first-order logic (FOL) [Chang and Lee 73] 

for writing the conditions of rules. In order to facilitate the evaluation of a condition, we 

diverge slightly from the notation provided by first-order predicate logic. 

2.3.3.2. Rule Conditions as Logical Expressions 

In EMSL, rule conditions are essentially read-only queries on the objects in the database. 

As shown in figure 2-4, a condition has two parts: a binding part, and a property list. 

The separation between the binding part and the property list is made to distinguish be

tween binding a variable to a set of objects and testing if some predicates are true for 

these objects. This is essential for the chaining model, which will be explained later in 

this chapter. 

(bind (?vl to all CLASSl suchthat (and (or (funcl) 
(func2) 

(predl) ) ) ) 
(?v2 to all CLASS2 suchthat (fun3)))) 

As shown above, the binding part consists of a list of binding expressions. Each binding 

expression consists of a variable, and a characteristic expression. The characteristic ex

pression, if not empty, characterizes the set of objects that should be bound to the vari

able, which is specifIed to be of a particular type (class). An empty characteristic ex

pression means that the variable is bound to all instances of the specifIed class. The 

characteristic expression is a combination of conjunctions (AND) and disjunctions (OR) 

of either structural junctions or simple comparison predicates. 

Structural functions return a set of objects as their value. EMSL defines three structural 

functions: member, ancestor and linkto. These functions are called "structural" 

because their values are obtained by traversing the structure of the database through set 

and link attributes of objects. Simple comparison predicates are of the form 

(?v. att <op> value), where ?v is the variable of the binding expression, att is 

one of the status attributes of the specifIed class of ?v, <op> is one of six comparison 

operators (described shortly), and value is a constant value of the same type as att. 

The evaluation of the binding part of the condition of a rule is described in detail in 

section 2.4.1.1. 



36 

The second part of the condition, called the property list, is a fonnula of the following 

form: 
(Qlxl)···(Q~,,)(M), 

where every (Qtxi)' i = l, ... ,n is either ('Vxi) or (3xi ), and M is a fonnula containing no 

quantifiers. (QjXj) ... (Q"xn) is called the prefIX and M is called the matrix. The prefix is 

thus a list of variables that are quantified either universally or existentially. The matrix 

is a complex expression of predicates; we call the predicates in the property list of a 

condition property predicates to distinguish them from assignment predicates in the ef

fects of a rule and the simple comparison predicates in the binding part. 

Each quantified variable in the prefix of the property list must have already been bound 

in the binding part to a set of objects before evaluating the property list (Le.: the property 

list is a safe fonnula). The quantifiers are used strictly for the purpose of evaluating the 

truth value of the property list and not to bind variables. More specifically, the universal 

and existential quantifiers in front of variables in the prefix of the property list are used 

during the evaluation of predicates in the matrix, as will be explained in section 2.4.1.2. 

Six comparison predicates can be used in the matrix of the fonnula: "=" (equal), ">" 

(greater than), "<" (less than), "!=" (not equal), "<=" (less than or equal), and ">=" 

(greater than or equal). The "=" and "!=" predicates are overloaded for all seven types 

of status attributes (Le., integer, string, real, boolean, time, user, and enumerated). The 

others are overloaded for all types of status attributes except string and enumerated. 

There are no facilities for defining additional predicates. 

All of these predicates are two-place; their truth value can be directly evaluated by 

RBDE. The predicates can either be simple comparison predicates, as described above, 

or they can be of the form (?vl. attl <op> ?v2. att2) , where both ?vl and 

?v2 are quantified variables. 



37 

1. compile [?£:CFILE]: 

2. (bind (?h to all HFILE suchthat (linkto [?£.includes ?h]») 
3. -
4 . 
5. (exists ?h): 
6. (or (?£. status = NotCompiled) 
7. (?h.timestamp> ?f.object_tirnestamp» 

An example of a property list is shown in lines 5-7 above (this example is the same as 

the compile rule shown in figure 2-5; we repeat it here for clarity). Both variables in 

the fonnula would have been bound before the evaluation of the property list: ? f when 

selecting the rule since it is the parameter, and ?h when evaluating the binding part. The 

property list specifies that either the value of the s tat us attribute of the 'object bound 

to ? f is equal to "NotCompiled", or the timestamp attribute of at least one of the 

objects bound to ?h is greater than (Le., more recent) than the object_timestamp 

attribute of the object bound to ? f. The fonnula of the property list specifies the con

dition that must be satisfied before the activity of the rule can be executed. 

2.3.3.3. The Activity 

The activity part of an activation rule specifies which external tool to invoke, what ar

guments to pass to the tool, and which of these arguments will be changed by the tool. 

The activity specification consists of an envelope name and a set of arguments to the 

envelope. The envelope is responsible for passing the arguments in an appropriate fonn 

to the tool. Activities are of the fonn specified by line 6 in figure 2-4. The argument list 

of an activity can consist of the attributes of objects that are either parameters to the rule 

or bound to variables. Literals are also allowed in the arguments. 

For example, consider the activity on line 8 of the compile rule in figure 2-5. This 

activity specifies that the "compile" envelope should be invoked and that five ar

guments should be passed to it. The first argument is the value of the contents at

tribute of the object bound to the parameter (? f), which is the pathname of the C source 

text file. The second argument is the set of the contents attributes of all the objects 

bound to ?h; the value of each of these attributes is the pathname of a text fIle contain

ing the header fIle represented by the HF I LE object. The third argument is a literal,· 



38 

"-g", which the envelope might pass as a flag to the compiler tool. The data attributes 

passed as the fIrst two arguments, as well that literal "-g", are only read by the tool. 

The last two arguments, in contrast, are both written (i.e., changed) by the tool, and thus 

they are preceded by the keyword "output". These two arguments are the value of the 

data attribute, ? f. ob j ect _code, which is the path name of the binary file where the 

object code will go, and the value of ? f . error msg, which is the pathname of a text 

file where error messages from the compiler should go. 

Activities are treated as black boxes that operate outside the direct knowledge of RBDE, 

and only communicate via arguments and returned results. The envelope might change 

the contents of some of the data attributes passed to it. For example, the "compile" 

envelope will change the contents of the ob ject _code attribute passed to it (to put the 

new object code in it). These kinds of changes should normally be mapped to changes to 

the values of the status attributes of the objects, and included as part of the effects of the 

rule. If they are not, RBDE cannot use them as basis for chaining, as will become clear 

in section 2.4. 

2.3.3.4. Rule Effects 

Each effect is a conjunction of assignment statements, hereafter called assignment 

predicates, that assign values to the attributes of objects bound to the parameters of the 

rule. The general form of an assignment predicate is as follows: 

(?vl. att <op> value), where ?vl is one of the bound variables, <op> is an as

signment operator, and val ue is either a literal, an object or an attribute. Assignment 

operators apply to either status attributes or link attributes. For status attributes, there is 

one assignment operator, "=". For link attributes, there are two: linkto to create a 

link between two objects and unlink to remove an existing link; unlink does not 

require a val ue. 

1. compile [?f:CFILE]: 

9. (and (?f.status = Compiled) 
10. (?f.object timestamp = CurrentTime»; 
11. (?f.status a Error): 



39 

A rule might have multiple effects corresponding to the different possible results of a 

tool invocation. For example, the compile rule has two effects that are shown above. 

The first effect is a conjunction (and) of two assignment predicates: the ftrst assigns the 

value "Compiled" to the status attribute of the object bound to the parameter of the 

rule, ? f; the second assigns the current time (system time) to the 

object_timestamp attribute of the object bound to ?f. The second effect simply 

assigns the value "Error" to the s tat u s attribute of the object bound to ? f. Which 

effect will be asserted depends on the result returned by the envelope specifted in the 

activity part. 

The EMSL language we described above is strongly typed. The classes in the project 

type set must include deftnitions for all attributes mentioned in the conditions and effects 

of the project rule set. For example, say the project rule set includes a rule r that applies 

to instances of class C, and its condition checks if the value of an attribute a is greater 

than the integer 5. Then r requires that the deftnition of C contains an attribute called a 

of type integer. This checking also guarantees that the rule set is self-consistent in the 

sense that no two rules assume different types for the same attribute of the same class. 

2.4. Rule Execution Model 

In the previous few sections, we presented the details of the EMSL language and showed 

how the project administrator can use the constructs of the language to defme the data 

and process models, and integrate development tools. We now explain the rule execu

tion model in RBDE. We frrst explain how one rule is ftred and then present the rule 

chaining algorithms, which are the basis for automated assistance in RBDE. 

After matching the user command to a rule, the frrst thing that RBDE does is to select a 

rule, which involves binding the parameters of the rule to actual objects. If the rule 

corresponds to a user command, the parameters are bound to the objects selected by the 

user. If the rule is ftred during chaining, then binding of the rule's parameters is a more 

complicated process. In this case, we apply an algorithm that analyzes the logical ex

pressions in the conditions and effects of rules to bind the parameters to actual objects of 

the same type (or a SUbtype) as the parameter. This approach has been recently im-



40 

plemented in MARVEL to replace a more limited heuristic approach. The details of the 

heuristic approach to binding parameters as well as a discussion of the logical approach 

can be found in [Heineman et al. 91]. In the rest of this chapter, we assume that when a 

rule is flred, all of its parameters would have already been bound successfully to actual 

objects. 

2.4.1. Evaluation of the Rule's Condition 

After the parameters of a rule have been bound, RBDE evaluates the condition of the 

rule. The evaluation is divided into two steps: binding all the variables in the binding 

part and then evaluating the truth value of the property list 

2.4.1.1. Evaluating the Binding Part 

The binding part is a list of binding expressions, each of which binds one variable. The 

RP evaluates the binding expressions of the binding part in turn. A variable that is 

bound in a binding expression can be used as a constant in a following binding expres

sion. Binding one variable involves evaluating the characteristic expression of the bind

ing expression and binding the variable to all the objects returned by the evaluation. The 

characteristic expression can be represented as an AND/OR tree. Every non-terminal 

node is either an AND node or an OR node. All the terminal nodes are either structural 

functions or simple comparison predicates. 

To bind a variable, the AND/OR tree is evaluated. Evaluating a node in the AND/OR 

tree of the binding expression means that the node is assigned a set of objects (possibly 

empty). An AND node is evaluated by first evaluating all of its children and then taking 

the intersection of the object sets assigned to the children. Evaluating an OR node in

volves taking the union of the object sets assigned to the child nodes. Finally, the struc

tural function at each terminal node is evaluated directly, assigning the node to a set of 

objects (possibly empty). 

As mentioned earlier, EMSL supports only three structural functions: membe r, 

ancestor, and linkto. Each is a two-place function. Member and linkto are of 

the form: (f [?vl. att, ?v2]), where f stands for either member or linkto; 



41 

one of ?v1 or ?v2 is an unbound variable while the other is a variable that has already 

been bound in either a previous binding expression or as a parameter; at t is an attribute 

of type set of in the case of member and of type link in the case of linkto. 

If ?vl is the bound variable, then member returns all the objects that are members of 

the at t attribute of any of the objects bound to ?vl. Alternatively, if ?v2 is the bound 

variable, then member returns all the objects that include any of the objects bound to 

?v2 in their att set attribute. The processing of linkto is similar to that of member 

except that 1 ink attributes are used instead of set _of attributes. 

rule [?m : MODULE]: 

(bind (?c to all CFILE suchthat (member (?m.cfiles ?c])) 
(?h to:all HFILE suchthat (linkto (?c.includes ?h]))) 

To illustrate, consider the two binding expressions above. In the fIrst expression, the 

variable ? m corresponds to the parameter of the rule. This variable will be bound to an 

actual object when the rule is fIred. Say that it was bound to ModB in fIgure 2-3 on page 

30. Then, when evaluating the expression, the variable ?c will be bound to all members 

of the cfiles attribute of ModB. Thus, ?c will be bound to two objects: f3. c and 

f 4 . c. When evaluating the second expression, the variable ?h will be bound to all 

instances of class HF I LE that are linked to either f 3 • c or f 4 • c through the 

includes attribute. In other words, ?h will be bound to i 1. h and i 3. h. 

The processing of ancestor is slightly different than that of member and linkto. 

Ancestor is of the form: (ancestor [?v1 ?v2]). If ?v1 is the bound variable, 

then ancestor returns the descendants of all the objects bound to ?v1 that are of the 

class specified for ?v2, or one of its subclasses. Alternatively, if ?v2 is the bound 

variable, then ancestor returns all the ancestors of the objects bound to ?v2 that are 

of the same class (or a subclass) as that specified for ?v1. An object is not considered 

an ancestor or descendant of itself. 

In terms of the database, the binding expressions are read-only queries. From the discus

sion above, it should be clear that the binding of variables might entail reading the 

values of the attributes of more than the objects bound to the parameters of the rule. For 



· 42 

example, processing the binding part of the compile rule leads to reading the 

includes attribute of the CFILE object bound to the parameter. In fact, the structural 

functions in the binding part might access every object in the object hierarchy. 

By evaluating the binding part of a rule, the RP collects all the objects that will be ac

cessed during the execution of the rule. All of these objects will be read by the rule; 

some of them will also be written by the activity or in the effects. This fact is used by 

the transaction manager, as will be explained in chapter 3. Note that the ability to 

predict the set of objects that will be read and written by a rule is based on the assump

tion that activities (tools) are treated as "black boxes", whose inputs and possible out

puts are known before they start executing. This assumption is not true for interactive 

tools that access new objects incrementally. We discuss some ideas as to how to relax 

this assumption in chapter 8. 

2.4.1.2. Evaluating the Property List 

After binding all the variables of a condition, RBDE evaluates the property list of the 

condition. As explained earlier, the preflx of the property list is a list of existential and 

universal quantifiers over the variables bound in the binding part. The quantifiers are 

used during the evaluation of the predicates in the matrix of the property list, as will be 

explained shortly. Existential quantifiers serve an additional purpose. It is possible to 

existentially quantify a variable without using that variable in the matrix of the property 

list. In this case, the existential quantifier is used to check if the set of objects bound to a 

specific variable is non-empty. If it is empty, the condition is said to be UNSATIS

FIABLE because there is no way to make it satisfied except by creating an object that 

can be bound to the variable. But since only the user can create objects, RBDE will not 

be able to satisfy the condition automatically and thus it informs the user that the execu

tion of the rule could not be continued. 

For example, consider the condition of the build rule shown in figure 2-6. Say that 

this rule was fired and that its parameter, ?prog, was bound to an object, Prog. The 

condition specifies that the activity of the rule can be invoked only if the status at

tribute of Prog is equal to "Ready" and if Prog contains at least one CFILE object as 

a descendant. There are two reasons why this condition might not be satisfied. The first 



build [?prog: PROGRAM]: 
(bind (?f to_all CFILE suchthat (ancestor (?prog ?f)))) 

(exists ?f): 
(?prog.status = Ready) 

{ ... 

Figure 2-6: Example of Existential Quantifiers 

43 

is if the value of the status attribute of Prog is not equal to "Ready". In this case, 

the condition evaluates to FALSE, meaning that the condition is not satisfied but that 

RBDE might possibly be able to make it satisfied automatically through chaining (ex

plained in section 2.5). The second possibility is that? f was bound to an empty set of 

objects, which means that Prog does not contain any CFILE objects. In this case, the 

condition is said to be UNSA TISFIABLE because there is no way that RBDE can make 

it satisfied automatically since only the user can create an object. 

If the condition is not UNSA TISFIABLE, RBDE goes on to evaluate the matrix of the 

property list. The matrix is a complex logical expression, which again can be represented 

by an AND/OR tree. The evaluation of this AND/OR tree is similar to the evaluation of 

the AND/OR tree of the binding expressions but differs in some respects. The first dif

ference is that the terminal nodes are predicates and not structural functions. The 

evaluation of these predicates is quite different from that of structural functions. The 

second difference is that the value of each node is either TRUE or FALSE rather than a 

set of objects. 

As explained in section 2.3.3.2, EMSL supports only six simple predicates: "=", ">", 

"<", U!=", "<=", and ">=". Evaluating a predicate requires that each variable in the 

predicate be replaced by an actual object. A predicate can involve at most two variables, 

both of which would have been bound either as parameters or in the binding part. For 

example, the predicate (?p. status = ?m. status) involves the two variables ?p 

and ?m; and the predicate (?p. status ! = Compiled) involves just the variable 

?p. Each variable is bound to a set of objects as described above. 



44 

Replacing the variables of a predicate with actual objects bound to these variables is 

tenned instantiation of the predicate. If the predicate involves only one variable, ?vl, 

which has been bound to n objects, then in order to evaluate the truth value of the predi

cate, it must be instantiated n times, once for each object bound to the variable. The 

value assigned to the predicate depends on the evaluations of these instantiations and on 

whether the variable is quantified universally or existentially in the prefix of the propeny 

list. 

Input: A predicate, P, of the form (?vl.attl <op> value) 
Output: True or False. 

/* ?vl is existentially quantified */ 

For each object, obi, bound to ?vl Do 
Begin 

instantiate P, replacing ?vl with obi]; 
evaluate the instantiation of P; 
If evaluation returns TRUE Then 

End; 

Begin 
P := TRUE; 
stop the evaluation for this node and return; 

End; 

P ;= FALSE; 

Figure 2·7: Evaluating a Predicate with One Variable 

If the variable in the predicate is quantified existentially, then the predicate evaluates to 

TRUE if any of its instantiations evaluates to TRUE. Otherwise, the predicate evaluates 

to FALSE. The exact procedure is in figure 2-7. If the variable in the predicate is quan

tified universally, then the predicate evaluates to TRUE only if all instantiations of it 

evaluate to TRUE; otherwise it is assigned the value FALSE. Evaluating a predicate 

with a universally quantified variable is very similar to the evaluation procedure shown 

in figure 2-7, except that the evaluation stops as soon as an instantiation of the predicate 

evaluates to FALSE. 

A predicate involving two variables is of the fonn (?vl. att op ?v2. att). In 

this case, there are four possibilities: each variable could have been quantified either 

existentially or universally. If both ?vl and ?v2 are quantified universally, then the 



Input: A predicate, P, of the form (?vl.attl <op> ?v2.att2) 
Output: True or False. 

/* Both ?vl and ?v2 are universally quantified. */ 

For each object, obP, bound to ?vl Do 
Begin 

For each object, obj2, bound to ?v2 Do 

End; 

Begin 
instantiate P (?vl := obj] and ?v2 := oq2) ; 
evaluate the instantiation of P; 
If evaluation returns FALSE Then 

End; 

Begin 
P := FALSE; 
stop evaluation for this node and return FALSE; 

End; 

P := TRUE; 

Figure 2-8: Evaluating a Predicate with Two Variables 

45 

node representing the predicate is assigned the value TRUE only if the instantiations of 

the predicate for each combination of the objects bound to ?vl and ?v2 evaluate to 

TRUE. The evaluation stops as soon as a FALSE value is returned by any of the instan

tiations. The evaluation of this case is shown in figure 2-8. 

The evaluation of a predicate in which both ?vl and ?v2 are existentially quantified is 

similar. All we have to do is find one object bound to ?vl and one bound to ?v2 such 

that the predicate evaluates to TRUE. The evaluation stops as soon as such a combina

tion is found. If after going through all the objects bound to ?vl and all those bound to 

?v2, none of the evaluations returned TRUE, then the terminal node representing the 

predicate is assigned the value FALSE. 

The evaluation of a predicate in which one of ?vl is quantified universally whereas the 

other is quantified existentially is slightly more complicated. Consider the case where 

?vl is quantified universally and ?v2 is quantified existentially. The terminal node 

representing a predicate of this kind will be assigned the value TRUE if and only if for 

each object bound to ?vl, there is an object bound to ?v2, such that the predicate 

evaluates to TRUE. The evaluation stops as soon as we find an object bound to ?vl for 

which we could not find any object bound to ?v2 that will make the predicate evaluate 



46 

to TRUE. The evaluation of the case in which ?vl is quantified existentially and ?v2 is 

quantified universally is similar. 

1. compile [?f:CFILE]: 

2. (bind (?h to_all HFILE suchthat (linkto [?f. includes ?hJ» 
3 . 
4 • 
5. (exists ?h): 
6. (or (?f.status = NotCompiled) 
7. (?h.timestamp> ?f.object_timestamp» 

Consider again the condition of the compile rule shown above. The variables? f and 

?h will have been bound before evaluating the predicates in the property list as follows: 

? f will be bound to rna in . c; and ? h will be bound to i 1 . h and i 2 . h. The fIrst 

predicate of the property list, (?f.status = NotCompiled) is evaluated by 

checking if the value of the status attribute of main. c is equal to "NotCompiled". 

If it is, then the predicate evaluates to TRUE. Since the complex expression is an OR of 

two predicates, then the whole expression evaluates to TRUE in this case and we are 

done. 

If the value of the stat us attribute of main. c is not equal to "NotCompiled", then 

we have to check if the timestamp attribute of any of the objects bound to ?h is 

greater than the timestamp of main. c. This is done by going through the list of 

objects bound to ? h and evaluating the predicate for each one of them. If the predicate 

evaluates to TRUE, then we stop. Otherwise, if after going through the three objects, we 

found that the predicate evaluates to FALSE for each one of them, the node representing 

the predicate is assigned the value FALSE. Since both child nodes of the OR node that 

is the root of the tree are FALSE, the whole tree evaluates to FALSE. 

If the final result of the evaluation of the AND/OR tree is TRUE, then the condition is 

satisfIed and the RBDE can invoke the activity of the rule. If the result is FALSE, 

however, then the condition is not satisfIed. If the condition is not satisfied because of 

the evaluation of an instantiation of a predicate in the property list returned FALSE, 

RBDE stores the predicate and the objects used in the instantiations. RBDE will initiate 

a backward chain in order to try to make this predicate satisfIed for the specifIc objects. 



47 

Chaining will be discussed in more detail later in this chapter, but flrst we complete the 

discussion of the rule execution model for an individual rule by explaining how the 

rule's effects are asserted. 

2.4.1.3. Assertion of Effects 

If the condition of an activation rule is satisfled, the rule's activity is invoked by execut

ing the envelope corresponding to the operation specifled in the activity line of the rule. 

When the activity terminates, the envelope returns a status code (an integer) to the 

RBDE. The RBDE uses this integer to determine which effect of the rule to assert. 

Only one of the effects of the rule will be asserted. In theory, there is no limit to the 

number of effects an activation rule can have; in practice an activation rule will have 

only a few effects. An inference rule has only one effect. 

routine ASSERT_EFFECT (which_effect : integer; rule); 
Begin 

If which effect > number of effects of rule OR 
which =effect < 1 Then 

return NULL; 

get the effect corresponding to Which_effect; 
chaining_list : = empty; 

For each assignment predicate in the effect Do 
Begin 

Assert the predicate; 
If assertion changed the value of any attribute Then 

add predicate to chainingJist; 
End; 

ret urn chaining_list; 

End. 

Figure 2-9: Asserting the Effects of a Rule 

Assertion of an effect entails carrying out all of the assignment statements of the con

junction that makes up the effect. The details of the routine that RBDE calls to assert 

one of the effects of a rule are shown in flgure 2-9. The routine is passed an integer that 

indicates which one of a rule's effects to assert. This routine inserts all of the assign

ment predicates that actually changed the value of an attribute on a list called 

chaining_list. This list is used for forward chaining, as will be discussed in the 



48 

next section. Forward chaining is thus driven by both the occurrence of an event (the 

flring of a rule) and changes to the data. If an event occurs but it does not change any 

data, no forward chaining results. 

routine EXECUTE_RULE (rule); 

Begin 
Evaluate the condition of rule; 
If condition is UNSATISFIABLE Then 

return UNSATISFIABLE; 

If condition is FALSE Then 
return UNSATISFIED; 

If rule is an activation rule Then 
Begin 

Execute the activity; 
which effect :"" return value of envelope; 

End; -
Else if rule is an inference rule Then 

which_effect : = 0; 

chaining_list : = ASSERT_EFFECT (which_effect, rule); 

If chaining list is not empty Then 
return- TRUE; 

Else 
return FALSE; 

End. 

Figure 2·10: Complete Rule Execution Algorithm 

Finally, the complete algorithm for executing one rule is shown in flgure 2-10. The 

algorithm evaluates the condition of the rule; if it is not satisfled, the routine returns the 

reason (either UNSATISFIABLE or UNSATISFIED). Otherwise, if the rule is an ac

tivation rule and its condition is satisfied, its activity is executed by invoking the cor

responding envelope. Once the activity invocation is complete, the variable which_effect 

is assigned the return value. This variable is used to determine which of the effects of 

the rule to assert. In case of an inference rule, the flrst and only effect is always asserted. 

If the assertion actually changed the values of any attributes, TRUE is returned. Other

wise, FALSE is returned. The return value is used by the rule chaining algorithm to 

determine whether or not to initiate forward chaining. 

Note that the algorithm supports cycles, e.g., 



49 

edit->compile->edit->compile-etc, which occur naturally in software develop

ment. Additional conditions that guarantee that infinite cycles do not occur can be en

coded in the algorithm. To do that, the rule processor should allow cycles as long as 

there exists a way out of the cycle through multiple effects. The rule execution algo

rithm will be revised in section 2.7 when we extend the RBDE architecture to a 

client/server model to provide multi-user support. 

2.S. Automated Assistance in RBDE 

Given the rule execution algorithm presented above, RBDE can determine whether or 

not the firing of one rule can lead to the fIring of another rule. For instance, while dis

cussing the algorithms for evaluating the condition of a rule, we mentioned that RBDE 

can distinguish between a condition that cannot be satisfied automatically and one that 

can possibly be satisfied if other rules were executed. This knowledge is the basis for 

initiating backward chaining. Similarly, the routine for asserting the effects of a rule 

indicates whether or not it has actually changed the values of any attributes. If it has, it 

is possible that the conditions of some rules that were not satisfied before have become 

satisfied because of the assertion. This is the basis for forward chaining in RBDE. To 

distinguish the rule that directly corresponds to the user command from the rules fired 

during chaining, we call the former the original rule. 

Given these two pieces of information, the RP in RBDE implements the rule chaining 

algorithm shown in figure 2-11. This algorithm executes one rule and the complete rule 

chain initiated by the rule without interruption. In section 2.7, we show that this chain

ing model is too restrictive in a multi-user environment and we subsequently revise it to 

allow the interleaving of multiple rule chains. In the rest of this section, however, we 

assume that only one rule chain is executed at anyone time. 

The rule chaining algorithm first attempts to execute the rule corresponding to a user 

command (by calling EXECUTE_RULE, shown in figure 2-10). If the execution did not 

succeed because the condition cannot be satisfied (Le., the condition evaluation algo

rithm returns UNSATISFIABLE), the user is informed that the command cannot be ex

ecuted at this time, and the cycle terminates. Otherwise, if the rule's condition is not 



.-------~ ret_value := EXECUTE_RULE (rule) 

UNSATISFIED 

failed yred := failed predicate 

YES 

UNSA TISFIABLE 

Infonn user command 
"------I~ cannot be executed ~---I 

UNSATISFIED 

Insert failed yred on/ailed Jist 

Figure 2·11: Rule Chaining Algorithm 

so 

satisfied (i.e., the evaluation algorithm returns FALSE), backward chaining is attempted. 

The algorithm for backward chaining is discussed in section 2.5.2. Backward chaining 

can either succeed in satisfying the condition of the rule, in which case the execution 

cycle is restarted to try to execute the rule again, or it can fail, in which case the execu

tion cycle terminates. Finally, if the rule is successfully executed, a forward chaining 

cycle is initiated. The forward chaining algorithm is presented in section 2.5.3. 



51 

Forward and backward chaining together provide the main mechanisms for automated 

assistance in RBDE. Forward chaining is similar to what is implemented in OPS5 

production systems, except that in RBDE all the rules whose conditions become satisfied 

are invoked rather than just one, as in SOAR [Laird 86]. Backward chaining in RBDE is 

similar to backward chaining in theorem provers, constraint systems and some produc

tion systems, but there is a peculiarity to the RBDE mechanism. Activation rules in 

RBDE invoke external tools, which can have side effects on the file system that RBDE 

cannot monitor. If such rules are part of a backward chaining cycle, then the actions 

perfonned by these rules cannot be reversed if the chaining fails in satisfying the con

dition that triggered it. Also, since tools can have several possible results, it is impos

sible to simulate a backward rule chain before executing it. In most other rule-based 

systems, either the backward chaining cycle is simulated before being attempted, or the 

effects of a failed backward chaining cycle can be reversed. RBDE cannot simulate 

backward chaining because the results of invoking tools cannot be detennined, in 

general, without executing these activities. 

RBDE provides two fonns of assistance based on rule chaining: 

1. Change propagation: If the assertion of one of the effects of a rule 

changes the values of the attributes of one or more objects, forward chain

ing is applied to propagate these changes by causing the values of at

tributes of the same or other objects in the database to change. 

2. Automation of tool invocation: Both forward and backward chaining can 

be used to perfonn activities that would otherwise be done manually. By 

requesting one development activity (e.g., editing a document), several 

other activities (e.g .• fonnatting the document and printing it) might be 

perfonned automatically by RBDE on behalf of the developer who re

quested the first activity. 



52 

2.S.1. Compiling Forward and Backward Chains 

In order to provide assistance without unnecessarily delaying the user, RBDE tries to 

optimize the chaining mechanism. Rather than searching for which rules to fIre during 

chaining, RBDE (specifIcally, the Loader component of it) compiles all the possible for

ward and backward chains between rules into an internal representation when it fIrst 

loads the rule set of the project. The compilation of these chaining possibilities at load 

time is based on the notion of change implication. 

Definition 1: An assignment predicate, P 1, in the effect of a rule is said to 
imply a predicate, P 2, in the property list of another rule iff: 

1. Pl is of one of two forms: either (?x.attl = valuel), or 

(?x.att = ?q.att2) 

2. P2 is of one of two forms: either (?y. att <op> value2) or 

(?z.att3 <op> ?y.att), 

3. and both? x and ? y are of either the same type (Le., they are bound to 

instances of the same class) or one is of a subtype of the other's type. 

reserve [?f: FILE]: 

(?f.reservation_status - Available) 

{ reserve output: ?f.contents ?f.version 

(and (?f.reservation status = CheckedOut) 
(?f.locker = CurrentUser»; 

edit [?c: CFILE]: 

(and (?c.reservation status - CheckedOut) 
(?c.locker - CurrentUser» 

{ edit output: ?c.contents } 

(and (?c.status = NotCompiled) 
(?c.timestamp = CurrentTime»; 

Figure 2·12: Example EMSL Rules 

To illustrate, consider the rules in figure 2-12. The fIrst assignment predicate in the 

effect of the reserve rule, (? f. reservation_status = CheckedOut), 

implies the predicate, (?c. reservation status = CheckedOut), in the con

dition of the edit rule. Note that the reserve rule applies to all FILE objects, and 



53 

FILE is a superclass of both CFILE and HFILE. The two predicates operate on the 

same attribute of the CF I LE class of objects. Thus, the Loader can determine that if the 

condition of the edi t rule is not satisfied (because the first predicate in its condition is 

not satisfied), it might be possible to make this predicate satisfied if the reserve rule 

is fired automatically. Alternatively, asserting the effect of reserve might lead to 

firing the edi t rule. 

From this example, it should be clear that given the EMSL constructs we have described 

so far, forward and backward chaining are completely symmetric. In other words, every 

forward chain from rule r 1 to rule r 2 has a corresponding backward chain from rule r 2 

to rule r 1. This is not always desirable. In the example above, although it might be 

desirable for edi t to backward chain to reserve, it is certainly awkward that reserv

ing an object should lead to invoking the editor on it automatically. To solve this 

problem, EMSL provides three prefixes that the administrator can attach to predicates in 

the conditions and effects of rules: no_forward, no_backward, and no_chain. 

If a predicate in the property list of a rule is preceded by the no _ back ward prefix, then 

the predicate cannot initiate backward chaining if it is not satisfied. Similarly, if a predi

cate in the effects of a rule is preceded by the no_forward prefix, then the predicate 

cannot initiate forward chaining. Attaching a no_backward prefix to an assignment 

predicate in the effect of a rule prevents backward chaining into the predicate. Similarly 

a no_forward prefix attached to a predicate in the property list of a rule prevents 

forward chaining into the predicate. A no chain preflX attached to a predicate 

prevents chaining from or into the predicate. 

reserve [?f:FILE] : 

no_backward (?f.reservation_status = Available) 

{ reserve output: ?f.contents ?f.version } 

(and no forward (?f.reservation status = CheckedOut) 
no=chain (?f.locker = CurrentUser)); 

Figure 2·13: Revised "Reserve" Rule 

Using these prefixes, the administrator can specify that the edit rule can backward 



54 

chain to reserve but not vice versa. A revised version of the reserve rule that 

achieves this is shown in figure 2-13. Note that it was not necessary to change the edi t 

rule. 

These three prefixes provide us with the ability to distinguish between predicates that 

can cause chaining, which we call chaining predicates, and those that cannot, called 

non-chaining predicates. To put it more fonnally, a chaining predicate is defined as 

follows: 

Definition 2: A predicate, P, is said to be a chaining predicate if: 

1. P is in the propeny list of a rule and it is not preceded by a 

no_chain or a no_backward prefix, or 

2. P is an assignment predicate in the effect of a rule and it is not 

preceded by a no _chain or a no_forward prefix. 

Every other predicate is a non-chaining predicate. Note that an assignment 
predicate with a no_backward prefix is still a chaining predicate. 

Given this definition of chaining predicates, we must now revise the definition of change 

implication as follows: 

Definition 3: An assignment predicate, Pi, in the effect of a rule is said to 
imply a propeny predicate, P 2, in the propeny list of another rule iff: 

1. Pi is a chaining predicate, and it is of one of two fonns: either 

(?x.attl = valuel) or (?x.att = ?q.att2) 

2. P2 is in one of two fonns: either (?y. att <op> value2) or 

(?z.att3 <op> ?y.att), 

3. and both ? x and ? y are of either the same type (Le., they are bound to 

instances of the same class) or one is of a subtype of the other's type. 

In order to simplify the compiling of possible chains, the loader creates two tables, the 

Rule Table, which contains an entry for each rule in the rule set, and the Predicate Table, 

which contains an entry for each predicate in the conditions and effects of every rule. 

The entries in the rule table point to the entries in the Predicate Table. Immediately after 

loading the project rule set, the forward and backward chains in the Predicate Table are 

empty. The Loader then executes the routine shown in figure 2-14 to fill in these chains. 



routine COMPILE_CHAINS(); 

Begin 

/* Predicate Table is a global variable. */ 

For each predicate, pl, in the Predicate Table Do 
Begin 

If pl is not a chaining predicate Then 
continue; 

/* Check pl against every predicate in the table. */ 

For each predicate, p2, in the Predicate Table Do 
Begin 

If pl = p2 Then 
continue; 

If pl is an assignment predicate Then 
Begin 

If p2 is an assignment predicate Then 
continue; 

Else If pl implies p2 Then 
Begin 

End; 

If p2 is preceded by either no forward 
or no-chain Then 

continue; 
add forward chain from pl to p2; 

End; 

Else If pl is a property predicate Then 
Begin 

End; 
End; 

End. 

If p2 is a property predicate Then 
continue; 

Else If p2 implies pl Then 
Begin 

End; 

If p2 is preceded by either no backward 
or no-chain Then 

continue; 
add backward chain from pl to p2; 

End; 

Figure 2·14: Algorithm for Compiling Forward and Backward Chains 

55 

This routine checks each predicate in the Predicate Table to determine if this predicate 

can chain to any other predicate in the table. The routine makes sure that a predicate 

does not chain to itself. 

After compiling the forward and backward chains, the predicates in the Predicate Table 



56 

will be inter-connected by forward and backward chains. At runtime, the RBDE does 

not need to match asserted assignment predicates against the conditions of rules. It 

simply has to follow the chains that have been compiled in order to perform the ap

propriate type of chaining. To complete the rule chaining model, we now present the 

chaining algorithms that RBDE uses to provide automated assistance. 

2.5.2. Backward Chaining 

When a rule is selected for execution, the flrst thing RBDE does is evaluate the rule's 

condition. If the condition is satisfled (i.e., TRUE), the activity of the rule can be ex

ecuted immediately. If the condition is UNSA TISFIABLE, then the activity cannot be 

performed and the user is informed of the problem. Otherwise if the evaluation of the 

condition returns FALSE, then an instantiation of a predicate in the property list of the 

rule's condition must have been evaluated to be FALSE. If the predicate's entry in the 

Predicate Table has any backward chains, RBDE initiates a backward chaining cycle in 

order to attempt to make the predicate satisfied. 

The backward chaining algorithm is shown in figure 2-15. Given a rule whose condition 

is not satisfled, the algorithm flrst gets the first predicate P that caused the condition not 

to be satisfled. Then, for each predicate connected to P by a backward chain, the routine 

gets the rule containing this predicate: if that rule's condition is satisfled, it is inserted in 

the ready list; otherwise if the condition is not satisfied, the rule is inserted in the 

backward list. Note that the rules whose conditions are UNSA TISFIABLE are skipped. 

Next, RBDE attempts to execute the rules in the ready list. If any of these rules was 

successful in making P (the predicate that initiated the backward chain) satisfled, the 

chaining stops. Otherwise, RBDE initiates one more level of backward chaining recur

sively on the rules in the backward list. Eventually, if every possible rule has been fired, 

but P still evaluates to FALSE, the algorithm returns UNSATISFIED to indicate that it 

cannot satisfy the predicate. 



routine DO BACKWARD CHAINING (jailedJule); 

Begin 

/* Get the predicate that initiated backward chaining. */ 

P:= failed predicate in!ailedJule; 

/ * Insert rules on ready and backward lists. * / 

For each predicate in the backward chain of P Do 
Begin 

rule : = the rule containing the predicate; 
If rule is not already on ready or backward lists Then 

Begin 

End; 

Evaluate the condition of rule; 
If condition is SATISFIED Then 

Add rule to the ready list; 
Else If the condition is FALSE Then 

Add rule to the backward list; 
End; 

/ * Process the rules on the ready list. * / 

For each rule in ready Do 
Begin 

ret value : = EXECUTE RULE (rule); 
If- ret value = TRUE Then 

Begin 
Evaluate P; 
If P is TRUE Then 

return SATISFIED; 
End; 

End; 

/ * Process the rules on the backward list. * / 

For each rule in backward Do 
Begin 

ret value : = DO BACKWARD CHAINING (rule); 
If- ret value ... SATISFIED-Then 

End; 

Begin 
ret value : = EXECUTE RULE (rule); 
If- ret value = TRUE Then 

End; 

Begin 
Evaluate P; 
If P is TRUE Then 

return SATISFIED; 
End; 

return UNSATISFIED; 
End. 

Figure 2·15: Backward Chaining Algorithm 

57 



2.S.3. Forward Chaining 

routine DO_FORWARD_CHAINING (rule); 

Begin 
get chaining_list of rule; 

For each predicate, pJ, in chaining_list Do 
Begin 

forward-'ist := forward chains of pJ; 
For each predicate, p2, in forward list Do 

Begin -

End; 
End. 

r := rule containing p2; 
ret value : = EXECUTE RULE (r); 
If- ret-value '" TRUE Then 

DO_FORWARD_CHAINING (r); 
End; 

Figure 2·16: Forward Chaining Algorithm 

58 

The forward chaining algorithm is simpler than the backward chaining one. Given a rule 

that was just successfully executed, the algorithm gets the chaining_list of the rule 

(which is produced by ASSERT_EFFECf in figure 2-9 on page 47). Then, for each 

predicate in this list, the routine gets the rule containing the predicate, executes that rule, 

and initiates any further forward chaining caused by that rule's execution. Thus, the 

algorithm is recursive and depth-first in the sense that it executes one rule and all the 

chaining resulting from that rule before going on to the next possible rule in the forward 

chain. The algorithm is shown in figure 2-16. As can be seen from the algorithm, for

ward chaining is a "best-effon" activity. It is always successful by definition even if 

none of the rules in the chain can be executed. 

Finally, the complete command execution cycle implemented by RBDE is shown in 

figme 2-17. Most of the algorithms and routines presented thus far are very similar to 

those implemented in MARVEL; higher-level descriptions of data modeling, process 

modeling, and rule chaining in MARVEL appears in several papers [Kaiser et al. 

88a, Kaiser et al. 88b, Barghouti and Kaiser 88, Kaiser et al. 90]. The presentation 

above, however, is much more detailed and precise than that of any of these papers. As 

mentioned earlier, these details are necessary for explaining and solving the concurrency 



. ' 

routine COMMAND_CYCLE (); 

Begin 
While (TRUE) Do 

Begin 
get the next command request from the user interface; 
If user requested a built-in command Then 

If command is Quit Then 
exit; 

Else 
call command executor to execute the command; 

Else If user requested command from rule menu Then 

End; 
End. 

Begin 
rule : = rule corresponding to the command; 
ret value : = EXECUTE RULE (rule); 
If- ret value = FALSE-Then 

inform user that command cannot be executed; 
End; 

Figure 2·17: The Command Execution Algorithm in RBDE 

59 

control problem; without the details presented above, it is difficult to explain the multi

user command execution model, in which the concurrency control problem arises. 

We have now completed the presentation of all the algorithms needed for executing 

commands in RBDE. The command execution model we presented above executes 

built-in commands, individual rules, and complete rule chains one at a time. In order to 

scale up the command execution model to suppon multiple users, we must extend our 

architecture to suppon the execution of multiple concurrent rule chains. In the rest of 

this chapter, we extend RBDE to handle multiple concurrent rule chains through a 

client/server model. This model was the result of a Master's thesis by a member of the 

MARVEL project [Ben-Shaul 91]. We only present the aspects that are relevant to con

currency control. 



60 

2.6. Client/Server Architecture 

The main extension needed to handle multiple users in RBDE is to separate all access to 

the objects in the database of one project within a server process that executes indepen

dently from the user processes. There can be at most one server process running per 

project database. The server includes the OMS (object management system), the CE 

(command executor), and the RP (rule processor). The transaction manager and the lock 

manager, which will be responsible for implementing the concurrency control 

mechanism we develop in subsequent chapters, will also reside in the server. 

Each user process, called a client, handles interaction with one user and the execution of 

the activities of rules fired by the user's commands. Multiple clients can establish com

munication channels with a single server, and the server will service all of these clients 

concurrently. A user requests a command within the client process. The client will then 

send the request to the server. The clients and the server communicate with each other 

through message passing. A client sends a message to the server; this message is in

serted on the server's queue; the server processes the messages in the queue in a flrst

come-flrst-serve fashion. After processing a client's message, the server sends a mes

sage to the client instructing it what to do next. 

The messages sent between clients and servers have three flelds. The flrst fleld, 

c 1 i en t _ i d, is used to store the unique identifier that the server assigns to the client. 

The second field, kind, indicates the kind of the message, and the third field, 

contents, stores the contents of the message. The messages that the client sends to 

the server are of two kinds: (1) to request the execution of a command; or (2) to request 

the server to continue executing a rule (or a rule chain). The need for the second kind of 

messages and how these messages are processed by the server will be explained shonly. 

Processing the flISt kind of messages requires that the server call either the RP or the CE 

to execute the command. 

One major decision we had to make was whether to have the RP and the CE in each of 

the clients or in the central server. The execution of either a built-in command or a rule 

requires access to objects in the database. As described earlier in this chapter, the RP is 



Project t administrator Developer 

~r~T CLIENT 

L-..,--::==::-----lr--'--jr---' clientl clienaclient3 

~U 
Object 

Management 
System 

Project 
Database 

Figure 2·18: Client/Server RBDE Architecture 

Execution..Stack 

61 

responsible for collecting all the objects that are bound to the variables in the binding 

part of the rule. The execution of a rule (Le., evaluation of a rule's condition and the 

assertion of one of its effects) might require access to possibly many objects in the 

database. In the extreme case, the execution of a rule might require access to the whole 

database. In contrast, the execution of each built-in command involves access to a fixed 



62 

number of objects. For example, the copy command requires accessing three objects, 

the source object we need to copy, the new object that duplicates the source object, and 

the parent of the new object (the destination object). 

There are no advantages at all to having the command executor in the clients. Having 

the RP in each client, on the other hand, would potentially enable us to have a private 

rule set for each client. However, in order for the client to execute a rule, it would have 

to request access to all the objects bound to the variables in the binding part of the rule 

via the server. The server would have to collect all of these objects and send them to the 

client. The size and number of objects needed per rule execution could make the com

munication costs between the clients and the server very expensive. Because of these 

problems, as well as to simplify transaction management, as will be explained in chapter 

4, we decided to put both the RP and the CE in the server. Both components form the 

command execution layer. The problem of supporting multiple rule sets with this ar

chitecture is discussed in [Barghouti and Kaiser 91b]. 

The server maintains a context for each client and performs the commands requested by 

a client within that client's context Each client's context is basically an execution stack, 

which is used to maintain information about the execution of the command requested by 

the client, and the progress of the rule chain that might have been initiated by the client's 

previous message. For example, if the execution of a client's request initiates a forward 

chain to several rules, then these rules are pushed on the stack. The RP executes these 

rules, one by one, by popping the rule on top of the stack and executing it. Each client 

can request only one command at a time. Before a client can request a command, that 

client's execution stack must be empty; this occurs only when the client's previous com

mand and any chaining resulting from it have been completed. 

When a client sends a message to the server and when the message is selected from the 

server's queue, the server restores the client's context by making the client's execution 

stack the global execution stack, pointed to by the global variable Execution_Stack. The 

RP uses the stack pointed to by Execution_Stack to store rules that will be executed 

during chaining. Thus, the RP actually does not have to know about the existence of 

multiple execution stacks belonging to different clients. In the following discussion, un-



63 

less otherwise specified, the "stack" refers to the global execution stack. The overall 

client/server architecture is depicted in figure 2-18. 

Whenever a rule is pushed on the stack, the state of its execution is stored with it. A rule 

is pushed on the stack for two reasons: either it is still waiting to be fired (Le., its execu

tion has not started yet but it was inserted on the stack because it is a possibility for 

chaining), or its condition has been evaluated but its effects haven't been asserted yet 

because the activity is still being executed by the client. In either case, the rule is either 

a rule that was fired directly in response to a user command, or a part of a forward or 

backward chain. Based on this, rules can be in one of three states: (1) 

original_rule, which indicates that this is the rule that initiated a backward chain

ing cycle; (2) back_chain, which indicates that the rule is a part of a backward chain

ing cycle; and (3) forward_chain, which indicates that the rule's condition is 

satisfied, but the assertion of its effects is awaiting the completion of .the execution of the 

rule's activity; note that a rule can be in a forward chain although it is a part of a 

backward chaining cycle. Once the assertion of one of the rule's effects is completed, 

the rule is removed from the stack since its execution would have been completed. We 

now explain rule execution in the client/server architecture in more detail. 

2.7. Concurrent Rule Execution Model 

Having the RP in the server means that access to objects is direct since the object 

management system is also part of the server. Thus, the evaluation of a rule's condition 

can be done as an atomic operation by the server without any communication with the 

clients. The RP is also able to carry out a whole rule chain atomically if that chain 

involves only inference rules (rules with empty activities) since it does not need to wait 

for the client to execute any activities. Processing activation rules, however, adds some 

complications. 

In the rule execution algorithm of section 2.4 (figure 2-10 on page 48), the RP executes 

each activation rule as a unit. In other words, the evaluation of the condition, the execu

tion of the activity and the assertion of one of the effects are all done by the same 

routine. In the client/server model, however, the rule's activity is executed by the client, 



64 

whereas the evaluation of the rule's condition and the assertion of the effects are done in 

the server. In order to increase server throughput, we divide the execution of an activa

tion rule into two phases: one to evaluate the condition and possibly initiate backward 

chaining, and the other to assert the effects and possibly initiate forward chaining. 

routine START_RULE_EXECUTION (rule); 

Begin 
Evaluate the condition of ~~; 
If condition is UNSATISFIABLE Then 

return DONE; 

If condition is FALSE Then 
Begin 

set state of rule to original rule; 
push rule on Execution_Stack; -
ret value : = DO BACKWARD CHAINING (rule); 

Endi- - -

Else If condition is TRUE Then 
If ~le is an inference rule Then 

Begin 
chaininLlist := ASSERT_EFFECT (0, rule) i 
If chaining list is not empty Then 

ret_value := DO_FORWARD_CHAINING (rule); 
End; 

Else 
Begin 

set state of rule to forward chain; 
push rule on Execution Stack; 
ret value : = CONT INUE-; 

End;-

return ret_value; 
End. 

Figure 2·19: The First Phase of Rule Execution in the Server 

The algorithm for the frrst phase of rule execution is shown in figure 2-19. Say that a 

user requests a command that causes RBDE to fire a rule, R. The rule's condition is 

evaluated; if it is not satisfied, then the state of R is set to or ig inal_ rule, R is 

pushed on the client's execution stack, and backward chaining is initiated. By setting 

the state of R to original_rule before inserting it on the client's execution stack, 

the RP will know, when it gets to R, that it is the original rule that initiated the backward 

chaining cycle. 

If R's condition is satisfied, then if R is an activation rule, it is pushed on the execution 



65 

stack of the client after setting its state to 0 rig ina 1_ ru 1 e. If R is an inference rule, 

then its flI'St and only effect is asserted, and if applicable, forward chaining is initiated. 

The algorithms for forward chaining and backward chaining that were presented earlier 

must be revised to take into account the client/server modeL We will discuss these 

revised algorithms shortly. 

When the frrst phase ends, the server sends a message to the client informing it that it 

can go ahead and execute R's activity. The execution of an activity can take an ar

bitrarily long time. Instead of waiting idly during that time, the server can continue 

processing some other client's request in the meanwhile. To do that, the server switches 

to the other client's context and continues the processing from the point at which it 

stopped. But before we explain context switching, let us complete the description of the 

second phase of rule execution, so assume for now that there is only one client, which 

means that the server just waits for that client to finish executing the activity of the rule 

R. 

When the client completes the execution of R's activity, it sends the server a message 

that includes the results of the tool's execution and requests the assertion of one of the 

rule's effects. This request is queued until the server can process it, at which time the 

server restores the client's context (by making it the global Execution_Stack). The serv

er then calls the RP to continue from the point at which it stopped processing rule R. 

Since the information that the server had stored in the context indicates that R has 

finished the first phase of its execution, the RP starts the second phase in the execution 

ofR. 

During the second phase, which is shown in figure 2-20, the RP continues the execution 

of a rule from where it left off. This point is always after the end of the first phase, 

which is after the evaluation of the rule's condition. However, the rule could have been 

part of either a forward chain (including the original rule corresponding to the user's 

command) or a backward chain. The state of the rule will indicate which one of these is 

the case. Depending on the state of the rule's execution, the RP will either continue (or 

initiate) forward chaining, or continue backward chaining. 



routine CONTINUE_RULE_EXECUTION (rule : activation rule, 
which_effect : status code); 

Begin 

get the state of rule; 
If state - back chain Then 

ret_value := CONTINUE_BACKWARD_CHAIN (rule, which_effect); 
Else 

Begin 
chaining_list := ASSERT_EFFECT (which_effect, rule) ; 
If chaining_list <> empty Then 

ret value :,. DO FORWARD CHAINING (rule); 
Else- - -

ret value : = CONT INUE ; 

return ret_value; 
End. 

Figure 2·20: The Second Phase of Rule Execution in the Server 

66 

The forward and backward chaining algorithms presented in section 2.5 have to be 

slightly revised in the client/server model. In particular, backward chaining must be 

split into two phases. The fIrst phase of backward chaining is initiated from the 

START_RULE_EXECUTION algorithm shown in figure 2-19, which starts the execu

tion of a rule chain. This phase continues until a rule, R, whose condition is satisfIed, is 

found. At this point, the activity of R must be executed. The RP sets the state of R to 

back_chain and pushes the rule on the stack. By setting the state of R to 

back _chain, the server will know when it continues executing R that it was a part of a 

backward chain. The details of the revised chaining routines, specifically 

CONTINUE_BACKW ARD_CHAIN, are not terribly relevant to the concurrency con

trol problem. As far as our discussion here is concerned, forward and backward chain

ing push additional rules on the client's execution stack (context). 

Now that we have briefly explained the rule execution algorithm for one client, we 

return to our discussion of context switching among several clients' contexts. The server 

switches between the contexts of different clients at one of two points: (1) after the RP in 

the server has fInished evaluating the condition of an activation rule within a chain, at 

which point the rule's activity is passed to the client to execute; or (2) when the execu

tion of a rule chain is completed and there is nothing more that the server can do with 



67 

respect to this chain. In the latter case, the server cleans up the context of the client and 

informs the client that the execution of the command requested by the user has been 

completed. The execution stack, which will be empty, will be re-activated when the 

same client sends a new request to the server. 

While the client is executing a rule's activity, the server can check if there are any pend

ing messages in its request queue. If there are, then the server switches to the context of 

the client that sent the first message on the queue. The message that a client sends to the 

server can be a request to execute a built-in command, to execute a command cor

responding to a rule, or to continue the execution of a rule within the client's current rule 

chain. The first two requests can be made only if the client's context is empty, which 

means that the RP has completed the execution of the previous command requested by 

the same client. The third request implies that the RP was still in the middle of execut

ing a rule chain, which was initiated by some previous request from the same client. 

As mentioned earlier, the context of a client is an execution stack that contains the cur

rent rule chain of the client. The rule that the RP was executing last will be on top of the 

stack. Thus, when the server receives a message requesting the continuation of a rule's 

execution, it restores the context of the client that sent the message. Restoring a client's 

context means that the client's execution stack becomes the global execution stack, 

pointed to by the variable Execution_Stack. The RP always assumes that it should con

tinue executing the rule on top of the stack pointed to by Execution Stack. 

The complete algorithm performed by each client process is shown in figure 2-21. Each 

client first establishes a communication line with the server of the project database, and 

gets a unique client identifier from the server. This identifier is attached to every mes

sage the client sends to the server. The message's contents are either the name of the 

command or the return code from the envelope, which executed a rule's activity. After 

sending a message to the server, the client waits for the server's response. The server's 

response will direct the client to do one of three things: (1) exit, meaning that the user 

has requested the quit built-in command; (2) get the next command from the user; or 

(3) execute the activity of a rule by invoking a particular envelope. 



routine CLIENT(); 

Begin 

establish communication line with server; 
get unique client_id from server; 

While (TRUE) Do 
Begin 

get user command; 

/* Form message to request command from server. */ 

msg.client id : = client w; 
msg.ldnd -; = EXECUTE- COMMAND; 
msg.contents : = user -command; 

send msg to server; 

/* wait until the server sends back a message. */ 

receive server_msg from server; 

While server _msg.kind <> DONE Do 
Begin 

If server msg.kind = QUIT Then 
exit; /* end the client's process */ 

activity : = server _ msg.contents; 
return code : .. EXECUTE ACTIVITY (activity); 
msg.kilJd := CONTINUE RULE; 
msg.contents := return_code; 
send msg to server; 

/* wait till the server sends back a message. */ 
receive server msg from server;. 

End; -
inform user that execution of command is completed; 

End; 
End. 

Figure 2·21: The Client's Main Algorithm in RBDE 

68 

The complete algorithm that the server process executes is shown in figure 2-22. The 

two routines START_RULE_EXECUTION and CONTINUE_RULE_EXECUTION 

carry out the fIrSt phase and the second phase of rule execution, respectively. Further 

details of the client/server architecture can be found in [Ben-Shaul 91]. 

It should be clear from the algorithms above that concurrent user commands can cause 

multiple rule chains to execute concurrently in the server. The execution of the concUf-



routine SERVER_CYCLE (); 

Execution Stack is a global variable; 

Begin 
While (TRUE) Do 

Begin 
If request queue is empty Then 

continue; 

message := next message from the request queue; 
client id : = message.client id; 
Execution Slack := resto-re context of client_id; 

If message.kind "'" EXECUTE COMMAND Then 
Begin -

If message.conlents is a built-in command Then 
Begin 

call command executor to execute the command; 
If command is qWI Then 

msg.kind : = QUIT; 
Else 

msg.kind : = DONE; 
send msg to client; 
continue; 

End; 
Else 

End; 

Begin 
rule : = rule corresponding to the command; 
ret_value :"'" START_RULE_EXECUTION (rule); 

End; 

Else if message. kind CONTINUE RULE Then 
Begin 
~/e:= top rule on client's stack; 
which_effect :,. integer returned by client: 
ret_value: "'" CONTINUE_RULE_EXECUTION (rule, which_effect) : 

End; 

I f ret value = CONT INUE Then 
Begin 

get activity of the rule on top of client's stack; 
msg.kind :"'" EXECUTE_ACTIVITY: 
msg.contents := activity: 

End: 
Else If ret value ,. CYCLE COMPLETED Then 

Begin - -
clear client's context: 
msg .kind : - DONE: 

End; 
send msg to client: 

End; 
End. 

Figure 2-22: The Server's Main Algorithm in RBDE 

69 

rent chains of different clients is interleaved at the points when the server switches from 



70 

one context to another (Le., when the fIrst phase of the execution of an activation rule in 

a chain tenninates). This interleaving might cause concurrency conflicts if the rule 

chains require access to overlapping sets of objects, possibly leading to a violation of the 

database consistency. 

2.8. Assumptions 

Throughout this chapter, we have made several assumptions that have direct implication 

on solving the concurrency control problem. Of course, the main assumption we have 

made is the rule-based SDE model itself. We do not necessarily advocate this model 

over other kinds of SDEs; we consider the model a given for our thesis work. In the 

RBDE rule execution model, we have made several assumptions that can be relaxed if 

we were to generalize and extend RBDE. We discuss these assumptions here. In chap

ter 8, we give some ideas as to how many of these assumptions can be relaxed. The 

assumptions we have made are: 

1. The rule set is consistent. In other words, the administrator will not write 

two rules that contradict each other logically. All chaining behavior 

prescribed by the rules terminate at some points; thus, although the rules 

can specify cycles (e.g., edit-compile-debug-edit-etc), there must be a way 

out of each cycle (through multiple effects). 

2. Tools are treated as "black boxes", meaning that we can determine their 

inputs and outputs. This enables us to predict the complete set of objects 

that will be read and written by activation rules. 

3. The "black box" assumption also implies that the result of the tool is not 

known until the tool has been executed. A tool can thus have several pos

sible results, which are reflected in multiple mutually exclusive effects in 

activation rules. Because of that, the exact set of rules that might be fIred 

in a forward or a backward chaining cycle is unpredictable. Thus, we can 

predict only the set of all possible objects that might be read and written by 

a rule chain. This set is usually much larger than the actual set that will be 

accessed by the chain. 

4. The only mechanism to create or delete objects is by requesting the add 

and delete built-in commands, respectively. Rules cannot add or delete 

objects in their effects. 



5. The database in which project components are stored is centralized. The 

client processes, however, can be distributed across multiple machines. 

Distributing the database has significant implications on the concurrency 

control model we describe in this dissertation. 

6. The centralized server executes both built-in commands and inference 

rules atomically. Interleaving of rules or rule chains occurs only when the 

activity of an activation rule is being executed. Implementing a different 

model in which the server uses time slicing to switch from one chain to 

another would invalidate several of the observations we make in chapters 3 

and 5. 

2.9. Summary 

71 

In this chapter, we presented a multi-user SDE architecture that is both process-centered 

and rule-based. The architecture is composed of a specification language, EMSL, a rule

based SDE kernel, RBDE, and a client/server model for supporting multiple users. A 

project administrator uses EMSL to specify three aspects of the project: (1) a prescrip

tion of the project's development process in terms of rules (the project rule set), (2) a 

description of the organization and structure of the project's data in terms of object

oriented classes (the project type set), and (3) the interface between the project rule set 

and external tools (the project tool set). These specifications are then loaded into 

RBDE, which presents the project's developers with a tailored RBDE environment 

The project's development process of a project is modeled by two kinds of rules: 

activation rules and inference rules. An activation rule controls the invocation of a tool 

by specifying the condition under which it is appropriate to invoke the tool and the pos

sible effects of the tool on the values of objects' attributes. In contrast, the activity part 

of inference rules is empty, and each has a single effect, an expression that is a logical 

consequence of the condition of the rule. Both activation and inference rules are 

parameterized to take as arguments one or more objects, each of which is an instance of 

some class. When a user requests the execution of a command on a set of objects, 

RBDE selects the rule that matches the command. 



· 72 . 

RBDE provides assistance by applying forward and backward chaining to automatically 

ftre rules, which in the case of activation rules initiate development activities. A rule's 

activity cannot be invoked unless its condition is satisfted. If the condition is not 

satisfted, the RBDE -applies backward chaining to ftre other rules whose effects might 

satisfy the condition. The result of this backward chaining is either the satisfaction of 

the original condition or the inability to satisfy it given the current state of the database. 

When the condition is satisfted, the activity is initiated, and after it tenninates, the 

RBDE asserts one of the rule's effects. This might satisfy the condition of other rules. 

The RBDE ftres these rules. The effects of these rules may in turn cause additional 

forward chaining. 

When multiple developers cooperate on a project, they share a common database that 

contains all the components (source code, documentation, test suites, etc.) of the project. 

The developers may request commands that access objects in the shared database con

currently. To support concurrency, a centralized server controls all access to the project 

database. Each user interacts with a client process, which passes on the users' com

mands to the server. 

The server maintains a context for each client, and employs context switching to process 

multiple user commands concurrently. The RP, which is a pan of the server, executes 

multiple rule chains, resulting from multiple user commands, concurrently. The rule 

chains might interfere if they access overlapping sets of objects. The avoidance of such 

interference is the essence of the concurrency control problem. 

In the rest of this dissertation, we present a database-oriented model of RBDE, and ex

plain the concurrency control problem in tenns of that model. We then proceed to ex

plain the components of our concurrency control mechanism. 



73 

Chapter 3 

The Concurrency Control Problem in RBDE 

In the previous chapter, we presented a multi-user SDE architecture that allows multiple 

developers to request commands concurrently. Each of these commands might initiate a 

rule chain. The effect is to allow multiple rule chains to execute concurrently, inter

leaving their access to the project database. These concurrent chains interfere with each 

other if they access overlapping sets of objects. This interference can corrupt the objects 

in the database. In order to understand and solve the concurrency control problem in 

RBDE, we need to make the command execution model, presented in the previous chap

ter, more precise in terms of how rules and built-in commands access the database. Only 

then can we define the concurrency control problem more precisely. 

In this chapter, we first illustrate the concurrency control problem in RBDE by means of 

an example. We then present a database-oriented model of command execution in 

RBDE. The main component of this model is the agent, which abstracts an individual 

user command. This notion is akin to the transaction concept in database systems, 

which we explain before defining agents. We then use the notion of nested transactions 

to define nested agents, which model rule chains. Next, we use the concepts of 

serializability and serializable executions to define the concept of serializable schedules 

of multiple agents. The notion of interference is then defmed in terms of serializable 

schedules. Finally, we decompose the concurrency control problem in RBDE into three 

subproblems in order to simplify its solution. 



74 

3.1. Example of The Concurrency Problem 

We illustrate the concurrency control problem by means of the example we presented in 

chapter 1. To remind the reader, Bob, John and Mary are working together to develop a 

program, Prog, composed of three source modules, three library modules and a direc

tory, includes, that contains header files. Suppose that John and Mary want to test 

module ModB by running a test suite, test 1. As was shown in figure 2-3 on page 3D, 

ModB consists of two CFILE objects, f3. c and f4 . c. When John and Mary request 

commands concurrently, John's command might trigger a chain of rules, one or more of 

which might interfere with one or more of the rules in the in-progress chain that Mary's 

command has triggered. 

test [?f:CFILE ; ?t:TEST_SUITE]: 

* C source files can be tested only if compiled. 

(?f.status = Compiled) 

{ run-test ?t.contents ?f.object_code 

(?f.test status Tested); 
(?f.test=status = Failed); 

test [?mod:MODULE ; ?t:TEST_SUITE]: 

* A module can be tested only after all the contained * C source files have been tested. 

(bind ?f to_all CFILE suchthat (member [?mod.cfiles ?f])) 

(forall ?f): 
(?f.test_status = Tested) 

{ run-test ?t.contents ?mod.object_code 

(?mod.test status - Tested); 
(?mod.test=status - Failed); 

Figure 3·1: Example Rules for Testing C Files and Modules 

Suppose that John requests a command test ModB test 1, which fIres the second 

test rule shown in figure 3-1, at time tl. Suppose that the condition of the rule is not 

satisfIed because the two CFILE objects contained in ModB, f3. C and f4. c, have not 



75 

been tested yet (i.e., the value of their test_status attributes is not equal to 

"Tested"). The unsatisfied condition triggers a backward chaining cycle to try to make 

the condition satisfied The RP (rule processor) fires the frrst test rule of figure 3-1 on 

f3 . c at time t2 (since the RP executes each rule chain serially, the RP does not frre the 

t est rule on f 4 . c except if the execution of t est f 3 • c t est 1 results in changing 

the value of the test_status attribute of f3. c to "Tested"). 

TIME 

Bob Mary 

tl testModA 

t2 test f3.c 

t3 --------- ----------- test f3.c 
CRIlc!iP.9R Q( !I!JI _lJd~ __ _ 
satisfied at this point 

t4 edit f3.c 

15 
Condition of test rule 

------is- rnvaifdated at this -point -
t6 test f3.c 

t7 test f4.c 

Figure 3·2: Example of Interference 

While John is testing f3. c, Mary requests a command test f3. c testl, which 

fires the flrSt test rule in figure 3-1, at time 13. The condition of the rule is satisfied at 

that time, causing the rule's activity to be invoked Meanwhile, John discovers that 

f3. c has a bug so he issues the command edit f3. c at time t4. Editing f3. c will 

change the contents of f3 • c; the effect of the edi t rule will change the value of the 



76 

status attribute of f3. c to "NotCompiled", making the condition of Mary's test 

rule, which is already in-progress, unsatisfied. Allowing John to edit f3 . c while Mary 

is testing might make the results of Mary's test obsolete. The sequence of activities is 

depicted in figure 3-2. 

Interference also results from interleaving the execution of a rule chain with a built-in 

command. For example, say that after both f3. c and f4. c have been tested in

dividually, John proceeds to test module ModB. After the condition of the test rule 

(that was fired on ModB) has been re-evaluated by the RP and found to be satisfied, 

John's client process invokes the test envelope to test ModB. While this activity is 

being executed in the client, Mary issues a built-in command to add an object, f7 • c, to 

ModB. This built-in command will cause the condition of John's test nile to be UN

SATISFIED, since the module now contains a CFILE whose test_status attribute 

is not equal to "Tested". Thus, John's testing of ModB will be invalidated. 

The two examples above demonstrate the need for a concurrency control mechanism that 

can detect interference between concurrent rule chains. Once such interference is 

detected, RBDE can use semantic information about the project, the individual rules, and 

the rule chains to resolve the interference in a flexible manner. Before we can explain 

how interference is detected and resolved, however, we need to give a more formal 

model of command execution in RBDE, and define the concurrency control problem 

more precisely in terms of that model. 

3.2. Related Work: Transactions in DBSs 

In order to make the command execution model in RBDE more precise in terms of 

database access, we construct a database-oriented model of command execution in 

RBDE. The main construct of this model is the agent, which abstracts the execution of a 

user command in terms of its access to the project database. This notion of agent is akin 

to the transaction concept in database systems. We first explain the concept of trans

actions and then proceed to define our database model. 



77 

3.2.1. The Transaction Concept 

In traditional DBSs, each database operation is abstracted to be either a read operation or 

a write operation, irrespective of the particular computation. Then, a DBS can guarantee 

that the database is always in a consistent state with respect to reads and writes inde

pendent of the semantics of the particular application. 

To do that, the operations performed by a program accessing the database are grouped 

into sequences called transactions [Eswaran et al. 76]. Users interact with a DBS by 

executing transactions. In traditional DBSs, transactions serve three distinct 

purposes [Lynch 83]: (1) they are logical units that group together operations comprising 

a complete task; (2) they are atomicity units whose execution preserves the consistency 

of the database; and (3) they are recovery units that ensure that either all the steps 

enclosed within them are executed, or none are. It is thus by definition that if the 

database is in a consistent state before a transaction starts executing, it will be in a con

sistent state when the transaction terminates. Users interact wi~ a DBS by invoking 

programs, each of whose execution is encapsulated by a transaction. Alternatively, one 

user program might initiate several transactions. 

3.2.2. Nested Transactions in D BSs 

A transaction, as presented above, is a set of primitive atomic actions abstracted as read 

and write operations. Each transaction is independent of all other transactions. In prac

tice, there is a need to compose several transactions into one unit (Le., one transaction) 

for two reasons: (1) to provide modularity; and (2) to provide finer grained 

recovery [Moss 85]. One way to compose transactions is gluing together the primitive 

actions of all the transactions by concatenating the transactions in sequence into one big 

transaction. This preserves consistency but decreases concurrency and prevents fine 

grained recovery because the resulting transaction is really a serial ordering of the sub

transactions. What is needed is a composition that allows for the interleaving of the 

actions of the transactions to provide concurrent behavior, and at the same time, 

guarantees that the execution of the composition of transactions is carried out as a trans

action in its own right. 



78 

The idea of nested spheres of control, which is the origin of the nested transactions con

cept, was first introduced by Davies [Davies 73] and expanded by Bjork [Bjork 73]. 

Reed presented a comprehensive solution to the problem of composing transactions by 

formulating the concept of nested transactions [Reed 78]. Reed defmed a nested trans

action to be a composition of a set of subtransactions; each subtransaction can itself be a 

nested transaction. To other transactions, only the top-level nested transaction is visible 

and appears as a normal atomic transaction. Internally, however, subtransactions are run 

concurrently and their actions are synchronized by an internal concurrency control 

mechanism. In Reed's design, timestamp ordering is used to synchronize the concurrent 

actions of subtransactions within a nested transaction. Moss designed a nested trans

action system that uses locking for synchronization [Moss 85]. 

As far as concurrency is concerned, the nested transaction model mentioned above does 

not change the meaning of transactions (in terms of being atomic). The only advantage 

of nesting, in addition to modularity and composition of transactional abstractions, is 

performance improvement because of the possibility of increasing concurrency at the 

subtransaction level, especially in a multiprocessor system. We use the notion of nested 

transactions to model rule chains, as will be explained shortly. 

3.3. A Database Model for RBDE 

In RBDE, users interact with the system by requesting commands. A user command 

corresponds to either a built-in command or a rule. Built-in commands are executed by 

the CE (command executor) whereas rules are executed by the RP. The RP might in

itiate backward chaining before executing a rule and forward chaining after executing 

the rule. From the point of view of the user, the whole chain represents the execution of 

the requested command 



79 

3.3.1. Database Access Units 

From the point of view of the project database, the execution of an individual rule or a 

built-in command can be abstracted as a set of requests to access objects in the database 

in order to read the values of their attributes or change these values. To be more formal, 

accessing an object can be defined as either a read operation or a write operation as 

follows: 

Definition 1: A read operation, Read [0. at t] , returns the value stored in 
the at t attribute of the object 0 in the project database. 

Definition 2: A write operation, Wri te [0. att, val], changes the value 
of the at t attribute of object 0 to val. 

A database operation is then defined as either a read operation or a write operation. 

Given this definition, we can abstract each of the five built-in commands we described 

earlier (e.g., add, delete, move, copy, and link) as a set of database operations. 

Similarly, each of the three parts of a rule can be abstracted as a set of database opera

tions. For example, the condition of a rule is comprised of a set of read operations, and 

each of the effects is a set of write operations. The activity of an activation rule typically 

involves both read and write operations. 

The OMS (object management system) of RBDE, which is responsible for storing and 

managing objects, executes each database operation atomically. Atomicity means that 

operations are either executed sequentially (Le., one at a time) or that they appear as if 

they were executed sequentially. 

Atomicity of operations does not guarantee the correctness of a rule's execution. In 

particular, the definition of rules in EMSL assumes that each of the three parts of a rule 

will be executed atomically. This leads us to the definition of a database access unit: 

Definition 3: A database access unit U is a set of database operations and an 
ordering relation <, where 

1. U c { Read[o.attl, Write[o.att,val] lois an object in the database and 

att is an attribute of o}, and 

2. Read[o.attl, Write[o.att,val] E U --7 (Read[o.an] < Write[o.att,val]) 

v (Write[o.att,val] < Read[o.att]) 



~~~~~~~~~-----------

80 

Each access unit is perfonned atomically. 

Condition (1) says that an access unit is a set of read and write operations. Condition (2) 

says that the set of operations in an access unit is executed in some order. In our model, 

the only possible ordering is a serial ordering, where the set of operations of an access 

unit are executed in the order they are written. 

Given this definition, we can abstract a built-in command as a single database access 

unit. Inference rules can also be abstracted as a single access unit consisting of all the 

read operations needed to evaluate the bindings and predicates of the condition and all 

the write operations perfonned when asserting the effect of the rule. Activation rules, in 

contrast, consist of exactly two access units: one consisting of all the database opera

tions perfonned during the first phase of execution of the activation rule (Le., before the 

activity is executed by a client), and the other consisting of all the database operations 

perfonned during the second phase of rule execution (i.e., to assen one of the effects of 

the rule). This means that an object's attribute whose value was read in the first unit 

could potentially change before the execution of the second unit. 

3.3.2. Definition of Agent 

Given the definition of an access unit, we can now abstract each user command as a set 

of access units. We tenn this abstraction an agent: 

Definition 4: An agent, A, is a sequence of one or two database access units. 
An agent must appear as if it has been executed atomically. An agent consist
ing of 2 access units is denoted by the following expression: 

A = UI ; U2, where U stands for "access unit". 

This definition of agent can be used to abstract a built-in command or a rule from the 

point of view of the database. To illustrate, consider the compile rule shown in figure 

3-3. The body of this compile rule is transfonned by the RP into steps whose inter

pretation is equivalent to the agent shown in figure 3-4. All database operations are in 

bold face. As far as the database of RBDE is concerned, the execution of the compi le 

rule involves only the database operations. 



compile [?f:CFILE]: 

(bind (?h to_all HFILE suchthat (linkto [?f.includes ?h]») 

(?f.status = NotCompiled) 

{ compile ?f.contents ?h.contents "_g" 
output: ?f.object_code ?f.error_msg 

(and (?f.status = Compiled) 
(?f.object timestamp = CurrentTime»; 

(?f.status = Error); 

Figure 3·3: The Compile Rule 

81 

So far, we have treated each agent as if it were independent of all other agents. This is 

sufficient to model built-in commands and individual rules. However, to model a rule 

chain, there is a need to compose several agents into one unit in order to express that 

there is a causality relation between these agents, i.e., the execution of one agent is the 

reason for the execution of another. The notion of nested transactions in OBSs provides 

a nice "intuition" that we can use to compose multiple agents into one unit. 

Definition 5: A nested agent is a composition of a set of agents, each of 
which can itself be a nested agent. A nested agent must appear to have been 
executed atomically. 

The top-level agent of a nested agent represents the original rule that initiated the rule 

chain. The nesting of agents does not affect the correctness criterion of an agent's ex

ecution. The execution of an agent, whether nested or not, produces correct results if all 

the access units comprising the agent appear to have been executed as an atomic unit. 

This is guaranteed if the server executes each agent to completion before starting the 

next agent In the client/server model, the server executes multiple agents concurrently 

by interleaving the execution of agents at the granularity of access units. This can result 

in interference between these agents if their access units include operations that access 

overlapping sets of objects in the database. This is the essence of the concurrency con

trol problem in RBDE. 



Begin execution of compile rule 

/* FIRST ACCESS UNIT */ 

/* First bind the parameter to an object. */ 
?[ := object 0; 

/* The binding part. */ 
?h : = Read [O.includes); 

/* Evaluating the property list. */ 
val : = Read [O.status); 
If val <> NotCompiled Then 

return UNSATISFIED; 

/* Executing the activity. */ 
source : = Read [O.contents); 
For each object, h, bound to ?h Do 

Begin 
temp : = Read [h.contents); 
includes := union (includes, temp); 

End; 
a.out : == Read [O.object_code); 
error : = Read [O.error _msg]; 

ret : = compile (source, includes, "-g", a.out, error); 

'* SECOND ACCESS UNIT *' 
Write [O.object_code]; 
Write [O.error_msg]; 

/* Asserting one of the effects. */ 

If ret = 0 Then 
Begin 

Write [O.status, Compiled]; 
t~ :- CurrentTime(); 
Write [O.object_timestamp, time]; 

End; 
Else 

Write [O.status, Error]; 
End. 

Figure 3·4: The Agent Representing the Compile Rule 

82 



83 

3.4. A Transaction Manager for RBDE 

We model the execution of an agent in tenns of a transaction. These transactions are 

created, managed and tenninated by a transaction manager (TM). The RP and the CE 

must tell the TM when they are about to begin executing a command, so that the TM can 

start a transaction to encapsulate the execution of all the database operations of the com

mand. When the command execution layer is done with the execution of a command, it 

must infonn the TM so that the TM can tenninate the corresponding transaction. The 

TM provides three transaction operations: begin, commit, and abort, which fonn 

the interface between the TM and the command execution layer (either the RP or the 

CE). 

3.4.1. Transaction Operations 

The command execution layer indicates to the TM that it is starting to execute an agent 

by issuing the beg in operation. The TM creates a new transaction to encapsulate the 

execution of the agent in the database. Every database operation involved in the execu

tion of the agent must be issued through the TM on behalf of the transaction encap

sulating the agent To identify transactions, the TM assigns every transaction a unique 

identifier at the time of the transaction's creation. The command execution layer must 

attach a transaction's unique identifier to every database operation belonging to the 

transaction. 

The command execution layer indicates to the TM the termination of an agent's execu

tion by issuing either the abort operation or the commit operation. By issuing a 

commit operation, the command execution layer tells the TM that the agent's execution 

has terminated normally. The abort operation, in contrast, prematurely ends a trans

action and undoes all the steps that were already executed in the transaction. Undoing 

the steps of a transaction is called rolling back the transaction. 

When the TM creates a new transaction (after receiving the begin operation), it creates 

a log file for the transaction, where all the steps (Le., the database operations) of the 

transaction are recorded. For each database operation that accesses a status attribute, the 



84 

TM records the value of the attribute before and after the operation. A composite opera

tion that accesses structure attributes, such as deleting a composite object, is recorded as 

a set of flat operations (operations that do not have suboperations). For example, delet

ing a MODULE object that contains three CFILE objects (as members of its cfiles 

attribute, for example) is recorded as four delete operations (one for each of the three 

CF I LEs in addition to the delete operation on the MODULE object). The log file 

provides a mechanism for rolling back the transaction in case we want to undo its effect 

if the transaction is aborted. 

Some database operations, such as editing the contents of a CF I LE object, alter the con

tents of data attributes (Le., text or binary files as described in section 2.3.3). In order to 

undo these operations, the TM must save copies of the data attributes of objects manipu

lated by the transaction before these attributes are changed (while executing the activity 

of a rule). Then, if the transaction must be rolled back, the contents of the data attributes 

before the transaction started. can be reverted back to the saved copies. The copies are 

discarded once the transaction commits. 

Given the three transaction operations, an agent's execution is defined, from the 

database's viewpoint, by a begin transaction operation, followed by a serial execution 

of a set of database operations, followed by either a commi t or an abort. This is the 

reason we say that a transaction encapsulates an agent's execution. From the point of 

view of an RBDE user, a transaction is the execution of a user command. As explained 

in chapter 2, the execution of a user command may involve executing a rule chain. In 

this case, the "body" of the nested agent (Le., the database operations comprising its 

execution) representing the chain is composed by the RP as it goes along. This is dif

ferent from most traditional DBSs, where a transaction is the execution of a program, 

whose body is written before executing the transaction. 

To be more fonnal, we introduce some notation that will be used in subsequent chapters. 

Our notation is similar to the one used by Bernstein et al. in [Bernstein et al. 87]. We 

use Ti to mean a transaction whose unique identifier is i. A read (or write) operation on 

object 0 issued by transaction Ti is denoted by Readi [0. att] (or Writei [0. att, 

val]). We use the letters P and Q to denote an arbitrary database operation (Le., either 



85 

read or write). For example, Pi [ 0 • at t] stands for an operation P on object 0, issued 

by transaction Ti. Note that when it is irrelevant which attribute of an object is accessed 

by an operation, we drop the specific attribute and simply use Pi [ 0 1 to denote an 

operation P on object o. 

We define a transaction in RBDE as follows: 

Definition 6: A transaction is a 6-tuple T = (i, Vi'S, c, u, t), where 

1. i is the unique identifier of the transaction, 

2. Vi is the set of access units belonging to T. We use Vi,! (or Vi,2) to 

denote the first (or second) access unit of T. Access units of a trans

action are executed in a serial order, 

3. S is the set of subtransactions (possibly empty) of T, 

4. c is the command whose execution is encapsulated by T; c is either a 

built-in command or a rule, 

5. u is the user who requested the command, leading to the creation of T; 

we say that u is the owner of T, and 

6. t is the unique timestamp that the TM assigned to T. 

Each of the elements of the tuple is called an attribute of the transaction. We use Ti as a 

shorthand notation for a transaction when we are concerned only with identifying a 

transaction. In subsequent chapters, we add three more attributes of transactions to cap

ture more of the semantics available in RBDE. 

Going back to our example above of the agent abstracting the compile rule (in figure 

3-4), say that Mary requests a command that fires the compile rule on object main. c. 

Recall that rna in • c is linked to two HF I LE objects, i 1 . h and i 2 . h. The transaction 

encapsulating the agent for this execution of the compile rule is shown in figure 3-5. 

Since we are not concerned with the actual values read or written from/to the attributes 

of objects, we do not show these values in the database operations. 

As explained earlier, the server interleaves the execution of agents at the granularity of 

access units. Thus, the TM will also interleave the execution of transactions at the 



/* Note: all computational code is omitted */ 

id : = begin () 

/* First Access unit of transaction. */ 

Readid [main.c. includes] 
Readid [main.c. status] 
Readid [main.c. contents] 
Readid [il.h. contents] 
Readid [i2.h. contents] 
Readid [main.c. object_code] 
Readid [main.c. error_msg] 

/* Second Access unit. */ 

Write id [main.c. object_code] 
Write id [main.c .error_msg] 
Write id [main.c. status] 
Write id [main.c. object_timestamp] 

commit (id) ; 

86 

Figure 3·5: The Transaction Encapsulating the Compile Agent of Figure 3-4 

granularity of access units. The concurrency control problem then reduces to detecting 

interference between concurrent transactions. Before defIning the problem more 

precisely, we overview the concept of serializability in database systems, and then 

defIne the problem in terms of that concept. 

3.5. Background: Serializability 

The concurrency control problem has been studied extensively in traditional DBSs. In 

DBSs, the problem arises when two or more transactions are executed concurrently, 

causing their database operations to be executed in an interleaved fashion. The inter

leavina of database operations from concurrent transactions results in a sequence of ac

tions from both transactions, called an execution (or a schedule). An execution that 

gives each transaction a consistent view of the state of the database is considered a 

consistent execution. Consistent executions are a result of synchronizing the concurrent 

operations of transactions by allowing only those operations that maintain consistency to 

be interleaved. 



87 

An execution is guaranteed to be consistent if the transactions comprising the execution 

are executed serially. In other words, an execution consisting of transactions T l' T 2' ... , 

Tn is consistent if for every i= 1 to n-l, transaction Ti is executed to completion before 

transaction Ti+l begins. We can then establish that a serializable execution, one that is 

computationally equivalent to a serial execution, is also consistent. Two executions El 

and ~ are said to be computationally equivalent if [Konh and Silberschatz 86]: 

1. The set of transactions that panicipate in Eland E2 are the same. 

2. For each data item 0 in E1, if transaction Ti executes read(O) and the value 

of 0 read by Ti is written by Tj , then the same will hold in E2 (Le., read

write synchronization). 

3. For each data item 0 in E 1, if transaction Ti executes write(O) before Tj 
executes write(O), then the same will hold in E2 (Le., write-write 

synchronization). 

The consistency problem in conventional database systems reduces to that of testing for 

serializable executions because it is accepted that the consistency constraints are un

known. Even though a DBS may not have any information about application-specific 

consistency constraints, it can guarantee consistency by allowing only serializable ex

ecutions of concurrent transactions. This concept of serializability is central to all tradi

tional concurrency control mechanisms. For funher information on serializability, the 

reader is referred to [Bernstein et al. 87] and [Papadimitriou 86]. 

3.6. The Concurrency Control Problem in RBDE 

We use the concept of serializability to state the concurrency control problem in RBDE 

more precisely. Interference cannot occur in the single-agent execution model because 

the set of access units that comprise each transaction are performed as an atomic unit. In 

the multi-agent RBDE model, however, the RP interleaves the execution of multiple 

agents (nested or flat) at the granularity of access units. Corresponding to this inter

leaved execution of agents is a transaction schedule (or execution) in which the execu

tion of the access units of multiple concurrent transactions (encapsulating the agents) are 

interleaved. 



88 

A schedule involving a set of transactions, T 1 ... Tn' is said to be serial if for each trans

action, Ti, all the access units of Ti are executed before executing any of the access units 

belonging to Ti+ l' Serial schedules guarantee that transactions, and therefore the agents 

they encapsulate, are executed atomically; thus serial schedules cannot cause any inter

ference. 

Enforcing serial schedules, however, would revert the rnulti-agent rnodel into a single

agent rnodel. To avoid that, the rnulti-agent RBDE allows concurrent schedules. A con

current schedule is one in which the server executes an access unit frorn an agent, Ai' 

followed by one or more access units of another agent, Aj , and then a second access unit 

frorn Ai' and so on. Note that a concurrent schedule can also involve interleaving of 

access units of more than two transactions. A concurrent schedule cannot cause inter

ference if it is equivalent to a serial schedule. We use the same definition of computa

tional equivalence given above in section 3.5. 

I 
I 
I 
I 
I 
I 

V 
Time 

TJohn 

ReadJohn [main.c] 
WriteJohn [main.c] 

ReadJolm[f3·c] 
WriteJolm[f3·c] 

TMary 

ReadMary[main.c] 
WriteMary[main.c] 

Figure 3-6: Serializable Schedule of Two Transactions in RBDE 

To illustrate, assume that the two developers, John and Mary, are using the same RBDE 

to work on a project. In their client processes, both John and Mary issue user com

mands, which cause two concurrent agents, AJohn and AMary' to execute in the server. 

The TM starts two transactions to encapsulate the execution of each of the two agents, 

TJohn and TMary' respectively. The schedule of the execution of the two concurrent 

transactions shown in figure 3-6 is computationally equivalent to the serial schedule in 



89 

which T]ohn is executed to completion followed by T Mary' Note that main. c is the 

name of an object and does not refer to attribute c of object main; we have dropped 

reference to which attribute is read or written, since it is irrelevant as far as the TM is 

concerned. 

The two schedules, the one shown in figure 3-6 and the serial schedule T John; T Mary' 

meet the three criteria of equivalence listed above because: (1) both schedules involve 

the same transactions, T]ohn and TMary; (2) both of the objects read by TMary' main. c 

and f3. c, are written by TJohn in both schedules; and (3) T Mary executes both 

write (main. c) and write (f3. c) afterTJohn in both schedules. 

I 
I 

TJohn 

ReadJohn[main.c] 

I WriteJolm[fl.c] 
V 
Time 

TMary 

ReadMary[fl.c] 
WriteMary[main.c] 

Figure 3·7: Schedule Showing Interference Between Two Transactions 

The only kind of concurrent schedules that cause interference are non-serializable 

schedules, Le., schedules that interleave the execution of database operations of multiple 

transactions in a fashion that cannot be done in a serial schedule. For example, consider 

the schedule depicted in figure 3-7. The interleaving of the database operations in this 

schedule cannot be produced by any serial schedule. 

In general, given a schedule consisting of n transactions, T l' ... , Tn' where each trans

action, Ti, consists of a set of access units, each of which is denoted by Uij, and given 

two objects, 01 and 02' interference is caused by the the execution of an access unit, 

Ui,m' belonging to a transaction, Ti , followed by the execution of a set of access units, 

Uj.k ... Uj,l' belonging to another transaction, Tj , followed by the execution of an access 

unit, Ui,n' belonging to Ti, such that: 

1. Ui,m contains the operation Read i [°1 1, and Ui,n contains the operation 



Writei [°2], AND at least one of Uj,k .. . 

Read j [°2], and at least one of Uj,k .. . 

Writej [°1 ], OR 

Uj,l contains the operation 

Uj,l contains the operation 

2. Ui,m contains the operation Wr i tei [°1 ] and Ui,n contains the operation 

Readi [°2 ], AND at least one of Uj,k ... Uj,l contains the operation 

Writej [°2 ], and at least one of Uj,k ... Uj,l contains the operation 

Read j [°1 ], 

90 

Instead of disallowing all concurrent schedules, what is needed is a mechanism that can 

detect interference, but instead of disallowing interference automatically, the mechanism 

should resolve it in a flexible manner. More specifically, the mechanism should use 

semantic information about the project in order to determine the most suitable resolution 

of a detected interference. Based on this, the concurrency control problem can be 

divided into three subproblems: 

• Contlict detection: before perfonning an access unit in a transaction, the 

TM must decide whether or not any of the database operations in the access 

unit might cause any interference with concurrent transactions. This sub

problem involves implementing a mechanism in TM that can detect inter

ference. This subproblem reduces to detecting non-serializable schedules. 

• Default contlict resolution: once interference is detected, RBDE should be 

able to resolve it based on the consistency constraints of the project's 

development process. These constraints must be explicitly defmed and 

maintained. The problem here is finding an appropriate fonnalism for ex

plicitly specifying the consistency constraints, and devising a conflict 

resolution protocol that can enforce these constraints directly by disallowing 

any interference (non-serializable interactions) between concurrent trans

actions that violate these constraints. Note that not all non-serializable in

teractions are disallowed, only those that would prevent the consistency 

constraints from being carried out. 

• Programmable conflict resolution: in some projects, non-serializable in

teractions that violate the consistency constraints might be required in order 

to allow specific situations of cooperation between agents. We call this 

specification the coordination model of the project. The problem here is 



providing a language for programming the coordination model, and building 

the runtime environment for such a language, which would provide a way 

for programming a specific concurrency control policy to override the 

default policy. 

3.7. Requirements on our Solution 

91 

Given the flexible consistency maintenance requirements of SDEs, it would be desirable 

for the concurrency control mechanism to support several requirements. The following 

requirements were compiled from the literature on advanced database applications, of 

which SDEs is one class. 

1. Long-duration operations: software development often involves long

duration operations, such as editing and compiling. The transactions, in 

which these operations may be embedded, are also long-lived. Long trans

actions need different support than short transactions. In particular, block

ing a transaction until another commits is rarely acceptable for long trans

actions. Only under specific circumstances (e.g., waiting until a short

lived activity fmishes) is blocking acceptable. Aborting a long transaction 

might lead to wasting a lot of work, and thus the mechanism should only 

abort transaction when it is absolutely necessary. 

2. User control: In an SDE, users request the execution of activities and they 

view the results of operations performed by the SDE automatically. In ad

dition, users might be responsible for performing tasks that are nondeter

ministic and interactive in nature, such as fIxing a bug. The nondeter

minism results from the fact that software developers decide what ac

tivities they will perform as they go along in their tasks; in RBDE, even 

the sequence of rules in a chain cannot be known in advance when rules 

have multiple possible effects. The unpredictable nature of activities im

plies that the concUITency control mechanisms will not be able to deter

mine whether or not the execution of a transaction will violate database 

consistency, except by actually starting to execute the transaction. This 

might lead to situations in which the user might have invested many hours 

running a transaction, only to fInd out later when he wants to commit his 



work that some of the operations he performed within the transaction vio

lated some consistency constraints. The user would definitely oppose 

deleting all of his work (by rolling back the transaction). He might, 

however, be able to explicitly reverse the effects of some operations in or

der to regain consistency. Thus, there is a need to provide more user con

trol over transactions. 

3. Synergistic cooperation: Cooperation among developers has significant 

implications on concurrency control. In SDEs and other design environ

ments, several users might have to exchange knowledge (Le., share it col

lectively) in order to be able to complete their work. The activities of two 

or more developers working on shared objects may not be serializable. 

They may pass the shared objects back and forth in a way that cannot be 

accomplished by a serial schedule. Also, two users might be modifying 

two parts of the same object concurrently, with the intent of integrating 

these parts to create a new version of the object. In this case, they might 

need to look at each others' work to make sure that they are not modifying 

the two parts in a way that would make their integration difficult. This 

kind of sharing and exchanging knowledge was termed synergistic 

interaction by Yeh et al. To insist on serializable concurrency control in 

design environments might thus decrease concurrency or, more sig

nificantly, actually disallow desirable forms of cooperation among 

developers. 

4. Complex objects: In advanced applications, data is often defined in mul

tiple levels of granularity. For example, an object representing a program 

in a software project might consist of modules, each of which containing 

procedures and documentation. If a user wants to gain exclusive access to 

the whole program (perhaps to build the executable of the program), he has 

to make sure that every subobject is made unavailable to other users. In 

this case, it is convenient to be able to lock the entire nested object in one 

operation rather than a separate operation for each subobject. There is thus 

a need for supporting operations on units of varying granularity. 

5. Teamwork: Large-scale development efforts often involve teams of 

developers. Each team is typically assigned a development task that re-

92 



quires access to various resources (tools, code, documentation, etc.). In 

general, different teams of developers might require different concurrency 

control policies. In addition, it is usually the case that team members 

cooperate more closely among each other than with members of other 

teams. Because of these two reasons, it is desirable to be able to specify 

team-oriented concurrency control policies. 

6. Tailorability of the concurrency control policy: Every project requires a 

specific concurrency control policy that suits the needs of its development 

process. Even within the development process of a single project, several 

different policies might be needed at different phases of the project or 

within different programming teams. Rather than building-in a fixed num

ber of policies into the SDE, it would be more advantageous to support a 

separation between policies and mechanisms, and to provide a programm

able framework for implementing policies. 

93 

We present our solution to the concurrency control problem in chapters 4 -7. In chap

ter 8, we evaluate how well our solution meets the requirements listed above. 

3.8. Summary 

In this chapter, we presented a database-oriented model of command execution in 

RBDE. From the point of view of the database, a user command is a set of database 

access units, each of which consists of a set of read or write operations. Database opera

tions that must be executed together (atomically) as a unit are grouped into access units. 

For example, all the database operations involved in executing either a built-in command 

or an inference rule are grouped in one access unit; the server actually performs each 

access unit atomically. The execution of an activation rule involves exactly two access 

units: one for the first phase of rule execution and the other for the second phase of rule 

execution; the server executes each of these units atomically, but it can interleave the 

execution of the sequence of two units with other access units. 

The TM (transaction manager) creates a transaction, with a unique identifier and a times

tamp, to encapsulate the execution of an agent by a begin operation and a cornmi t (or 

abort) operation. A transaction is a 6-tuple T = (i, Ui, S, c, U, t), where i is the unique 



94 

identifier of the transaction, Ui is the set of access units belonging to T, S is the set of 

subtransactions of T, C is the command whose execution is encapsulated by T, U is the 

owner of T, and t is the unique timestamp that the TM assigned to T. 

In the multi-agent RBDE model the RP interleaves the execution of multiple agents at 

the granularity of access units. Corresponding to this interleaved execution of agents is 

a transaction schedule (or execution) in which the execution of the access units of mul

tiple concurrent transactions (encapsulating the agents) are interleaved. The only kind of 

concurrent schedules that can cause interference are non-serializable schedules, i.e., 

schedules that interleave the execution of database operations of multiple transactions in 

a fashion that cannot be done in a serial schedule. 

Based on this, the concurrency control problem can be divided into three subproblems: 

conflict detection, default conflict resolution, and programmable conflict resolution. In 

the next four chapters, we will present mechanisms that solve all three subproblems. 



Chapter 4 

Detecting Interference 

95 

In the previous chapter, we defined interference in tenns of the interleaving of the execu

tion of concurrent transactions in the server. In this chapter, we present the conflict 

detection module of the concurrency control mechanism, which is responsible for detect

ing interference between concurrent transactions. We first describe briefly the tradi

tional 2PL mechanism, which is used by most traditional DBSs to control the execution 

of concurrent transactions. We then describe the 2PL mechanism used by the TM in 

RBDE, and explain the interface between the TM and the LM. The NGL protocol im

plemented by the LM is based on the multiple granularity locking (MGL) protocol used 

in some DBSs. We briefly describe the MGL protocol, and then present the details of 

the NGL protocol. 

4.1. Related Work: Detecting Conflicts in DBSs 

The concurrency control problem in traditional DBSs reduces to that of detecting viola

tions of serializability. In a typical DBS, the transaction manager includes a scheduler, 

which controls the order of execution of concurrent transactions [Bernstein et al. 87]. 

Schedulers employ various mechanisms to ensure that they detect any violations of 

serializability. If such a violation is detected, the scheduler detennines how to resolve it. 

Schedulers in traditional DBSs employ mechanisms that follow one of four main ap

proaches to detect conflicts: 2PL (the most popular example of locking schedulers), 

timestamp ordering, multi version timestamp ordering, and optimistic concurrency con

trol. Some mechanisms add multiple granularities of locking and nesting of transactions. 

We have chosen 2PL as a basis for our transaction manager because it is the best under

stood of the locking schedulers. We briefly describe 2PL and then proceed to present 

the 2PL mechanism employed by the TM in RBDE. A comprehensive discussion of the 

concurrency control problem in DBSs can be found in [Bernstein et al. 87]. 



96 

4.1.1. Locking Mechanisms 

The 2PL introduced by Eswaran et al. is now accepted as the standard solution to the 

concurrency control problem in conventional DBSs. 2PL guarantees serializability in a 

centralized database when transactions are executed concurrently. Before a transaction 

can access an object it must fIrst obtain a lock on the object. A lock controls access to 

an object. If a transaction acquires a lock on an object, then other transactions are 

prevented from acquiring locks on the same object. The mechanism depends on 

well-formed transactions, which (1) do not relock entities that have been locked earlier 

in the transaction, and (2) are divided into a growing phase, in which locks are only 

acquired, and a shrinking phase, in which locks are only released [Eswaran et al. 76]. 

During the shrinking phase, a transaction is prohibited from acquiring locks. If a trans

action tries during its growing phase to acquire a lock that has already been acquired by 

another transaction, it is forced to wait until the transaction that holds the lock releases 

it. Forcing a transaction to wait is called blocking. Blocking transactions until locks are 

released can result in deadlock if transactions are mutually waiting for each other's 

resources. 

2PL serves two purposes: to detect interference that causes locking conflicts and to 

resolve this interference by blocking the transaction that requested the conflicting lock. 

In our TM, we distinguish the two purposes of the scheduler, detecting interference and 

resolving it. We consider the conflict detection component of the scheduler to be a part 

of the TM. The TM employs a 2PL mechanism to detect interference but not to resolve 

it. The conflict resolution part of the scheduler, which we refer to as the Scheduler, 

implements two semantics-based protocols to resolve conflicts. In the rest of this chap

ter, we present the conflict-detection part of the TM; we leave the details of the 

Scheduler to the next two chapters. 



" 

97 

4.2. A Two-Phase Locking Mechanism for RBDE 

The TM in RBDE employs a locking mechanism similar to 2PL as a basis for detecting 

interference between concurrent transactions. Before executing any access units belong

ing to a transaction, the TM fIrst obtains locks on all the objects that will be accessed 

during the transaction's execution. The rule processor detennines the set of objects that 

will be accessed by a rule and passes this set to the TM. The locks are acquired by 

requesting them from the LM, which grants the locks on the specifIed objects to the 

requesting transaction only if none of the locks is incompatible with other locks cur

rently held on the objects. The LM uses a locking protocol called NGL to detect lock 

conflicts; the details of NGL will be presented later in this chapter. 

The execution of the access units comprising a transaction does not begin until all the 

necessary locks have been acquired9. The locks are released only when the transaction's 

execution completes. If the transaction is part of a nested transac~on, then instead of 

releasing the locks, they are transferred to the parent transaction. The locks held by a 

nested transaction are released only when the execution of all the subtransactions and the 

top-level transaction of a nested transaction is completed. 

If a locking conflict is detected by the NGL protocol, infonnation about this conflict is 

passed to the Scheduler, which is part of the conflict resolution module we will present 

in chapters 5 and 6. The interaction between the TM, the LM, and the Scheduler is 

depicted in fIgure 4-1. In the rest of this section, we describe the details of the TM. In 

the next section, we present the LM and the NGL conflict detection protocol. 

4.2.1. The Basic 2PL Algorithm in RODE 

We first discuss the 2PL mechanism we have devised for RBDE assuming that there are 

only flat transactions (no nesting). mcorporating nested transactions adds several com

plications. It is simpler if we discuss our mechanism without these complications fIrst. 

Later on, we extend our mechanism to incorporate nested transactions. 

9ntis is not exactly true but, as will be explained later, the effect of what is really implemented is the 
same as if all locks were acquired before executing an access uniL 



Command Execution Layer 

Transaction 
ManaKer 

Lock Manaaer: NGL protocol Conruct 

Data model 
(project type set) 

Process model 
(project rule set) 

Control rules 

Figure 4·1: Interface Between the TM, the LM, and the Scheduler 

98 

" 

The body of a transaction in RBDE (as explained in chapter 3) is composed of either one 

or two access units; each access unit consists of a set of read and write operations. Be

fore allowing a transaction to execute an access unit, the TM must flI'St acquire ap

propriate locks on behalf of the transaction on all the objects accessed by the operations 

that comprise the access unit. The TM maintains the list of locks held by each active 

(i.e., that has not been terminated) transaction in the server. The list of locks held by a 

transaction is called the lock set of the transaction. 

Since the only two operations are read and write, we associate two types of locks with 

objects in the database: read locks, denoted by R, and write locks, denoted by W. Later 

on, we introduce additional types of locks when we present the granularity locking 

protocol. 

We use Rl i [0] (or Wl i [0] ) to indicate that Ti holds a read (or write) lock on object o. 



99 

We use the two letters M and N to denote arbitrary lock types (for now, either W or R, but 

later on we will have more lock types). For example, MI i [ 0] denotes that a transaction 

Ti holds a lock of type M on object o. Two locks MI i [ 0] and N 1 j [ 0] conflict if i ;c j 

and the two lock types M and N are incompatible. In this case, we say that transactions 

Ti and Tj have interfered with each other. 

We also use RI i [0] (or WI i [0] ) to denote a request by transaction Ti to obtain a read 

(or write) lock on object o. It will be clear from the context whether we are using 

RI i [ 0] and WI i [ 0] to denote locks or requests to obtain locks. We use U 1 i [ 0] to 

denote the operation by which Ti requests unlocking or releasing its lock (either type of 

lock) on o. A transaction can hold at most one lock on an object. To incorporate the 

lock set of a transaction in the notation we developed in chapter 3, we extend a trans

action to be a 7-tuple (rather than a sextuple as before) T = (i, Vi'S, C, U, t, I), where I is 

the lock set of the transaction. 

To execute an access unit, the transaction must request the operations in the access unit 

from the TM. The TM then requests the locks necessary for executing the operations on 

behalf of the transaction from the LM. The TM releases all of the transaction's locks 

once the transaction aborts or commits. The TM uses a 2PL mechanism to decide when 

to lock and unlock objects. The basic algorithm of the 2PL mechanism is as follows: 

1. When the TM receives an access unit, U i' from a transaction Ti, the TM 

preprocesses U i and translates it into a set of lock requests; each operation 

Qi [0] (where Q is either Read or Wr i te) is translated to a lock request, 

MI i [ 0 ] , where M is the type of lock required by the operation Q. 

2. The lock requests are passed to the LM, one by one. The conflict detection 

protocol in the LM decides whether a lock request should be accepted or 

rejected. The details of the LM are presented later in this chapter. 

3. If the LM grants all of the lock requests for U i' the TM informs the trans

action that it can go ahead and execute the operations in U i' Otherwise if a 

lock request is rejected, the TM passes on the information returned by the 

LM to the Scheduler (which implements two different protocols, presented 

in chapters 5 and 6), which decides how to proceed. 



4. Depending on what the Scheduler decides, the TM might have to either 

inform the transaction that it can go ahead and perform the operations in 

U i' abort the transaction, or commi t the transaction. The three options 

of the Scheduler will be discussed in chapter 5. Note that the default con

currency control policy in RBDE never blocks a transaction, thus avoiding 

deadlock. 

5. Once the TM has obtained a lock on an object, the lock cannot be released 

until the transaction commits or aborts (releasing the locks at the end 

of a transaction is known as strict 2PL). 

100 

Unlike the traditional 2PL mechanism, the Scheduler might ask the TM to abort a trans

action, which might lead to rolling it back; rolling back a transaction is done in the tradi

tional 2PL mechanism only in the case of deadlock or a failure. Rollback is necessary 

when a transaction that has already executed some write operations is aborted. To 

decrease the probability of rollback, we require each individual transaction (Le., each 

subtransaction within a nested transaction) to acquire all of its locks before executing 

any write operations. If the LM detects any locking conflict, and the Scheduler decides 

that the requesting transaction must be aborted, the transaction would not have executed 

any write operations yet, and thus rollback is not needed in this case. The only case 

where rollback is still required is when aborting one subtransaction in a nested trans

action requires aborting, and thus rolling back, some of the ancestor transactions, which 

have fInished executing all of their operations. 

4.2.2. Interface Between the Rule Processor and the TM 

In our 2PL algorithm, we assume that the TM receives access units belonging to a trans

action one by one. This is suffIcient for executing both built-in commands and inference 

rules atomically, since they are comprised of exactly one access unit. Transactions en

capsulating activation rules, however, consist of two access units, which might not be 

executed one immediately after the other. If the TM obtains locks on a unit by unit 

basis, it could happen that after the flfSt access unit, representing the condition, is per

formed, a locking conflict is detected by the LM while trying to acquire locks needed for 

the second access unit, representing the activity and the effect of an activation rule. In 



101 

this case, if the Scheduler decides that the transaction must be aborted (i.e., rolled back), 

the human user could have possibly wasted a lot of time executing the activity, only to 

discover that it must be rolled back. 

To avoid rolling back the activity of an activation rule, we modify the interface between 

the RP (rule processor) and the TM so that the RP submits the access unit representing 

the effects immediately after evaluating the property list of the rule (if the condition is 

satisfied). Thus, the TM must obtain all the locks necessary for all the write operations 

of a transaction before the RP can proceed with executing the activity of the rule and 

asserting one of the effects (i.e., before the rule can execute any write operation). This 

guarantees that all locking conflicts are detected before the execution of a rule's activity, 

thus decreasing the possibility of having to roll back the activity of a rule. Rolling back 

activities, however, might still be necessary under certain circumstances, which we dis

cuss in chapters 5 and 6. The Scheduler might decide to abort a transaction (including 

rolling back an activity) either while the activity of the rule encapsulated in the trans

action is being executed, or even after the RP has fmished executing the rule. 

4.2.3. Determining Lock Types 

The only issue remaining is how to decide what types of locks are needed for each ac

cess unit. The types of locks needed for the access unit that comprises the agent 

representing a built-in command are pre-defmed by the command executor. For ex

ample, the copy built-in command requires a write lock on the destination object (since 

it will write it) and a read lock on the source object (since it only needs to read it in order 

to make a copy of it). The TM must obtain both of these locks before executing the 

copy operation. In order to determine the types of locks needed for the execution of a 

rule, we must define the write set and a read set of a rule. The TM must obtain write (or 

read) locks on every object in the write (or read) set of a rule. 

The objects bound to the variables of a rule, including the parameters, are used during 

the evaluation of the property list of the condition. Since the evaluation of the property 

list involves reading the values of attributes of the objects bound to the variables, these 

objects comprise the read set of a rule. The write set is a subset of the read set. To be 

more precise, we define the read and write sets of a rule as follows: 



Definition 1: The read set of a rule is the set of all objects bound to the vari
ables of the rule, including the parameters. 

Definition 2: The write set of a rule is the set of all objects bound to the 
variables used either as output arguments in the activity or in the left hand side 
of any assignment predicate in the effects of the rule. 

102 

Given that the RP can determine the read and write sets of a rule, the first phase of the 

rule execution algorithm, presented in chapter 2 (figure 2-19), should be revised to take 

into consideration communication with the TM. When the RP begins the execution of 

an original rule, it should first issue a begin operation to the TM to create a new trans

action. Once a transaction has been set up, the RP should get the read set of the rule, by 

binding all the variables in the binding part and collecting the object identities returned 

by the functions in the binding part in one set. 

After forming the read set, the RP should request read permission from the TM on all the 

objects in the read set. The TM receives this request and attempts to obtain read locks 

on all of these objects from the LM. Only when these locks are granted can the RP start 

evaluating the property list of the rule. Once the property list is evaluated, and if it is 

satisfied, the RP should collect all the objects that will be written in either the activity or 

the effects of the rule, forming the write set. It then requests write permission on all the 

objects in the write set The TM again receives this request and attempts to obtain write 

locks on all of these objects. If the locks are granted, the RP can continue executing the 

rule. If one of the objects in the write set has already been locked with a read lock, the 

transaction requests upgrading the lock to a write lock; the LM grants the upgrade per

mission only if the new lock does not conflict with other locks already held on the object 

by other transactions. 

The reason we delay obtaining locks on the write set of a rule until after the condition 

has been evaluated and found to be satisfied is to avoid locking objects with W locks 

unnecessarily. More specifically, if the condition of a rule was found to be unsatisfied, 

the transaction encapsulating the rule does not acquire write locks on the write set of the 

rule until after backward chaining, if any, is completed and succeeds in satisfying the 

condition. Other transactions can gain read access to the objects in the write set of the 

rule while backward chaining is in progress. This basically allows other transactions 

that only need to read these objects to proceed without interference. 



103 

The revised algorithm for the fIrst phase of rule execution is shown in fIgure 4-2. All 

requests from the TM are prefIxed by TM_ in the algorithm. Note that the transaction 

started in the fIrst phase is terminated in the fIrst phase only in the case when the con

dition of the rule is UNSA TISFIABLE. In all other cases, the transaction is terminated 

either by the TM (if the LM informs the TM that a conflict was detected and the 

Scheduler decides to abort the transaction) or in the second phase of rule execution. 

The only revision to the algorithm for the second phase of rule execution, shown in 

fIgure 2-20 in chapter 2, is to add a TM _ commi t operation before returning 

CYCLE_COMPLETE or DONE. The revised algorithm is shown in fIgure 4-3. 

4.2.4. The Phantom Problem 

In the revised algorithm for the first phase of rule execution (figure 4-2), the RP 

processes the binding part of a rule (in order to get the read set of the rule) before acquir

ing any locks. One seemingly possible problem with that is the phantom problem. This 

problem occurs in dynamic databases [Bernstein et al. 87], where a data item can be 

added dynamically while transactions are being executed. Say that a transaction Ti 

needs to lock all objects that belong to class A until Ti commits. Say that a new object, 

0, that is an instance of A is added after Ti has fInished acquiring all of its locks. 0 

would have been locked by Ti had it existed before Ti started. Thus, Ti must lock 0 as 

soon as it has been created. In general, Ti must lock all the non-existent (Le., phantom) 

instances of A that might be created while Ti is executing. The problem is usually solved 

through a technique called index locking (e.g., locking class A). The details of the tech

nique are not relevant here, but the gist of it is that in addition to locking data items, a 

transaction must lock an index that controls adding or removing data items that would 

interfere with the transaction's execution. 

In our database model, the phantom problem cannot occur while the RP is collecting 

objects to bind to variables because the server is centralized and serial (Le., executes one 

access unit at a time). This means that while the RP is evaluating the condition of a rule, 

r, another agent cannot make any changes to the structural or link attributes of any ob

ject, or add (or delete) any objects to (from) the database (because this can be done only 



routine START_RULE_EXECUTION (rule); 
Begin 

/* First, start a new transaction. */ 

tx id := TM begin (); 
bInd all the variables in the binding part; 

/* Get the read and write sets of the rule. */ 

read set : = UNION of all objects bound to variables i 
staniS : - TM_read (tx_id, read_se/) 

/* If TM has either aborted or committed the trans. */ 
If slatus = TERMINATED Then 

return DONEi 

/* If all locks are granted, evaluate the condition. */ 
Evaluate the condition of rulei 
If condition is UNSATISFIABLE Then 

Begin 
TM commit (IX id) ; 
return DONEi

Endi 

If condition is FALSE Then 
Begin 

set state of rule to original rulei 
push rule on Execution_Slack; -
rei value : ... DO BACKWARD CHAIN (rule) i 

End;- - -
Else If condition is TRUE Then 

Begin 

/* Obtain locks on the write set. */ 
wrile set : ... get the write set of the rule; 
slatus- : = TM write (IX id, wrile se/) ; 
If slatus ... TERMINATED Then -

return DONE; 

If rule is an inference rule Then 
Begin 

chaining list : = ASSERT EFFECT (0, rule); 
If chainu.g_list <> empty Then 

End; 
Else 

Begin 

ret_value : = DO FORWARD CHAIN (rule); 

set state of rule to be forward chain; 
push rule on Execution_Stack; 
ret value : - CONT INUE; 

End;-

return ret_valuei 
End. 

Figure 4-2: Revised First Phase of Rule Execution 

104 



routine CONTINUE RULE EXECUTION (rule : activation rule, 
which_effect : status code); 

Begin 

get the state of rule; 
If state = back chain Then 

ret_value : = CONTINUE_BACKWARD_CHAIN (rule, which_effect); 
Else 

Begin 
/* write locks are acquired during first phase. */ 

chaining list := ASSERT EFFECTS (which_e!fect,rule); 
If chaining_list <> empty Then 

ret value : = DO FORWARD CHAINING (rule); 
Else- - -

reI_value := CONTINUE; 
End; 

If reI value = DONE or reI value = CYCLE COMPLETE Then 
Begin -

tt ~ := id of trans. encapsulating rule; 
TM commit (tx_id); 

End;-
return reI_value; 

End. 

Figure 4·3: Revised Second Phase of Rule Execution 

105 

by a built-in command, whose execution cannot be concurrent with the evaluation of a 

rule's condition). 

(bind ?h to_all HFILE) 

(forall ?h): 
(?h.status = Edited) 

The phantom problem can occur only if one or more objects are added or deleted while 

the client is executing the activity of a rule. Consider, for example, the condition shown 

above, which is the condition of an activation rule, r; we do not show the other ir

relevant pans of r. When evaluating the binding part, which is composed of one bind

ing clause, the RP must collect all instances of the class HF I LE and bind all of these 

instances to the variable ? h. Suppose that at the time r was fIred, there were only three 

instances of HFILE, iI.h, i2 .h, and i3 .h. Thus,?h will be bound to these three 

objects, all of which form the read set of the transaction, Ti , encapsulating the execution 

of r. Before evaluating the property list, Ti acquires read locks on the three objects. 



106 

After acquiring these locks, the RP proceeds to evaluate the property list. Say that all of 

i1.h, i2.h, and i3.h have their status attribute assigned to the value "Edited". 

Therefore, the condition will be satisfied. 

Since r's condition is satisfied, the RP will proceed to lock the write set of the rule and 

then send a message to the client to execute r's activity. Say that while r's activity is 

being executed, another client requests to add an instance of HF I LE, i 4. h. The server 

starts a new transaction, Tj , acquires a write lock on i 4 • h and adds i 4 • h to the class 

HFILE. Tj then commits, releasing the lock on i4 .h. This schedule appears to be 

problematic because Ti assumed that there are only three instances of HFILE when in 

fact a fourth one was added before Ti fmished. The schedule, however, is serializable 

since it is equivalent to Ti followed by Tj (recall that we are considering only flat trans

actions here). The reason why this schedule, and in fact any schedules involving a phan

tom object in RBDE, is serializable is because in our database model: (1) each access 

unit is actually performed atomically by the server; and (2) the write set of any agent is a 

subset of the read set, on which the transaction obtains read locks before any write 

operation is performed. The second condition is not true in traditional DBSs, and is in 

fact the source of the phantom problem (see, for example, p. 65 of [Bernstein et al. 87]). 

4.2.S .. Recoverability and Strictness 

Our 2PL mechanism enforces strict schedules since transactions release their locks only 

when they terminate. A schedule is said to be strict if the execution of a 

Wr i te i [0. at t, val] (or Read i [0. at t]) operation is delayed until all trans

actions that have previously written 0 have either committed or aborted. The TM in 

RBDE guarantees strictness because if a transaction Ti contains the write operation, 

Wri tei [0. att, val], no other transaction can read the value that this operation as

signed to o. att or change the value of the att attribute of 0, except after Ti has either 

committed or aborted. 

Strictness subsumes another desirable property called recoverability. Schedules are not 

recoverable if one transaction Ti reads a data item that another transaction Tj has written, 

and then after Ti commits, Tj aborts. Since Tj aborted, its write operations must be 



107 

rolled back. But then, Ti would have read a wrong value, possibly producing the wrong 

result. 

A schedule is recoverable if for each transaction, Tj , that commits, Tj ' s commit follows 

the commit of every transaction Ti that has read from Tj . A transaction, Ti, reads from 

another transaction, Tj , if (1) Ti reads a data item 0 after Tj has written into it; (2) Tj 

does not abort before Ti reads 0; and (3) every transaction (if any) that writes 0 between 

the time Tj writes it and Ti reads it, aborts before Tj reads o. 

In our model, since locks are held until the completion of a transaction, no transaction 

can read from another transaction. This guarantees that the commit of every transaction 

follows the commit of every transaction that has read from Ti (of which there are none). 

Thus, our mechanism guarantees recoverability of a transaction. 

The transaction model we described so far deals only with simple agents and ignores the 

nested agents resulting from forward and backward chaining. We now extend the TM 

and the locking mechanism to handle nested agents. 

4.2.6. Extending 2PL to Nested Transactions in RBDE 

The 2PL locking mechanism presented above guarantees the atomicity of transactions by 

acquiring locks on all the objects involved in an access unit before executing the access 

unit, and by releasing all the locks held by a transaction only when the transaction either 

commits or aborts. Nested transactions (nested agents) complicate the model. 

Unlike simple agents, where it is possible to collect the read and write sets of the agent 

before the agent executes any write operation (i.e., before it changes any object in the 

database), it is impossible to determine the actual read and write sets of locks needed for 

the execution of a nested agent. The reason is that the composition of a nested agent is 

made up dynamically by the rule chaining algorithms. As explained in section 2.4, 

chaining is based on the assertion of one of the effects of a rule, which, in the case of an 

activation rule, cannot be determined until the activity of the rule has been executed. 

The best that can be done is to compute the union of all the possible read and write sets 

of all subagents in a nested agent. Locking these sets instead of the actual sets, however, 

would be a very conservative policy. 



108 

We encapsulate the execution of a nested agent by a nested transaction. The execution 

of each rule in the rule chain represented by a nested agent is encapsulated by a subtran

saction. Before the RP fires a rule during chaining, it asks the TM to create a new sub

transaction. To create a subtransaction, the begin operation must be modified so that it 

takes as a parameter the transaction id of the parent transaction. The forward and back

ward chaining algorithms must be revised so that they issue a begin (tx_id) , where 

tx_ id is the identifier of the transaction encapsulating the execution of the rule that 

initiated the chaining, before inserting a new rule on the execution stack. Upon receiv

ing the operation begin (tx_id), the TM creates a new subtransaction of Ttx_id. 

Thus, the forward and backward chaining algorithms of the RP dynamically create the 

subtransactions of a nested transaction as they go along. 

The 2PL locking mechanism described above applies for each subtransaction as before. 

However, aborting or committing a transaction is more complicated than before. All 

subtransactions of a transaction must be aborted before aborting the "transaction. Before 

a transaction can be committed, all of its subtransactions must have either been com

mitted or aborted. When a transaction is committed, all of its locks are inherited by its 

parent transaction: the TM requests the LM to transfer the locks of a child transaction to 

its parent. To transfer a lock, Ml i [0] , from transaction Ti to a transaction Tj , the LM 

releases Ml i [ 0] and sets a new lock, Ml j [0] , on the same object, 0, in one atomic 

operation. 

Let us illustrate by going through a backward chaining example because it is the more 

complicated of the two kinds of chaining. In particular, backward chaining is composed 

of two phases: in the flI'St phase, the RP inserts rules on the stack because their con

ditions are not satisfied, and in the second phase, the RP removes rules from the stack in 

order to execute their activities. Say a client requests a command corresponding to the 

rule rl from the server. The RP fires rl by requesting the begin operation from the 

TM, which creates a transaction T 1 to encapsulate the execution of r 1. Suppose that the 

condition of r 1 is not satisfied; the RP inserts r 1 on the execution stack and initiates 

backward chaining, say by firing r 2. The TM creates a subtransaction, T 2' of T 1 to 

encapsulate the execution of r 2. 



Trans. Table 

ID type parent 

Tl tl none 

ID type parent 

Tl tl none 

1'2 be Tl 

ID type parent 

TI tl none 

1'2 be Tl 

TI be 1'2 

-

109 

Exec. Stack RP TM LM 
fuerl 
TM_begin --O-K--"~ create Tl 

• 

\-. 7I 
I.-

binding part .. request R locks • check locks 
eval. prop. list. OK add to Tl's lock set- set locks 
push rl on stack 

firer2 
TM_begin ----~. create 1'2 as a 

• OK subtransaction of Tl 
binding part • request R locks .. check Jocks 
eval prop. list • OK add to 1'2's lock set _ set locks 
push r2 on stack 

fuer3 
TM_begin ----... create TI as a 

OK subtransaction of 1'2 • 
binding part --__ a request R locks • check locks 
eval prop. list • OK add to TI's lock set- set locks 
fonn r3's write set • request W locks • check locks 
push r3 on stack • OK add to TI's lock set - set locks 
end fust phase of r3 Client executes ... __ _ 

r3's activity begin second phase 

ID type parent pop r3 from stack 
assert effect ___ .. release n's 

locks TI tl none TM commit ----.. transfer TI's 
1'2 be TI pop a from stack locks to 1'2 ' 

ID type 

TI tl 

eval prop list 
fonn r2's write set -_ ... request W locks .. check locks 
push r2 on stack • OK add to 1'2's lock set - set locks 

set 1'2's locks 

Client executes end first phase of r2 
r2's activity ... _--

begin second phase 
parent 

none -
~ 7I" 

L..-.. 

TM commit ---_... transfer 1'2's ___ .. release 1'2's 

pop rl from stack locks to Tl ~¥l's locks 
eva! prop list 
fonn rl's write set OK .. request W locks • check locks 
push rl on stack ... --\l.I1L- add to TI's lock set - set locb 

Client executes end fust phase of rl 
r2'I aclivity ... _--

begin second phase 

TM_commit ---_a release TI's 
lock set 

___ .. release Tl's 

locks 

Figure 4-4: Execution ofThrce Rules by the RP, TM, LM, and the OMS 



110 

Suppose that r2's condition itself is not satisfied, so the RP inserts r2 on the stack and 

initiates further backward chaining, say by firing r3. Again T3 is created as a subtran

saction of T2. Now say that r3's condition is satisfied. The RP can then proceed to 

execute the activity of r3, beginning the second phase of backward chaining. Once 

r3's activity has been executed and one of its effects asserted, the TM can commit T3; 

T 2 inherits T 3' s locks. If asserting one of r 3' s effects actually does make the condition 

of r2 satisfied, the RP pops r2 from the stack and executes the activity of r2. Finally 

if r 2' s execution makes the condition of r 1 satisfied, the RP pops r 1 from the stack 

and executes it. The complete sequence of events involving the RP, the TM, and the LM 

is shown in figure 4-4; the figure also shows the states of the transactions and the con

tents of the execution stack at various points. 

During the first phase of backward chaining, T}, T 2 and T 3 request only read locks (in 

order to evaluate the conditions of the corresponding rules). During the second phase, 

the transactions request write locks in order to execute the activities and assert the ef

fects of the rules. Note that other transactions (outside the nested transaction) that need 

only read locks on objects accessed during the first phase of the backward chain can 

proceed concurrently with the fIrSt phase of backward chaining without interfering. 

It will often be the case that rules fJIed during backward chaining access the same object, 

0. In this case, all ofT}, T2 and T3 will obtain read locks on ° in the first phase. Then, 

in the second phase, T 3 will request a write lock on 0, which is incompatible with the 

read locks held by T 1 and T 2' However, since T 3 is a descendant of both T 1 and T 2' the 

interference is not considered "serious". In order to avoid these kinds of conflicts, the 

TM transfers locks from parent transactions to subtransactions during the second phase 

of backward chaining. For instance, when T 3 requests a write lock on 0, the TM 

releases the read locks that T 2 and T} hold on o. The rationale for this is that when T 3 

commits, it will transfer all of its locks, including the write lock on 0, to T 2 (and T 2 will 

transfer all of its locks to T}). Thus, it is guaranteed that T} will retain its lock on ° after 

T3 and T2 commit. 

By inheriting the locks held by a subtransaction, the parent transaction guarantees that 

the child transaction's changes to objects will not be visible to other transactions outside 



III 

the nested transaction until the whole nested transaction commits. This is essential to 

guarantee correct execution of transactions. If a subtransaction makes its changes visible 

by writing these changes to the database and releasing its locks, then if the parent trans

action abons, the child must be aboned. But the child would have already released all of 

its locks so its operations cannot be rolled back. For this reason, committing a subtran

saction transfers the locks that the subtransaction held to the parent transaction. 

In chapter 5, we analyze the different kinds of rule chains a bit closer. The analysis 

results in a relaxation of some of the restrictions mentioned above on committing nested 

transactions. In panicular, it will be shown that some transactions (those encapsulating 

activities whose execution is not affected by other activities in the same chain) can com

mit and release their locks before their subtransactions have committed; this leads to 

increased concurrency. 

We have now completed the presentation of the TM of RBDE. As explained before, the 

TM works in conjunction with the LM to determine whether two transactions interfered 

with each other. We will now present the conflict detection protocol used by the LM to 

detect such conflicts. 

4.3. The Lock Manager 

The LM in RBDE is responsible for setting and releasing locks on objects when re

quested to do so by the TM. As explained earlier, the TM receives three kinds of lock

related requests from the command execution layer. a request to obtain read permission 

on the read set of a transaction, a request to obtain write permission on the write set of a 

transaction, or a request to commit a transaction, which entails releasing all the locks 

held by the transaction. To process a request to commit a transaction, the TM in turn 

asks tbc LM to release the lock set of the transaction. 



112 

4.3.1. Lock Operations 

To handle the 1M's requests, the LM maintains a lock table lO and provides two opera

tions, lock and unlock, which form the interface between the 1M and the LM. The 

lock table has an entry for each locked object in the database. Each entry stores the 

locks currently held on a single object. A lock is a pair, <type, tx-id>, where type 

is the type of lock and t x _ i d is the identifier of the transaction that holds the lock. 

Several transactions can hold compatible locks on a single object. The Scheduler we 

present in chapter 6 might force the LM to set incompatible locks on the same object. 

For the rest of this chapter, however, we assume that if more than one lock is set on an 

object, then the locks must be compatible. 

The lock operation is of the form lock [tx_id, obj_list, type], where 

t x _ i d is the identifier of the transaction on whose behalf the 1M is requesting the 

operation, obj_list is a list of objects, and type is the type of lock to set on all of 

the objects in obj_list. The unlock operation is of the form unlock [tx_id, 

obj_list], where obj_list is a list of objects, on which Ttx_id currently holds 

locks. 

To process the operation, unlock [tx_id, obj list], the LM simply goes 

through the obj_list and for each object, 0, it removes the lock held by Ttx_id on 0 

(regardless of the type of lock). The lock operation is more complicated. Assuming 

that there are only the two lock types presented earlier (read and write locks), the algo

rithm for processing the lock operation is shown in figure 4-5. The algorithm basically 

guarantees that if a W lock is set on an object, no other lock can be set on the object; 

multiple R locks can be set on the same object simultaneously. 

The algorithm in figure 4-5 assumes that objects in the database are independent of each 

other. But as explained in section 2.3.2, each object in RBDE is a part of an object 

hierarchy. Accessing one object has implications on the objects above it and below it in 

the hierarchy. 

l~ote that the lock table must be persistent In the current implementation. the locks are stored with 
the objects in the database rather than in a lock table. 



routine LOCK (a W: transaction identifier; 
oiij)ist : list of objects to lock; 
type : either R or W); 

Begin 
For each object, 0, in obLlisl Do 

Begin 
If there are no locks held on 0 Then 

continue; 

If there is only one lock held on 0 Then 
Begin 

CUT id := id of transaction that holds the lock; 
cUT=type :- type of current lock; 
If type - W Then 

If a W <> cur iii Then 
return CONFLICT; 

/* Conflicts between a transaction and one of its 
ancestors are resolved by NGL protocol, shown 
in figure 4-7 below. */ 

Else If type = R and CUT_type = W Then 
If a iii <> CUT iii Then 

return CONF-LICT; 
Else 

remove 0 from obj)isl; 
End; 

Else if more than one lock are set on 0 Then 
If type - W Then 

End; 

return CONFLICT; 
Else If Ttx id already holds a lock on 0 Then 

remove 0 -f rom obLlist; 

/* If we reach here, then no conflicts were detected */ 

For each object, 0, in lock list Do 
Add <a_iii, type> to D's entry in the lock table; 

return OK; 
End. 

Figure 4-5: Setting Locks on Flat Objects 

113 

The protocol shown in figure 4-5 is correct, even when dealing with composite objects. 

To understand why, consider the object hierarchy shown in figure 4-6; this hierarchy is 

the same as the one presented in chapter 2. Say that John requests a command to edi t 

main. c. To execute this command, the RP starts a transaction TJohn, which obtains a 

write lock on main. c. While John is editing the contents attribute of main. c (a 

text file), Mary comes along and requests to delete ModA. To execute this built-in 



contains 
o structural attributc 
.... link attributc 
o object 

114 

Figure 4-6: Composite Object Hierarchy 

command, the CE (command executor) stans a transaction T Mary' Since deleting ModA 

requires deleting all of its children first, T Mary proceeds to obtain write locks on 

main. c, flo c and f2. c. At this point TMary's request to lock main. c will be 

rejected because it conflicts with T1ohn's lock on main. c. 

Given the locking conflict, Mary will not be able to delete ModA, which is the correct 

result. Now if we consider a much deeper hierarchy with many more objects, which is 

much more likely in a large-scale project, the protocol above will perform poorly. 

Transactions lock nodes explicitly in either W or R mode, which in tum locks descen

dants implicitly. Before granting a transaction a lock on an object, the TM would have 

to follow the path from the object to the root to fmd out if any other transaction has 

explicidy locked any of the ancestors of the object. This is clearly inefficient since it 

increases the overhead of locking and makes the performance of the LM unacceptable. 

In order to improve the performance of the protocol, we employ a nested granularity 

locking (NGL) protocol, which is based on the multiple granularity locking (MGL) 

protocol. We fllSt describe MGL and then present the details of our NGL protocol. 



115 

4.3.2. Related Work: Multiple Granularity Locking 

Gray et al. presented a multiple granularity locking (MGL) protocol that aims to min

imize the number of locks used while accessing sets of objects in a database [Gray et al. 

76]. In their model, Gray et al. organize data items in a tree where small items are 

nested within larger ones. Each non-leaf item represents the data associated with its 

descendants. 

As in 2PL, there are two basic lock types, shared (equivalent to read) and exclusive 

(equivalent to write). Shared locks are denoted by S, while X is used to denote exclusive 

locks. In addition to X and S locks, Gray et al. introduced a third kind of lock mode 

called intention lock [Gray 78]. All the ancestors of a node must be locked in intention 

mode before an explicit lock can be put on the node. In particular, nodes can be locked 

in five different modes, X, S, IX, IS, and SIX. 

IS IX S SIX X 

IS yes yes yes yes no 

IX yes yes no no no 

S yes no yes no no 

SIX yes no no no no 

X no no no no no 

Table 4·1: Lock Compatibility Matrix for MGL protocol 

A non-leaf node is locked in intention-shared (IS) mode to specify that descendant 

nodes will be explicitly locked in S mode. Similarly, an intention-exclusive (IX) lock 

implies that explicit locking will be done at a lower level in an X mode. A shared and 

inte1ltion-uclusive (SIX) lock on a non-leaf node implies that the whole subtree rooted 

at the node is being locked in S mode, and that explicit locking will be done at a lower 

level with X locks. SIX can be replaced by two explicit locks, S and IX, and is 

provided solely for convenience. A compatibility matrix for the five kinds of locks is 

shown in table 4-1. The matrix is used to determine when to grant lock requests and 

when to deny them. 

Gray et al. defined the MGL protocol as follows: 



1. A transaction T can lock a node in S or I S mode only if all ancestors of 

the node are locked in either IX or I S mode by T. 

2. A transaction T can lock a node in x, S IX, or IX mode only if all the 

ancestors of the node are locked in either S IX or IX mode by T. 

3. Locks should be released either at the end of the transaction (in any order) 

or in leaf to root order. In particular, if locks are not held to the end of the 

transaction, the transaction should not hold a lock on a node after releasing 

the locks on its ancestors. 

116 

The goal of the MGL protocol is to ensure that transactions never hold conflicting locks 

on the same object The proof that it achieves this goal, which is not relevant here, is 

found in [Bernstein et al. 87]. This goal, however, is not sufficient to ensure 

serializability of transactions. To ensure serializability, MGL should be used in conjunc

tion with a mechanism like 2PL. In this case, MGL replaces the flat read-write locking 

protocol described above for 2PL. 

The granularity locking protocol employed by the LM in RBDE uses a very similar 

protocol as that used by MOL. We use a slightly different set of locks, and our com

patibility matrix is also different from the one shown in table 4-1. 

4.3.3. The NGL Protocol in RBDE 

We call our protocol NGL, which stands for Nested Granularity Locking, because it 

detects locking conflicts on composite objects between nested transactions. We frrst ex

plain the lock types supported by the LM in RBDE. and then present the NGL protocol. 

4.3.3.L Extended Lock Types 

In the MOL protocol. if a transaction holds an X lock on an object. o. all other trans

actions are excluded from accessing any of the objects in the composite object hierarchy 

rooted at o. All write operations require X locks; thus. a write operation on an object 

essentially locks all of the object's subobjects. In RBDE. there is a distinction between 

write operations that change the value of a status or data attribute of an object. which do 



• I 

117 

not affect any of the subobjects, and write operations that manipulate structural at

tributes, which by definition affect the subobjects. We distinguish between these two 

kinds of operations by having a write lock (W), which is less exclusive than an exclusive 

(X) lock. 

A W lock on an object indicates a write operation that will change only the non-structural 

attributes of the object. An X lock, on the other hand, indicates an operation that affects 

the whole subtree rooted at the object. For example, the delete operation on an object 

o requires an X lock on 0, indicating that the operation will access every object in the 

subtree rooted at o. All write operations invoked by the execution of a rule, in contrast, 

only require W locks on the objects, since the database operations in the activity and 

effects of a rule can only change the non-structural attributes of objects. 

Similarly, we distinguish between read operations that access the structural attributes 

and those that only access non-structural attributes. The copy operation, for example, 

copies a whole subtree rooted at an object o. An agent cannot copy an object 0 if any of 

the descendants of 0 is being written. It is possible, however, to copy an object if any of 

its descendants, or the object itself, are being read. The S lock in MGL serves exactly 

that purpose. The read operations in the propeny list and activities of rules, however, 

access only the non-structural attributes of objects. A read operation that accesses only 

the non-structural attributes of an object 0 should not conflict with a write operation on a 

subobject of o. 

Thus, we need a lock that is incompatible with W and X, but compatible with S, I X, and 

I S. None of the locks introduced in MGL serves that purpose (note that S is incom

patible with IX, as shown in the compatibility matrix in table 4-1). Consequently, we 

introduce another new lock to MGL locks, R. An S lock on an object, 0, indicates that 

the whole subtree rooted at the object is being read, whereas an R lock indicates that 

only object 0 is being read. 

In addition to introducing two new lock types, we have eliminated the SIX lock since it 

is not needed in our model (it is equivalent to setting an S and an IX lock on an object). 

Given the new lock types we introduced, we defme the lock compatibility matrix shown 

in table 4-2, which is different from that of MGL. 



118 

IS R IX S W X 

IS yes yes yes yes yes no 

R yes yes yes yes no no 

IX yes yes yes no yes no 

S yes yes no yes no no 

W yes no yes no no no 

X no no no no no no 

Table 4-2: Lock Compatibility Matrix for NGL Protocol 

We define the lock types needed for the execution of the five built-in commands as fol

lows. Copy, which makes a copy of an object (called the source) and inserts the copy as 

a child of another object (called the destination), requires an S lock on the source object 

and an X lock on the destination object. Move needs X locks on both the source and the 

destination objects. Add requires an X lock on the object to which we are adding a 

subobject; adding a top-level object (i.e., one that has no parent) dOes not require any 

locksll. Note, however, that this is a direct implication of the assumption we have made 

in chapter 2 that objects can be added only by the add built-in command, which is ex

ecuted atomically. If this were not the case, adding a new root object would require 

locking the class of which the object is an instance. Delete requires an X lock on the 

object we are deleting. Finally, link, which creates a link from one object (the source) 

to another object (the destination), requires a W lock on the source object and no lock on 

the destination object. A read operation, Readi [0] , in a rule requires an R lock on o. 

A write operation, Wr it e i [ 0] , requires a W lock on an object. 

We define the NGL protocol as follows: 

1. A transaction T can lock a node in S, R or I S mode only if all ancestors of 

the node are locked in either IX or IS mode by T. 

2. A transaction T can lock a node in x, W or IX mode only if all the ances

tors of the node are locked in I X mode by. 

llThis is true because our transaction mechanisms does not suffer from the phantom problem, as 
explained earlier in this chapter. 

, . 



119 

3. Locks are released only at the end of the transaction (in any order). 

Note that the NGL algorithm is table driven: The project administrator can define an 

alternative lock compatibility matrix (and in fact define new lock types). In this case, 

the compatibility of two locks is determined according to the new table. 

The complete algorithm implemented by NGL is shown in figure 4-7. NGL determines 

whether a transaction T tx_id can set a lock of type type on each object in the list of 

objects, obj_1ist, passed to it. NGL collects all the ancestors of the objects in 

ob j _1 i s t, and assigns the correct intention lock to each one. If the requested locks 

and the ancestor objects' locks do not conflict with any existing locks, NGL goes ahead 

and sets the new locks on the objects in obj_1ist and their ancestors. If a conflict is 

detected, then no locks are set and CONFLICT is returned. 

The compatibility of two locks is determined by looking up the entry for the two locks 

types in the lock compatibility matrix shown in table 4-2. Note that if a transaction Ti 

requests a lock, N 1 i [0] and there is already another lock, M1 i [0] , held by T i, NGL 

will set the new lock only if N is stronger than M and if N 1 i [ 0] does not conflict with 

any other lock on 0 held by another transaction. The strength of locks in descending 

order is defined as follows: x, W, S, R, IX, IS. Note that these strengths can be 

redefmed by the project administrator. 

NGL guarantees that two different transactions, which do not have a parent-child 

relationship, will not hold incompatible locks on the same object. It also guarantees that 

each transaction will hold the strongest of all the locks its requested on an object, 0, or 

any of the ancestors of o. 

So far we have assumed that objects are the smallest "lockable" entities. This in fact 

limits concurrency because it causes NGL to detect interference between two trans

actions even if these two transactions are accessing different attributes of the object. 

This is not necessary. In order to increase concurrency, we take the granularity of locks 

a step further and apply it to attributes. Thus, an attribute is the smallest entity that can 



routine NGL (tt w: transaction identifier; 
obj list : list of objects to lock; 
type: either S, R, W or Xl; 

Begin 
lock list : = empt y ; 
For- each object, 0, in obj list Do 

Begin -
enrry.obj :,.. 0; 
entry.lock : .. type; 
Add entry t a lock_list; 

End; 
ancestor_type :- intention lock corresponding to type; 
For each object, 0, in obj list Do 

Begin -
ancestors : - all ancestors of 0 in object hierarchy; 
For each object, ancestor in ancestors Do 

End; 

If ancestor is not already on lock list Then 
Begin -

enlry.obj : = ancestor; 
entry. lock : .. ancestor_type; 
add entry t a lock_list; 

End; 

For each entry, lock, in lock_list Do 

End. 

Begin 
o : - lock.obj; 
type : - lock.type; 
If there are no locks held on 0 Then 

continue; 
If there is only one lock already set on 0 Then 

Begin 
CUT id : - id of transaction that holds the lock; 
CUT:type :- type of current lock; 
If CUT w - IX w then 

Begin -
If CUT _type is the same or stronger than type Then 

remove lock from lock_list; 
continue; 

End; 
If type and CUT_type are COMPATIBLE Then 

continue; 
Else If Tcur 1d is an ancestor of Ttx_1d Then 

continue; -
Else return CONFLICT; 

End; 
Else if more than one lock is already set on 0 Then 

If type conflicts with any of these locks Then 
If the only conflict is with ancestor Then 

continue 
Else return CONFLICT; 

Else If Ttx 1d already holds more powerful lock on 0 
Then remove lock f rom lock_list; 

End; return OK; 

Figure 4·7: The NGL Conflict-Detection Protocol 

120 



121 

be locked in RBDE12. The NGL locking algorithm presented above applies exactly the 

same way if we consider each attribute of an object to be a subobject instead 

(conceptually) 13.. To simplify matters, we will often consider locking only at the 

granularity of objects. 

To formalize the notion of incompatible locks and concurrency conflicts, we define a 

conflict situation as follows: 

Definition 3: A conflict situation (also called interference) occurs when a 
transaction Ti requests a lock Ml i [ 0 ], which is incompatible with another 
lock N 1 j [0] held by another transaction, Tj , given that Tj is not an ancestor 
ofTi· 

A conflict situation is a 2-tuple C = (<1'i' Tp, <Nli[o], M1io]», where T j and 
Tj are the two transactions that interfered, and Mlj[o] and Nlj[o] are the two 
locks on object 0 that caused the conflict. 

To illustrate NOL, consider again our running example with John, Bob and Mary. 

Recall that the three developers are working together to complete a program, Prog, 

which contains three modules (ModA, ModB and ModC), three corresponding libraries 

(LibA, LibB, LibC), and several header fIles contained in the directory includes. 

The object code of all the C files belonging to a module are archived in the same library. 

Say that the project administrator has loaded the rules shown in figure 4-8. 

The rules specify that editing a CFILE leads to outdating its object code. To update the 

object code, RBDE can go ahead and compile the CFILE automatically. Compiling a 

CFILE successfully leads to outdating the archived object code of the CFILE. To up

date the archive, RBDE can automatically invoke the archive rule to archive the ob

ject code in a library pointed to (via a link) by the module containing the CFILE. If 

all the CFILEs contained in a module (or any of its submodules) have been successfully 

archived, then the archive_status attribute of the module is set to "Archived". 

12The actual implementation, as explained in chapter 8, considers objects to be the smallest lockable 
entities; individual attributes cannot be locked. 

13Locking at the granularity of objects might already be considered expensive in many DBSs; lOCking at 
the granularity of attributes makes things even more expensive. However, we have assumed coarse-grain 
objects, and thus locking at the granularity of objects is not really expensive in RBDE. 



edit [?c :CFILE) : 

(and (?c.reservation_status = CheckedOut) 
(?c.locker = CurrentUser» 

edit output: ?C.contents ) 

(and no backward (?c.status - NotCompiled) 
no-backward (?c.timestamp - CurrentTime»; 

compile [?f:CFILE): 
(bind (?h to_all HFILE suchthat 

(linkto [?f.hfiles ?h)) 

no_backward (?f.status - NotCompiled) 

{ compile ?f.contents ?h.contents "-g" 
output: ?f.object_code ?f.error_rnsg 

(and (?f.status z Compiled) 
(?f.object timestamp - CurrentTirne»; 

(?f.status - Error); 

dirty[?c: CFILE): 

no backward (?c.status - Compiled) 
IT 
(?c.status - NotArchived); 

archive [?f:CFILE]: 
(bind (?m to all MODULE suchthat (member [?m.cfiles ?f]» 

(?l to:all LIB suchthat (linkto [?m.libs ?1]») 

(exists 71): 
no_backward (?f.status - NotArchived) 

I archive ?f.object_code output: ?1.afile 

(?f.status - Archived); 
(?f.status - Error); 

archive [?m:MODULE]: 
(bind (?f to all CFILE suchthat (member [?m.cfiles ?f]» 

(?q to-all MODULE suchthat (member [?m.modules ?q)) 

(forall ?f) (forall ?q): 
(and (?f.status - Archived) 

(?q. status - Archived» 
I } 
(?m.archive_status - Archived); 

Figure 4-8: Rules Causing a Locking Conflict at the Module Level 

122 



123 

The chaining behavior of these rules can cause a locking conflict if two agents want to 

access the same library in order to archive the object code of two different CF I LEs. For 

example, say that both John and Bob are editing the two CFILEs, fl. c and f2 . c, 

respectively. The two transactions, TJohn and TBob' encapsulate the executions of John's 

and Bob's commands, respectively. Before allowing John to access fl. c, TJohn must 

have acquired a W lock on fl. c, and IX locks on all the ancestors of fl . c (Le., ModA 

and Prog). Similarly, TBob would have acquired a W lock on f2. c and IX locks on 

both ModA and P rog. NGL would allow the two transactions to obtain their locks and 

proceed to invoke the edit activities. 

Now say that Bob finishes editing f2. c. The RP chains to fIre the compile rule on 

f2 . c. The TM creates T Bob.l as a subtransaction of T Bob to encapsulate the execution 

of this rule. To invoke the activity of this rule, T Bob.l must acquire a W lock on f2 . c, R 

locks on all the objects bound to ? h, and the corresponding intention locks on the ances

tors of these objects. TBob' an ancestor of TBob.I ' has already acquired a W lock on 

f2 • c, so T Bob. I can inherit this lock on f2 • c. Acquiring R locks on the objects bound 

to ?h, and I S on all of their ancestors, does not conflict with any existing locks. Note 

that T Bob already holds an IX lock, which is stronger than an IS lock, on Prog, and 

thus TBob.1 needs to also inherit this IX lock rather than locking Prog with an IS lock. 

NGL grants the requested locks to TBob.I ' which proceeds to invoke the compiler on 

f2. c. 

While Bob is compiling f2. c, John completes his modifications to fl. c. Again the 

RP will fue a forward chain to compile fl. c, which will be encapsulated in TJohn.I' 

NGL will grant all the locks requested by TJohn.1 to execute the compile activity since 

none of the locks conflict with existing locks. Both John's client and Bob's client are 

now compiling fl . c and f2 • c, respectively. 

Suppose both clients finish compiling at the same time. A successful compilation will 

cause a forward chain to fIre the dirty rule followed by the archi ve rule. Therefore, 

both John's and Bob's compile rules will cause a forward chain to archive the 

respective C flle. The server will process one of these forward chains fIrst Say that 

Bob's chain is processed fIrSt. In order to execute the archive rule, the TM creates 



124 

T Bob.2' which must now acquire a W lock on the library LibA linked to ModA. NGL 

will grant this lock, and all the corresponding intention locks. 

libraries 

Figure 4-9: Object Hierarchy Showing Locks Held by Two Transactions 

While Bob's client is busy archiving the object code of f2. c into LibA, the server 

continues executing John's rule chain. Before the RP can execute the archive (with 

fl. c as its parameter), it asks the TM to create a new subtransaction, TJohn.2' to encap

sulate John's archive rule; TJohn.2 must acquire a W lock on LibA. NGL will reject 

this request because it conflicts with the W lock that TBob.2 already holds on LibA. The 

locks held on the objects at this point are shown in figure 4-9; the figure does not show 

links between objects for simplicity. The conflict on object LibA is shown by high

lighting LibA. This conflict is passed on to the Scheduler, which decides how to 

resolve it In chapters S and 6, we will present the two conflict resolution protocols that 

the RBDE Scheduler uses. 

Say that the conflict resolution module decides that the chain containing T John.2 should 

be committed at this point TJohn thus releases all of its locks. This leaves Bob's trans

actions as the only transactions running in the server. Now say that while Bob's client is 

archiving f2. c, Mary comes along and issues a command to move Prog to another 

project As explained earlier, the move built-in command requires locking the source 



125 

object, Prog, in X mode. NGL will not grant this lock, because TBob.2 already holds an 

IX lock on Prog (because TBob has acquired a w lock on f2 . c, so all the ancestors of 

f2. c, including Prog, are locked in IX mode), and as shown in the lock compatibility 

matrix, IX and X are not compatible. 

4.4. Summary 

In this chapter we devised a two phase locking scheme that the TM in RBDE uses to 

detect interference between concurrent transactions. The scheme mandates that all the 

locks necessary for the execution of a transaction are acquired before the transaction 

performs any write operation; the locks are released only after the transaction completes 

its execution, at which time the transaction is committed. The scheme does not suffer 

from deadlocks because transactions are not blocked. Our transaction scheme also 

guarantees that the phantom problem does not occur and minimizes the necessity for 

aborts. 

In order to acquire locks on behalf of a transaction, the TM must request the locks from 

the LM. The LM verifies that the requested locks are not incompatible with existing 

locks held by other transactions before it grants the locks. The LM employs a nested 

granularity locking protocol (NGL) to detect conflict situations (interference) that arise 

because of lock incompatibility. We defme interference as follows. If Tj holds a lock 

N 1 i [ 0 ] , and Tj requests another lock, Ml j [0] , then interference occurs if N and M are 

incompatible according to the lock compatibility matrix. Tj is said to have interfered 

with Tj • 

According to the definition of interference, whenever a conflict occurs, we have the fol

lowing information: 

. • The two transactions, Ti and Tj , involved in the conflict, 

• The phases in which the two transactions are in, and 

• The two locks, N 1 i [ 0] and Ml j [0] , that caused the conflicts. 

Given a transaction, Ti, we know the command (rule or built-in command) that initiated 

Ti, and the owner (user) of Tj (see definition 3.4.1). These pieces of information, in 



126 

addition to other infonnation we introduce in the next chapter, are used by the Scheduler 

to resolve the detected conflict in a flexible way. 

This completes our discussion of the NGL conflict detection protocol. We will now 

proceed to present the details of the Scheduler and the protocols it uses to resolve lock

ing conflicts. We flrst present a default conflict resolution protocol in chapter 5 and then 

in chapter 6 we describe a mechanism for programming a project-speciflc conflict 

resolution protocol that overrides the default one. 



127 

Chapter 5 

. Resolving Concurrency Conflicts 

Once interference between two concurrent transaction is detected by the NGL protocol. 

the lock conflict that caused the interference must be resolved before the server can con

tinue the execution of the agents involved in the conflict. The Scheduler is responsible 

for resolving locking conflicts. Given the EMSL language and the chaining algorithms 

described in chapter 2. the best the Scheduler can do to resolve a locking conflict is to 

abort the transaction that requested the conflicting lock. The reason is that much of the 

semantics that the Scheduler could use to provide a more flexible concurrency control 

policy are only implicit in the definitions of rules rather than explicitly defined, and thus 

cannot be used. More specifically, rules serve two distinct pwposes: (1) to express, en

force and maintain consistency constraints; and (2) to express and carry out oppor

tunities for automation. Maintaining consistency is mandatory, whereas carrying out 

automation is optional. These two aspects are not distinguished in EMSL and the RBDE 

model, presented in chapter 2. Distinguishing between these two functions of rules can 

be the basis for explicitly defining and maintaining consistency constraints. These con

straints would provide the semantics needed by the Scheduler to implement a flexible 

semantics-based concurrency control policy. 

In this chapter, we first discuss the notion of semantics-based concurrency control in 

DBSs and describe three semantics-based mechanisms that schedulers in traditional 

DBSs use to provide flexible concurrency control. Next, we extend EMSL with con

structs that the administrator can use to distinguish between consistency predicates and 

automation predicates in the conditions and effects of rules. We then present the 

~emantics-based Concurrency Control frotocol (SCCP), which uses the explicit defini

tion of consistency predicates to provide the default policy for resolving concurrency 

conflicts. SCCP guarantees that the consistency constraints, defined by the consistency 

predicates in the project rule set, are maintained. 



128 

5.1. Related Work: Transaction Schedulers in Traditional DBSs 

In a typical DBS, the TM (transaction manager) interacts with a scheduler, which con

trols the order of execution of concurrent transactions [Bernstein et al. 87]. When the 

scheduler receives a request to execute an operation from the TM, it has three options: 

immediately schedule the operation, delay the operation, or reject it. Typical schedulers 

choose only two of these three options. Based on which two options a scheduler chooses, 

it can be described as either aggressive or conservative. 

An aggressive scheduler tends to either immediately schedule an operation or reject it. 

The main shortcoming of aggressive schedulers is that they process one operation at a 

time without looking ahead to foresee interference between concurrent transactions. 

Thus, an aggressive scheduler might schedule an operation from one transaction im

mediately, only to find out later that in order to maintain serializability it must reject an 

operation from the same or a different transaction. Rejecting an operation forces the TM 

to abort the requesting transaction. Aborting a transaction may be very costly, especially 

in applications like RBDE, involving long-duration interactive activities such as editing. 

A conservative scheduler, in contrast, chooses to delay operations (e.g., by blocking 

transactions), which gives it an opportunity to re-order these operations in order to avoid 

rejecting any. Conservative schedulers thus avoid causing transactions to abort. Delay

ing operations, however, might lead to delaying the execution of a transaction unneces

sarily, if these operations could have in fact been executed earlier without introducing 

conflicts. This may deteriorate the response time of an application like RBDE. 

We combine both of these approaches in the RBDE scheduler. On the one hand, we 

construct an aggressive scheduler that either schedules operations immediately or rejects 

them. On the other hand, we make available information about the type of a transaction 

(as will be discussed shortly), so that the Scheduler can detennine whether or not to 

schedule an operation belonging to the transaction. This infonnation is made available 

because RBDE loads and analyzes rules, which comprise the body of a transaction in 



129 

RBDE, before executing them14. By doing this, we eliminate the possibility of unneces

sarily delaying or aborting a transaction. 

Schedulers control the ordering and execution of transaction operations in order to main

tain the consistency of the database. In any DBS, consistency is maintained if every data 

item in the database satisfies some application-specific consistency constraints. For ex

ample, in an airline reservation system, one consistency constraint might be that each 

seat on a flight can be reserved by only one passenger. It is often the case, however, that 

the consistency constraints are not known beforehand to the designers of a general

purpose DBS. This is due to the lack of information about the computations and the 

semantics of database operations in potential applications. 

To overcome this problem, schedulers of traditional DBSs implement general-purpose 

concurrency control mechanisms that do not depend on the particulars of applications. 

These concurrency mechanisms abstract all database operations into read and write 

operations. The mechanisms resolve conflicts, in general, using one of two methods: 

(1) locking mechanisms that resolve conflicts by forcing the transactions requesting the 

incompatible IS lock to wait; and (2) optimistic mechanisms that resolve conflicts by 

aborting and rolling back one or more of the conflicting transactions. The mechanisms 

in both categories are inappropriate for advanced database applications, such as RBDE. 

In RBDE, a nested transaction encapsulating a rule chain, which includes invocation of 

interactive activities, might last for a very long period of time. Using traditional 

serializability-based locking mechanisms to resolve concurrency conflicts between these 

long transactions causes serious performance problems if these transactions are allowed 

to lock ~sources until they commit. Other transactions wanting to access the same 

resources are forced to wait even though the long transaction might have finished using 

14Note that although RBDE can analyze each rule, it cannot determine the exact rule chain that will be 
executed as a result of executing a rule. Thus, the body of a nested transaction in RBDE is not known in 
advance but is constructed during chaining. 

1.5 A read lock on an object is defines by locking mechanisms to be compatible with other read locks on 
the same object; a write lock on an object, in contrast, is considered incompatible with other locks on the 
same object 



130 

the resources. Long transactions also increase the likelihood of automatic abons 

(rollbacks), in order to avoid deadlock, or in the case of failing validation in optimistic 

concurrency control. When interactive software tools, like editors, are invoked as pan of 

a rule chain, the human developers invest several hours of work into one activity. Abon

ing and rolling back such activities would not be appreciated by the developers. 

5.1.1. Altruistic Locking: Using Information about Access Patterns 

One approach to solving the problems introduced by L Ts is to use semantic information 

about transactions to extend traditional mechanisms, such as 2PL, making them more 

flexible. The extended mechanism revens back to the traditional scheme in case the 

additional information is not available (Le., it might be available for some transactions 

but not for others). 

One source of information that can be used to increase concurrency is the information 

about when resources are no longer needed by a transaction, so that they can be released 

and used by other transactions. This information can be used to allow a long transaction, 

that otherwise follows a serializability-based mechanism, to conditionally release some 

of its resources before it has acquired all the locks its needs (i.e., before entering the 

shrinking phase in 2PL). These resources can then be used by other transactions given 

that they satisfy certain requirements. 

One formal mechanism that follows this approach is altruistic locking [Salem et al. 87], 

which is an extension of the basic 2PL algorithm. Altruistic locking makes use of infor

mation about access patterns of a transaction to decide which resources it can release. In 

particular, the technique uses two types of information: (1) negative access pattern infor

mation, which describes objects that will not be accessed by the transaction; and (2) 

positive access pattern information, which describes which, and in what order, objects 

will be accessed by the transaction. 

Taken together, these two types of information allow long transactions to release their 

resources immediately after they are done with them but before the transactions have 

completed The set of all data items that have been locked and then released by an L T is 



131 

called the wake of the transaction. If a transaction, Ti, locks a data item that is in the 

wake of another transaction, Tj , we say that Ti entered the wake of Tj . Releasing a 

resource is a conditional unlock operation because it allows other transactions to access 

the released resource as long as they satisfy the following two restrictions: 

1. No two transactions can hold locks on the same data item simultaneously 

unless one of them has locked and released the object before the other 

locks it; the later lock-holder is said to be in the wake of the releasing 

transaction. 

2. If a transaction is in the wake of another transaction, it must be completely 

in the wake of that transaction. This means that if John's transaction locks 

a data item that has been released by Mary's transaction, then any data 

item that is currently locked by John must have either been released by 

Mary before it was locked by John, or locked by John after Mary's trans

action terminated (committed or aborted). 

These two restrictions guarantee serializability of transactions. The protocol assumes 

that transactions are programmed and not incrementally (dynamically) constructed (Le., 

the user cannot make up the transactions as he goes along). This assumption is neces

sary to determine the access patterns of transaction before a transaction starts executing. 

In the following example, however, we will assume an informal extension to this 

mechanism that will allow dynamically-constructed transactions, since these are more 

relevant to the RBDE model (rule chaining). 

Consider again the example depicted in figure 1-1 in chapter 1, where each module in 

the project contains a number of C source flies (subobjects). Say that Bob wants to 

. familiarize himself with the code of all the functions of the project because he wants to 

write a description of the implementation. He starts a long transaction, T Bob' that ac

cesses all of the C source files, one flle at a time. Bob needs to access each C source file 

only once to read it and add some comments about the code; as he finishes accessing 

each fue he releases it In the meanwhile, John starts a short transaction, TJohn' that 

accesses only two files, first fl • c and then f2 • c, from module ModA. 

Suppose that T Bob has already accessed f2 • c and released it, and is currently reading 



132 

f1 . c. TJohn has to wait until T Bob is finished with fl . c and releases it. At that point 

TJohn can stan accessing fl. c by entering the wake of T Bob. TJohn will be allowed to 

enter the wake of TBob (Le., to be able to access fl. c) because all of the objects that 

TJohn needs to access (fl. c and f2. c) are in the wake of TBob. After finishing with 

fl. c, TJohn can stan accessing f2 . c without delay since it has already been released 

byTBob· 

Now say that Mary stans another shon transaction, T Mary' that needs to access both 

f2. c and a third file f3. c that is not in the wake ofTBob yet. TMary can access f2. c 

after T John terminates, but then it must wait until either f 3 . c has been accessed by T Bob 

(i.e., until T Bob releases f3. c) or until T Bob terminates. If T Bob never accesses f3 . c 

(Bob changes his mind about viewing f 3 • c), T Mary is forced to wait until T Bob ter

minates (which might take a long time since it is a long transaction). 

To improve concurrency in this situation, Salem et ale introduced a mechanism for 

expanding the wake of a long transaction dynamically in order to enable shon trans

actions that are already in the wake of a long transaction to continue running. The 

mechanism uses the negative access information in order to add to the wake of a long 

transaction objects that will not be accessed by the transaction. Following up on the 

example, the mechanism would add f3 • c to the wake of T Bob by issuing a release on 

f 3 . c even if T Bob had not locked it. The addition takes place when T Mary requests a 

lock on f3. c. This would allow T Mary to access f3. c and thus continue executing 

without delay. 

The basic advantage of altruistic locking is its ability to utilize the knowledge that a 

transaction no longer needs access to a data object that it has locked. If access infor

mation is not available, any transaction, at any time, can run under the conventional 2PL 

protocol without performing any special operations. However, because of the interactive 

nature of transactions in design environments, the access patterns of transactions are not 

predictable. In the absence of this information, altruistic locking reduces to 2PL. 

Altruistic locking also suffers from the problem of cascaded aborts: when a long trans

action abons, all the shon transactions in its wake have to be rolled back even if they 

have already committed. 



133 

The SCCP protocol we present later in this chapter minimizes the probability of cas

caded aborts by requiring rollback only in a few cases. SCCP uses an approach similar 

to that of altruistic locking, except that, in addition to access patterns, it uses semantic 

information about the consistency constraints of each transaction, which we will discuss 

later in this chapter. But before doing that, we describe two other mechanisms that use 

semantic information similar to the information used by the SCCP protocol. 

5.1.2. Constraint-Based Schedulers 

Access patterns are not the only piece of semantic information that schedulers can use to 

provide flexible concurrency control. In some advanced applications such as CAD. 

where the different parts of the design are stored in a project database, it is possible to 

supply semantic information in the form of integrity constraints on database entities. 

Design operations incrementally change those entities in order to reach the final 

design [Eastman 80, Eastman 81]. By definition, full integrity of the design, in the sense 

of satisfying its specification, exists only when it is complete. Unlike conventional 

domains where database integrity is maintained during all quiescent periods. the iterative 

design process causes the integrity of the design database to be only partially satisfied 

until the design is complete. There is a need to defme transactions that maintain the 

partial integrity required by design operations. Kutay and Eastman proposed a trans

action model that is based on the concept of entity state [Kutay and Eastman 83]. 

Each entity in the database is associated with a state that is defmed in terms of a set of 

integrity constraints. Like a traditional transaction, an entity state transaction is a collec

tion of actions that read a set of entities and potentially write a set of entities. Unlike 

traditional transactions, however, entity state transactions are instances of transaction 

classes. Each class defines: (1) the set of entities that instance transactions read; (2) the 

set of entities that instance transactions write; (3) the set of constraints that must be 

satisfied on the read and write entity sets prior to the invocation of a transaction; (4) the 

set of constraints that can be violated during the execution of an instance transaction; (5) 

the set of constraints that hold after the execution of the transaction is completed; and (6) 

the set of constraints that are violated after the execution of the transaction is completed. 

A very simple example of a transaction class is the class of transactions that have all the 



134 

entities in the database as their read set All other sets are empty since these transactions 

do not transform the. database in any way. 

The integrity constraints associated with transaction classes define a partial ordering of 

these classes in the form of a precedence ordering. Transaction classes are depicted as a 

finite state machine; the violation or satisfaction of specific integrity constraints defines 

a transition from one database state to another. Based on this, Kutay and Eastman define 

a concurrency control protocol that detects violations to the precedence ordering defined 

by the application-specific integrity constraints. Violations are resolved by communica

tion among transactions to negotiate the abortion of one or more of the conflicting trans

actions. 

The SCCP protocol uses a subset of the semantic information used by entity-state trans

actions. Some of this semantic information, like the read and write sets of each agent, 

and the conditions and effects of rules, are already provided by the rule definitions in 

EMSL. Later in this chapter, we extend EMSL to provide constructs for defining the 

consistency constraints of each rule, which can then be used to provide a semantics

based concurrency control policy. 

5.1.3. Semantics-Based Schedulers 

A third piece of infonnation, besides access patterns and integrity constraints, that can 

be used by schedulers is semantic infonnation about the purpose of transactions. Garcia

Molina observed that by using semantic infonnation about the purpose of transactions, a 

DBS can replace the serializability constraint by the semantic consistency constraint 

[Garcia-Molina 83]. The gist of this approach is that from a user's point of view, not all 

transactions need to be atomic. Garcia-Molina introduced the notion of sensitive 

transactions to guarantee that users see consistent data on their tenninals. Sensitive 

transactions are those that must output only consistent data to the user, and thus must see 

a consistent database state in order to produce correct data. Not all transactions that 

output data are sensitive since some users might be satisfied with data that is only rela

tively consistent. 



135 

For example, suppose that Bob wants to get an idea about the progress of his program

ming team. He stans a transaction T Bob that browses the modules and C source files of 

the project. Meanwhile, John and Mary have two in-progress transactions, T]ohn and 

T Mary' respecti vel y, that are modifying the modules and C source files of the project. 

Bob might be satisfied with information returned by a read-only transaction that does not 

take into consideration the updates being made by T]ohn and T Mary' This would avoid 

delays that would result from having T Bob wait for T]ohn and T Mary to fmish before 

reading the objects they have updated. 

Given the distinction between sensitive transactions and non-sensitive transactions, 

Garcia-Molina defines a new semantic correctness criterion that can be used to replace 

serializability. A semantically consistent schedule is one that transforms the database 

from one semantically consistent state to another. It does so by guaranteeing that all 

sensitive transactions obtain a consistent view of the database. Each sensitive trans

action must thus appear to be an atomic transaction with respect to all other transactions. 

It is more difficult to build a general concurrency control mechanism that decides which 

schedules preserve semantic consistency than it is to build one that recognizes serializ

able schedules. Even if all the consistency constraints were given to the DBS (which is 

not possible in the general case), there is no way for the concurrency control mechanism 

to determine a priori which schedules maintain semantic consistency. The DBS must 

run the schedules and check the constraints on the resulting state of the database in order 

to detennine if the schedules maintain semantic consistency [Garcia-Molina 83]. Doing 

that, however, would be equivalent to implementing an optimistic concurrency control 

scheme that suffers from the problem of rollback. In order to avoid rollback, the concur

rency control mechanism must be provided with infonnation about which transactions 

are compatible with each other. 

Two transactions are said to be compatible if their operations can be interleaved at cer

tain points without violating semantic consistency. Having the user provide this infor

mation, of course, is not feasible in the general case because it burdens the user with 

having to understand the details of applications. However, in some applications, as in 

RBDE, this kind of burden might be acceptable in order to avoid the perfonnance 



136 

penalty of traditional general-purpose mechanisms. If this is the case, the user (the 

project administrator in the case of RBDE) must still be provided with a framework for 

supplying information about the compatibility of transactions. 

Transactions are categorized into types depending on the specifics of the application, in 

particular, the kinds of data objects and operations on them, supported by the applica

tion. Each transaction type is divided into steps with the assumption that each step must 

be performed as an indivisible unit. A compatibility set associated with a transaction 

type defines allowable interleavings between steps of transactions of the particular kind 

with the same or other kinds of transactions. Depending on the compatibility sets of dif

ferent types of transactions, various levels of concurrency can be achieved. At one ex

treme, if the compatibility sets of all kinds of transactions are empty, the mechanism 

reverts to a traditional locking mechanism that enforces serializability of the long trans

actions. At the other extreme, if all transaction types are compatible, the mechanism 

only enforces the atomicity of the small steps within each transaction, and thus the 

mechanism reverts to a system of shon atomic transactions (Le., the steps). In advanced 

applications where this kind of mechanism might be the most applicable, allowable in

terleavings would be between these two extremes. 

The SCCP protocol categorizes transactions into five types, and uses this type infor

mation to resolve conflicts between transactions. Only one type of transaction is con

sidered "sensitive"; SCCP guarantees that these transactions see a consistent state of the 

database. The "sensitivity" of the other four types of transactions depends on their 

type. In the rest of this chapter. we first extend EMSL with consistency predicates that 

can be used to define semantic consistency constraints. and then we present the SCCP 

protocol that uses these constraints as a basis for concurrency control. 

5.2. Distinguishing Between Consistency and Automation in RBDE 

Given the EMSL language and the rule execution model described in chapter 2, the ad

ministrator has no way of specifying any semantic information explicitly in a way that 

can be used to resolve concurrency conflicts. The best RBDE can do once a conflict is 

detected by the NGL protocol is to abort the transaction that caused the conflict in order 



137 

to guarantee the serializability of concurrent schedules. Aborting a transaction requires 

rolling it back so that every database operation performed as part of the transaction is 

undone. However, aborting transactions, especially those encapsulating long rule chains 

that involve many operations, is not always necessary in order to resolve conflicts. 

For example, suppose that Bob requested to edi t a CF I LE, spent several hours editing 

the me and then exited from the editor. RBDE asserts the effect of the edit rule, 

which initiates a forward chain to the compile rule on the CFILE. Now say that while 

evaluating the condition of compile, a conflict was detected between the compile 

rule and a concurrent rule, whose activity is being executed by a client. RBDE now has 

no choice but to abort the execution of the compile rule. Since compile is part of a 

rule chain, RBDE must decide whether or not to abort the whole chain (i.e., the edi t 

rule in addition to compi le). On the one hand, aborting the chain would require un

doing the editing session that lasted hours, which will not be appreciated by Bob. On the 

other hand, not aborting the whole chain might confuse other developers because they 

would assume that the CF I LE' s object code is up to date, which is not true since it has 

not been compiled after the last edit. 

RBDE does not have any information to help it make a decision. In order to be safe, 

RBDE must abon the whole chain, which, although wasteful of Bob's efforts, guarantees 

that the consistency of objects is maintained. If RBDE was provided with information 

about the consistency constraints of the project, it might have been able to determine 

whether not aborting a rule chain would violate any of these constraints. In particular, 

the administrator might want to specify that compiling a C file after it has been edited is 

not mandatory, while outdating the object code of the C file (e.g., by annotating it so that 

it is known to be out of date) after the C me has been edited is obligatory. There is no 

way to specify that the former reflects an opponunity for automation but the latter is a 

consistency constraint The problem'lies in the inability to distinguish between consis

tency and automation in EMSL. 



138 

5.2.1. Extending EMSL to add Consistency Predicates 

We extend EMSL by adding constructs that distinguish between two kinds of predicates 

in the conditions and effects of rules: consistency predicates and automation predicates. 

Consistency predicates are used to model the consistency constraints of a project ex

plicitly. As will be explained shortly, they constrain the chaining possibilities to only 

inference rules. Automation predicates define the desired but optional automation that 

the RBDE should attempt to carry out; they cause chaining among activation rules in 

order to automatically invoke development tools. 

A consistency predicate is denoted either by enclosing the predicate in square brackets 

rather than parentheses or by attaching the prefix consistency to the predicate. 

Predicates enclosed in parentheses or preceded by the prefix automation are con

sidered automation predicates. 

The purpose of a rule chain depends on the kind of predicate that inItiated the chain. A 

consistency predicate will initiate a chain to propagate changes in the database in order 

to transform the database to a consistent state (Le., to maintain consistency). An 

automation predicate will initiate a chain to invoke software tools and perform activities 

automatically. Given the distinction between consistency and automation predicates, the 

definition of change implication given in chapter 2, which provided the basis for chain

ing, is not sufficient. We need to defme two kinds of implications, corresponding to the 

two kinds of chaining predicates. 

Definition 1: If a consistency predicate, P, in the effect of a rule, r I, implies 
a predicate of any kind in the condition of another rule, r2, then if r2 is an 
inference rule, it is said to be a consistency implication of P. Otherwise, if r 2 
is an activation rule, then it is said to be an automation implication of P. 

We restrict consistency implications to inference rules because we do not want the 

results of executing one development activity (e.g., edit) to be contingent upon the ex

ecution of another (e.g., compile). It is feasible to allow a consistency implication to 

cause chaining to an automation rule if we have information about whether or not the 

automation rule can be rolled back in case of failure. This kind of information, however, 

is not available in EMSL. 

Definition 2: If an automation predicate, P, in the effect of a rule, r 1, implies 



a chaining predicate of any kind in the condition of another rule, r2, then r2 
is said to be an automation implication of P. 

139 

RBDE combines consistency and automation predicates as follows. After the client has 

finished executing the activity of a rule, R, and asserting one of the effects of R, the RP 

(rule processor) must carry out all the consistency implications of each predicate in the 

effect. If any of these implications (rules) cannot be immediately fired (Le., because its 

condition is not satisfied or because of a locking conflict), then R (more precisely, R's 

activity and its effect on the database) must be rolled back. 

Automation assignment predicates in the effects of a rule, on the other hand, cause the 

RBDE to try to carry out all possible automation implications on a "best effort" basis. 

This means that the RBDE tries to fire all the rules (both activation and inference) whose 

conditions become satisfied as a result of the change to the objects' attributes caused by 

asserting the automation assignment predicates in one of the effects of the original rule. 

Not being able to fire any of these rules does not affect the Validity of the original rule 

that caused the chaining. These automation chaining semantics differ from the chaining 

model presented in chapter 2. 

A consistency predicate in the condition of a rule is a constraint that must be satisfied. If 

the value of the predicate is TRUE, the evaluation of the condition proceeds. If the 

value is FALSE, the evaluation stops and the value of the whole condition is UNSA TIS

FIABLE. RBDE does not try to make the predicate satisfied but instead informs the user 

that the command he requested cannot be executed. In contrast, if an automation predi

cate in the property list of a rule is evaluated to be FALSE, RBDE initiates an automa

tion backward chain to try to make it satisfied. Automation backward chaining causes 

both activation and inference rules to be fired during the chain, possibly causing the 

invocation of activities. 

In order to control the automation behavior of RBDE, automation predicates in the ef

fects of a rule can be preceded by the prefix no forward to prevent them from initiat

ing forward chaining. Similarly, automation predicates in the condition of a rule can be 

preceded by the prefix no backward to prevent them from initiating backward chain-



140 

ing. Automation predicates can be preceded by no_chain to prevent any kind of 

chaining from or into them. Both consistency and automation predicates in the effects of 

a rule can be preceded by no _backward to prevent backward chaining to them by 

automation predicates. Finally, both kinds of predicates in the condition of a rule can be 

preceded by no_forward to prevent forward chaining into them by automation predi

cates in the effects of other rules. Note that consistency forward chaining initiated by a 

consistency predicate in the effect of a rule cannot be "turned off". Therefore, if a 

consistency predicate in the effect of a rule is preceded by no forward or 

no_chain, the loader will consider this an error. 

To illustrate the distinction between consistency and automation predicates, consider the 

rules of figure 5-1. These rules are the same as the rules in figure 2-12 in chapter 2, 

except that some of the predicates of the compile and dirty rules have been changed 

to be consistency predicates (enclosed in square brackets instead of parentheses). Also, 

no_chain, no_forward and no_backward prefixes have been added to control 

the automation caused by the predicates of the rules. 

If a user requests to edit a CFILE object (Le., instance of the class CFILE) but the 

value of the reservation_status attribute of the object is not equal to "Check

edOut", the RP initiates backward chaining to fire the reserve rule automatically. If 

the . first effect of reserve is asserted, changing the value of the 

reservation_status attribute to "CheckedOut", the editor is invoked on the cor

responding me. Note that the condition of edi t could have been not satisfied because 

the value of the locker attribute is not the same as the current user (Le., the user who 

requested the edit command), even though the reservation status attribute is 

equal to "CheckedOut". In this case, RP will not initiate a backward chain to 

reserve because the predicate (? f .locker = CurrentUser) is preceded by 

no_chain, which prevents backward chaining into it. 

In any case, if the condition of edi t becomes satisfied, the editor is invoked. Once the 

editing session is completed and the effect of edi t has been asserted, RBDE fires the 

compile rule since the assignment predicate, (?f. status = NotCompiled), in 

edit's effect implies the predicate [?c. status = NotCompiled] in compile's 



reserve [?f : FILE]: 

no_backward (?f.reservation_status = Available) 

{ reserve output: ?f.contents ?f.version } 

(and no forward (?f.reservation status = CheckedOut) 
no=chain (?f.locker a CurrentUser»; 

edit [?f : CFILE]: 

(and (?f.reservation status a CheckedOut) 
(?f.locker = CurrentUser» 

{ edit output: ?c.contents } 

(and no_backward (?f.status a NotCompiled) 
no_backward (?f.timestamp - CurrentTime»; 

compile [?f : CFILE]: 
(bind (?h to all HFILE suchthat 

- (linkto [?f.hfiles ?h]») 

no_backward (?f.status - NotCompiled) 

{ compile ?f.contents ?h.contents "-g" 
output: ?f.object_code ?f.error_msg 

(and [?f.status = Compiled] 
(?f.object timestamp - CurrentTime»; 

(?f.status = Error); 

dirty [?c : CFILE]: 

no backward (?c.status - Compiled) 
{T 
(?c.status - NotArchived); 

archive [?f : CFILE]: 
(bind (?m to all MODULE suchthat (member [?m.cfiles ?f]» 

(?l to=all LIB suchthat (linkto [?m.libs ?l]») 

(exists 71): 
no_backward (?f.status - NotArchived) 

{ archive ?f.object_code output: ?l.afile 

(?f.status - Archived); 
(?f.status - Error); 

The predicares enclosed in square brackets "[ ... ]" are consistency predicates. whereas 
those in parentheses "( ... )" are automation predicates. 

Figure 5·1: Example Rules Containing Consistency Predicates 

141 



142 

propeny list. If the RP cannot execute compile for any reason (e.g., a concurrency 

conflict), the execution of the edi t rule is not invalidated in any way. The reason is 

that compile is an automation implication of edit. 

In contrast, the dirty rule is noted as a consistency implication of the assignment 

predicate [?f. status = NotCompiled] in the fIrst effect of the compile rule. 

RBDE must be able to fIre di rt y in order for the changes made by this assignment 

predicate to become permanent. If it cannot do that for any reason (e.g., a concurrency 

conflict), the user's compilation is undone by reverting the values of the attributes 

object_code, error_msg, status and object_timestamp of the CFILE ob

ject to what they were before the compile rule was fIred. This does not affect the 

changes that the editor introduced. 

The dirty rule (which is an inference rule) has one consistency predicate in its effect. 

This predicate implies the predicate (?c. status = NotArchi ved) in the propeny 

list of the archive rule. However, since the archive rule is an activation rule, it is 

noted as an automation implication (rather than a consistency implication) of di rt y. 

5.3. Revised Rule Execution Model 

The previous example is meant to give an idea about how the chaining behavior in 

RBDE is affected by the introduction of consistency and automation predicates. In this 

section, we revise the chaining algorithms of chapter 2. These revisions are necessary 

for the SCCP protocol, which we will present later in this chapter. 

5.3.1. Compiling Forward and Backward Chains with Consistency 

Predicates 

As explained earlier, there are three kinds of rule chains that can be initiated by the two 

different kinds of chaining predicates. The routine for compiling forward and backward 

chains, shown in figure 2-14 in chapter 2, must be revised to take into account the dis

tinction between automation and consistency forward chains. Note that there is only 

automation backward chaining. 



routine COMPILE_CHAINS(); 

/* Predicate Table is global variable. */ 
Begin 

For each predicate, pi, in the Predicate Table Do 
Begin 

If pi is not a chaining predicate Then 
continue; 

For each predicate, p2, in the Predicate Table Do 
Begin 

/* Don't chain to same predicate. */ 

If pi ... p2 Then 
continue; 

If pi is an assignment predicate Then 
Begin 

If p2 is an assignment predicate Then 
continue; 

Else If pi implies p2 Then 
Begin 

If p2 is preceded by either no_forward 
or no chain Then 

continue; 
If pi is a consistency predicate Then 

Begin 
r :- rule containing p2; 
If r is an inference rule Then 
add CODS. rorward cbain f rom pi to p2; 

Else 
add auto. rorward chain from pi to p2; 

End; 
Else 

End; 
End; 

add auto. forward chain from pi to p2; 

Else If pi is a property predicate Then 
Begin 

End; 
End; 

End. 

If pi is a consistency predicate Then 
continue; 

If p2 is not an assignment predicate Then 
continue; 

Else If p2 implies pi Then 
Begin 

End; 

If p2 i~ preceded by no_backward or 
no chain Then continue; 

add backward chain from pi to p2; 
End; 

Figure 5·2: Compiling Automation and Consistency Chains 

143 



144 

Consistency forward chaining is triggered when a consistency assignment predicate is 

asserted in the effect of a rule. As defined earlier, consistency forward chains involve 

only inference rules. Thus, after determining that an assignment consistency predicate, 

pl, in the effect of a rule, rl, implies another predicate, p2, in the property list of 

another rule, r2, the routine must check whether r2 is an inference or an activation rule. 

If r 2 is an inference rule, then the algorithm can insert a consistency forward chain from 

pl to p2. Otherwise, if the rule is an activation rule, the chain between pl and p2 

reverts to an automation forward chain. Automation predicates are treated exactly the 

same as in the earlier algorithm presented in chapter 2. The modified routine for compil

ing forward and backward chains is shown in figure 5-2. We now proceed to revise the 

chaining algorithms in RBDE. 

5.3.2. Consistency and Automation Forward Chaining 

Distinguishing between consistency and automation predicates does not affect backward 

chaining since consistency predicates do not initiate any backward chaining. Forward 

chaining, however, must be revised to distinguish between consistency implications and 

automation implications. Mter one of the effects of a rule, r, is asserted, the RP should 

attempt to execute all the rules that are consistency implications of any of the predicates 

in the asserted effect. Only if the RP succeeds in executing all of these rules should it 

proceed to carry out the automation implications of r' s effect. 

Since the consistency implications of each predicate in the effect of a rule consist of only 

inference rules, the RP can execute these rules one after the other without interleaving 

their execution with other rules. Thus, a consistency forward chain is carried out atomi

cally by the RP. The algorithm to carry out the consistency implications of a rule is 

shown in figure 5-3. The routine returns FALSE as soon as it finds out that it cannot 

execute one of the consistency implications because of an unsatisfied condition or a con

flict. Note that we have not included any transaction operations in the algorithm for 

simplicity. 

The forward chaining algorithm presented in chapter 2 (figure 2-16) does not distinguish 

between consistency implications and automation implications. The revised algorithm is 



routine EXECUTE_CONSISTENCY_CHAIN (lut: a list of predicates); 

Begin 
ret value : = TRUE; 
For each predicate, p, in list Do 

Begin 
rule := rule containing p; 

/ * rule is an inference rule by def ini t ion. * / 

Evaluate the condition of ~k; 
If condition is not satisfied Then 

return FALSE; 
Else 

Begin 
chaining_list :- ASSERT_EFFECT (0, ~le): 
If chaining_list is not empty Then 

ret_value :- DO_FORWARD_CHAIN (rule, chaining_luI): 
End: 

End: 
return reI_value: 

End. 

Figure 5-3: Carrying Out Consistency Implications 

145 

shown in figure 5-4. The algorithm first attempts to execute all the consistency implica

tions of the asserted effect. Only if this succeeds, does it go ahead and insert the 

automation implications on the global execution stack16. The algorithm shows the dif

ference between consistency forward chaining and automation forward chaining. The 

basic difference is that automation forward chaining is a "best-effort" activity. It is 

always successful by defInition even if none of the rules in the chain can be executed. 

Consistency forward chaining, on the other hand, is successful only if all the inference 

rules in the chain, and all the inference rules on their consistency forward chains in turn, 

are executed successfully (Le., their conditions are satisfied, and thus their effects can be 

asserted). 

We have now completed revising all the rule execution and chaining algorithms to incor

porate consistency predicates. We now proceed to describe the scep protocol, which 

implements. the default concurrency control policy in RBDE. seep is semantics-based 

since it uses the distinction between consistency implications and automation implica

tions to resolve concurrency conflicts. 

16Recall that the server swirches context to the client's execution stack, making it the global 
Execution_Stack, before calling the RP. 



routine DO_FORWARD_CHAIN (rule, chaininLlist: list of predicates); 

Begin 
For each predicate, pJ, in chaining list Do 

Begin -
consistency list : = consistency forward chains of pJ; 
automation -list : = automation forward chains of pJ; 
If consistency_list <> empty Then 

ret value :- EXECUTE CONSISTENCY CHAIN (consistency_list); 
If ret:-value = FALSE Then -

return FALSE; 

For each predicate, p2, in automation list Do 
Begin 

rule : ~ rule containing p2; 
If rule is not on client's stack Then 

push rule on Eucution_Stack; 
End; 

If Execution Stack is empty Then 
return TRUE; 

Else 

End; 
End. 

Begin 
rule : - rule on top of Eucution Stack; 
ret value : - START RULE EXECUTION (rule); 
return ret_value; - -

End; 

Figure 5·4: Revised Forward Chaining Algorithm 

5.4. SCCP: A Semantics-Based Concurrency Control Protocol 

146 

In the nested transaction model we presented in chapter 4, the TM (transaction manager) 

distinguished between top-level transactions and subtransactions. In particular, each 

subtransaction encapsulates a rule that has been initiated as part of a chain. This distinc

tion is not sufficient to reflect the purpose of the agent encapsulated by the transaction. 

In the discussion above, we have distinguished between three kinds of chains. We need 

to cmy over the distinction to the transaction model. 

As explained in chapter 4, the TM is called from either the RP or the CE (command 

executor) to create a new transaction. Before the RP begins the execution of a rule, it 

calls the TM to create a new transaction that will encapsulate the rule's execution. 

When a rule is executed, the RP knows the kind of chain of which the rule is a part. For 

example, in the algorithm shown in figure 5-3, the RP knows that it is in the middle of a 



147 

consistency forward chain. This infonnation is passed on to the TM. The CE calls the 

TM for the sole purpose of creating and tenninating a transaction to encapsulate the ex

ecution of a built-in command. 

5.4.1. Transaction Types in RBDE 

Based on the infonnation passed to it by either the RP or the CE, the TM detennines the 

type of the transaction it is creating. In particular, the type of a transaction can be one of 

five possibilities: top-level, which represents the original rule corresponding to a 

user command, built-in, consistency forward chaining, automation 

forward chaining, and backward chaining, denoted by tl, bi, cfc, afc, 

and bc, respectively. We will sometimes use T i, z to denote a transaction, whose 

unique identifier is i and whose type is z. Thus, the type of Ti,tl is top-level and the 

type of Tj,cfc is consistency forward chaining. 

The type of a transaction detennines how it is nested. when it is committed, and when it 

must be aborted. Transactions of type bi do not have any subtransactions since they 

encapsulate the execution of built-in commands, which do not cause any chaining. 

These transactions are committed and aborted independently of other transactions. A 

transaction, Ti,tl, encapsulates the execution of an original rule (a rule that has been fired 

directly in response to a user's command rather than during chaining). To explain the 

possible nesting that transactions of this kind can have, we need to analyze forward and 

backward chaining a bit closer. 

In chapter 4, we stated that a nested transaction cannot commit until all of its subtran

sactioDS commit; if a transaction is aborted. then all of its subtransactions must be 

aborted as well. Thus, the nesting of a transaction reflects three purposes: (1) a causal 

relationship between the parent and ~e child (the parent caused the child), (2) a commit 

dependency between the parent and the child (the parent cannot commit until all of its 

children have committed) , and (3) an abort dependency between the child and the parent 

(Le., if the parent is aborted. then the child must be aborted), and sometimes between the 

parent and the child (Le., if a child is aborted. the parent must be aborted). The first 

purpose is common to all three kinds of chaining. In other words, the reason for the 



148 

existence of a subtransaction, Tj,z' regardless of its type z, is the execution of the parent 

transaction Ti,y' regardless of its type y. The second and third purposes, however, are 

not common to all types of nesting. Let us analyze the three kinds of chaining to under

stand why. 

5.4.1.1. Consistency Forward Chaining Transactions 

The fIring of a rule can lead to both a backward chain and a forward chain. In the case 

of forward chaining, there are two kinds of chains that can result: automation forward 

chaining and consistency forward chaining. For example, the execution of a rule r 1 can 

lead to an automation forward chain consisting of two rules, r 2 and r 3, and a consis

tency forward chain consisting of r4 and rS. The effects of rl cannot be made per

manent except if both r4 and rS, and all of their consistency implications, are executed 

successfully. Thus the transaction T l' encapsulating the execution of r 1, cannot commit 

until both of T4, encapsulating the execution of r4, and T 5' which encapsulates the ex

ecution of r S, have committed. Also, if either of T 4 or T 5 aborts, T I' must be abotted as 

well. This means that there is a commit and abott dependency between T 4 and T 5 on the 

one hand and T 1 on the other. 

5.4.1.2. Automation Forward Chaining Transactions 

Once T4 and T 5 have committed, T 1 can commit and release all of its locks without 

waiting for T2, which encapsulates the execution of r2, or T3, which encapsulates the 

execution of r3, to commit. The reason is that both r2 and r3 are automation implica

tions of r 1. Thus, T 2 and T 3 can be considered commit-independent from T l' Commit

ting T 1 before starting to execute T 2 and T 3 increases conCUITency because it allows 

other transactions to lock the objects that T 1 had locked. Otherwise, these objects would 

have remained locked for the duration of T 2 and T 3 even if they were not accessed by 

either T 2 or T 3' which would have been wasteful and overly restrictive. Thus, there is no 

need to have any kind of commit or abott dependency between a transaction T i,z and any 

of its subtransactions of type a f e. To simplify matters, instead of creating a transaction 

T i,afe as a subtransaction of another transaction. the TM creates all T i,afe as independent 

top-level transactions, which might themselves be nested. Consequently, a transaction, 

Ti,z' where z is either tl or afe, do not have subtransactions of type afe. Note that 



149 

since we do not perform automation forward chaining during backward chaining. a 

transaction Ti,bc has only subtransactions whose types are bc. 

5.4.1.3. Backward Chaining Transactions 

Backward chaining is more restrictive than automation forward chaining. In particular. 

no locks are released until the backward chaining cycle terminates and the original rule' s 

execution is completed. Thus. a transaction Ti,z and its subtransaction Tj,bc have a com

mit dependency (Le .• Ti,z cannot commit until Tj,bc has either committed or aborted). 

Aborting Ti,z' however, does not lead to aborting Tj,bc because the activities that Tj,bc 

has executed are not in any way invalidated if Ti,z is aborted. For example, say that in 

order to link a module, all of its CF I LE objects must have been compiled. If this con

dition is not satisfied, backward chaining will be initiated to compile the CF I LE objects 

that have not been compiled. If after compiling some of these CF I LE objects, the trans

action encapsulating the link rule is aborted, there is no reason whatsoever to roll back 

the compilation of the CF I LE objects that have been already compiled. 

To formalize our discussion of nesting and transaction types, we add an eighth element 

to the transaction notation. Consider a transaction T = (i, Ui, S, e, U, t,l, z), where Z is 

the type of the transaction and S is the set of its subtransactions. The following implica

tions hold (we use -+ to denote an implication): 

. 1. (z = bi) -+ (S = 0); a bui 1 t - in transaction is flat (Le., has no subtran

sactions). 

2. (z = t1)-+C~Tj,yE S I (y = be»v('~Tj,yE S I (y = cje»; a transaction of 

type top-level can have subtransactions that are either all backward 

chaining transactions or all consistency forward chaining 

transactions. Note that for the purpose of our discussion we consider a f c 

transactions independent 

3. (z = bc)-+CVTj,yE S I (y = be» v CVTj,yE S I (y = cje»; a transaction of 

type backward chaining can have subtransactions that are either all 

backward chaining transactions or all consistency forward 

chaining transactions. Note that we do not perform automation forward 

chaining during backward chaining. 



4. (z = cje)~CVTj,yE S I (y = cje»; a consistency forward 

chaining transaction can have only consistency forward 

chaining transactions as its subtransactions. Again, note that any afc 

transaction initiated by a c f c transaction are considered independent. 

5. (z = afe)~('VTj.yE S I (y = efe»; an automation forward 

chaining transaction can have only consistency forward 

chaining transactions as its subtransactions. 

150 

SCCP uses the infonnation about the types of the two transactions that interfered to 

detennine how to resolve the conflict. Recall that interference occurs only between two 

transactions that are independent of each other (Le., they are not part of the same nested 

transaction). Since the execution of each nested transaction is carried out serially (Le., 

no two subtransactions of the same nested transaction are executed concurrently), there 

can never be conflicts between two siblings or "cousins" in the same nested transaction. 

Before we discuss the details of how SCCP resolves conflicts, we need to analyze the 

different states that transactions can be in when a conflict occurs. SCCP uses this infor

mation when deciding how to resolve a conflict. 

5.4.2. States of Transactions 

As far as the Scheduler is concerned, a transaction can be in one of three states when a 

conflict occurs: active, pending, or inactive. When a transaction is created. its 

state starts out as active. During its active state, the transaction acquires all of its 

locks; it acquires either S or R locks on its read set and then (possibly after evaluating a 

rule's condition), acquires W or X locks on its write set. The exact types of locks 

depends on whether the transaction encapsulates a built-in command or a rule. Note that 

a transaction encapsulating the execution of a built-in command remains in an act i ve 

state for the duration of its existence. The reason is that the CE executes built-in com

mands atomically; thus, the transaction that encapsulates the execution of a built-in com

mand is also perfonned atomically by the TM. 

The TM executes one access unit from one transaction at a time. Thus, the TM could 

process the lock requests of only one transaction at a time. Consequently, there can be 



151 

only one transaction in an act i ve state at anyone time. We will often refer to this 

transaction as the active transaction. If any of the locks requested by the act i ve trans

action is incompatible with an existing lock, then a conflict occurs. The Scheduler, be

ing told by the TM that a transaction's state was act i ve when the conflict occurred, 

determines that this transaction must have been the one that caused the conflict; we call 

such a transaction the interfering transaction. There can only be one interfering trans

action out of two for each conflict. 

The transaction with which an interfering transaction conflicts can be in one of two 

states: either pending or inactive. A pending transaction is one that is waiting 

for the client to fInish executing an activity. Only tl, bc, and afc transactions can be 

in a pending state. Such a transaction encapsulates the execution of an activation rule. 

Recall that a transaction encapsulating the execution of an activation rule fIrst acquires 

read locks on its read set and then evaluates the property list of its condition; if the 

property list of the rule is satisfied, the transaction acquires write locks on its write set, 

and then the RP requests the client to execute the activity of the rule. Before the RP can 

do that, it must inform the TM, which changes the state of the transaction to pending; 

the transaction remains in that state until the execution of the activity is completed, at 

which point the state is changed back to act i ve. Note, however, that a conflict involv

ing a rule cannot occur after the activity of the rule has been executed because all the 

locks would have been acquired, and because the assertion of one of the rule's effects is 

performed atomically. Thus, as far as the Scheduler is concerned, a transaction in an 

act i ve state is one that is acquiring locks, rather than one that is asserting the effect of 

a rule. 

Finally, a transaction can be in an inact i ve state when another transaction interferes 

with it (ie., the interfering transaction requests a lock incompatible with the lock that it 

holds). The state inactive indicates that a transaction is waiting for backward chain

ing to terminate; it also implies that one of the transactions in the backward chaining 

cycle is in a pending state. Only transactions of type t 1 or bc can be in an 

inact i ve state because other types of transactions cannot initiate backward chaining. 

In addition to these three states, a transaction can be in an ended state. A transaction is 



152 

said to be in an ended state if its execution has been completed but it cannot be com

mitted until its subtransactions (all of type cfc) commit. Note that a conflict can in

volve such a transaction only indirectly. Since a conflict cannot directly involve a trans

action when it is in an ended state, we will not be concerned with this state here. In 

chapter 6, the PCCP protocol uses the fact that a transaction is in an ended state to 

execute some transaction actions that we will introduce in that chapter. 

State Type Description 

active all types TM is processing the transaction's request to acquire 
locks 

pending tI, be, afe transaction is waiting for client to finish executing 
activity 

inactive tI, be transaction is waiting for backward chaining to 
terminate 

ended all except bi transaction is waiting for consistency forward chaining 
to complete before it can commit 

Table 5-1: Transaction States in RBDE 

Table 5-1 summarizes the discussion about states of a transaction. Figure 5-5 shows a 

state diagram that depicts the different states that a typical transaction, encapsulating the 

execution of an activation rule, might pass through. Figure 5-6 shows a similar state 

diagram of a transaction encapsulating the execution of an inference rule. In both state 

diagrams, the diamond shaped box marks the point at which a conflict might happen; it 

is at this point that the Scheduler considers the state of the conflicting transactions to 

determine how to resolve the conflict The state of the transaction at each conflict point 

is shown in a box next to each diamond shaped character. 

One useful observation to note is that from the viewpoint of the Scheduler, a transaction 

whose state is active could not have performed any write operations yet. This obser

vation is very useful when deciding whether or not to abort an active transaction be

cause it tells us that aborting an active transaction simply involves releasing all of its 

locks. Only if the type of the transaction is c f c does aborting an act i ve transaction 

involve more than releasing the locks (Le., rollback and/or cascaded aborts). 

In order to incorporate the type and state of a transaction in the notation we introduced in 



Bind variables 

LEGEND 
,-----,I Transaction State 

o LM operation. 

<==) TM operation. 

CJ RP operation. 

Figure 5-5: State Diagram of Transaction Encapsulating an Activation 
Rule 

lS3 

chapter 3, we extend a transaction to be a 9-tuple (rather than a 7-tuple, as in chapter 4) 

T = (i, V j , S, c, u, t,l, z, s), where z is the type of T and s is the state of the transaction. 

The rest of the elements of the tuple are as before.17 

Now that we have described the states in which a transaction can be when a conflict 

occurs, we can proceed to explain the various possible kinds of interference that can 

occur between concurrent transactions in RBDE. 

17To remind the readtz'. j is the identifier of the ttansaction. Ui is the set of access units comprising the 
body of the ttansaction. S is the set of subttansactions of T. c is the command whose execution is 
encapsulaled in T. " is the owner of T. I is the timestamp of T. and 1 is the lock set of the transaCtion. We 
will still use T i z as a shorthand notation of a transaction when we are only conc:emed about the identifi~ 
and the type of the transaction. or simply Ti • when we are only concaned with identifying the nansaction. 



Bind variables 

LEGEND 
,,-----,I Transaction State 

o LM operation. 

( ) TM operation. 

c=:::> RP operation. 

Unsatisfiable 

Figure 5-6: State Diagram of Transaction Encapsulating Inference Rule 

5.4.3. Interference Between Two Transactions 

154 

As defined in chapter 4, a concurrency conflict (interference) occurs when a transaction 

Ti requests a lock, Ml i [ 0 ] , that conflicts with a lock. N 1 j [0] , held by another trans

action, Tj . From its knowledge about the types and states of transactions, the Scheduler 

can infer the following: 

1. 'The state of transaction Ti is active, and its type can be any of the five 

types (tI, bi, afe, efe, or be). 

2. The state of Tj must be either pending, in which case its type is one of 

three possibilities: tI, be or afe, or inaeti ve, in which case its type is 

either t 1 or be. 

Based on this, we can determine that there are two kinds of interference. The fU'St kind 



• 

155 

of interference occurs between a transaction in an act i ve state and a transaction in a 

pending state. A transaction in a pending state does not have any subtransactions; a 

transaction must be either inaet i ve or ended in order to have subtransactions. The 

type of the interfering transaction can be any of the five types. However, the type of the 

transaction that was interfered with can only be tl, afe, or be. The reason is that 

transactions whose type is either e f e or b i cannot be interfered with. 

Transactions of type efe execute atomically. Thus, they cannot conflict with each 

other. Similarly, since built-in transactions are executed atomically, they never con

flict with either bi transactions or efe transactions. More precisely, if a transaction, 

Ti,z' where z is either efe or bi, interferes (conflicts) with another transaction, Ti,y' 

then y must be either afe, tl, or be. Similarly, no transaction can interfere with a 

transaction whose type is either efe or bi. In other words, if a transaction Ti,z' where z 

is either tl, afe, or be, conflicts with another transaction, Tj,y' then y must be either 

tl, afe, or be. 

The second kind of interference is between an act i ve transaction and an inaet i ve 

transaction. The state inaet i ve implies that the transaction must have a set of sub

transactions of type be (backward chaining), and that one of these subtransactions is in a 

pending state (otherwise, no other transaction would have interfered with it). By the 

mere fact that a transaction is inactive, the Scheduler can infer that the transaction 

has not performed any write operations yet (since it is still waiting for backward chain

ing to make its condition satisfied). 

tl be ere arc bi 

tI yes yes no yes no 

be yes yes no yes no 

de yes .yes no yes no 

arc yes yes no yes no 

bi yes yes no yes no 

Table 5-2: Interference Between Active and Pending Transactions 

Tables 5-2 and 5-3 summarize our discussion about interference. The rows in both 



156 

tI be efc afc bi 

tl yes yes no no no 

be yes yes no no no 

efc yes yes no no no 

afc yes yes no no no 

bi yes yes no no no 

Table 5-3: Interference Between Active and Inactive Transactions 

tables represent act i ve transactions. The columns in the ftrst table represent trans

actions whose state is pending, and in the second table they represent transactions 

whose state is inact i ve. A "yes" indicates that a conflict between the two types of 

transactions can happen and a "no" means that a conflict cannot happen. The first row 

in table 5-2, for example, says that a t 1 transaction whose state is act i ve can interfere 

with pending transactions whose types are ti, bc, or afc. The first row in table 5-3 

says that an act i ve transaction whose type is t 1 can interfere with t 1 or bc trans

actions whose state is inactive. 

Given its knowledge about the states and types of transactions, and its inferred 

knowledge about the kinds of interference, the Scheduler constructs a priority-based 

scheme to resolve conflicts. The objective of the scheme is to abort the "least impor

tant" transaction in order to resolve a conflict. 

5.4.4. Priorities of Transactions 

In order to resolve conflicts between transactions, SCCP defines a priority for each 

transaction running in the server. When a conflict happens between two transactions, 

secp tells the TM to abort the transaction with the lower priority. Aborting an in

dividual ttansaction of any type entails rolling it back by undoing all the database write 

operations, if any, that were executed as part of the transaction. Aborting a transaction 

that has subtransactions requires that all the subtransactions be aborted first, and then the 

transaction can be aborted. Aborting a transaction that is a part of a consistency chain 

requires that the whole consistency chain, including the rule that initiated the consis

tency chain, be aborted. This is the only case in which cascaded aborts are necessary to 

maintain consistency. 



157 

5.4.4.1. Priority Based on Transaction Types 

The priorities of different transactions depend on two factors: (1) the type of transaction, 

and (2) whether or not the transaction involves an interactive operation. With respect to 

the type of a transaction, the priority of different types in descending order is: cfc 

(consistency forward chaining), tl (top-level), bi (built-in), bc (backward chaining), 

and finally afc (automation forward chaining). 

By making transactions of type cfc (consistency forward chaining) have the highest 

priority among the different types of transactions, SCCP guarantees that consistency for

ward chains will be allowed to continue unless they conflict with an interactive trans

action (defined shonly). The reason why this is imponant is that cfc transactions are 

the only transactions whose abort causes cascaded aborts. 

The second priority in tenns of types is top-level transactions. A top-level 

transaction encapsulates a rule that was fired directly in response to a user command. 

Aborting a top-level transaction entails rejecting or aborting the user's command. 

But since the whole point of RBDE is to assist users, it should try to minimize rejection 

of a user's commands. Thus, a top-level transaction is aborted only if it conflicts 

with another top-level transaction or with a consistency forward 

chaining transaction. 

Next in priority are transactions of type bui 1 t - in, which encapsulate the execution of 

built-in commands. Built-in commands are requested directly by the user and thus the 

same consideration given to top-level transactions should be given to them. Unlike 

rules, however, built-in commands are atomic. Thus, if a bui 1 t - in transaction con

flicts with a top-level transaction, it must be that the rule encapsulated by the 

top-level transaction is in the middle of its execution. If we choose to abort the 

top-level transaction. we must abort the execution of the activity, in which the user 

might have invested many hours. On the other hand, users invest very little time and 

effort into executing built-in commands. If RBDE rejects a user's request to execute a 

built-in command (because of a conflict), the user can easily request the command at a 

later time. For these reasons, we have decided to make built-in transactions have 

lower priority than t op-l eve 1 transactions. 



158 

The last decision involved in assigning the priorities of transaction types was to make 

backward chaining transactions higher in priority than automation forward 

chaining transactions. The reason for this is that backward chaining is only per

formed when the condition of the original rule corresponding to a user command is not 

satisfied. Thus, the purpose of backward chaining is to try to transform objects in the 

database to a state that allows RBDE to execute the user's command. Automation for

ward chaining, in contrast, is done solely for the purpose of automatically performing 

optional activities. These activities were not directly requested by the user and thus not 

performing them will not constitute an inconvenience to the user. Aborting a backward 

chain, however, might imply that a command directly requested by a user will not be 

performed. For this reason, we chose to make bc transactions have higher priority than 

a f c transactions. 

5.4.4.2. Priority of Interactive vs. Non-Interactive Transactions 

In addition to the type of transactions, SCCP considers whether the command encap

sulated by each transaction is interactive or not. With regard to interactive tools, a trans

action (of any type) that is either waiting for the execution of an interactive operation to 

complete, or that has already performed an interactive operation, has a higher priority 

than a transaction that does not involve interactive operations. An interactive operation 

is one that invokes an interactive tool. The reason for this prioritization is that we would 

like to decrease as much as possible the probability of aborting interactive activities, in 

which the human developers might have invested a lot of time and effort. 

H any of the access units of the agent whose execution is encapsulated by a transaction 

contains an interactive operation, then the transaction is termed an interactive 

transaction. We use IT i, z to denote an interactive transaction. The TM determines 

whether a transaction is interactive or not when it first creates the transaction, based on 

its type and the activity of the rule whose execution is encapsulated by the transaction. 

RBDE can determine whether or not a rule's activity is interactive if the rule is defined 

to be interactive by the administrator. A rule whose activity is interactive is denoted as 

such by adding the keyword interactive before the name of the rule. Since 

interactive is a keyword in EMSL, the loader will not accept a rule whose name is 

"interactive". We use Ir to denote an interactive rule, whose name is r. 



159 

To be more precise, given a transaction Ti,z' the TM denotes the transaction to be inter

active if: 

1. If z is not bi (built-in), and the rule encapsulated by Ti,z is interactive. 

2. If z = c f c, and the parent transaction of Ti,z is an interactive transaction. 

The second condition states that if a c f c transaction was initiated by an interactive 

transaction, then the cfc transaction is marked as being interactive. The reason for this 

is that aborting a transaction of type cfc will lead to aborting the transaction that in

itiated it, and if that transaction was interactive, then the Scheduler should take this into 

consideration before deciding to abort the c f c subtransaction. 

5.4.4.3. Priority-Based Conflict Resolution 

SCCP defInes the following priority scheme for transactions. Given two conflicting 

transactions, ITi,z and Tj,y' ITi,z has a higher priority than Tj,y if and only if one of the 

following conditions holds: 

1. The state of ITi,z is pending, or 

2. The state of ITi,z is either act i ve or inaet i ve, the state of Tj,y is ei

ther active or inactive, and z is higher priority than (or the same 

priority as) y. 

Condition (1) guarantees that interactive tools that are in the middle of execution will 

never be aborted because of a conflict with a non-interactive transaction. The rationale 

for the second condition is that interactive transactions whose state is act i ve or 

inacti ve have not yet invoked interactive tools, and thus they should not cause a 

transaction of higher priority (type-wise) to be aborted. 

Given two conflicting transactions, ITi,z and ITj,y' ITi,z is of higher priority than ITj,y if 

and only if: 

1. The state of ITi,z is active and z is efc whereas y is not efe, or 

2. The state of ITi,z is pending and y is not cfc, or 

3. The state of ITi,z is inact i ve, the state of ITj,y is act i ve, and z is 

higher priority than y. 



160 

The first and second conditions establish that interactive c f c transactions will never be 

aborted, regardless of their states. The second condition states that interactive trans

actions that are pending (Le., their interactive activity is being executed) should not be 

aborted because of a conflict with another interactive transaction whose activities have 

not been perfonned yet (Le., if this other transaction is in act i ve or inact i ve state). 

seep will never abort a transaction ITi,cfc because this kind of transaction has the 

highest priority, and it can never conflict with another transaction ITj,cfc (because con

sistency forward chains are carried out atomically). This guarantees that the results of 

interactive tools that have finished executing will never be rolled back. 

The third condition states that if a conflict happens between a transaction in an act i ve 

state and another transaction in an inactive state, both of which are interactive, then 

the priorities of the two transactions depend on their types. Neither transaction would 

have perfonned any write operations and thus there is no reason to favor one instead of 

the other based on their states. 

Given the priorities assigned to transactions, seep resolves concurrency conflicts as fol

lows. If a conflict is detected between an interactive transaction and a non-interactive 

transaction, seep uses the conditions discussed above to abort one of the transactions. 

If the two transactions are either both non-interactive or both interactive, then the resolu

tion depends on the types of transactions. seep aborts the transaction whose type is of 

lower priority. If the two transactions are of the same type, then seep aborts the one 

that requested the conflicting lock (as opposed to the one that already holds the lock). 

Only in the case where both transactions are of type be does seep use the timestamps 

of the transactions to decide which one to abort. The reason is that be transactions have 

triggered backward chains; it makes sense to abort the more recent transaction because 

RBDE wouldn't have spent as much time and effort executing the backward chain it 

initiated. The secp protocol is given in figure 5-7. 



routine DEFAULT_RESOLUTION (ri,z' 1),y: conflicting transactions) i 

/* Ti,z is the interfering transaction. */ 
/* Tj,y is the transaction interfered with. */ 

Begin 

If Tj,z is interactive and Tj,y is not Then 
Begin 

If y is of higher priority then z Then 
TM abort (i); 

Else -
TM_abort U); 

End; 

Else If 1),y is interactive and Ti.z is not Then 
Begin 

If state of 1),y is "pending" Then 
TM abort (i); 

Else If y is higher or same priority than z Then 
TM abort (i); 

Else -
TM_abort U); 

End; 

/* Either both are interactive or both are not. */ 

Else If z - y Then 
If z "" be Then 

If Ti.z's timestamp is older than Tj.y's Then 
TM abort U); 

Else-
TM abort (i); 

Else -
TM_abort (i); 

Else If z is of lower priority then y Then 
TM abo rt (i); 

Else-
TM abort (j); 

End. -

Figure 5·7: Default Conflict Resolution Policy Implemented by SCCP 

5.4.4A. Details of Aborting Transactions 

161 

The only action taken by SCCP to resolve a conflict is to abort one of the conflicting 

transactions. We have not yet discussed the exact details of aborting a transaction. We 

discuss these details now to complete our discussion of SCCP. 

The details involved in aborting a transaction depend on the type of the transaction, its 



162 

state, and whether or not it is interactive. Aborting any transaction involves undoing all 

the write operations that the transaction has perfonned, regardless of the type of trans

action. However, as explained before, a transaction whose state is act i ve would not 

have perfonned any write operations yet, so aborting an act i ve transaction simply in

volves releasing the locks in its locks set, deleting its log file and clearing its entry from 

the transaction table. One complication involves cfc transactions. 

Aborting a cfc transaction involves, in addition to aborting the transaction itself, abort

ing all the ancestors of the transaction up to and including the first ancestor whose type 

is not c f c (i.e., the transaction that initiated the consistency forward chain). 

A transaction, Ti, whose state is inactive must be either a tl transaction or a bc 

transaction. As explained before, one of the subtransactions, Tj , of Ti must be in a 

pending state. Thus, aborting Ti requires fmishing the execution of Tj (not aborting it, 

since that is not necessary), and then simply releasing the locks in the lock set of Ti. 

Finishing a pending transaction of type bc means that the transaction is allowed to 

continue executing normally (Le., one of its effects is asserted, and all of its consistency 

implications are carried out), except that instead of continuing the backward chaining 

cycle, the cycle is terminated. 

Aborting a transaction whose state is pending (i.e., it is in the middle of executing a 

development activity), requires that the server send a message to the client telling it to 

abort the activity in progress. This assumes asynchronous communication between the 

server and the clients; this kind of communication is not implemented in MARVEL, so 

our implementation of SCCP is limited by this fact, as will be explained in section 8.2.-

s.s. Summary 

In this chapter, we analyzed the EMSL and RBDE to fmd clues toward a solution of the 

concurrency control problem. We discovered that rules serve two distinct purposes, to 

express, enforce and maintain consistency and to express and carry out opportunities for 

automation. Maintaining consistency is mandatory, whereas carrying out automation is 

optional. We extended EMSL to distinguish between consistency predicates and 



163 

automation predicates in the conditions and effects of rules. Chaining resulting from 

consistency predicates is considered mandatory, whereas chaining initiated by automa

tion predicates is optional. The distinction between these two kinds of predicates (and 

the three different kinds of chains that result from them) is used by the Scheduler in 

RBDE to provide a semantics-based concurrency control policy. 

The distinction between consistency and automation rule chains is used by the TM to 

distinguish between five types of transactions: t 1 (top-level), b i (built-in), e f e (con

sistency forward chaining), afe (automation forward chaining), and be (backward 

chaining). The type of each transaction is one piece of information used by the SCCP 

protocol to resolve a concurrency conflict 

Another piece of information that the TM makes available to the Scheduler is the states 

of the two transactions that interfered. When a conflict occurs one of the transactions in 

an act i ve state (Le., it is requesting locks) while the other is in either an inaet i ve 

(waiting for backward chaining to terminate) or pending (waiting for the activity of 

the rule to be completed) state. 

The last piece of information used by the Scheduler is whether or not the rule whose 

execution is encapsulated in a transaction is interactive (Le., invokes an interactive tool). 

Based on this information, in addition to information about the types and states of trans

actions, SCCP implements a priority-based scheme that aims at aborting the "least im

portant" of the two conflicting transactions, to resolve a conflict The scheme avoids 

the possibility of cascaded aborts; it also does not suffer from deadlock, and attempts to 

minimize the amount of work: that must be undone. 

Table 5-4 summarizes SCCP's mechanism for resolving conflicts between act i ve 

transactions and pending transactions. The I before a transaction type stands for "in

teractive". The columns are different transaction types whose state is pending, while 

the rows are transactions whose state is active; note that there are no pending trans

actions of type efe, Iefe or bi. A "0" means that SCCP resolves the conflict by 

aborting the pending transaction. A blank means that SCCP resolves the conflict by 

aborting the active transaction. For example, the top leftmost box is "0"; this means 



164 

Itl tl Ibe be lafe afe 
Icfe 0 0 0 0 0 0 

cfe 0 0 0 

Itl 0 0 

tl 0 0 

bi 0 0 

Ibe 0 

be 0 

lafe 
afe 

Table 5·4: Resolving Conflicts Between Active and Pending Transactions 

that if a conflict occurs between an active transaction of type Iefe and a pending 

transaction of type Itl, SCCP will ask the TM to abort the pending transaction. The 

leftmost box on the second row is blank, which means that SCCP will resolve a conflict 

between an active efe transaction and a pending Itl transaction by aborting the 

active efe transaction. 

tI Itl be lbe 
Icfe 0 0 0 0 

cfe 0 0 0 0 

Itl 0 0 0 0 

tl 0 0 0 0 

bi 0 0 

Ibc 
be 

lafe 
afe 

Table 5·5: Resolving Conflicts Between Active and Inactive Transactions 

Table 5-5 summarizes SCCP's algorithm for resolving conflicts between act i ve trans

actions and inaet i ve transactions. The columns are different transaction types whose 



165 

state is inactive, while the rows are transactions whose state is active; note that 

the only transactions that can be in an inact i ve state are t 1 and bc transactions. 

Again, a "0" means that SCCP resolves the conflict by aboning the inact i ve trans

action; a blank means that SCCP resolves the conflict by aboning the act i ve trans

action. An "X" indicates that SCCP resolves the conflict by aboning the more recent 

(based on the timestamp attribute) of the two transactions. 

This completes our discussion of the SCCP protocol. scep is project-specific only in 

the sense that the consistency constraints are. In the next chapter, we present a 

programmable protocol, PCCP, which can override SCCP and provide for a project

specific concurrency control policy. 





166 

Chapter 6 

Programming The Concurrency Control Policy 

In the previous chapter we presented the SCCP protocol, which implements the default 

semantics-based concurrency control policy in RBDE. When two transactions interfere 

with each other because of a locking conflict, SCCP resolves the conflict by aboning one 

of the two transactions, based on a hard-wired priority-based scheme l8. In this chapter, 

we present a mechanism for overriding this default scheme. The mechanism is com

posed of a Control Rule Language (CRL) and a frogrammable Concurrency Control 

frotocol (PeCP) , which provides the runtime environment for CRL. The project ad

ministrator uses CRL to write control rules, each of which describes a specific conflict 

situation and prescribes a set of actions to take to resolve the conflict. If a specified 

conflict occurs, it is resolved by executing the set of actions prescribed by the control 

rule instead of the actions pre-defmed by SCCP. 

We first explain the limitations of the SCCP protocol and motivate the need for control 

rules and the PCCP protocol. We then present the details of CRL; we explain the syntax 

and semantics of the language, and give examples that demonstrate its constructs. Next, 

we present the PCCP protocol and show how it uses control rules to implement a 

specific concurrency control policy. Finally, we explain how the TM is extended to 

suppon the primitive transaction operations that are required by PCCP to carry out the 

various actions prescribed by control rules. 

18Although the scheme is hard-wired, we still call the protocol a "flexible" concurrency control 
protocol because it is semantics-based and thus allows more flexible interactions among transactions. 



167 

6.1. Limitations of the SCCP protocol 

SCCP uses the infonnation about the types, states and timestamps of the two trans

actions involved in a conflict, as well as whether or not the commands whose executions 

are encapsulated by the transactions are interactive, to determine which of the two trans

actions to abon. Although SCCP employs a semantics-based policy that is less restric

tive than traditional locking schemes, seep has three limitations: 

1. The priority scheme in secp is hard-wired and thus cannot be changed to 

provide members of the same team of developers more flexibility. 

2. The only action SCCP takes to resolve a conflict is abort. 

3. secp does not use some of the available semantics about transactions. 

The fIrst limitation is caused by the lack of constructs in EMSL for modeling teamwork. 

Members of a development team that is responsible for completing a panicular develop

ment task share resources and expertise. It is often desirable to make the interactions 

among members of the same team more flexible than those between members of one 

team and members of another team. Given the constructs we have presented thus far in 

this dissertation, there is no way for the project administrator to identify members of a 

development team as such. In chapter 7, we extend EMSL with two constructs, sessions 

and domains, that model teamwork, and integrate these two constructs into CRL. 

The second limitation is inherent in all aggressive schedulers. If the project ad

ministrator wants the Scheduler to take actions other than abort to resolve specifIc 

conflicts, the administrator must describe the exact conflicts to the Scheduler, and 

prescribe the alternative actions to resolve these conflicts. To do that, we must provide a 

specification language and a runtime environment for this language; in addition, the TM 

in RBDE must be extended to provide primitive transaction operations to suppon any 

alternative actions. 

Overcoming the last limitation is more complicated. When a conflict occurs, the TM 

knows three pieces of infonnation: the two transactions that caused the conflict, the ob

ject over which the two transactions conflicted, and the two lock types that caused the 

conflict. There are several other pieces of infonnation that are ignored. 



168 

For example, suppose that John requests to compile a CFILE object, main. c. The 

TM encapsulates the execution of compile main. c in a transaction TJoho' During its 

execution, TJohn obtains the lock WI John [main. c] before invoking the compiler on 

main. c. Suppose that while John is compiling main. c, Bob requests to edit 

main. c. In order to evaluate the condition of the edit rule, T Bob requests the lock 

Rlsob [main. c]. The NGL protocol determines that Rlsob [main. c] is incom

patible with WI John [rna in. c]. This conflict is passed to the Scheduler to determine 

how to proceed. 

Although the SCCP protocol knows the transaction commands involved in the conflict 

(edi t and compile), the two locks that caused the conflict, and the identity of the two 

users whose commands caused the conflict, it cannot use this information in a mean

ingful way. To be able to use these three pieces of information, the Scheduler must be 

provided with an "interpretation" of this information. For example, if the project ad

ministrator decides that all locking conflicts between the edi t command and the 

compi Ie command do not warrant aborting either, then the administrator must 

prescribe to the Scheduler what to do instead if such a conflict occurs (e.g., delay the 

edit until the compile is fmished or ignore the conflict since it is not really serious, 

etc.). 

In the rest of this chapter, we present a mechanism that overcomes the last two limita

tions of the SCCP protocol; the fIrst limitation, supporting group-oriented concurrency 

control policies, will be addressed in chapter 7. We present a language, CRL, and a 

runtime environment, both of which are used (together) to enhance our concurrency con

trol policy in three ways: (1) to prescribe actions other than abort; (2) to use semantic 

. information that SCCP does not use; and (3) to tailor the concurrency control policy to 

diffen:nt projects. We start by presenting CRL and then proceed to describe the PCCP 

protocol, which provides the runtime suppon for CRL. 



169 

6.2. The Control Rule Language 

The project administrator uses CRL to write control rules that describe specific conflict 

situations, and prescribe actions that the Scheduler should execute to resolve each of the 

conflicts. The administrator loads the control rules for a project into RBDE whenever he 

wants these rules to be in effect, on the fly. The component of RBDE responsible for 

loading control rules is the CRLoader. We discuss the semantic checks that CRLoader 

performs on the set of control rules before loading them throughout this section and the 

next section. 

Once the set of control rules written by the administrator of a project has been loaded, 

PCCP uses these control rules to provide a project-specific concurrency control policy. 

If no control rules are loaded into RBDE, the Scheduler employs SCCP to resolve con

flicts that occur during the development of the project. 

CRL should be viewed as a special-purpose language for specifying the concurrent 

aspects of a development process. CRL complements EMSL in this respect. CRL is 

thus akin to process programming languages that provide concurrency constructs, such 

as APPUA [Sutton 90] and ASL [Riddle 91, Kaiser 91]. APPUA is a programming lan

guage that extends Ada with constructs for encoding concurrent software processes. 

APPUA is thus much more general-purpose than CRL, which is specifically designed to 

prescribe conflict resolution actions in RBDE. 

The main construct provided by CRL is the control rule. Each control rule has five 

parts: a name, a single parameter, a selection criterion, a set of bindings, and a body 

composed of a set of condition-action pairs. The selection criterion and the bindings are 

optional; the other parts are mandatory. In this section, we present the details of each 

part of a control rule. explaining the syntax first and then describing the semantics. 



170 

6.2.1. Control Rule Parameters 

The parameter of a control rule must be an object class - one of the classes in the 

project type set. A control rule, cr, whose parameter is FILE, applies only to conflicts 

over instances of FILE or any of its subclasses (e.g., HFILE and CFILE). Each control 

rule must have a unique name, which is used to identify it. If a conflict occurs over an 

instance of a class and there are no control rules that apply to this class (or any of its 

superclasses), the Scheduler calls seep to resolve the conflict. Otherwise, the 

Scheduler calls peep to fire the control rule that most closely matches the conflict situa

tion among the control rules that apply to the class of the object over which the conflict 

occurred. 

6.2.2. The Selection Criterion of a Control Rule 

Many different conflict situations occur on instances of a single class; the project ad

ministrator might want to specify a control rule for each of these situations. The conflict 

situation to which a control rule applies is described in the selection criterion of the 

control rule. The selection criterion is a triple S = (C, U, <N,M». The first pan, C, is 

called the command specification (or command spec for short) and it specifies a set of 

commands. If the commands encapsulated by the two conflicting transactions are ele

ments (members) of the set C, then we say that the command spec matches the conflict 

situation. The second part, U, is the user specification (user spec for short), which 

specifies a set of users. Again, if the owners of Ti and Tj are elements of U, we say that 

the user spec matches the conflict situation. The last pan, the lock specification (lock 

spec for short), specifies the two incompatible lock types that caused the conflict. 

Each of the three parts of the selection criterion can be empty, which indicates that the 

information for that pan is immaterial to the selection of cr; we use 12' to indicate an 

empty pan. For example, the control rule whose selection criterion is 

({c1,c2,c3), 12', <.M.N» applies to conflict situations caused by the two lock types M and 

N, and involving any two of the commands cl, c2 and c3, regardless of the specific 

users who own the conflicting transactions. A control rule with the selection criterion 

(O, {Bob, Mary, fohn}, 12') applies to any conflict caused by transactions belonging to 



171 

Bob and Mary, Mary and John, Bob and John, Bob and Bob, etc. 19. Such a control rule 

basically establishes John, Bob, and Mary as a team (as discussed in chapter 7, this is not 

sufficient for modeling teamwork). 

A control rule, cr, with an empty selection criterion, called a generic control rule, ap

plies to all conflicts over instances of the class specified as the parameter. Such a con

trol rule will be selected by the Scheduler to resolve a conflict only if a more specific 

control rule cannot be found. 

compile_edit_cr [ CFILE ] 

selection criterion: 
userS: Bob, Mary, John; 
commands: edit, compile; 
lock_modes: R, W; 

Figure 6·1: The Selection Criterion of a Control Rule 

An example showing the name, parameter, and the selection criterion of a control rule is 

given in figure 6-1. The keywords are in bold face. This control rule applies to conflicts 

over a CF I LE involving any two of the users Bob, John and Mary; the control rule ap

plies only when the two users concurrently request to edit and compile the same 

CFILE, leading to a locking conflict (one of them will require an R lock in order to 

evaluate its condition while the other one would have already acquired a W lock in order 

to execute the activity). The selection criterion does not specify which of the two users 

requested which of the two commands and in which order. Note that both compile 

and edit might have been fired during chaining, rather than requested directly by the 

users. 

The selection criteria of the control rules written for a specific project determine which 

control rule the Scheduler will select to resolve a conflict that occurs during the develop

ment of the project. The selection is based on the notion of closest match. First of all, if 

any of the three parts of a selection criterion is not empty and it does not match the 

19 As will be discussed in the last chapter. it would be more meaningful if the user spec part specified 
user roles instead of user names or userids. 



172 

infonnation in the conflict situation, we say that there is no match between that selection 

criterion and the conflict situation. If the Scheduler does not find any control rule that 

matches the conflict situation, then the Scheduler will call SCCP to resolve the conflict. 

If there is a match, then the match can either be full or partial. Let us first define what 

we mean by a full match more formally, and then define what we mean by a closest 

partial match. 

Definition 1: Given a conflict situation C = (<Ti, Tp, <Mli[o], Nl}o]», and a 
selection criterion S=({c l , ... ,cll }, lui' ... ,uk},<M',N'», there is a full 
match between Sand C if and only if: 

1. Ti.command E {ci' ... , CII} 1\ Ttcommand E {ci' ... , CII}, and 

2. Ti.owner E lui' ... ,Uk} 1\ Tj.owner E {UI' ... , Uk}, and 

3. either Mlj[o].type = M' and Nl}o].type = N', or MIJo].type = N' and 

Nlj[o].type = M'. 

Note that the order of the elements within a set in the selection criterion is immaterial. 

Thus, all of the following selection criteria are considered identical: 

S = ({Mary, John, Bob}, {edit, compile}, <R,W», 

S = ({Bob, John, Mary), {edit, compile}, <R,W», 

S = ({Bob, Mary, John), {compile, edit}, <W,R». 

If the Scheduler does not find any control rule whose selection criterion fully matches a 

conflict, the Scheduler selects the rule whose selection criterion most closely matches 

the conflict How closely the selection criterion of a control rule matches a conflict 

depends on how many, and which, of the three parts of the selection criterion match the 

conflict situation. Given that we have three parts in a selection criterion and that each of 

these three parts can be empty, there are eight possible matches to a conflict situation. 

We need some notation to simplify the discussion of partial matches. We use the letter 

U to denote that the user spec of the selection criterion matches the owners of the two 

conflicting transactions. Similarly, we usc C and L to denote matches to the command 

spec and the lock spec of a selection criterion, respectively. Thus, a match UCL is a full 

match; CL denotes a partial match in which the command spec and the lock spec of the 

selection criterion match the conflict situation, but the user spec part is ~ (as op

posed' to non-matching). 0 denotes an empty selection criterion, which is the weakest 



173 

match to a conflict situation on an instance of the class (or a subclass of the class) 

specified as the parameter of the control rule. 

In order to detennine how closely a partial match matches a conflict situation, we assign 

a specificity level to each kind of partial match. We have a default assignment of the 

specificities, but the administrator can define an alternate assignment and load it with the 

control rules. The default specificity levels of partial matches are as follows: UCL = 7 

(full match), UC = 6, UL = 5, CL = 4, U = 3, C = 2, L = 1, and finally 0 = O. This 

assignment is based on the rationale that the administrator would want to write user

specific control rules, command-specific control rules, and lock-specific control rule, in 

that order. The higher the specificity level, the closer the selection criterion matches the 

conflict. If the Scheduler finds two control rules whose selection criteria partially match 

the conflict, the Scheduler selects the control rule whose selection criterion is more 

specific (i.e., its specificity level is higher). 

The selection criteria of two different control rules that apply to the same class cannot 

have the same match specificity with respect to a conflict situation. The reason for this 

is that if two control rules, crl and cr2, apply to class A, then their selection criteria 

must be different; if they are not, then the two control rules should be merged into one 

because both of them apply to exactly the same conflicts. The CRLoader will not load 

the set of control rules written by the project administrator if two control rules have both 

identical parameters and identical selection criteria. The administrator must either merge 

the two control rules or remove one of them, and then attempt to reload the control rules. 

Two selection criteria Sl = (CI, UI, <MI, NI» and S2 = (C2, U2, <M2, N2» , where 

CI = {ell' ... , el ll }, C2 = {c21' ... , c2m }, UI = {ul l, ... , ulA:}, and 

U2 = (u2I ' ... , u21). are different if: 

1. (3 cj e CII cj e C2) --+ ('V cj e CI, cj * cj ) cj t! C2, or 

2. (3 u1 e UII u1 e U2) --+ ('V um e UI, um * u1) um t! U2, or 

3. MI t! <M2, N2> v NI t! <M2, N2>. 

The first condition states that at most one of the commands in the command spec of S 1 

can be also in the command spec of S2. To understand the reason for this condition, 



174 

suppose that in the two selection criteria SI and S2, VI = V2, Ml = M2, and Nl = N2. 

Say that the command spec of SI is {edit, compile, build}, and the command spec of S2 

is {edit, view, archive, compile}; both edit and compile are pan of the two selection 

criteria. Now suppose that the conflict situation C = «Ti, Tj>' <M1Jo], Nl}o]», where 

Ti.command = edit, Ttcommand = compile, and both the user and lock specs of both 

selection criteria match the conflict situation. This situation results in ambiguity because 

the selection criteria of both of the two control rules fully match the conflict situation. 

Thus, the two control rules should be merged into one control rule whose selection 

criteria is ({edit, compile, build, archive, view}, VI, <Ml, Nl». 

The second condition states that at most one of the users in the user spec of SI can be 

also in the user spec of S2. The justification of the second condition is similar to the 

reasoning above. The third condition simply states that the two lock pairs are not iden

tical. In other words, two selection criteria are different if anyone of the three parts of 

the first criterion is different from the same part of the second criterion. Different selec

tion criteria do not have the same specificity with respect to a conflict; one of them must 

be more specific to the conflict. This realization is used by the Scheduler when search

ing for the control rule that is most specific to a conflict. 

6.2.3. The Binding Part 

The third part of a control rule is a set of binding statements, each of which binds one 

variable to either a transaction or to a lock. The binding statements are used to bind the 

information available about a conflict situation (and other information that can be 

derived from it) to variables; the bound variables are then used in the body -of the control 

rule. Each binding statement consists of a variable name, beginning with "?" (to keep 

notation consistent with EMSL), followed by":" and a binding function. There are 

five biDding functions in CRL (in chapter 7 we add two more): holds lock () , 

requested_lock (), lock (), parent (), and top-level (). 

The frrst three functions are used to bind the two conflicting transactions, and the two 

locks that caused the conflict, to variables that then can be used in the body of the con

trol rule. CRL uses the term con f 1 i ct _ ob j ect to refer to the object over which the 



175 

conflict that fIred the control rule occurred. We will call this object the conflict object 

hereafter. Holds_lock () (or requested_lock () returns the identifIer of the 

transaction that holds (or requested) one of the two incompatible locks on the conflict 

object. These two functions can appear only once in the binding part of a control rule. 

Lock (?t) returns the lock that the transaction bound to ?t either holds or has re

quested (whichever the case may be) on the conflict object. The last two functions are 

used to obtain additional information about the conflicting transactions. Parent (?t) 

(or top-level (?t) ) returns the parent (or top-level) transaction of the transaction 

bound to the variable ? t. 

Before a variable can be used in the right hand side (Le., after the "=") in a binding 

statement, or in the body of a control rule, the variable must first be bound. To simplify 

the discussion, we use the term "entity" to refer to either the transaction, conflict object, 

or lock bound to a variable. 

selection criterion: 
commands: edit, compile; 
users: Mary, John, Bob; 
lock_modes: R, W; 

bindings: 
?tl - holds lock (); 
?t2 - requested lock (); 
?11 - lock (?t1); 
?12 - lock (?t2); 
?t3 - parent(?t1); 
?cl - top-level (?t1); 
?c2 - top-level (?t2); 

Figure 6·2: The Binding Part of Control Rule 

To illustrate binding statements, consider the partial control rule shown in figure 6-2. 

Suppose that John and Bob requested two commands that initiated the two rules edi t 

and compile, respectively. The TM encapsulates the execution of edit in a trans

action, T John' and the execution of c omp i 1 e in another transaction, T Bob' Further sup

pose that T Bob has acquired a W lock on main. c, and is in the process of compiling 

main. c. Meanwhile, TJohn has requested an R lock on main. c, to evaluate the con-



176 

dition of the edit rule. TJohn's request causes a conflict; suppose that the Scheduler 

fires the control rule shown in figure 6-2 to resolve the conflict 

When processing the control rule, ? t 1 will be bound to T Bob' ? t 2 to T John' ? 11 to 

Writesob[main.c], and finally ?12 will be bound to ReadJOhn[main.c]. If 

TJohn is a top-level transaction, then ?c2 will be assigned to TJohn as well (since a 

top-level transaction is its own top-level). Assuming that TBob is pan of a chain, 

? t 3 will be assigned the parent transaction of T Bob' and c 1 will be bound to the top

level transaction of the nested transaction containing T Bob' All of these entities (the 

transactions and the locks) can now be referred to in the body of the control rule. 

6.2.4. The Control Rule Body 

The last pan of a control rule is its body, which consists of a set of condition-action 

pairs. The conditions are evaluated in order, stopping at the first one that evaluates to 

TRUE; the set of actions corresponding to the satisfied condition is ·executed. At most 

one set of actions, corresponding to only one satisfied condition, is executed. Each con

dition tests some properties of the bound variables. Note that when a variable is bound 

to a transaction, the condition might check the timestamp, the type, the owner, and the 

lock set of the transaction. The purpose of the condition is to enable the writer of the 

control rule to use the semantics of transactions and locks. 

6.2.4.1. Conditions 

The condition of a condition-action pair is a logical expression in which the connectives 

and, or and not are used to connect predicates. Each predicate is a simple atomic 

. fonnula that checks the value of one of the attributes of the entity bound to a variable. 

And. or and not are used as connectives to fonn the clauses. CRL suppons two kinds 

of predicates: comparison predicates .and set predicates. 

A comparison predicate compares the value of an attribute of the entity bound to a vari

able either to a constant or to the value of the attribute of another entity. Comparison 

predicates are of one of two fonns: either (?tl. attl op value) or 

(?t1.attl op ?t2.att2), where ?tl and ?t2 are variables that have been 



177 

bound in the binding part, at t 1 and at t 2 are attributes of the entities bound to ? t 1 

and ?t2, respectively, and value is a constant of the same type as attl. There are 

six comparison operations: "=" (equals), "!=" (not equals), ">" (greater than), "<" 

(less than), ">=" (greater than or equals), "<=" (less than or equals). 

As explained earlier, a variable can be bound to either a transaction or a lock. Locks 

have only one attribute, which is the type of the lock. Thus, the only operators that can 

be used in predicates involving locks are "=", "!=", ">" and "<". The last two are 

used to compare the strengths of two lock types. Furthermore, if the predicate is of the 

form (?v. type op value), where ?v is a variable bound to a lock, then value 

must be one of the six lock types20. If it is not, a semantic error is reported by 

CRLoader. 

Transactions, unlike locks, have nine attributes, of which we are concerned with only 

seven here. The values of the owner, type, command and st.ate attributes are 

strings; thus, the two operations "=" and "!=" are sufficient for comparing the values 

of these four attributes. Consider a predicate of the form (?t. att op value). If 

att is owner or command, then value can be any string (a user's id, such as bob, or 

the name of a command in RBDE, like edi t). If the attribute is state, then val ue 

must be one of the three possible states of a transaction. Finally, if the attribute is type, 

then value must be one of the five types of transactions (tl, bi, afc, cfc, or be). 

The timestamp attribute of a transaction is a number. Thus, all six comparison predi

cates are needed to compare this number with other numbers (either constants or the 

timestamp attribute of another transaction). By comparing the timestamps of two 

transactions, we can determine if the two transactions have executed (or are still execut

ing) concurrently. By comparing both the timestamp and the state attributes of 

two transactions, we can determine whether one transaction preceded (Le., has started 

and ended) before the other. 

~ecall that the lock types are not built-in but loaded from a tile together with the compatibility matrix 
and the srrength assignments. Thus, the administrator can derme alternative lock types and a compatibility 
mattix. and srrength assignments for lock types. 



178 

Both of the lockset and subtransactions attributes of a transaction are sets. To 

manipulate these attributes, we need set operations. CRL provides the two predicates 

member and notmember to check whether a particular transaction (or lock) is a mem

ber of a transaction's subtransactions (or lockset) attribute. In addition, CRL, 

like EMSL, supports existential and universal quantifiers, in CRL's case over members 

of either the subtransactions attribute or the lockset attribute of a transaction. 

bindings: 
?tl: requested lock(); 
?t2: holds lock(); 
?cl: top-level(?tl); 

body: 

if (and (forall member [?cl.subtransactions ?t] 
suchthat (?t.timestamp > ?t2.timestamp» 

(exists member [?tl.lockset ?l] 
suchthat (and (?l.object - conflict_object) 

(?l.type - R»» 

Figure 6-3: Example Control Rule Condition 

For example, the condition in figure 6-3 shows two clauses that manipulate set attributes 

of transactions. The first clause checks if the timestamp attribute of any of the sub

transactions of the transaction bound to ? c 1 is more recent (Le., greater) than the 

timestamp attribute of the transaction bound to ?t2. The second clause checks if the 

transaction bound to ? t 1 has acquired an R lock on the object over which the conflict 

occurred. Note that unlike EMSL, CRL does not need to distinguish between the bind

ing of the variable ? t and checking its attributes; the reason is that PeCP does not sup

port backward chaining and thus if a condition fails, pecp does not care why it failed 

(Le., which predicates caused it to fail), which is the reason for the separation in EMSL. 

The evaluation of the condition of a condition-action pair is very similar to evaluating 

the condition of an EMSL rule (in fact, in the implementation, much of the same code is 

used for both evaluations). If the complex clause comprising the condition of a 

condition-action pair is evaluated to be TRUE, then PCCP proceeds to execute the set of 

actions corresponding to the condition. 



179 

6.2.4.2. Actions in CRL 

The only action SCCP takes to resolve a conflict is to abort a transaction. CRL extends 

the possible actions the Scheduler can take to resolve a conflict by providing four primi

tive actions in addition to abort: terminate, suspend, merge, and notify. The 

ftrst three, like abort, are actions that the TM executes on speciftc transactions; the 

fourth is a notification mechanism used to send warning or explanation messages to 

users. The sequence of actions corresponding to the ftrst condition that is found to be 

TRUE is executed, one action at a time and in a serial order. The details of how pcep 
executes terminate and suspend are discussed later in section 6.3; the details of 

merge will be discussed in chapter 7 after introducing the notion of development 

domains. We give a brief overview of each action here. 

Abort (?t) tells the TM to abort the transaction bound to the variable ?t (which can 

be either one of the two transactions involved in the conflict that triggered the control 

rule, or an ancestor of one of these two transactions). As explained in chapter 3, abort

ing a transaction entails rolling it back. If the transaction is part of a consistency chain, 

the whole chain must be rolled back. If the transaction has subtransactions, then these 

subtransactions must be aborted ftrst. Terminate (?t) , in contrast, tells the TM to 

abort the transaction bound to ?t, but not to carry out any cascaded aborts; this action is 

used to stop a consistency chain that has caused a conflict, without rolling it back. 

Terminating a consistency chain in the middle is, by definition, a violation of the 

database consistency; it leaves objects in an inconsistent state. In general, this should 

never be allowed. It might be necessary under certain circumstances, however, to 

tolerate inconsistency temporarily, in order to save effort that would have been wasted if 

a consistency chain is aborted. We will present a technique for tolerating inconsistency 

later on in this chapter. 

Aborting or terminating a transaction is too severe an action under certain circumstances. 

For example, say that Bob wanted to link module ModA, while John is compiling f2 . c, 

which is contained in ModA. Instead of aborting the transaction encapsulating the ex

ecution of the 1 ink ModA command, the Scheduler might prefer to delay the 1 ink 



180 

activity until after the compilation of f2 . c, which is known to take a very short time, 

has been completed. 

Suspend (?t 1, ?t2), like blocking in traditional transaction mechanisms, involves 

suspending the execution of the transaction bound to the variable ? t 1 until after the 

execution of the transaction bound to ? t 2 fInishes. The execution of the transaction 

bound to ?tl is resumed thereafter. Suspending a transaction allows the execution of all 

the access units of another transaction to be done before the execution of the suspended 

transaction continues. Finishing the execution of the transaction bound to ?t2 entails 

completing the execution of the command encapsulated in the transaction, if the execu

tion of the command's activity has already started, and carrying out all the consistency 

implications (Le., inference rules) of the command; unlike normal execution, however, 

fInishing a transaction does not initiate any automation forward chaining transactions 

(i.e., the automation implications of the command are not carried out). 

Merge (?tl, ?t2) merges the two transactions bound to the variables ?tl and ?t2 

into one transaction. Merging two transactions involves transferring the set of locks and 

all the subtransactions of the transaction bound to the variable ?t 1 to the transaction 

bound to ? t 2, which continues normal execution from that point on. The owner of the 

transaction bound to ?tl will be informed that the execution of his command has been 

discontinued and that further chaining resulting from his command will be merged with 

another user's chain. The main pwpose of this action is to carry out as much of the 

automation implications of a user's command as possible. 

Finally, the notify (?t, "message") action is used to send a message to the 

owner of the transaction bound to ?t. If the server is not currently executing that user's 

command, the communication line between the server and the client would not be open 

until the client sends a message to the server. The TM inserts the notification message 

in the client's context so that before the server processes the next message of the client, 

it sends the notification message to the client. 

An example control rule that shows most of the syntax is shown in fIgure 6-4. This 

control rule is selected when a conflict, involving the two commands edi t and 



selection criterion: 
commands: edit, compile; 

bindings: 
?tl holds lock (); 
?t2 = requested_lock (); 

body: 

if (?tl.command - edit) then 
{ 

abort (?t2); 
notify (?t2,"User %s is updating object", ?tl.owner); 

} ; 

if (?t2.command - edit) then 
{ 

} ; 

notify (?t2, "User %s is compiling the object, 
I will let you edit it when (s)he's done.", ?tl.owner); 
suspend (?t2, ?tl); t suspend c2 until rl is finished. 

Figure 6-4: An Example Control Rule 

181 

compile, occurs over a CFILE object. The control rule specifies that if the edit is 

already in progress, then the compilation should not be started (Le., it should be 

aborted), which is what SCCP would have done; however, if the compilation is in 

progress, then rather than aborting the edit, delay it until the compilation, as well as all 

of its consistency implications, has been completed. This guarantees that no other trans

action will "sneak in" and "steal" the locks that the transaction bound to ?tl needs 

between the time the compilation is completed and when the edit command is re-issued 

(if it were aborted). 

_ This example is intended to give the reader a flavor of what control rules can express. 

We will now explain the details of how PeCP selects and executes control rules. We 

will give several examples that demonstrate how control rules can be used to prescribe 

some of the unconventional concmrency control policies that have been proposed in the 

literature. 



182 

6.3. PCCP: A Programmable Concurrency Control Protocol 

PCCP searches for a control rule whose selection criterion matches the conflict situation 

as closely as possible. In order to facilitate this search, the control rules are organized 

into a list of hierarchies, based on their parameters and their selection criteria. Each 

hierarchy is composed of all the control rules that apply to a single object class. Within 

a single hierarchy for a class, there might be several control rules that apply to different 

conflict situations that can occur over instances of the class. These control rules are 

organized based on the specificity of their selection criteria, so that pcep can find the 

most specific control rules when a conflict arises. The most general control rule for a 

specific class of objects, the generic control rule, has an empty selection criterion (Le., 

its specificity to any conflict is 0, as explained earlier). A generic control rule for class A 

can be applied when PCCP could not fmd a more specific control rule that applies to the 

conflict situation. 

Within the same hierarchy, control rules are organized into seven levels; each level cor

responds to a specificity level. In the following discussion, we assume that all the con

trol rules apply to object class A (Le., these control rules have A as their parameter). All 

the control rules whose selection criterion has a specificity level of 6 are grouped 

together at the first level; these control rules form a list. The selection criterion of each 

of these rules contains non-empty user spec, command spec, and lock spec. 

All the control rules whose selection criterion has a non-empty user spec and a non

empty command spec, but an empty lock spec, are grouped at the second level; the selec

tion criterion of each of these rules has a specificity level of 5. The remaining five levels 

are organized in the same way. Note that if the project administrator provides an alter

native assignment of specificity levels, then the six levels will be organized differently, 

based 011 the administrator-defmed assignment. 

The easiest way to explain how PCCP searches for the most specific control rule is to 

give an example. Suppose that PCCP is given a conflict situation 

C = (<I'John' T Mary'>, <.RIJohn[main.c], WIMary[main.c]», where main.c is an instance of 

class CFILE. John requested to edit main. c while Mary was compiling main. c. 



183 

TJohn causes a conflict when it requests a read lock on main. c (in order to evaluate the 

condition of the edit rule). PCCP is passed information about this conflict, so it at

tempts to resolve it by executing a control rule. 

PCCP first searches for the control rule hierarchy that applies to class CFILE. If PCCP 

could not fmd such a hierarchy, it informs the Scheduler that it could not resolve the 

conflict. If PCCP finds the specific hierarchy, it searches each of the six levels of the 

hierarchy in order, starting with the first level, and stopping when a control rule is found. 

If PCCP finds a matching control rule in the first level, then the match must have been 

full. In other words, the selection criterion of the control rule PCCP found must have 

been S = ({John, ... , Mary, .. , ), {edit, ... , compile, ... }, <R,W». If PCCP 

could not fmd a control rule that fully matches the conflict situation, it starts searching 

the second level to fmd a control rule whose user spec and command spec match the 

conflict situation. If PCCP finds a control rule whose selection criterion is 

S = ({John, ... , Mary, ... ), {edit, ... , compile, ... }, 0), it selects that control 

rule. Otherwise it goes on to the third level and so on. Recall that the order of the 

entries in a pair in a selection criterion is immaterial21 . 

Once PCCP finds a control rule, it is guaranteed that this is the most specific control rule 

(otherwise it would have found a more specific one earlier at a higher level). In the 

worst case, PCCP might have to search all the levels of the hierarchy. If no control rule 

matches the conflict situation, and if there is a generic control rule (Le., whose selection 

criterion is empty) for class CF ILE, then PCCP selects that generic control rule. If there 

is not a generic control rule, then PCCP gives up and informs the Scheduler that it could 

not resolve the conflict situation. 

21 Although this search routine is not the most efficient one, it is sufflCient for our purposes. We expect 
the number of control rules to be sufflCiently small that searching the conuel rule hierarchy will never be 
very costly. 



184 

6.3.1. Executing a Control Rule 

Once PCCP has selected the most specific control rule, it proceeds to bind the variables 

in the binding part of the control rule. PCCP then goes on to evaluate the condition of 

the first condition-action pair in the body of the selected control rule. 

The evaluation of the complex clause that comprises the condition is very similar to the 

evaluation of the property list of a rule in EMSL (presented in section 2.4). Evaluation 

of the predicates is also similar except that instead of checking the values of objects' 

attributes, the predicates in CRL involve obtaining the values of transactions' and locks' 

attributes. 

routine PCCP (conflict a conflict situation); 

Begin 

cr :- SELECT_CONTROL_RULE (conflict); 

If cr is empty Then 
return FALSE; 

BIND CR VARIABLES (cr, conflict); 

While not done Do 
Begin 

paV :- the next condition-action pair of cr; 
cond :- the complex clause of the condition of paV; 
actions :- the set of actions of pair; 
status - EVALUATE CR CONDITION (cond); 
If status - TRUE then 

End; 

Begin 
For each action, action, in actions Do 

illegal :- VERIFY_ACTION (action); 
If illegal - TRUE Then 

continue; 1* Go to the next pair. *1 
For each action, action, in actions Do 

EXECUTE CR ACTION (action); 
done : - TRUE;-

End; 

If done - TRUE Then 
return TRUE; 

else 
return FALSE; 

End. 

Figure 6·5: The PCCP Protocol 



185 

If pecp evaluates the condition of a condition-action pair to be 'IRUE. PCCP asks the 

TM to execute each of the actions in the corresponding set of actions. one action at a 

time. The complete algorithm followed by the PCCP protocol is shown in figure 6-5. 

The routine EXECUTE_CR_ACTION () calls the TM to execute the specific action. 

The routine VERIFY_ACTION (action) checks if action is legal; the legality of an 

action depends on the type and state of the transaction involved in the action. We will 

discuss the legality of CRL actions in detail in the next section. 

6.4. Extending the TM to Handle CRL Actions 

The set of transaction operations supponed by the TM that we presented in chapter 3 -

begin, commit and abort - must be extended to include the actions prescribed by 

CRL. In particular, the TM must suppon three additional transaction operations: 

terminate, suspend, and merge. We present the details of the first two of these 

operations in the rest of this section. The me rge operation will be discussed in chapter 

7. 

6.4.1. Suspending Transactions 

PCCP suspends a transaction in order to avoid aborting either of the transactions in

volved in a conflict. Suspending a transaction is similar to blocking a transaction in 

traditional two-phase locking, except that in our case, the transaction is blocked waiting 

for another transaction to either commit or abort, rather than for a lock to be released. 

Since transactions in RBDE are long-lived, the suspend action should be prescribed 

only when the administrator knows that either the execution of the transaction on whose 

termination the suspended transaction depends will not last for a long time or that it is 

OK to wait. 

To be more precise, consider the conflict situation we discussed earlier, 

C = (<Ti, 1», <Mli[o] , Nli[o]». Given such a conflict situation, SCCP would abort ei

ther Ti or Tj . To avoid this, the administrator writes a control rule specifying that instead 

of aborting one of the transactions, the interference is avoided (Le., the conflict is 

resolved) if one of the transactions is suspended until the other finishes its execution. 



186 

When the conflict situation occurs, the Scheduler will employ peep, which will select 

the control rule that the administrator wrote and instruct the TM to perform the action 

suspend (T i' T j). Performing this action actually involves three steps: (1) 

suspending the execution of Ti; (2) finishing the execution of Tj ; and (3) resuming the 

execution of Ti. 

As explained earlier, the state of the interfering transaction in a conflict situation is 

act i ve, and the state of the transaction that has been interfered with is either 

pending or inactive. A transaction whose state is pending cannot be suspended 

because it is in the middle of executing an activity that might be changing the contents of 

a data attribute; suspending such an activity halfway may corrupt the data attribute (if 

that attribute is accessed by any other transaction meanwhile). Thus, given a conflict 

involving two transactions Ti, whose state is act i ve, and Tj , whose state is either 

inacti ve or pending, the control rule can prescribe suspending either Ti (with no 

restrictions) or Tj if the state of Tj is inact i ve. 

Before peep stans executing any action in a condition-action pair, it fIrst verifIes that it 

can perform all the actions. If it cannot do that, then the condition-action pair is treated 

as if its action is not satisfIed (Le., it is skipped over). Thus, pcep checks the state of 

the transaction that the control rule prescribes suspending to make sure that it is either 

active or inactive. We will introduce funher checks that peep must carry out 

before executing any actions throughout the rest of this chapter. 

In order to remember that it must resume a suspended transaction after fInishing another, 

the TM maintains a suspend queue for each transaction. If a transaction Ti is suspended 

until another transaction Tj is fInished, then Ti is inserted on Tj's suspend queue. Once a 

transaction either aborts or commits (or is terminated, as will be discussed later on), the 

TM resumes the execution of each transaction in its suspend queue in tum in the order in 

which they were inserted (i.e., the queue is first-in-first-out, FIFO). 

Having explained the idea of suspending a transaction and some of the restrictions that 

apply, we now proceed to explain the details of how the TM suspends a transaction. For 

our discussion, we assume that the selected control rule that is being executed by peep 



187 

matches a conflict situation C = «Ti, Tj>' <Mli[o], NI}o]», where the state of T j is 

act i ve and the state of Tj is either inact i ve or pending. Recall that the fact that 

a transaction's state is inact i ve means that the type of the transaction is either be or 

t 1. We will fIrst discuss how the TM can suspend Tj , and then reverse the situation and 

explain how the TM suspends Tj if its state is inact i ve. 

6.4.1.1. Suspending an Active Transaction 

The fact that a transaction is in an act i ve state means that it is in the middle of acquir

ing locks and that it has not performed any write operations yet. In fact, the cause of the 

conflict situation is Ti's request to obtain the lock MI i [0]. The TM uses this infor

mation when suspending an act i ve transaction. The TM follows the same procedure 

in suspending active transactions of all types except cfc. Transactions of type cfc 

require additional steps because the semantics of consistency forward chains require that 

they be executed atomically. We will fIrst discuss how the TM suspends transactions 

whose types are tl, bi, afc, and bc, and then explain what is involved in suspending 

c f c transactions. 

The TM suspends a transaction, Ti whose state is act i ve and whose type is anything 

but c f c by delaying processing its request to obtain MI i [ 0] until after the execution of 

Tj is fInished. The TM simply releases all the locks in the lock set of Ti, including 

Ml i [ 0]. The TM changes the state of Ti to suspended and inserts T j on the suspend 

queue belonging to transaction Tj . Note that since Ti's locks have been released, Tj 

cannot be involved in any conflicts while it is suspended. 

The TM then proceeds to finish the execution of Tj . We will discuss how the TM 

finishes the execution of a transaction shortly, but first we describe how the suspended 

transaction is resumed. When the execution of Tj is finished, the TM resumes the execu

tion of the transactions oil the suspend queue of Tj , one by one in a fust-in-fll'st-out order 

(the fIrst transaction on the queue must be finished before the next one can start, and so 

on). Resuming the execution of a transaction whose state is suspended simply means 

restarting the transaction from scratch. Note that the only thing that needs to be redone 

is forming the read and write sets of Ti. This is necessary because the execution of Tj 

(or other transactions that executed while Ti was suspended) may have added or deleted 



188 

objects and changed the values of objects' attributes. Thus, the read and write sets of T j 

may need to be changed (to add or remove objects from them). 

Finishing the execution of Tj (whose state is either inact i ve or pending) depends 

on its type and its state. The type of a transaction whose state is inact i ve can be 

either t 1 or bc. Recall that the fact that a transaction, Tj , whose state is inact i ve is 

involved in a conflict means that Tj must have a subtransaction of type bc in a 

pending state. Say that this subtransaction is Tk. Finishing the execution of Tj thus 

entails finishing the execution of Tk, which is the same as finishing a pending trans

action, as will be discussed later, and then committing Tj after committing all of its sub

transactions (even if they have not been executed yet). In other words, finishing the 

execution of a transaction that is waiting for a backward chaining cycle to complete re

quires prematurely terminating the backward chaining cycle after finishing the execution 

of the rule that is currently running (and all of its consistency implications). 

The type of a pending transaction is either tl, bc, or afc. The command encap

sulated by such a transaction must be an activation rule (otherwise, the transaction would 

never be in a pending state). Finishing the execution of a transaction whose state is 

pending involves completing the execution of the activity that is in progress, asserting 

one of the effects of the activation rule, carrying out all of its consistency implications 

(all of which are inference rules, as defmed in chapter 5), and finally committing the 

transaction, assuming it is not involved in any funher conflicts. Note that the only dif

ference between finishing the execution of a transaction and normally completing it is 

that the TM does not initiate any automation forward chaining transactions when fmish

ing a transaction. 

Having discussed the details of suspending a transaction Ti, whose state is act i ve and 

whose type is tl, bc, afc, or bi, we now complete the discussion by considering the 

case where the TM suspends a transaction of type cfc. Suspending a transaction of 

type cfc is complicated because releasing the locks of the transaction might result in an 

incorrect execution of a consistency forward chain. This can happen if one of the locks 

acquired by the transaction was actually transferred to it from one of its ancestors. 

Recall that transferring locks from parent transaction to subtransaction is done to avoid 



189 

intra-transaction conflicts. Let us construct an actual scenario to provide context for our 

discussion. 

A transaction, Ti, of type efe is a subtransaction of some other transaction, by defini

tion. Consider a transaction T = (k, Uk'S, C, U, t, I, z, s), where the state 5 is ended, the 

type z is either tl, be or afe, and T; E S. In other words, the transaction Tk has 

finished executing, and the assertion of one of the effects of the rule e encapsulated by 

T k has lead to the creation of Ti. T k cannot commit until Ti commits. Now suppose that 

during its execution, T k had acquired the lock M' Ik [p] on object p. Say that during its 

first phase, Ti (a subtransaction of T k)' requested the lock MI i [p] on the same object p. 

As discussed earlier, the LM (lock manager) will release Tk's lock (M' Ik [p]) and set 

MI i [p] (i.e., the lock is transferred from the parent to the child). 

Now if Ti releases all of its locks, including Ml i [p], when it is suspended, another 

transaction T} might acquire a lock on the object p, violating the atomicity of the consis

tency forward chain. Recall that unlike transactions of other types, e f e transactions 

have both a commit and an abort dependency with their parent transactions. Thus, it is 

necessary that the locks held by a subtransaction not be released until the whole chain is 

completed. In order to overcome this problem, the TM rolls back the consistency for

ward chain (undoes all the write operations, which involve only status attributes in the 

case of inference rules), releases all the locks except for the locks that are in Tk's read 

and write sets (that could have been transfemd to anyone of the children subtransac

tions), and inserts Tk on T/s suspend queue. 

Thus, suspending a transaction whose type is cfc actually results in suspending the first 

ancestor of the transaction whose type is not e f e. In other words, a consistency forward 

chain is never suspended in the middle; it is always rolled back and restarted. The dif

ference between suspending a e f e transaction and aborting it is that the transaction 

which initiated the consistency forward chain (whose type is not cfc) will not be 

aborted. 

However, now that the TM has transferred all the locks to T k' the assumption we made 

in the previous chapter that a conflict cannot involve a transaction when it is in an 



190 

ended state is no longer valid. Both the SCCP protocol and the PCCP protocol must be 

revised to take this into consideration. Concerning the SCCP protocol, it should treat an 

ended transaction like a pending transaction in terms of priority. If SCCP decides to 

abort the transaction, then it must roll back its activity, which is what SCCP does in any 

case. Otherwise, if SCCP decides to continue the execution of T k' T k is left on the 

suspend queue of Tj and resumed only when Tj is finished. 

As far as PCCP is concerned, a transaction that is in an ended state cannot be 

suspended; all the other actions, however, can be applied to it. If a control rule specifies 

suspending a transaction whose state is ended, then PCCP treats the condition-action 

pair containing this action as if the condition was not satisfied (Le., it skips over that 

pair). Finishing a transaction that is on a suspend queue simply means keeping it on the 

suspend queue (until it is resumed). Resuming a transaction that is in an ended state 

simply requires restarting all of its c f c transactions. This completes our discussion of 

suspending transactions whose states are act i ve. 

Having discussed the details of how the TM suspends a transaction whose state is 

act i ve, we now proceed to discuss the case when the state of the transaction is 

inact i ve. We give a complete example involving the suspend action after discuss

ing this case. 

6.4.1.2. Suspending Transactions That are Not Active 

In this section, we explain how the TM suspends the inact i ve transaction, if that is 

what is prescribed in the control rule. In other words, the suspend action is of the form 

suspend (T j T i) , where the state ofTi is active and the state ofTj is inactive. 

The first step of the suspend operation is the same as above, Le., releasing all of the 

locks in the lock set of Tj and inserting the transaction on the suspend queue of Ti. 

Suspending Tj requires changing its state to suspended. However, when the TM 

resumes the execution of Tj , it will not know whether Tj ' s state before being suspended 

was active or inactive. Resuming a suspended transaction that was active be

fore it was suspended entails restarting the transaction, whereas resuming a transaction 

whose state was inact i ve before being suspended involves only changing its state 

back to inact i ve; the transaction cannot be restarted until the backward chaining 



191 

cycle it is waiting for has been completed. In order to distinguish between these two 

cases, the TM changes the state of Tj to suspended- inact i ve. Now, when Tj is 

resumed, its state is simply changed back to inact i ve. 

The second step in suspending Tj involves finishing Ti, whose state is act i ve and 

whose type can be anyone of the five possible types. If the command encapsulated by 

Ti is a built-in command, then finishing Ti simply means continuing the execution of the 

built-in command, since a built-in transaction does not have any consistency im

plications. If the type of Ti is anything but bi, finishing Ti is exactly the same as 

described above, which is simply continuing the execution of the transaction and all of 

its consistency implications, but none of its automation implications. 

It is possible that while Tj (whose state is inactive) is suspended, its subtransaction, 

T D' commits. In the normal case, this would mean transferring the locks held by T D to its 

parent Tj . However, since Tj is suspended (its state is suspended- inact i ve), the 

locks are released instead. and T/s state is changed to suspended to indicate that 

when Tj is resumed, it should be restarted. Once Ti is either committed or aborted (or 

terminated, as will be discussed shortly), and its locks have been released, the TM 

resumes the execution of Tj by restarting it 

To illustrate the suspend action, consider the rules shown in figure 6-6. To remind the 

reader of our running example, recall that Prog is the program that Bob, John and Mary 

are working on cooperatively to complete. Prog contains three source code modules, 

ModA, ModE, and ModC, an includes directory and three libraries, corresponding to 

the three modules. Each of the modules contains a set of CF I LE objects (as members of 

the cfiles structural attribute), and a link to its corresponding library; e.g., ModA is 

linked to the library LibA. Every time a CFILE object is compiled, its object code (Le., 

the contents of the file whose pathname is stored in the object code attribute of the 

CFILE) is archived in the library belonging to the module containing the CFILE. 

Suppose that Bob requested to archive ModA, which causes RBDE to fire the 

archi ve rule (the last one). The RP (rule processor) informs the TM that it wants to 

fire archive; the TM starts a transaction T Bob to encapsulate the execution of the 



edit [?h : HFILE]: 

(and (?h.reservation status = CheckedOut) 
(?h.locker = CurrentUser») 

{ edit output: ?c.contents } 
no_backward [?h.timestamp = CurrentTime]j 

outdate compile [?f: CFILE]: 
(bind (?h to_all HFILE suchthat 

(linkto [?f.hfiles ?h])) 

(exists ?h): 
(?h.timestamp> ?f.object_timestamp» 
{ } 
(?f.status = NotCompiled) j 

compile [?f:CFILE]: 
(bind (?h to all HFILE suchthat 

- (linkto [?f.hfiles ?h]») 

no backward (?f.status = NotCompiled) 
{ compile ?f.contents ?h.contents "-g" 

output: ?f.object code ?f.error msg 
(and [?f.status - Compiled]- -

[?f.object timestamp = CurrentTime])j 
[?f.status - Error]; 

dirty[?c: CFILE]: 

no backward (?c.status z Compiled) 
{T 
[?c.status - NotArchived]j 

archive [?f:CFILE]: 
(bind (?m to all MODULE suchthat (member[?m.cfiles ?f]» 

(?lto:all LIB suchthat (linkto [?m.libs ?l]») 

(exists ?l): 
no backward (?f.archive status - NotArchived) 
{ archive ?f.object code output: ?l.afile } 
(and [?f.archive status - Archived] 

(?f.archive-timestamp - CurrentTime»j 
(?f.archive_status - Error); 

archive [?m:MODULE]: 
(bind (?£ to all CFILE suchthat (member [?m.c£iles ?f]» 

(?q to:all MODULE suchthat (member [?m.modules ?q]») 

(forall ?f) (forall ?q): 
(and (?f.archive status - Archived) 

(?q.archive-status - Archived» 
{ } 
(?m.archive_status - Archived); 

Figure 6-6: Example Rules to Demonstrate the Suspend Action 

192 



193 

archi ve rule. The condition of the rule specifies that a module can be considered 

archived only if all of its submodules and all of its C source files have been archived. In 

order to evaluate the condition, TBob requests R locks on ModA, main. c, fl. c and 

f2 . c (the three CFILE objects contained in ModA; ModA does not contain any sub

modules and so ?q will not be bound to any object). The LM does not repon any lock

ing conflicts while acquiring the locks, so the RP proceeds to evaluate the condition of 

the archive rule. Say that this condition evaluates to FALSE because the CFILE 

f2. c has not been archived. The RP initiates a backward chaining cycle by firing the 

archi ve rule (the first one in the figure) on f2 . c. 

Before firing this archive rule, the RP informs the TM that it is initiating a backward 

chain; the TM creates the transaction T Bob. I as a sub transaction of T Bob to encapsulate 

the execution of this rule. TBob.1 first acquires R locks on f2 . c, ModA and LibA to 

evaluate the condition, which it finds to be satisfied, and then it acquires W locks on 

f2 . c and LibA in order to execute the activity of the archi ve rule. 

The states and types of the two transactions belonging to Bob are as follows: the type of 

TBob is tl and its state is inactive; the type of TBob.1 is bc and its state is 

pending. 

Suppose that while Bob's archive rule is being executed by Bob's client, Mary had 

finished editing the HFILE object i2 . h (encapsulated in transaction T Mary), which is 

linked to main. c, fl. c and f2. c. The editing of i2. h causes consistency forward 

chaining to fire the outdate-compile rule on main. c, fl. c and f2. c. Let us 

assume that the RP fIrSt flI'CS the outdate-compile rule on fl. c. The TM creates 

T Mary.1 to encapsulate the execution of this rule. In order to evaluate the property list of 

the rule, TMary.1 requests an R lock on fl. c; this lock request does not conflict with 

T Bob's lock RIBob [ fl • c] , which T Bob had acquired while evaluating the condition of 

the archive ModA rule. Suppose the condition of the compile rule is satisfied, so 

T Mary. I proceeds to request a W lock on fl. c, in order to execute the activity. This lock 

request conflicts with T Bob's R lock. 

The states and types of the transactions belonging to Mary so far are as follows: T Mary's 



libraries /IX, Mary I 

LibA 

TMary 

oomm archive MocIA comm edit il.h 
type top-level type top-level 

subb'ansaction subtransactim 

comm archive t2.c 
type backwcd-chlin 
IIale penctina 

comm outdile f2.c 
type oonsis1ency 
I&IIa pendina 

Figure 6-7: Compile-Archive Conflict Situation 

194 

type is tl and its state is ended; TMary.l's type is cfc and its state is active. Figure 

6-7 depicts the whole conflict situation. It shows the locks held on the objects and the 

states and types of the transactions. 

Given this conflict, the Scheduler calls PCCP, which selects the control rule shown in 

figure 6-8 to resolve the conflict. The body of the control rule states that T Bob (the 

inact i ve transaction) should be suspended until T Mary.l (the act i ve transaction) is 

fmished. The TM forces T Bob to release all of is locks, changes its state to 

suspended-inactive, and inserts it on the suspend queue of TMary.I' TMary.l is 

then finished by acquiring the W lock on fl. c and asserting the effect of the 

outdate-compile rule. Note that although the effect of outdate-compile has 

an automation implication (the compile rule), RBDE does not fire that rule but instead 

completes the execution of T Mary.I' transferring all of its locks to its parent T Mary (be

cause the type of T Mary.l is c f c). 



compile-archive-cr [ CFILE 1 

selection criterion: 
commands: outdate-compile, compile, archive; 

bindings: 
?tl requested lock(); 
?t2 = holds_loCk(); 

body: 

if (and (?tl.type = cfc) 
(?tl.state m active) 
(?t2.state - inactive» 

then 
( 

suspend(?t2, ?tl); 
} i 

if (and (?t2.state - pending) 
(?t2.command !- edit» 

suspend(?tl, ?t2)i 
} ; 

Figure 6-8: Control Rule to Resolve Outdate-Archive Conflict 

195 

Recall that in addition to firing the outdate-compile rule on fl. c, Mary's original 

rule (edit i2 • h) had two other consistency implications, which are to fI.re 

outdate-compile on both f2. c and main. c. Thus, in order to finish TMary.l' the 

TM must carry out the whole consistency forward chain, including all the consistency 

implications of the transaction that initiated T Mary.l' Suppose that the RP fI.res 

outdate-compile f2. c; the TM starts a transaction TMary.2 (whose type is cfc) 

to encapsulate the execution of this rule. T Mary.2 requests an R lock on f2 • c in order to 

evaluate the condition of outdate-compile f2. c. This lock request will cause an 

interference between TMary.2 with TBob.1• which holds the lock W1 Bob . 1 [f2. c). 

The same control rule shown in figure 6-8 applies to this new conflict situation. This 

time, however, the condition of the second condition-action pair will be satisfied. This 

will cause PCCP to suspend TMary.2 until TBob.1 is finished. Since TMary.2'S type is 

cfc, the TM must roll back the whole consistency forward chain (which in this case 

does not include any other transaction since T MaryJ has already ended and transferred its 



196 

locks to T Mary). Thus, the TM transfers the locks acquired by T Mary.2 to T Mary and then 

inserts T Mary on T Bob.!' s suspend queue (T Mary does not release any of its locks, so it 

currently holds WIMary [fl. c] , WIMary [ i2 . h] , and R locks on i 2 . h and i 3 . h). 

The TM finishes T Bob.! by waiting for the archive activity to complete, and carrying out 

all of its consistency implications. Note that the only consistency implication of 

archi ve f2. c is archive ModA (an inference rule), which is the rule encap

sulated already by TBob (the parent transaction of TBob.!)' However, since the state of 

TBob is suspended-inactive, the TM commits TBob.!' releasing all of its locks, 

and changes the state of TBob from suspended-inactive to suspended. This 

change of state indicates that when T Bob is resumed, its execution can be restarted since 

the backward chaining cycle it was waiting for (archi ve f2. c) has completed. 

After committing T Bob.!' the TM resumes the execution of the suspended transaction 

T Mary' Since the state of T Mary is ended, the TM resumes its execution by carrying out 

its consistency implications. This leads to executing T Mary. I followed by T Mary.2' which 

in this case will not interfere with any other transactions because no other transaction 

holds any locks on either fl. c or f2 . c. Finally, the third consistency implication of 

edi t i2. h, which is outdate-compile main. c, is carried out (encapsulated in 

T Mary.3)' Mter T Mary.!' T Mary.2 and T Mary.3 commit, T Mary is committed, releasing all 

of its locks. 

Finally, the TM resumes TBob by restarting it. TBob re-acquires all the necessary locks, 

which T Bob was previously forced to release when it was suspended. No conflicts will 

occur this time because TMary has already released all of its locks. The TM then com

mits TBob• 

From this example, it should be clear that by suspending transactions, peep was able to 

order the execution of transactions in such a way so that it avoided aborting any of them. 

Mary was able to edit i 2 • h and take care of all the consistency implications of this 

activity (Le., outdating fl. c and f2 • c), and Bob was able to successfully execute the 

archi ve command. The seep protocol, in contrast, would have aborted both T Bob 

and TBob.I' causing RBDE to reject Bob's archive ModA rule. 



197 

We have now completed the details of the suspend action. We proceed to discuss the 

terminate action. 

6.4.2. Terminating a Transaction 

The suspend action is very useful when it is known that the activity of the transaction 

that must be fInished will not take a long time. In the example above, for instance, the 

administrator prescribed suspending TMary.2 when it conflicted with TBob.1 because the 

activity of T Bob.1 (Le., archiving a CF I LE) takes a relatively shon time. Assume, 

however, that the activity that T Bob. I was waiting to complete was an invocation of an 

editor. Clearly, in this case, the administrator should not suspend a transaction that will 

be resumed only when the editing session is over. 

Instead, the administrator can prescribe terminating T Mary.2' which, unlike suspend, 

can be applied to a transaction in any state and results in either aborting the transaction 

or fmishing it, depending on its type and state. Terminating a transaction whose state is 

inact i ve is exactly the same as fmishing the transaction, which basically stops the 

backward chaining cycle, as described in the previous section. Terminating a transaction 

whose state is active and whose type is anything but cfc, is exactly the same as 

aborting the transaction since the transaction would not have performed any write opera

tions yet, and thus aborting it does not undo any activities. Thus, the administrator 

would want to prescribe the terminate action only in the case of a transaction whose 

type is cfc or a transaction whose state is pending. 

In both of these cases, terminating a transaction is intended as an alternative action to 

abort in order not to waste any effon that a human developer might have invested in a 

development activity. In the case of cfc transactions, terminate avoids cascaded 

abom. A transaction whose type is c f c is pan of a consistency forward chain that is 

supposed to be atomic. Therefore, aborting a cfc transaction requires that all the parent 

transactions of Titclc' up to and including the fIrst parent transaction whose type is not 

cfc, must be aborted. Aborting a transaction whose state is pending entails rolling 

back the activity that is being executed. Aborting transactions in both cases can be very 

expensive, and sometimes is not really necessary. 



198 

In contrast, tenninating a transaction whose type is cfc (which implies that its state is 

acti ve when a conflict occurs) or whose state is pending (which implies that it en

capsulates the execution of an activation rule) is the same as finishing the transaction 

except that instead of assening one of the effects of the rule and carrying out its consis

tency implications, the objects' attributes whose values would have been changed either 

by the assignment predicates in the effect or by the effects in the consistency forward 

chain are marked as being inconsistent. Note that a consistency forward chain can be 

simulated because it is made up entirely of inference rules, each of which has only one 

effect. 

Marking an attribute involves storing a pointer to the inference rule that should have 

been fired as part of the consistency forward chain. An object with a marked attribute is 

in an inconsistent state. Consistency of marked attributes can be re-established through 

an unmarking routine, as will be explained shortly. Thus, the terminate action 

provides a mechanism to tolerate inconsistency of objects temporarily. The fact that 

objects can be temporarily inconsistent has implications on the predicate evaluation al

gorithms we presented in chapter 2. 

6.4.2.1. Revised Predicate Evaluation Algorithms 

In the algorithms given in section 2.4.1.2 for evaluating a single predicate, we assumed 

that the truth value returned by the predicate is accurate. However, as we explained 

above, conflict situations might render some attributes of objects to be in an inconsistent 

state, causing the values of predicates over these objects to be inaccurate. In this case, 

the RBDE has to verify the value of any predicate over these objects before it can 

evaluate the condition fonnula in which this predicate occurs. More precisely, before 

using the value of a marked attribute in an evaluation, the RBDE must f11"st unmark that 

attribute. Unmarking an attribute requires either verifying that the value currently stored 

in that attribute is what it should be (Le., that the value is equal to the value stored by the 

TM when it terminated a c f c transaction involving the object), or fJring the inference 

rule pointed to by the attribute in order to make the value of the attribute what it should 

be. 

Only if unmarking succeeds can the evaluation proceed. The criteria for the success and 



199 

failure of a consistency backward chain will be explained shortly, but flrst we show how 

the previous algorithms should be revised. 

Input: A predicate, P, of the form (?vl.attl <op> ?v2.att2) 
Output: True or False. 

/* Both ?vl and ?v2 are universally quantified */ 

For each object, o~1, bound to ?vl Do 
Begin 

If objI.altI is "marked" Then 
Begin 

status:= UNMARK (objl,attI); 
If status = UNSUCCESSFUL Then 

return UNSA TISFIABLE; 
End; 

For each object, o~2, bound to ?v2 Do 
Begin 

End; 

If obj2.att2 is "marked" Then 
Begin 

status := UNMARK (obj2, attZ); 
If SfIJlUS = UNSUCCESSFUL Then 

return UNSA TISFlABLE; 
End; 

instantiate P (?vl :- obj1 and ?v2 :z obj2); 
evaluate the instantiation of P; 
If evaluation returns FALSE Then 

End; 

Begin 
P :- FALSE; 
return FALSE; 

End; 

P :- TRUE; 
return TRUE; 

Figure 6·9: Evaluating a Predicate With Marking 

The revised algorithm for evaluating a single predicate with two universally quantified 

variables is shown in figure 6-9. The modifications are shown in bold face. Basically, 

before accessing a marked attribute, the attribute must be first unmarked. The same 

modifications must be insened in the other cases discussed in section 2.4.1.2. 

The routine for unmarking is shown in figure 6-10. This routine is recursive. It calls 

EXECUTE_RULE, which in turn might call UNMARK on another attribute. The recur

sion is initiated by the fact that one or more of the attributes of an object that is involved 

in the evaluation of a predicate P are marked. The actual unmarking of attributes is 

carried out by the LM. 



routine UNMARK (0: object; art: marked attribute of 0); 

Begin 
~le :2 get the rule pointed to by att; 
reI_value : = EXECUTE_RULE (rule); 

If reI value <> UNSATISFIED or UNSATISFIABLE Then 
Begin 

unmark all; 
If all attributes of 0 are unmarked then 

unmark 0; 
return (SUCCESSFUL); 

End 
Else 

return (UNSUCCESSFUL); 
End; 

Figure 6·10: Unmarking Objects 

200 

To illustrate the terminate action, consider the edit rule in figure 6-6 on page 192, 

which applies to HF I LE objects. The rule has one consistency predicate in its effect, 

setting the value of the timestamp attribute of the HFILE to the current system time. 

This consistency predicate caused a consistency forward chain to the 

outdate-compile rule, which applies to CFILE objects; whenever an HFILE is 

edited, the object code of all the CF I LEs that are linked to the HF I LE must be outdated. 

Suppose that Mary edited an HFILE, i2. h, which is linked to three CFILE objects: 

main. c, fl. c and f2 . c (as shown in figure 2-3 on page 30). After completing the 

execution of the edi t rule, the RP attempts to outdate the compilation of the three 

CF I LE objects, as in the example of the previous section. However, say that a conflict 

is detected halfway after carrying out outdate-compile fl. c, when attempting to 

fire outdate-compile on f2. c, because Bob is editing (rather than archiving, as 

before) f3. c. SCCP would have resolved the conflict by aborting Bob's edit. Aborting 

either transaction is not necessary, however, because the conflict should be ignored. The 

reason is that the outdate-compile rule leads to exactly the same effect as the 

edit rule on a CFILE, which is to set the status attribute to "NotCompiled". 

There is one complication, however, and that is if the edit on f2. c was aboned for 

some other reason (e.g., another conflict). The result would be that the status at-



edit-outdate-cr [ FILE ] 

selection criterion: 
commands: outdate-cornpile, edit; 

bindings: 
?tl = requested lock(); 
?t2 = holds_loCk(); 

body: 

if (and (?tl.type = cfc) 
(?t2.state = pending)) 

then 
{ 

terminate (?tl); 
} ; 

Figure 6·11: Control Rule to Resolve Edit-Outdate Conflict 

201 

tribute of f2 . c would not be assigned the value "NotCompiled". This would give the 

false implication that f2. c's object code is up to date, which it is not because i2. h 

was edited. To avoid this possibility, instead of ignoring the conflict between 

outdate-compile f2. c and edit f2. c (we did not provide any mechanisms 

for doing that so far), the administrator can prescribe the termination of the transaction 

encapsulating the execution of the outdate-compile rule, as shown in the control 

rule in figure 6-11. The Scheduler carries out the prescribed actions by terminating the 

execution of outdate-compile f2. c and marking f2. c. Marking f2 . c involves 

recording that the object f2 . c will be in a consistent state only if its status attribute 

is assigned the value "NotCompiled". In addition, the RP will store a pointer to the rule 

outdate-compile. To re-establish the consistency of f2. c, all the RP needs to do 

is fire the rule outdate-compile on f2 • c. 

Terminating the cfc transaction encapsulating outdate-compile f2. c does not 

involve only marking f2. c, but also simulating any consistency forward chaining that 

the outdate-compile rule would have caused, and marking all the objects that 

would have been changed by this consistency forward chain. In our example, the 

outdate-compile rule initiates a consistency forward chain to outdate the LIB ob

ject that includes the object code of the CFILE. Then, in addition to marking f2 . c, the 



202 

TM must ask the LM to mark LibA and indicate that its value should be "NotAr-

chived" . 

The TM then continues the rest of the consistency forward chain resulting from the 

edi t i2. h command (i.e., flring outdate-compile on main. c) as if the conflict 

did not occur. 

6.5. Summary 

In this chapter, we presented a mechanism for overriding the SCCP default concurrency 

control protocol presented in chapter 5. The main reason for introducing this mechanism 

is to be able to tailor the concurrency control policy to the needs of a speciflc project. 

The mechanism is composed of a language, CRL, in which the administrator writes con

trol rules. Each control rule applies to a specific conflict situation (interference), and 

prescribes actions that the TM should take in order to resolve the conflict situation. CRL 

provides constructs for describing a spectrum of conflict situations, ranging from very 

general conflicts (e.g., any conflict that occurs over an instance of class FILE) to very 

specific conflicts (e.g., involving two particular users and two specific commands). 

CRL also provides constructs for using most of the attributes (semantic information) of 

the two conflicting transactions: their subtransactions, the commands whose execution 

they encapsulate, their owners, timestamps, lock sets, types and states. By using all of 

this information, the administrator can prescribe very specialized conflict resolution 

strategies. 

The control rules provide semantic information that can be used to allow relaxation of 

the default policy. If a conflict occurs and the conflict situation matches the situation 

described in a control rule, then the actions prescribed by the control rule are carried out 

instead of the default actions. CRL supports three actions in addition to abort: 

suspend, terminate and notify. 

Suspend (T i' T j) involves suspending the execution of Ti until after the completion 

of Tj , at which point the execution of Ti is resumed. Finishing the execution of Tj re

quires completing the execution of the command encapsulated in the transaction, if the 



203 

execution of the command's activity has already staned, and all the consistency implica

tions of the command. Unlike nonnal execution, however, it does not initiate any 

automation forward chaining transactions (Le., the automation implications of the com

mand are not carried out). Suspending a transaction allows the execution of all of the 

access units of another transaction to be done before the execution of the suspended 

transaction continues. 

The terminate action, unlike abort, avoids cascaded aborts in the case of consis

tency forward chains. In the case of transactions of type c fe, aborting the transaction 

requires that all of the parent transactions of Ti,cfc' up to and including the fIrst parent 

transaction whose type is not cfc, must be aborted. This can be very expensive, and 

sometimes not really necessary. Instead, PCCP might fIre a control rule that prescribes 

tenninating the consistency forward chain prematurely, rather than aborting and rolling 

it back. This enables RBDE to tolerate inconsistency temporarily (until the inconsistent 

objects are accessed again). In this case, the RBDE must simulate the rest of the consis

tency forward chain, but instead of changing the values of the objects' attributes, it only 

marks the objects' attributes involved in the rest of the chain, and stores the value that 

the consistency forward chain would have assigned to these attributes. Consistency is 

re-established by an unmarking routine that is called whenever an inconsistent object is 

accessed. 

Finally, the notify (?t, "message") action is used to send a message to the 

user whose command initiated the transaction bound to ?t 1. 



204 

Chapter 7 

User Sessions and Development Domains: 
Supporting Teamwork 

The CRL language and the PCCP protocol presented in the previous chapter have two 

significant limitations: (1) although the terminate action allows for the temporary 

tolerance of inconsistency of an object, there is no way to assign the responsibility of 

re-establishing consistency to one of the users whose concurrent actions caused the ob

ject to be inconsistent; and (2) CRL does not provide constructs for writing team

specific control rules (Le., control rules that resolve conflicts among members of a 

specific development team). In this chapter, we add three constructs: user sessions, 

obligations and development domains, which form the basis for overcoming these two 

limitations. We integrate the three constructs into CRL, with the result of being able to 

tailor the concurrency control policy to different development teams. 

We first present user sessions and obligations, and show how they are used to enhance 

the process modeling abilities of EMSL and the rule execution model in RBDE. From 

the point of view of the database and the TM, user sessions are similar to sagas; we 

describe the concept of sagas and explain the similarities between sagas and user ses

sions. We then integrate sessions and obligations into CRL to remove the first limitation 

mentioned above. Next, we introduce the notion of development domains. This notion 

is based on concepts from group-oriented transaction mechanisms, which we briefly 

overview. Finally, we integrate development domains into CRL and show how the 

project administrator can use the information about domains to write team-specific con

trol rules. 



205 

7.1. User Sessions and Obligations 

In the previous chapters, we have assumed that the commands requested by the same 

user are independent of each other. A user requests one command, and after the com

mand and all of its implications have been executed by RBDE (assuming no conflicts), 

the user requests another command, and so on. In practice, however, a software 

developer performs several commands in order to achieve a single development task. 

For example, fixing a bug often requires an iterative process of editing the source file, 

compiling it, testing the executable, etc. After fixing a bug, the developer might proceed 

to modify the documentation to reflect the bug fix. It is desirable to group together in a 

single unit all the commands that the developer requests to achieve such a development 

task as fIXing a specific bug. The provision of such a unit enables developers (and 

RBDE) to reason about development tasks and not just individual commands. 

A unit representing a development task is also advantageous from the point of view of 

concurrency control. Although CRL provides the terminate action, which can be 

used to tolerate inconsistency, CRL does not provide any mechanism for assigning the 

task of restoring consistency to specific developers. The main reason for not being able 

to support such a mechanism is the lack of a higher-level unit (on top of user commands) 

that can act as a context for restoring consistency. 

To illustrate, consider again the example we introduced in chapter 6 to demonstrate the 

terminate action. In that example, Mary edited an HFILE object, i2. h, which is 

linked to three CFILE objects: main. c, fl. c and f2. c. After completing the execu

tion of the edi t i2. h rule, the RP (rule processor) attempts to outdate the compilation 

of the three CFILE objects. However, a conflict is detected after carrying out 

outdate-compile fl. c, when attempting to fire outdate-compile on f2. c, 

because Bob is editing f3. c. The control rule that PCCP fires to resolve this conflict 

(shown in figure 6-11 on page 201) prescribes terminating the transaction encapsulating 

Mary's outdate-compile f2. c rule. This leads to leaving f2 . c in an inconsis

tent state temporarily. 

pecp tolerates inconsistency by marking the inconsistent objects, f2 . c in the example, 



206 

and indicating what the correct values of their attributes should be. Before any other 

command can access the object, the object must be unmarked to re-establish its consis

tency. If no other command accesses f2 . C, however, it remains inconsistent. It would 

make more sense if RBDE somehow made sure that either Bob or Mary, both of whose 

actions caused f2 . C to be inconsistent, re-establishes the consistency of f2 . C before 

they complete their current development tasks. The consistency of f2. C can be re

established by either outdating the object code of f2. c, changing the value of its 

status attribute to be equal to "NotCompiled", orre-compiling f2. c. 

7.1.1. Adding User Sessions to RBDE 

We extend RBDE with user sessions (or sessions, for short), whose purpose is to provide 

a unit on top of rule chains that can serve both as a context for re-establishing consis

tency of objects that are left in an inconsistent state because of concurrency conflicts, 

and as a unit for grouping together user commands that achieve a particular development 

task assigned to an individual developer. We concentrate on the role of user sessions 

with respect to concurrency control; the other purpose of sessions is outside the scope of 

this dissertation and thus is only briefly addressed. The issue should be explored further, 

as we discuss in chapter 8. 

We add two built-in commands to RBDE: begin_session and end session. A 

developer starts a new session by issuing the command begin_session, and ends a 

session by issuing the command end_session. The commands that are requested 

between these two built-in commands by the same developer in the same client comprise 

the body of the session. Note that sessions are persistent across logouts and failures. 

Note also that a single developer might have multiple simultaneous sessions in different 

client processes. RBDE maintains information about the session to which each user 

command belongs. Also, a session is not associated with a single process since the 

owner of the session might log out of the system and continue his session in another 

process. Commands that are requested outside a session are considered singleton ses

sions. We do not consider nested sessions in this dissertation. 



207 

7.2. Obligations: Enhancing the Rule Execution Model 

Given a session that groups a set of commands, RBDE can now reason about the set of 

commands as a unit with respect to automated assistance. In the rule execution model 

presented in chapter 2, one of the effects of a rule is asserted immediately after the rule's 

activity, if it is not empty, is executed. Each assignment predicate in the effects of a rule 

changes the value of one of the status attributes of an object to either reflect the changes 

that the rule's activity has introduced (in the case of an activation rule) or to propagate 

changes to the values of other attributes (in the case of inference rules). The conditions 

of rules are sufficient for modeling what users can and cannot do in terms of develop

ment activities; rule effects provide a construct for deftning the immediate effects of 

tools and development activities. Neither construct, however, can be used to express the 

responsibilities of developers in terms of completing their work and avoiding obstructing 

other developers' work. 

For example, the reserve rule (ftgure 2-13, page 53) states that a developer can reserve a 

FILE object only if the value of the reservation_status attribute of the object is 

"A vailable". The rule further prescribes that once the reserve activity is completed suc

cessfully (by invoking the rcs tool), the values of the reservation status and 

locker attributes of the object should be changed to reflect that. The rule does not 

deftne the responsibilities of the developer who reserved the object. It would enhance 

the expressive power of EMSL if the rule could specify that reserving an object obliges 

the reserver to deposit the object in the same session either immediately after he is done 

with it or before ending the session. This is exactly the purpose of obligations. 

An obligation is exactly of the same form as a predicate in the property list of a rule. 

However, instead of being part of the condition, obligations are added to the effects of 

the rule. Each obligation specifies what the value of an attribute of an object (which is 

bound to a variable in the binding part of the rule) should be before ending the session in 

which the rule was fll"Cd. Figure 7-1 shows a revised EMSL rule template that includes 

obligations. Mter each effect, the rule can prescribe a list of obligations that correspond 

to the assignment predicates in the effect 



# Rule name and parameter list 
1. rulename [?param1 : CLASS 1 ; ?param2 : CLASS 2; ... J: 

# Binding part of condition. 
2. (bind (?var1 to_all CLASS 3 suchthat characteristic clause) 
3. (?var2 to_all CLASS 4 suchthat characteristic clause) 

( ... )) 
4 • 

* Property list part of condition. 
5. (property list) 

# Activity 
6. {<Envelope> argument1 ... argument i ; 

output: argument i +1 ... argument n 

# Effects 
7. (effect1 obligations1 ); 

8. (effect2 obligations2); 
( ... ) ; 

Figure '·1: A Template for EMSL Rules With Obligations 

208 

Since the only way for a user to change the value of an object's attribute is to request a 

command that corresponds to a rule, each obligation must be implied (in the sense of the 

definition we gave in chapter 2) by at least one assignment predicate in the effects of one 

or more of the rules in the project rule set. The Loader builds an Obligation Table in 

which it inserts all the obligations of the rules in the rule set. While loading the project 

rule set, the Loader verifies that each obligation in the Obligation Table is implied by at 

least one assignment predicate in the Predicate Table. If an assignment predicate, P, in 

the effects of a rule, rl, implies an obligation, 0, in the effects of another rule, r2, then 

a backward chain is established from ° to P. The backward chain means that if ° is not 

satisfied, the RP should fire r 1 to try to make it satisfied. If an obligation is not implied 

by any assignment predicate, the Loader will refuse to load the rule set. The project 

administrator must either remove the obligation or make sure that one of the rules in the 

project rule set can satisfy it. 

RBDE maintains a list of obligations for each session. This list is empty when the ses

sion is first started. Whenever a rule is fired in the context of a session, the RP adds the 

obligations in the assened effect of the rule to the list of obligations of the session. In 



209 

addition, the RP checks if assening any of the assignment predicates in the effect of the 

rule satisfied any of the obligations already on the lists of current sessions (i.e., that have 

not ended yet). If it did, the satisfied obligations are removed from the sessions' lists of 

obligations. Note that the same obligation can be insetted at a later time on the list of 

obligations, in which case it must again be satisfied before the session can be ended. An 

empty list of obligations indicates that the user can end the session. Note also that one 

user's command might satisfy the obligation in another user's session. 

If a user attempts to end a session and the list of obligations for the session is not empty, 

RBDE will attempt to satisfy each of the obligations on the list automatically by initiat

ing backward chaining. If the RP cannot make an obligation satisfied, RBDE will in

form the user that he cannot end the session at this time because an obligation is not 

satisfied. The user should then attempt to take actions (such as executing built-in com

mands, firing rules, or re-attempting to end the session at a later time) that will make the 

condition satisfied. Note that like predicates in the propeny list of a rule, obligations can 

initiate a backward chaining cycle. The reason why backward chaining sometimes can

not satisfy an obligation is that the condition of the rule that can satisfy the obligation 

might be UNSATISFIABLE because of a consistency (or a no_backward) predicate or 

because of a locking conflict; the user, however, can go ahead and request commands 

that can make the condition satisfied or delay ending the session until after the locks that 

caused the conflict during the earlier attempt to end the session have been released. 

Figure 7-2 shows a revised version of the reserve rule in which an obligation has 

been added. The obligation states that it is the responsibility of the developer whose 

command invoked the reserve rule to make sure that the reservation status 

attribute of the reserved object is set to "Available". This obligation must be satisfied 

before the user can end the session in which the reserve rule was fired. The assign

ment predicate in the effect of the depo sit rule satisfies this obligation of the 

reserve rule, and thus a backward chain is established between the obligation and the 

assignment predicate. Note that this backward chain overrides the no chain prefix 

that precedes the assignment predicate in the effect of the depo sit rule but only for the 

purpose of satisfying the obligation and not in general; funher backward chaining (Le., if 



deposit [?f : FILE]: 
. 
(and [?f.reservation status = CheckedOut] 

[?f.locker = CurrentUser]) 

{ deposit output: ?f.contents ?f.version } 

no_chain (?f.reservation_status - Available); 

reserve [?f : FILE]: 

no_backward (?f.reservation_status = Available) 

{ reserve output: ?f.contents ?f.version 

(and no forward (?f.reservation status z CheckedOut) 
no-chain (?f.locker = CurrentUser) 
obligation (?f.reservation_status - Available»; 

Figure 7-2: Reserve Rule Showing Obligation 

210 

deposit initiated further backward chaining because its condition is not satisfied) is 

perfonned nonnally, as discussed before. 

If none of the user's commands within the session cause the depos it rule to be fired, 

RBDE will flre the rule automatically when the user issues the end_session com

mand. If RBDE does not succeed in making the obligation satisfied (e.g., because the 

condition of the depo sit rule is not satisfied or because of a locking conflict), it aborts 

the end_session operation and infonns the user that he cannot end his session before 

satisfying all of his obligations. 

7.2.1. Related Work: Other Notions of Obligations 

Our notion of obligations is based on two previous work done by other researchers, 

which we briefly describe in this subsection. 

7.2.1.1. Obligations in Inscape 

The Inscape environment [Perry 89b] is an SDE that provides assistance in the develop

ment and evolution of large-scale software projects. Inscape uses a fonnal module inter

face specification to provide the user with infonnation about how a particular object in 

the project is meant to be used and how the object is actually being used by developers. 



211 

The module interface specification language is based on Hoare's input/output 

predicates [Hoare 69]. Each component of the project in Inscape has preconditions, 

which resemble input predicates in Hoare's model, and postconditions, which resemble 

Hoare's output predicates. The predicates, however, are used not for validation purposes 

but for program construction. More specifically, the preconditions of an operation on a 

component are assumptions that must be satisfied before the operation can be performed; 

the postconditions are the results produced by the operations. 

Inscape extends Hoare's model by adding obligations to operations [Perry 87]. Obliga

tions in Inscape, like our obligations, are conditions that must eventually be satisfied. 

Obligations are incurred as side effects to operations. Unlike postconditions, obligations 

are not guaranteed to be true immediately after the performance of an operation; Inscape 

only checks whether they are guaranteed to be satisfied eventually. Operations in In

scape are defined in units (components) that can be encompassed within other units; an 

interface is defmed between a unit and its encompassing unit. Obligations defmed for an 

operation in a unit can either be satisfied by the postconditions of other operations in the 

same unit or propagated to the encompassing interface. There is no single unit, like 

sessions in our model, that provides a scope for satisfying obligations. Instead, obliga

tions can be propagated from one unit to another until they are eventually satisfied. 

Our obligations serve the same purpose as Perry's obligations; the two constructs are 

also similar in that an obligation is of the same form as a condition. 

7.2.1.2. Extending Permissions with Obligations 

Minsky and Lockman presented obligations [Minsky and Lockman 85] that serve a pur

pose slighdy different from ours and Perry's. Minsky and Lockman's obligations, which 

we will call ML obligations hereafter, arc intended as an extension to authorization 

mechanisms. Most authorization mechanisms specify what actors (an abstraction for ac

tive components) can do (Le., permissions), but they do not specify the obligations that 

these actors incur as a result of executing a permitted action. ML obligations provide 

authorization mechanisms with the capability to attach obligations to permissions. 

One difference between our notion of obligations and ML obligations is that of the re-



212 

quirement as to when the obligations must be satisfied. In our notion, obligations must 

be satisfied before the end of the session in which they were incurred; there is not ex

plicit timing requirement Similarly, Perry's notion simply states that obligations must 

be satisfied eventually. Minsky and Lockman, in contrast, add a time dimension to 

obligations. Each obligation is attached with a timing requirement that specifies the 

deadline for satisfying the obligation. This deadline can be either a specific time or 

relative to (Le., before or after) the occurrence of a specific event (e.g., before the ter

mination of a session). 

Another difference between our obligations and ML obligations is in the specification of 

what to do if an obligation is not satisfied. In our case, it is implicit; the only thing 

RBDE does is prevent the user from ending the session in which the unsatisfied obliga

tion was incurred. An ML obligation, on the other hand, explicitly prescribes a sanction, 

which must be carried out if the obligation is not satisfied by the specified deadline. The 

sanction is typically an operation that "gets around" the fact that the obligation was not 

satisfied on time. 

ML obligations are more powerful than our obligations and provide better control over 

when the obligations must be satisfied. It was not clear to us, however, how the timing 

dimension of ML obligations can be implemented without incurring a significant over

head from the enforcement of the time requirements; in their paper, Minsky and Lock

man do not suggest an implementation strategy. But since one of the requirements of 

this thesis work was practicality in the implementation sense, we preferred to implement 

a simpler notion of obligations that still provides a significant extension to EMSL and 

RBDE. 

7.2.2. Using Sessions and Obligations in Control Rules 

In order to be able to use the notions of sessions and obligations in control rules, we 

must extend the TM to handle sessions. A session is treated like a transaction in the 

sense that the TM creates an entry for each session in the transaction table, and main

tains several attributes for each session, similar to the transactions' attributes. The TM 

maintains infonnation about which transactions belong to which sessions. A transaction, 



213 

Ti, belongs to a session, S, if Ti is created to encapsulate the execution of a command 

that was requested within S. 

Unlike a transaction, however, a session is a non-atomic unit that is nonetheless a logical 

unit of database operations. As such, sessions are similar to sagas [Garcia-Molina and 

Salem 87], which are long transactions that can be broken up into a collection of sub

transactions; the subtransactions of a saga can be interleaved in any way with other 

transactions. 

7.2.2.1. Related Work: Sagas 

A saga is not just a collection of unrelated transactions because it guarantees that all its 

subtransactions will be completed or they will be compensated (explained shortly). A 

saga thus satisfies the definition of a transaction as a logical unit; a saga is similar to 

Moss's nested transactions and Lynch's multilevel transactions in that respect. Sagas 

are different from nested transactions, however, in that, in addition to there being only 

two levels of nesting, they are not atomicity units since sagas or other transactions may 

view the partial results of other sagas at the granularity of steps within the sagas (each 

step is atomic and its partial results cannot be viewed by other sagas or transactions). By 

structuring long transactions in this way, non-serializable schedules that allow more con

currency can be produced. Mechanisms based on nested transactions as presented earlier 

produce only serializable schedules. 

In traditional concurrency control, when a transaction is aborted for some reason, all the 

changes that its write operations introduced are undone. This procedure is called 

rollback, as we explained before. Aborting a transaction, Ti, requires rolling back the 

objects that were written by Tj to the state in which they were before Ti started. If the 

scheduling policy allowed other transactions to access the same objects that T i has 

changed, cascaded aborts are required to restore the database to its state before Ti 

started. Cascaded aborts would be required very often in the case of sagas since, by 

definition, sagas allow other transactions to view their partial results. In order to avoid 

costly cascaded aOOns, user-supplied compensation functions are executed to compen

sate for each transaction that was committed at the time of failure or automatic abort. 



214 

A compensation function undoes the actions perfonned by a transaction from a semantic 

point of view. For example, if a transaction reserves a seat on a flight, its compensation 

function would cancel the reservation. We cannot say, however, that the database was 

returned to the state that existed before the transaction started, because in the meantime, 

another transaction could have reserved another seat and thus the number of seats that 

are reserved would not be the same as it was before the transaction. 

Although sagas were introduced to solve the problem of long transactions in traditional 

applications, their basic idea of relaxing serializability is applicable to design environ

ments. For example, a long transaction to fix a bug in a design environment can be 

naturally modeled as a saga that consists of subtransactions to edit a file, compile source 

code, and run the debugger. These subtransactions can usually be interleaved with sub

transactions of other long transactions. Using compensation functions instead of cas

caded aborts is also suitable for advanced applications. For example, if one decided to 

abort the modifications introduced to a file, one can revert to an older version of the file 

and delete the updated version. 

Our notion of user sessions is similar to sagas in several respects. First, a user session, 

like a saga, is non-atomic. Instead, every step in the session (Le., a user command and 

all the chaining resulting from it) is atomic. The steps of one user session can be inter

leaved with the steps of other sessions. Second, sessions, like sagas, are user-controlled. 

The user must specifically start and end a session. Third, once a step in a session is 

committed, it cannot be rolled back. It can only be compensated by one or more steps. 

7.2.2.2. Extending eRL to Handle Sessions and Obligations 

Given that user commands are grouped in sessions, a control rule can prescribe obliga

tions that guarantee the resolution of a conflict to one or both of the sessions involved in 

the conflict The control rule in figure 7-3 applies to conflict situations over instances of 

the class FILE that involve the two commands outdate-compile and edit. The 

interfering transaction is bound to variable ? t 1 and the other transaction involved in the 

conflict is bound to ?t2; the session containing the interfering transaction is bound to 

? s 1. We have added the function session (?t 1) , which returns the identifier of the 

session containing the transaction bound to ?t 1. The control rule prescribes two ac-



edit-outdate-cr [ FILE 1 

selection criterion: 
commands: outdate-cornpile, edit; 

bindings: 
?t1 - requested lock(); 
?t2 - holds lock()i 
?sl = session(?t1)i 

body: 

* the interfering transaction * the other conflicting trans. * ?t1's session. 

if (and (?t1.type = cfc) 
(?t2.state - pending» 

then 
{ 

terminate (?t1)i 
add_obligation (?sl, (conflict_object.status-NotCornpiled»i 

} ; 

Figure '-3: Control Rule to Resolve Edit-Outdate Conflict with Obligation 

215 

tions: tenninating the transaction bound to the variable ?t1, and adding an obligation to 

the session containing the transaction bound to ?t 1. We have added the action 

add_obligation, which is handled by the TM. Given this action, the TM will in

struct the RP to add the specified obligation to the session whose identifier is bound to 

? s 1. Thus, this control rule not only tolerates inconsistency, but also adds an obligation 

to the session of one of the users involved in the conflict to re-establish consistency. 

Note that the user to whose session the obligation was added can satisfy the obligation 

by ftring the outdate-compile rule. Alternatively, if the same user or any other 

developer requested the edi t command on the inconsistent object, the obligation will 

be satisfied by the effect of the edi t rule. 

This completes our discussion of user sessions and obligations. We now present the 

concept of development domains and show how it can be used to write project-specific 

control rules. 



216 

7.3. Development Domains: Modeling Teamwork 

The task of completing the development of a large-scale software project is typically 

broken down into several subtasks. Typically, a development team is assigned the job of 

completing a subtask. The concept of modularity dictates that the interaction between 

the subtasks, and thus the development teams, be minimized. Members of a develop

ment team that is responsible for completing a particular development task share 

resources and expertise. We model the shared resources that the task requires through 

the concept of development domains, or just domains. In order to model cooperation 

among members of a development team, the sessions of each member in the team must 

belong to the domain modeling the resources of the development task. In fact, each user 

session must belong to a development domain, which gives the session a context for its 

operation. By default, a user session belongs to an empty domain that does not include 

any resources. 

Domains provide a grouping mechanism for both sessions and objects involved in a 

development task achievable by a team of developers. Domains are thus akin to group

oriented transaction models, which we overview next. 

7.3.1. Related Work: Group-Oriented Transaction Models 

Researchers in the area of advanced database applications have studied the mechanisms 

needed to support cooperation and teamwork. Several of the mechanisms proposed are 

based on the concept of a group of cooperating transactions. The members of a group 

usually work on the same task (or at least related tasks), and thus need to cooperate 

among themselves much more than with members of other groups. We overview some 

of the mechanisms that have been proposed and explain the differences between them 

and our notion of domains. 



217 

7.3.1.1. The Group Paradigm 

Since developers of a large project often work in small teams, there is a need to formally 

defme the kinds of interactions that can happen among members of the same team as 

opposed to interactions between teams. EI-Abbadi and Toueg defined the concept of a 

group as a set of transactions that when executed transforms the database from one con

sistent state to another [EI Abbadi and Toueg 89]. They presented the group paradigm to 

deal with consistency of replicated data in an unreliable distributed system. They hierar

chically divide the problem of achieving serializability into two simpler ones: (1) a local 

policy that ensures a total ordering of all transactions within a group; and (2) a global 

policy that ensures correct serialization of all groups. 

A group, like a nested transaction, is an aggregation of a set of transactions. There are 

significant differences, however, between groups and nested transactions. A nested 

transaction is designed a priori in a structured manner as a single entity that may invoke 

subtransactions, which may themselves invoke other subtransactions. Groups do not 

have any a priori assigned structure and no predetermined ordering imposed on the ex

ecution of concurrent transactions within a group. Another difference is that the same 

concurrency control policy is used to ensure synchronization among nested transactions 

at the root level and within each nested transaction. Groups, however, could use dif

ferent local and global policies (an optimistic local policy, for example, and a 2PL global 

policy). The existence of more than one policy might lead to increased concurrency. 

The group paradigm was introduced to model inter-site consistency in a distributed 

database system. It can be used, however, to model teams of developers, where each 

team is modeled as a group with a local concurrency control policy that supports 

cooperation. A global policy could then be implemented to coordinate the efforts of the 

various groups. Of course, the local policies and the global policy must be compatible in 

the sense that they do not contradict each other's correctness criteria. EI-Abbadi and 

Toueg do not sketch the compatibility requirements between global and local policies. 

Dowson and Nejmeh have applied the group concept to model the resources shared by a 

team of programmers. They introduced the notion of visibility domains, which model 



218 

groups of programmers executing nested transactions on versions of objects [Dowson 

and Nejmeh 89]. A visibility domain is a set of data items that can be shared by a group 

of users. Each transaction has a particular visibility domain associated with it. Any 

member of a visibility domain of a transaction may start a subtransaction on a new ver

sion of the copy of data that belongs to the transaction. The only criterion for data con

sistency is that the visibility domain of a transaction be a subset of the visibility domain 

of its parent. 

7.3.1.2. Transaction Groups 

In order to allow members of the same group to cooperate and to monitor changes in the 

database, there is a need to provide concurrency control mechanisms with a range of 

lock modes of varying exclusiveness. The transaction groups model proposed for the 

ObServer system replaces classical locks with <lock mode, communication mode> pairs 

to support the implementation of a nested framework for cooperating 

transactions [Skarra 91, Skarra and Zdonik 89, Fernandez and Zdonik 89]. The lock 

modes provided by ObServer indicate whether the transaction intends to read or write 

the object and whether it permits reading while another transaction writes, writing while 

other transactions read, and multiple writers of the same objects. The communication 

modes specify whether or not a transaction must be notified if another transaction either 

requests to access or update an object on which the fIrst transaction holds a lock. 

A transaction group (TO) is defined as a process that controls the access of a set of 

cooperating transactions (members of the transaction group) to objects from the object 

server. Since a TG can include other TGs, a tree of TGs is composed. Within each TG, 

member transactions and subgroups are synchronized according to an input protocol that 

defines some semantic correctness criteria appropriate for the application. The criteria 

are specified by semantic patterns, and enforced by a recognizer and a conflict detector. 

Examples of semantic patterns include lock filters, which specify the set of locks that the 

group may grant to its members, and operation fllters, which specify the set of permis

sible operations that a member may request from its group. A typical lock fIlter for a 

cooperative transaction group might be one that includes only locks with non-NULL 

communication modes (e.g., all members must request locks that include 



219 

notification) [Fernandez and Zdonik 89]. The recognizer ensures that a lock request 

from a member transaction matches an element in the lock filter of the input protocol of 

the transaction' s group. The conflict detector ensures that a request to lock an object in a 

certain mode does not conflict with the locks already held on the object. 

If a transaction group member requests an object that is not currently locked by the 

group. the group has to request a lock on the object from its parent. The input protocol 

of the parent group. which controls access to objects. might be different from that of the 

child group. Therefore. the child group might have to transfonn its request lock into a 

different lock mode accepted by the parent's input protocol. The transfonnation is 

carried out by an output protocol. which consults a lock translation table to detennine 

how to transform a lock request into one that is acceptable by the parent group. 

Figure 7-4: Transaction Groups 

Transaction groups and the associated locking mechanism provide suitable low-level 

primitives for implementing a variety of concunency control policies. To illustrate. con

sider the following example. Mary and John are assigned the task of updating the three 

CFILE objects in module ModA, while Bob is assigned responsibility for updating 

module ModB, which is fairly independent of ModA. Mary and John need to cooperate 

while updating the modules whereas Bob only needs to access the fmal result of the 



220 

modification of ModA in order to integrate the modified ModB with ModA. Two trans

action groups are defined, TGl and TG2. TGl has T Bob and TG2 as its members, and 

TG2 has TJohn and TMary as its members. The output protocol of TG2 states that 

changes made by the transactions within TG2 are committed to TGl only when all the 

transactions of TG2 have either committed or aborted. The input protocol of TG2 ac

cepts lock modes that allow T Mary and TJohn to cooperate (e.g., see partial results of 

their updates to the modules) while isolation is maintained within TGl (to prevent TBob 

from accessing the partial results of the transactions in TG2). This arrangement is 

depicted in figure 7-4. 

7.3.1.3. Participant Transactions 

The transaction groups mechanism defmes groups in tenns of their access to database 

objects in the context of a nested transaction system. Another approach is to define a 

group of transactions as participants in a specific domain22 [Kaiser 90]. Participant 

transactions in a domain need not appear (from the point of view of participants) to have 

been perfonned in some serial order with respect to each other. The set of transactions 

that are not participants in a domain are considered observers of the domain. The set of 

observer transactions of a domain must be serialized with respect to the domain and 

should not be able to detect the non-serializable interleaving of participant transactions. 

A particular transaction may be a participant in some domain and an observer for others 

whose transactions access the same objects. 

A user can initiate a transaction that nests subtransactions to carry out subtasks or to 

consider alternatives. Each subtransaction may be part of an implicit domain, with itself 

as the sole participant Alternatively, one or more explicit domains may be created for 

subsets of the subtransactions. In the case of an implicit domain, there is no requirement 

for serializability among the subtransactions since there is only one participant in the 

implicit domaiD; however, each subtransaction must appear atomic with respect to any 

participants, other than the parent, in the parent transaction's domain. 

221be word domain means different things in participant transactions. visibility domains. and develop
ment domains. 



221 

The domain in which a transaction participates would typically be the set of transactions 

associated with the members of a cooperating group of users working towards a common 

goal. However, unlike transaction groups, there is no implication that all the trans

actions in the domain commit together, or even that all of them commit (some may 

abon). Thus it is misleading to think of the domain as a top-level transaction, with each 

user's transaction as a subtransaction, although this is likely to be a frequent case in 

practice. The transaction groups mechanism described above is thus a special case of 

participant transactions. 

Each transaction is associated with zero or one particular domains at the time it is in

itiated. A transaction that does not participate in any domain is the same as a classical 

(but interactive) transaction. Such a transaction must be serializable with respect to all 

other transactions in the system. A transaction is placed in a domain in order to non

serializably share partial results with other transactions in the same domain, but it must 

be serializable with respect to all transactions not in the domain. 

V 
Time 

begin(X) 
access(fl.c) 
read(f2.c) 
write(f2.c) 

access(fl.c) 
read(f2.c) 
write(f2.c) 

begin(X) 
access(main.c) 
read(f2.c) 
write(f2.c) 

commit(f2.c,main.c) 
read(f2.c) 
write(fl.c) 
commit(fl.c,f2.c) 

Figure '·5: Example of a Participation Schedule 

To illustrate. say a domain X is defmed to respond to a particular modification request. 

and programmers Mary and John stan transactions T Mary and TJohn that participate in x. 
Assume that an access operation is either a read or a write operation. The schedule 



222 

shown in figure 7-5 is not serializable. T Mary reads the updates that T10hn made to the 

CFILE object f2 . c that are written but are not yet committed by T1ohn' modifies parts 

of f2 . c, and then commits. T10hn continues to modify fl. c and f2 . c after T Mary has 

committed. Since T Mary and T10hn participate in the same domain· x, the schedule is 

legal according to the participation transactions mechanism. 

TJohn TMary TBob 
I 
I begin(X) begin 
I modify(fl.c) modify(main.c) 
I modify(f2.c) begin(X) 
I read(main.c) access(f3.c) 
I write(main.c) read(f2.c) 
I modify(fl.c) write(f2.c) 
I read(f2.c) 
I modify(f2.c) 
I commit(f2.c,f3.c) 
I modify(f2.c) 
I read(f2.c) 

y 
Time 

Figure 7-6: Example of a Participation Conflict 

Now say that Bob starts a transaction T Bob that is an observer of domain X. Assume that 

the sequence of events shown in Figure 7-6 happens. Bob [1I'st modifies the CF I LE 

object main. c. This by itself would be legal, since TBob thus far could be serialized 

before TJohn(but not after). But then TBob attempts to read f2. c, which has been 

modified and committed by T Mary' This would be illegal even though T Mary was com

mitted. T Mary cannot be serialized before T Bob' and thus before T John' because T Mary 

reads the uncommitted changes to f2. c written by TJohn' In fact. T Mary cannot be 

serialized either before or after TJohn' This would not be a problem if it was not neces

sary to serialize T Mary . with any transactions outside the domain. Mary' s update to 

f2. c would be irrelevant if John committed his final update to f2. c before any trans

actions outside the domain accessed f2. c. Thus the serializability of transactions 

within a participation domain need be enforced only with respect to what is actually 

observed by the users who are not participants in the domain. 



223 

Our notion of development domains combines the notions of the previous group

oriented mechanisms. The group paradigm, transaction groups, and participant trans

actions apply only to transactions. Visibility domains group together objects accessed 

by a group of users. Development domains group together sessions (substitute for trans

actions), users and objects in one unit. The motivation behind this is to be able to 

specify cooperative concurrency control policies that specify not only which sessions 

(belonging to which users) can cooperate, but also on which objects they can cooperate, 

if that is required. Thus, it is possible to limit the cooperation to only a subset of objects 

in the database. With transaction groups and participant domains, it is an "all or none" 

policy; e.g., transactions can either cooperate, in which case they can access all objects 

cooperatively, or they do not, in which case they cannot access any objects coopera

tively. 

7.3.2. Adding Domains to EMSL and RBDE 

EMSL provides three operations that the administrator can request to create and manipu

late domains: add_domain, delete_domain, and link_object. The project ad

ministrator uses add_domain to create a new domain at any point during the develop

ment of a project. The administrator must assign a unique name to the new domain. The 

administrator can then use the 1 ink _ ob j ect command to link a set of existing objects 

in the project database to the domain. By linking an object to a domain, the object is 

considered a part of the shared resources that the domain contains. A single object can 

be linked to more than one domain. Linking of objects to domains can be done on the 

fly by the administrator. In practice, however, the administrator will typically set up 

several development domains, which reflect the organization of development teams, be

fore the developers actually start working on the project. 

Given a set of domains, a developer can start a session that belongs to a specific domain 

by issuing the start_session command. Thus, the user can issue the command 

start_session dl to start a session in domain dl. If no domain is specified in the 

start_session operation, the session is assumed to belong to a singleton domain 

that includes only the session. In order to delete a domain, all the sessions contained in 

the domain must be ended flfSt. 



224 

7.3.3. Integrating Development Domains into CRL 

Domains can be used to write group-oriented control rules. In order to integrate domains 

in CRL, we add another function to the binding part of a control rule: domain (?v) , 

where ?v is bound to either a transaction or a session. This function returns the domain 

to which the transaction or session belongs. A transaction belongs to the same domain 

to which the session containing the transaction belongs. 

Since a domain is linked to a set of objects, we must also add a predicate that can deter

mine if the object over which the conflict occurred is part of the shared resources of the 

domain. We add the predicate linkto [?o, ?d] , which returns TRUE if the object 

bound to ?o (typically, the conflict_object), is linked to the domain bound to 

?dl. Note that it is possible for the project administrator to ignore the set of objects that 

are linked to a domain; the administrator can write a control rule that allows two trans

actions that belong to the same domain to cooperatively (Le., in a non-serializable man

ner) access objects which have not been linked to· the domain. This would reduce 

development domains to domains in the participant transactions sense. 

selection_criterion: 

bindings: 
?t1 - holds lock(); 
?t2 - requested lock(); 
?s1 - session(?t1); 
?s2 - session(?t2); 
?d1 - domain(?sl); 

body: 

if (and (?tl.type - cfc) 
(?t2.state - pending) 
(?dl - ?<i2) 

then 
( 

(linkto [confl~ct_object, ?dl]» 

terminate (?tl); 
add obligation (?sl, (conflict object.status=NotCornpiled»; 

}; - -

Figure 7·7: Control Rule Using Development Domains 



225 

To illustrate how domains can be used in control rules, consider the control rule shown 

in figure 7-3 on page 215, which prescribes terminating a consistency forward chain in 

order to resolve a conflict. It might be desirable for the administrator to prescribe such 

an action only if the two sessions to which the conflicting transactions belong are in the 

same development domain. A revised version of that control rule, shown in figure 7 -7 , 

does exactly that. The control rule prescribes the terminate action only if two con

ditions are met: (1) the two conflicting transactions belong to the same domain, and (2) 

the object over which the conflict occurred is part of the shared resources of that domain. 

Given the fact that we can now model development teams, we add an action to CRL that 

makes sense only in the context of developers who are closely cooperating with each 

other within a development team. The action, merge, involves merging two conflicting 

transactions by making one transaction a child of the other. 

7.3.4. Merging Two Transactions 

Merging two transactions is intended as an alternative to abort, terminate or 

suspend, when two transactions conflict because the agents whose execution they en

capsulate are closely cooperating on the same set of objects. The main reason for merg

ing transactions, in addition to avoid aborting either of them, is to complete as much of 

the work as the two transactions would have perfonned had they not conflicted. Merg

ing two transactions entails making one transaction a subtransaction of the other, which 

implies that the two transactions will be allowed to carry out all of the automation and 

consistency implications of the agents they encapsulate. Both suspend and 

terminate, in contrast, prevent automation implications of one of the transactions 

(the one that was finished or tenninated) from being carried out. Thus, the only reason 

to use the merge action is to have RBDE carry out the automation implications of a 

transaction that was involved in a conflict. The merge action was motivated by the 

work done on restructuring transactions by Pu et al. [Pu et al. 88]. We briefly describe 

this work here and then present the details of the merge action. 



226 

7.3.4.1. Related Work: Dynamic Restructuring of Transactions 

In many advanced database applications, such as design environments, operations are 

interactive. The operations a user performs within a transaction might be of uncertain 

development, i.e., it cannot be predicted which operations the user will invoke a priori. 

Traditional transaction models do not allow transactions, especially long transactions, to 

be restructured dynamically to reflect a change in the needs of the users. To solve this 

problem, Pu et al. introduced two new operations, split-transaction and 

join-transaction, which are used to reconfigure long transactions while in progress. 

The basic idea is that all sets of database actions that are included in a set of concurrent 

transactions are performed in a schedule that is serializable when the actions are com

mitted. The schedule, however, may include new transactions that result from splitting 

and joining the original transactions. Thus, the committed set of transactions may not 

correspond in a simple way to the originally initiated set. A split-transaction divides an 

ongoing transaction into two or more serializable transactions by dividing the actions 

and the resources between the new transactions. The resulting transactions can proceed 

independently from that point on. More important, the resulting transactions behave as 

if they had been independent all along, and the original transaction disappears entirely, 

as if it had never existed. Thus, the split-transaction operation can be applied only when 

it is possible to generate two serializable transactions. Join-transaction does the reverse 

operation of merging the results of two or more separate transactions, as if these trans

actions had always been a single transaction, and releasing their resources atomically. 

To clarify this technique, suppose that both Mary and John start two long transactions 

TMary and T]ohn to modify the two modules ModA and ModB, respectively. After a 

while, John finds out that he needs to access module ModA. Being notified that TJohn 

needs to access ModA, Mary decides that she can "give up" the module since she has 

finished her changes to it, so she splits up T Mary into T Mary and T MaryA. Mary then 

commits T MaryA' thus committing her changes to ModA while continuing to retain 

ModB. Mary can do that only if the changes committed to ModA do not depend in any 

way on the previous or planned changes to ModB, which might later be aborted. TJohn 

can now read ModA and use it for testing code. Mary commits T Mary independently, 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

V 
Time 

initiate 
read(ModA) 
read(ModB) 
write(ModA) 

corresponding notify(ModA) 
split«ModB), (ModA)) 

write(ModB) 
commit(ModB) 

commit(ModA) 

initiate 
request read(ModA) 

actual read(ModA) 
write(ModA) 
read(ModB) 
write(ModB) 
commit(ModA, ModB) 

Figure '·8: Example of Split-Transaction 

227 

thus releasing ModE. TJohn can then access ModB and fmally commit changes to both 

ModA and ModE. The schedule of T Mary' T MaryA and TJohn is shown in figure 7-8. 

The split-transaction and join-transaction operations relax the traditional concept of 

serializability by allowing transactions to be dynamically restructured. Eventually, the 

restructuring produces a set of transactions that are serialized. Unlike all the other ap

proaches described earlier in this section, this approach addresses the issue of user con

trol over transactions since it allows users to dynamically restructure their long trans

actions. This is most useful when opponunities for limited exchange of data among 

transactions arise while they are in progress. The split and join operations can be com

bined with the other techniques. 

One interesting issue that arises in merging transactions (actually in restructuring trans

actions in general) is the user interface issue. One valid assumption for implementing 

joins is a multi-threaded transaction model: when transactions are joined, multiple 

threads of the same transaction can continue executing; the owners of these threads (Le., 

the users who see the results of the threads) do not have to be the same user. This 

assumption is not supported in our model. Basically, when two transactions are merged 



228 

into one, the resulting transaction will have only one owner. Only one of the trans

actions continues to execute whereas the other "disappears". From the point of view of 

the owners of the two transactions, assuming that the two owners are different, one of 

them will be informed that his transaction has been merged with another transaction. As 

far as he is concerned, his transaction has ended and he can request a new command. 

The behavior seen by the other owner will not be different from the behavior he would 

have seen if ~e two transactions had not been merged. This is similar to the assumption 

made in [Kaiser 92]. 

In addition to the user interface issue, there are other complications that arise from the 

fact that transactions in our model have different types, and thus different purposes, and 

that they can be in different states. To be more formal, consider the conflict situation 

C = (<1'i' Tp, <:Mli[o],Nl}o]». The state ofTi is active, whereas the state ofTj is 

either pending or inact i ve. The action merge (T i' T j) involves making Ti a 

subtransaction of Tj . PCCP performs the merging only under two conditions which have 

to be met by the two transactions: 

1. The type ofTi can be only afc or cfc. 

2. If the type ofTi is afc, then the type ofTj must be either tl or afc. 

The reason for the fIrst condition is that it would not make sense to merge transactions of 

other types. A transaction whose type is either tl or bi corresponds directly to a user 

command. Making such a transaction a subtransaction of another user's transaction will 

cause confusion among the users. Suppose, for example, that John requested to edi t 

an object. The TM creates TJohn to encapsulate the command. Now suppose that Tlohn 

interferes with the execution of another transaction T Mary that belongs to Mary. The fact 

that TJohn interfered with TMary implies that Tlohn is in an active state, which means 

that the editor has not been invoked. Making T John a subtransaction of T Mary means that 

an editor will be invoked on Mary's screen; since Mary did not request any edit com

mand, she will be surprised and confused about what happened. John, who expected the 

editor to be invoked on his screen, will be surprised that it was not. To avoid this kind 

of confusion, PCCP refuses merging a transaction whose type is either t 1 or b i with 

another transaction. 



229 

A transaction whose type is be does not have any automation forward chains, by defini

tion. Merging such a transaction with another transaction would defeat the whole pur

pose of the merge action. Thus, peep does not allow merging a transaction whose 

type is be with another transaction. 

The second condition basically states that peep will not merge an automation forward 

chain with a backward chain (recall that the type of Tj can only be tI, afe or be). The 

reason for this is that the rule execution and chaining model does not perform automa

tion forward chaining while in the middle of backward chaining. Backward chaining is 

performed only to try to make the condition of a rule that corresponds to the user com

mand satisfied. Thus, RBDE tries to minimize the number of rules it frres during back

ward chaining. Whereas it is mandatory that consistency forward chaining be performed 

after a rule has been frred in a backward chaining cycle, perfonning automation forward 

chaining is only optional. Therefore, we have chosen not to perform automation forward 

chaining during backward chaining. Merging an afe transaction with a be transaction 

would contradict this model and thus we chose not to allow it. 

Given the two conditions above and a conflict situation involving Ti and Tj , where Ti is 

the interfering transaction (Le., it is in an act i ve state), there are four possibilities: (1) 

the type ofTi is efe and Tj is in a pending state, (2) the type ofTi is efe and Tj is in 

an inactive state, (3) the type ofTi is afe and Tj is in a pending state, and (4) the 

type of Ti is afe, the type of Tj is tl and Tj is in an inactive state. Note that a 

transaction whose type is a f e cannot be in an inaet i ve state. We briefly discuss the 

details of these four possibilities, giving an example of each. 

The last two possibilities are straightforward. Consider a conflict situation 

C = (<Ti, T,;>, <Mli[o], Ml}o]». If the type of the interfering transaction is afe, then 

merging it with Tj simply requires adding it as if it were an automation implication of 

the rule encapsulated by Tj . Ti will be executed after the execution of Tj is completed. 

For example, say that John requested editing the CFILE object fl. e, which causes an 

automation forward chain leading to firing the archive rule on fl . e in an attempt to 

archive the object code of the new version of fl. e in one of the libraries (LibA in this 

case). Suppose that the transaction T]ohn' which encapsulates the execution of this 



230 

arehi ve rule, interferes with another transaction T Bob' which encapsulates the execu

tion of the rule archive f2. e (i.e., John's archive rule wants to access LibA 

which is being accessed in write mode by Bob). 

This conflict can be resolved by aborting TJohn or suspending it. Neither action is neces

sary, however, because TJohn can simply be merged with T Bob. Merging the two trans

actions leads to executing archive fl. e after Bob's archive rule is completed. 

Meanwhile John can go ahead and request other commands since his transaction's ex

ecution has been completed as far as he is concerned; archiving fl. e and all the im

plications that result from that will be taken care of by Bob. This will avoid aborting 

John's archive rule and also avoids making John wait until Bob's archive rule is 

completed. 

Merging in the case when the type of the interfering transaction T j is afe is slightly 

more complicated. Assume that the ancestor of T j that initiated the consistency forward 

chain of which Ti is a pan is Tk (i.e., the type of Tk is not efe). In order to merge Ti 

with Tj , the TM makes T k a subtransaction of the parent of Tj . If such a parent does not 

exist (i.e, if Tj is of type tl), the TM creates a new hypothetical transaction, TJ.o' and 

makes both Tj and Tk subtransactions of TJ.o. Thus, Tj and Tk become siblings in the 

same nested transaction. The problem now reduces to ordering the execution of Tj and 

Ti within the same nested transaction (recall that the subtransactions of a nested trans

action are executed in a serial order). This ordering depends on the state of Tj . 

If Tj is in a pending state, then the TM rolls back the consistency forward chain (not T k 

though), completes the execution of Tj , but instead of carrying out the consistency im

plications of Tj , it restans the consistency forward chain of T k' Only after this chain is 

completed does the TM carry out the consistency forward chain of Tj . The automation 

implications of all the transactions are pushed on the execution stack of Tj ' s client; these 

are executed after the consistency implications of both T k and Tj have been completed. 

To illustrate the merge action, consider again the example we presented in chapter 6 to 

demonstrate the suspend action. The example involved the set of rules shown in 

figure 6-6 on page 192. A conflict situation was detected because the transaction 



compile-archive-cr [ CFILE ] 

selection criterion: 
commands: outdate-compile, compile, archive; 

bindings: 
?tl = requested_lock(); 
?t2 = holds_lock(); 

body: 

if (and (?tl.type - cfc) 
(?tl.state - active) 
(?t2.state = inactive)) 

then 
( 

merge (?tl, ?t2); 
I ; 

231 

Figure '·9: Control Rule to Resolve Outdate-Archive Conflict by Merging 

TMary.l encapsulating Mary's outdate-compile fl. c rule (fired as a result of 

editing i2.h) interfered with the transaction TBob encapsulating Bob's archive 

MociA rule, which requires locking all CFILE objects contained in MociA (including 

fl. c) with an R lock. The conflict situation is depicted in figure 6-7 on page 194. 

Suppose that instead of firing the control rule shown in figure 6-8, which suspends T Bob' 

PCCP attempts to resolve this conflict by firing the control rule shown in figure 7-9. 

Unlike the control rule in chapter 6, the control rule in figure 7-9 will merge T Mary and 

TBob into one transaction (owned by Bob). Both TMary.l and TMary are actually com

mitted (Mary is infonned that her command has been executed and that further implica

tions will be taken care of by Bob). The TM then creates the hypothetical transaction 

TBob•O and makes TBob its subttansaction; the TM also creates TBob' and TBob'.1 to 

replace TMary and TMary.l' respectively. TBob, is created as a subtransaction ofTBob.O' 

This will allow TBob'.l' which encapsulate the outdate-compile fl. c rule that 

caused the. conflict, and the two other consistency implications of T Mary (Le., 

outdate-compile main. c and outdate-compile f2. c), to be carried out. 

Following that, T Bob will be completed after its backward chaining cycle (T Bob. I ) is 

fmished. Then after T Bob commits, the automation implications of Mary's rule (and the 

automation implications of its consistency implications) will be carried out. The actual 



y 
Time 

Mary 

create T Mary 
edit i l.h 

create T Mary.1 
outdate-compile fl.c 
merge with T Bob 

commit T Mary. 1 
commit T Mary 

Bob 

create TBob 
archive ModA 
create T Bob. 1 
archive f2.c 

outdate-compile fl.c 

create T Bob.O 
create T Bob' 

create T Bob' .1 
outdate-compile fl.c 
commit TBob'.1 

create T Bob'.2 
outdate-compile main.c 
commit TBob'.2 

create T Bob'.3 
outdate-compile f2.c 
commit TBob'.3 

complete archive fl.c 
commit T Bob.l 
retry archive ModA 
commitTBob 
create T Bob' .1.1 
compile fI.c 
commit T Bob'.l.1 

create T Bob'.2.1 
compile main.c 
commit TBob'.2.1 , 

create T Bob'.3.1 
compile fl.c 
commit T Bob'.3.1 

commit T Bob' 

commit T Bob.O 

Figure '·10: Example of Merging Two Transactions 

232 

<-CONFLICI' 



233 

schedule of transactions that gets executed (assuming no other conflicts) is shown in 

figure 7-10. 

This completes our discussion of development domains and the me rge action. 



234 

Chapter 8 

Summary, Evaluation and Future Directions 

In this fmal chapter, we summarize the results of this dissertation, overview the im

plementation status of our thesis work, evaluate our contributions, and finally discuss 

directions for future work. 

8.1. Summary 

This dissertation addressed the concurrency control problem in process-centered SDEs. 

We have constructed a database model for process-centered SDEs, id~ntified the seman

tic information that is available in that model, and devised a concurrency control 

mechanism that uses this semantic information to support two protocols: a semantics

based concurrency control protocol that provides the default policy and a programmable 

protocol that provides a mechanism for specifying a project-specific policy. We have 

implemented our approach in a specific SDE architecture in order to prove its ap

plicability and practicality. 

8.1.1. The Architecture 

In chapter 2, we constructed an architecture based on the MARVEL rule-based SDE. The 

ideas behind MARVEL and its implementation are not part of this thesis work; we have 

only fonnalized the MARVEL model and abstracted it in terms of database operations. 

Our architecture is composed of a specification language, EMSL, and a kernel, RBDE. 

RBDE provides process-centered assistance by loading specifications of both the data 

model and the software development process of a project, written in EMSL by the 

project administrator. EMSL models the development process in terms of rules that 

operate on the components of a software project. Each rule prescribes a development 

activity by defming the condition that must be satisfied before the activity can be carried 



235 

out, and the effects of executing the activity on the project components. These com

ponents are abstracted as objects and stored in a database. Both the condition and the 

effects are written in a subset of first-order logic. 

RBDE presents the users (developers of the project) with commands, each of which is 

either a built-in command or correspond to a rule. If a user requests a command that is 

not built-in, RBDE executes the command by firing the corresponding rule. Automated 

assistance is provided by a chaining engine that fires a chain of rules in response to user 

commands, automatically performing some development activities that the users would 

have otherwise done manually. A client/server model enables RBDE to support multiple 

users, who can request commands concurrently. 

8.1.2. The Concurrency Control Problem 

When multiple developers cooperate on a project, they share a common database that 

contains all the components (source code, documentation, test suites, etc.) of the project. 

The developers may request commands that access objects in the shared database con

currently. RBDE participates in enacting the development process by initiating concur

rent rule chains on behalf of the developers. The concurrent rule chains may inteifere, 

violating the consistency of the objects accessed by the chains. 

Interference (also called concurrency conflict) occurs when objects that have been ac

cessed by a rule, rl, are updated by another rule, r2, in a concurrent chain. This over

lapping access might, for example, lead to changing the values of attributes of objects 

that were read during the evaluation of the condition of rl. The validity of rl's execu

tion depends on the assumption that these objects will not be changed by other rules 

except after the chain containing rl is completed. Thus, if any of the objects is actually 

changed, rl's execution might have to be invalidated. In addition, all the rules that 

were fired after rl in rl's chain might have to be invalidated since the reason for firing 

them (Le., the successful firing of r 1) has now been reversed. 

Interference cannot occur if rule chains are executed in a serial fashion (Le., a rule chain 

starts and executes to completion before another one can be started), or in a serializable 



236 

fashion (Le., equivalent to a serial execution). To fonnalize the notion of interference, 

we constructed a database model of RBDE in chapter 3. The execution of an individual 

command (built-in command or a rule) is abstracted as a set of access units, each of 

which consists of a set of database read and write operations that are perfonned atomi

cally. The access units are grouped in units called agents. To guarantee the atomicity of 

agents, we encapsulate their execution in atomic transactions. 

The TM (transaction manager) creates a transaction, with a unique identifier and a times

tamp, to encapsulate the execution of an agent by a begin operation and a cornmi t (or 

abort) operation. A transaction is a sextuple T = (i, Ui' S, c, u, t), where i is the unique 

identifier of the transaction, Ui is the set of access units belonging to T, S is the set of 

subtransactions of T, c is the command whose execution is encapsulated by T, U is the 

owner of T, and t is the unique timestamp that the TM assigned to T. 

In the multi-agent RBDE model the RP interleaves the execution of multiple agents at 

the granularity of access units. Corresponding to this interleaved execution of agents is 

a transaction schedule (or execution) in which the execution of the access units of mul

tiple concurrent transactions (encapsulating the agents) are interleaved. The only kind of 

concurrent schedules that can cause interference are non-serializable schedules, i.e., 

schedules that interleave the execution of database operations of multiple transactions in 

a fashion that cannot be done in a serial schedule. 

Based on this, the concurrency control problem can be divided into three subproblems: 

(1) finding a mechanism to detect non-serializable executions of concurrent transactions, 

(2) devising a concurrency control protocol that provides a default policy for resolving 

detected conflicts, and (3) developing a mechanism for overriding the default policy in 

specific situations in order to suppon cooperative non-serializable interactions whenever 

required. 



237 

8.1.3. The Solution 

To solve the problem, we have developed a concurrency control mechanism composed 

of two modules: a conflict detection module and a conflict resolution module. The con

flict detection module, which we presented in chapter 4, consists of a two-phase locking 

(2PL) mechanism employed by the TM and a nested granularity locking protocol, NGL, 

employed by the lock manager (LM) to detect conflicts. Each individual rule is encap

sulated in an atomic transaction to guarantee that its three parts (condition, activity, and 

effects) execute as a unit. A rule can trigger a rule chain composed of several other 

rules; we group all the rules of one chain in a nested transaction, where each rule be

comes a subtransaction. Before a transaction can execute an access unit, it must acquire 

appropriate locks on all the objects accessed by the database operations in the access 

unit. The TM acquires the locks on behalf of the transaction by requesting them from 

the LM. The NGL protocol employed by the LM detects locking conflicts (which in

dicate interference) between concurrent nested transactions. 

The conflict resolution module is a Scheduler that employs two concurrency control 

protocols. The fmt, presented in chapter 5, is a semantics-based concurrency control 

protocol, SCCP, which provides the default concurrency control policy in RBDE. Given 

a concurrency conflict detected by NGL, SCCP decides which of the two conflicting 

transactions to abort. SCCP uses information about the consistency constraints of a 

project in order to construct a priority-based conflict resolution scheme. To make the 

consistency constraints of a project explicit, EMSL provides constructs that can be used 

to distinguish between consistency predicates and automation predicates in both the 

conditions and effects of rules; a single rule might contain both kinds of predicates. 

Consistency predicates constrain both forward and backward chaining. They prescribe 

to RBDE the mandatory steps that RBDE must perform in response to firing a rule. 

The default resolution of serialization conflicts is based on the consistency requirements 

of the particular project. By default, RBDE should maintain the consistency constraints 

defmed by the rules. SCCP uses the distinction between consistency predicates and 

automation predicates to do two things: (1) to construct a priority scheme based on the 

types and states of transactions, and (2) to define the abort and commit dependencies 



238 

between subtransactions and their parent transactions. The priority scheme is used to 

detennine which of the transactions involved in a conflict should be aborted. Aboning a 

subtransaction sometimes (but not always) necessitates aborting other subtransactions in 

the same nested transaction. If the chain encapsulated by the transaction was initiated by 

a consistency predicate then the whole chain (i.e., all the subtransactions that represent 

the chain) must be aborted and rolled back. In contrast, if the rule chain was initiated by 

an automation chain, then only one subtransaction needs to be aborted while the whole 

chain is simply tenninated. 

The conflict resolution module provides a second protocol, peep, which can be used to 

override the default concurrency control policy. We presented peep in chapter 6. Un

like secp, peep does not have a hard-wired policy to detennine how to resolve a con

flict. Instead, PCCP matches the conflict to a control rule, which is written by the 

project administrator, and executes the actions prescribed by the control rule. Each con

trol rule describes a conflict situation and prescribes actions to resolve the conflict The 

control rules are written in a language called CRL, which provides a mechanism for 

defining the legal concurrent interactions between developers of the same project. 

The actions prescribed by a control rule might lead to the relaxation of the default 

policy. These actions include aborting one of the conflicting transactions (the one that 

seep would not have aboned, for example), suspending one of the transactions while 

the other is fmished, and tenninating one of the transactions. Tenninating a transaction 

encapsulating a consistency forward chain results in violating the consistency constraints 

of the project, as defined by the consistency predicates of the rule. RBDE tolerates this 

violation of consistency temporarily by marking the objects that are left in an incon

sistent state; the consistency of these objects is established later on by completing the 

consistency forward chain that was tenninated prematurely and unmarking the object. 

In order to enhance the expressive power of CRL and EMSL, we extended both with 

three constructs that provide a context for tolerating inconsistency and modeling team

work (chapter 7). The three constructs are user sessions, obligations and development 

domains. Both user sessions and obligations provide a mechanism for specifying when 

and by whom the consistency of objects should be re-established after prematurely ter-



239 

minating a consistency forward chain. Development domains model teams of program

mers by specifying which of the developers' sessions belong to which domain and the 

objects on which the sessions within each domain can cooperate. The fact the two trans

actions belong to sessions that are in the same domain is used in control rules to 

prescribe flexible resolution mechanisms such as merging two rule chains into one 

chain, so that their execution continues as one chain from that point on. This allows 

members of the same development team more flexibility in terms of accessing objects. 

8.2. Implementation of the Thesis Work in MARVEL 

Much of the work described in this dissertation has been implemented. In general, all of 

the work described in chapters 2, 3, and 4 has been implemented. Most of the work 

described in chapter 5 has been implemented. An initial implementation of CRL has 

been completed and work is in progress to implement all the constructs presented in 

chapter 6. The only two parts that have not been implemented at all yet are user sessions 

and domains, which were presented in chapter 7. In the rest of this section, we discuss 

in more detail the implementation of the various parts of this dissertation. 

8.2.1. EMSL and RBDE 

The extensions that both EMSL and RBDE added to the original implementation of 

MARVEL (MARVEL 2.6) have been fully incorporated in the ftrst multi-user implemen

tation, MARVEL 3.0. These extensions include the distinction between consistency and 

automation predicates, described in chapter 5, and the client/server model, as described 

in chapter 2. The output keywords has not been implemented. Basically, in the cur

rent implementation, all the arguments of a rule's activity are considered "output" ar

guments; thus, any attribute that is passed as an argument to an activity is included in the 

write set of the rule. 

In addition, the syntax of the speciftcation language used in MARVEL, MSL, is slightly 

different from the EMSL syntax we presented in chapter 2. The main difference is in the 

condition of a rule. In MSL, the quantifiers are included in the binding part of the con

dition, rather than in the property list. The rules given in appendix B, which work in 

MARVEL, show the MSL syntax. 



240 

8.2.2. The Transaction Model 

The nested transaction model presented in chapters 4 and 5 has been implemented except 

for a few details. As described in these chapters, we have implemented a transaction 

model composed of a TM (transaction manager), an LM (lock manager), and a 

Scheduler. The TM supports nested transactions and categorizes transactions according 

to the type of chain they encapsulate. 

The LM supports locking only at the granularity of objects and not attributes. Thus, if 

an attribute of an object is written, the whole object must be locked with a W (or X) lock. 

Also, instead of maintaining a lock table, the LM maintains the locks on the objects 

themselves. It is actually the OMS that sets and releases locks on objects, at the request 

of the LM. Unlike objects, however, locks are not persistent. Thus, if a crash occurs, 

the information about locks is lost. This is obviously not sufficient and needs to be 

replaced with a persistent lock table. 

As described in the dissertation, the Scheduler employs two concurrency control 

protocols. The priority scheme described in chapter 5 has been implemented except for 

the distinction between interactive and non-interactive transaction (which is being im

plemented now). However, this scheme is currently not being used as the default policy 

because there are a few necessary pieces of code that must be written fIrst. The main 

obstacle to fully implementing SCCP is that asynchronous communication between the 

clients and the server has not been implemented yet. This results in not being able to 

abort transactions whose state is pending, which is required by SCCP. 

Currently, the default policy dictates that the active transaction, regardless of its type, be 

aborted if it interferes with another transaction. Work is in progress to implement SCCP 

in the new version of MARVEL. 

Finally, a prototype implementation of CRL and PCCP has been done (not included in 

MARVEL 3.0 because it is still not robust enough). This implementation is limited in 

several respects: only the underlying mechanisms needed to implement all the actions 

and constructs presented in chapter 6 have been implemented but not the actual actions; 

we are currently implementing the terminate, suspend and merge actions. We 



241 

have completed the implementation of a parser for CRL, a search algorithm to find the 

control rule that most closely matches a conflict situation, an evaluator for conditions of 

control rules, and the marking and unmarking routines needed for the terminate ac

tion. 

8.3. Contributions and Evaluation 

We evaluate our thesis work by answering three questions: why is solving the concur

rency control problem in RBDE imponant? what are the contributions of this disser

tation over previous work? and what are the limitations of our work and how can they be 

overcome? 

8.3.1. The Importance of Solving the Problem 

The concurrency control problem arises in all multi-user applications. Although the 

problem has been extensively studied for some applications, such as banking and airline 

reservations, which are similar in nature to each other, it has not been solved for ad

vanced applications, such as SOEs. SOEs must be able to support multiple concurrent 

users in order to scale up to large-scale software development. Thus, the concurrency 

control problem will arise in any realistic SOE. 

8.3.2. The Contributions 

We have formalized and solved the concurrency control problem in the context of a 

specific SOE architecture. By doing that, we have analyzed the specific characteristics 

of advanced applications like SOEs, we have delineated some of the different pieces of 

semantic information that can be used to provide flexible concurrency control, and we 

have devised a transaction model that uses semantic information to prioritize trans

actions and re-order their executions to avoid conflicts. 

The contributions of our work are: 

1. The database model of RBOE. Although the database model we presented 

in chapter 3 was constructed in the context of RBOE, it is general enough 

to apply to other rule-based process-centered SOEs. In fact, the idea of 



abstracting each activity in terms of database operations, and grouping 

together sets of operations into atomic units (access units) is applicable to 

all process-centered SDEs. The idea of having transactions encapsulate 

activities and of nesting transactions to reflect causality relationships be

tween activities is also applicable to other process-cente-red SDEs. In 

short, our work is among the flrst to clearly identify the database issues in 

process-centered SDEs in a formal manner and to pinpoint the concurrency 

control problem in multi-user process-centered SDEs. Incidentally, the 

same database-centered approach might be useful when discussing the con

currency control problem of parallel production systems and inference en

gines. The working memory can be modeled as a database and rules can 

be abstracted in terms of read and write access to the working memory. 

2. The characterization of some important aspects of the semantic infor

mation that can be extracted from the definition of the development 

process in process-centered SDEs. The development process of a project 

consists of several development steps (activities), which are explicitly 

modeled in a process-centered SDE (e.g., in terms of rules in RBDE). We 

have identified seven pieces of semantic information that can be extracted 

from the process model and the runtime environment: (1) the distinction 

between the two purposes of "enacting" (e.g., executing) the development 

process, maintaining consistency and providing automated assistance; (2) 

defining each development step as either interactive (Le., involving human 

effort) or non-interactive; (3) the timestamp of each step; (4) the identity of 

each step (e.g., compiling, editing, sending mail, etc.); (5) the human 

developer who initiated the step; (6) the development task of which the 

step is a pan; and (7) the development team to which each developer 

belongs. We believe that these seven pieces of information can be made 

available in every process-centered SDE. This semantic information is the 

basis for supporting concurrency and cooperation. 

3. The seep protocol and the priority-based scheme. We have devised a 

mechanism for using three of the semantic information items listed above 

in order to provide a hard-wired default concurrency control policy, seep. 
Unlike traditional concurrency control protocols, seep ranks transactions 

according to their importance and abons the less important of the two con-

242 



flicting transactions when a conflict occurs. We would like to define the 

imponance of a transaction in tenns of how much effon and time will be 

wasted if the transaction is aboned and rolled back. This can be estimated 

by using the first three pieces of semantic infonnation listed above. For 

example, an interactive activity, such as editing, involves more human ef

fon than a non-interactive activity; thus, a transaction encapsulating an in

teractive activity is more important than one that encapsulates a non

interactive activity. A scheme similar to the priority scheme used in SCCP 

can be generated for any process-centered SDE that makes available the 

first three pieces of semantic infonnation listed above. 

4. CRL and the PeCP protocol. We have developed a special-purpose lan

guage that enables the project administrator to use the seven pieces of in

fonnation listed above to detennine how to resolve a conflict. In addition, 

we have provided four actions, terminate, suspend, merge, and 

notify, that can be used to implement a wide range of confl.ict resolution 

strategies. The terminate action, together.with marking and unmark

ing, enables RBDE to tolerate inconsistency temporarily; obligations 

provide a mechanism for ensuring the consistency is re-established. The 

merge action allows the TM to interleave the steps of two nested trans

actions in a non-serializable fashion by merging the two transactions into 

one transaction. The suspend action uses a restricted fonn of blocking 

to avoid aborting any of the conflicting transactions. Finally, the notify 

action is a simple notification mechanism to infonn the users of the 

progress of their transactions. 

8.3.3. Evaluation 

243 

We have enumerated a list of requirements in chapter 3. These requirements, as ex

plained earlier, were discussed widely in the literature. In this section, we evaluate how 

well our solution meets these requirements. 

Supporting long-duration operations: Activation rules in RBDE invoke tools whose 

execution might last an arbitrarily long period of time. This causes the transaction that 

encapsulates the activation rule to be a long transaction. In addition, the rule chains 



244 

result in long nested transactions. We have handled long transactions in two ways: (1) 

by distinguishing between automation and consistency transactions, we are able to break 

up automation chains into independent transactions; (2) .. , 

User control: interactive vs. non-interactive transactions; pending transactions. SCCP 

attempts to have the least impact on the user. 

8.3.4. Comparison to Related Work 

The thesis of this dissertation is quite similar to two other dissertations: Skarra's [Skarra 

91] and Sutton's [Sutton 90]. There are significant differences, however, between our 

approach and the approaches that these two dissertations took. Although Skarra ad

dresses the problem of devising a programmable concurrency control policy, she does 

not solve the problem in the context of any specific environment. Instead, Skarra con

structs an abstract cooperative transaction model based on transaction groups, which we 

described in chapter 7, and devises a finite state machine-based mechanism as a basis for 

concurrency control for her cooperative transactions model. Skarra implemented her 

work in a toy system. 

There are two main differences between our work and Skarra's: (1) we construct a com

plete environment in which we implement the cooperative transaction model; and (2) our 

concurrency control model does not require monitoring of all operations, which is re

quired in the case of finite state machines. In Skarra's model even serializable inter

actions between transactions have to be programmed in tenns of finite state machines. 

Every operation must match at least one transition in one of the state machines. If an 

operation leads to a dead state, then it is illegal; the finite state machines must be in a 

fmal state for the database to be in a consistent state. In our model, in contrast, all 

serializable interactions are legal anq do not require any additional processing. 

Sutton's thesis, like ours, is directly applicable to SDEs. Sutton developed a flexible 

consistency model (FCM) in which explicit consistency constraints are defined on rela

tions between objects. Whenever a relation is accessed, the constraints defined on the 

relation are checked to verify that they have not been violated. Sutton provides a 



245 

mechanism for tolerating inconsistency by "turning off' the enforcement of constraints 

temporarily. There are two major differences between our work and Sutton's: (1) 

Sutton's FCM mechanism is constructed a special-purpose programming language, 

APPUA, rather than within a transaction mechanism; and (2) Sutton's mechanism for 

tolerating inconsistency requires checking all objects in the database when constraint en

forcement is "turned on" because inconsistent objects (which became inconsistent when 

enforcement was turned off) are not marked. The fIrst difference is signifIcant because 

Sutton's mechanism is more akin to concurrent programming, where the exact concur

rent interactions must be specifIed. Our mechanism, in contrast, is database-oriented, 

where all serializable concurrent interactions are allowed by default, and explicit 

specifIcation of concurrent interactions is required only in the case of non-serializable 

interactions. Sutton's mechanism, like Skarra's, requires programming even serializable 

interactions, and thus suffers from the same overhead. 

A third piece of work that is related to this dissertation is the CLF project [CLF Project 

88]. CLF supports multiple user through a replicated database mechanism, in which 

each developer has a private copy of (parts of) the project database. Like RBDE, CLF 

distinguishes between automation and consistency aspects of the software process, but, 

unlike our thesis work, CLF does not use this distinction in the concurrency control 

mechanism. Instead, CLF implements an optimistic concurrency control mechanism 

that allows multiple developers to change the project database concurrently. Changes to 

the same objects in the database are then merged to produce a consistent version of the 

database. Our notion of tolerating inconsistency is based on Balzer's notion of tolerating 

inconsistency [Balzer 91]. which. we assume. will be integrated with CLF at some point. 

We have partially implemented our thesis work in MARVEL; we have implemented 

enough of the work to be able to identify some subtle points that have been ignored so 

far by the process-centered SDE community. such as the exact nature of the semantic 

information that must be extracted in order to support cooperation and how to extract 

this information. Most of the discussion about concurrency control and database support 

for process-centered SDEs. in contrast. is either theoretical or at the design level. For 

example. many of the process modeling formalisms (APS [Cohen 86] being one clear 



246 

exception) do not distinguish between consistency and automation in SDEs; we have 

shown how this distinction is crucial to providing a cooperative but yet consistency 

preserving environment The user interface issue, largely ignored in advanced trans

action mechanisms, is another area that the implementation forced us to deal with. 

8.3.5. Limitations and Future Directions 

We discuss three areas that credit further research and development. The fIrst is extend

ing EMSL and RBDE, and their corresponding implementation in MARVEL. The second 

area concerns the nested transaction model we presented in this dissertation. Finally, the 

last area suggests further development of the CRL language and the PCCP protocol to 

provide more expressiveness and capabilities. All the future work described in this sec

tion is intended to overcome the limitations and shortcomings of our thesis work. 

8.3.5.1. Extensions to RBDE 

As explained in chapter 2, built-in commands can be encapsulated in rules. However, 

these rules currently do not have any effects. They only add a logical condition that 

must be satisfied before the built-in command can be executed. It would be more mean

ingful if the rules encapsulating built-in commands can also have effects, with both con

sistency and automation predicates. These rules must be integrated in the chaining net

works produced for normal rules. This would enable the administrator to specify im

plications for built-in commands. For example, adding a CFILE object to a MODULE 

should outdate the compilation of the module. 

The tool integration model we briefly described in chapter 2 is based on envelopes, 

which support "black box" tool integration: tools are passed inputs and RBDE obtains 

the outputs of the tools; no further communication between RBDE and tools is sup

poned. This is not sufficient for several reasons. One of the reasons that are relevant to 

this dissertation is that currently the TM cannot abort a tool in the middle of execution 

because RBDE has no way of communicating with the tool while it is being executed. 

Another reason is that we cannot support tools that access objects incrementally, i.e., 

whose input set cannot be determined before the tool is executed. An example of such a 

tool is emacs, which allows its user to access objects on the fly. It would be nice if 



247 

there was a way for emacs to tell RBDE that it needs to access a new object, so that the 

TM can go ahead and obtain the appropriate lock on the object on the fly. This of course 

complicates our 2PL transaction mechanism. 

User sessions, as presented in chapter 7, do not provide enough support as a work unit. 

Our main concern with sessions was to be able to use them in control rules as a context 

for delayed actions. However, if the features and capabilities of sessions are extended, 

they can enhance the RBDE model. One addition is to support partial and complete 

aborts of sessions. By this we mean the ability to undo all or part of the work that has 

been done during a session. Supponing such a feature would complicate the entire trans

action mechanism. In this case, the TM would not be able to commit the transactions 

that are part of a session until the session itself or part of it has been committed. 

Another addition to sessions would be to support nested sessions in order to provide 

more modularity of development tasks and the ability to define subtasks. A third exten

sion to sessions is to support multi-user sessions, i.e., sessions that belong to more than 

one user at the same time. This would be a natural way to model tasks that require close 

cooperation among multiple developers. 

In chapter 7, we described how obligations can be used to enhance the rule execution 

model of RBDE. However, we only described dynamic obligations that are added due to 

firing rules or control rules. It would gready enhance the process modeling abilities of 

RBDE if the administrator could define user sessions with static obligations. Such 

obligations would reflect the purpose of the session. For example, the administrator, 

knowing exactly the development tasks that need to be completed, can defme the obliga

tions that guarantee the completion of these tasks. A development task to release a 

program, for instance, can be defined in terms of a session that has a static obligation 

specifying that all the modules of the program must be archived and tested (i.e., their 

status attributes must have the value "Archived" and their test status at

tributes must have the value "Tested"). The developer who is assigned the task must 

ensure that this obligation is fulfilled before he can end the session that represents the 

task. Unlike dynamic obligations, static obligations are not removed except at the end of 

the session. In other words, they have to be satisfied at the end of the session. 



248 

8.3.5.2. Extensions to the Transactions Manager 

One major shortcoming of our thesis work is that the mechanisms and protocols we 

presented are not directly apply to all SDEs. Although the notions of semantics-based 

concurrency control and programmable concurrency control are general enough to be 

applicable to many applications, we have not presented any general mechanism for 

realizing these notions in applications that differ significantly from our architecture. If 

our ideas were to be applied to other applications, we expect that some work will be 

required to devise application-specific concurrency control protocols equivalent to SCCP 

and peep. In some respects, it would have been more useful if we had designed a 

transaction manager that is completely separate from the process server (the rule proces

sor in RBDE). Such a transaction manager can be "plugged" into any SDE, given that 

the SDE is able to provide the transaction manager with the semantics needed to imple

ment protocols similar to SCCP and pecp. 

Another limitation of our transaction model is that the only ordering of subtransactions 

within a nested transaction is the serial ordering. In other words, each nested transaction 

is executed serially: the execution of one subtransaction cannot begin until the execution 

of the currently-active subtransaction of the same nested transaction has completed. 

This model is overly restrictive. Performance can be improved by executing automation 

forward chaining subtransactions of the same nested transaction in parallel if they do not 

conflict. The TM can determine if two subtransactions will conflict by collecting the 

read and write sets of the two subtransactions and checking whether the write set of one 

subtransaction overlaps with the read or write set of the other. 

The current implementation of the lock manager supports locks only at the granularity of 

objects. This causes conflicts to be detected even if two transactions access different 

attributes of the same object. Supporting locking at the granularity of attributes will 

decrease the number of detected conflicts and thus decrease the overhead of resolving 

these conflicts (which are really not serious conflicts and should be ignored). 



249 

8.3.5.3. Enhancing the Expressive Power of CRL 

The user specification pan of the selection criterion of control rules currently suppons 

user names. Thus, a control rule can be specific to two specific users. However, since 

specific users can be assigned different roles during the lifetime of a project, it would 

make more sense to specify user roles instead of user names (or userids). This would 

require that RBDE supports user roles. For example, there can be several user roles, 

such as manager, programmer, membecteaml, secretary, etc. It would be more expres

sive if the user spec pan of a control rule specifies two user role (e.g., manager and 

programmer), and prescribes what actions to take if a certain conflict involves a manager 

and a programmer. Then, the identity of the specific users who happen to be assigned 

the manager and the programmer roles becomes immaterial. 

The logical expressions that comprise the conditions of control rules are limited in that 

one cannot write an expression that examines the complete histories of the two conflict

ing transactions. The expressive power of the condition construct can be enhanced if we 

used data path expressions (OPEs) or a similar concurrent formalism, such as the pat

terns in Skarra's dissertation [Skarra 91], instead of simple logical predicates. Such a 

formalism would enable us to compare the parallel execution of two histories. 

8.4. Conclusions 

By implementing out thesis work in MARVEL, we have shown in this dissertation that 

semantics-based concurrency control is a feasible approach to concurrency control in 

advanced database applications that require cooperation. The concurrency control 

mechanisms that were designed for traditional applications like banking and airline 

reservations are too restrictive for advanced applications. The problem has been, 

however. that the theoretical concurrency control mechanisms that were proposed for 

advanced applications were mostly abstract and impractical. Although we have 

developed a mechanism for only one class of advanced applications, it is possible that 

our approach of extracting semantics and using them to suppon cooperation is applicable 

to many other classes of advanced applications. It is our approach, rather than the exact 

details of our mechanism, that we expect to be useful for other researchers in the field. 



250 

Bibliography 

[Ambriola et al. 90] 
Ambriola, V., Ciancarini, P. and Montangero, C. 
Software Process Enactment in Dikos. 
In Taylor, R. N. (editor), Fourth ACM SIGSOFT Symposium on 

Software Development Environments, pages 183-192. ACM 
Press, Irvine, CA, December, 1990. 

Special issue of Software Engineering Notes, 15(6), December 1990. 

[Balzer 87] Balzer, R. M. 

[Balzer 91] 

Living in the Next Generation Operating System. 
IEEE Software 4(6):77-85, November, 1987. 

Balzer, R. 
Tolerating Inconsistency. 
In 13th International Conference on Software Engineering, pages 

158-165. IEEE Computer Society Press, Austin, TX, May, 1991. 

[Bancilhon et al. 85] 
Bancilhon, F., Kim, W., and Korth, H. 
A Model of CAD Transactions. 
In 11th International Conference on Very Large Data Bases, pages 

25-33. Morgan Kaufmann, Stockholm, Sweden, August, 1985. 

[Barghouti and Kaiser 88] 
Barghouti, N. S., and Kaiser, G. E. 
Implementation of a Knowledge-Based Programming Environment 
In 21st Annual Hawaii International Conference on System Sciences, 

pages 54-63. IEEE Computer Society Press, Kona, m, January, 
1988. 

[Barghouti and Kaiser 90] 
Barghouti, N. S. and Kaiser, G. E. 
Modeling Concurrency in Rule-Based Development Environments. 
IEEE Expen 5(6):15-27, December, 1990. 

[Barghouti and Kaiser 91a] 
Barghouti, N. S. and Kaiser, G. E. 
Concurrency Control in Advanced Database Applications. 
ACM Computing Surveys 23(3):269-317, September, 1991. 



[Barghouti and Kaiser 91 b] 
Barghouti, N. S., and Kaiser, G. E. 
Scaling Up Rule-Based Development Environments. 
In Third European Software Engineering Conference, ESEC '91, 

pages 380-395. Springer-Verlag, Milan, Italy, October, 1991. 
Published as Lecture Notes in Computer Science no. 550. 

[Bates and Wileden 83] 
Bates, P. and Wileden, 1. C. 
An Approach to High-Level Debugging of Distributed System. 

251 

In ACM SIGSoftlSIGPlan Software Engineering Symposium on High
Level Debugging, pages 107-111. Pacific Grove, CA, March, 
1983. 

Special issue of Software Engineering Notes, 8(4), August 1983. 

[Beeri et al. 88] Beeri, C., Schek, H. -J., and Weikum, G. 
Multilevel Transaction Management, Theoretical Art or Practical 

Need? 
In International Conference on Extending Database Technology: Ad

vances in Database Technology, EDBT ' 88, pages 134-154. 
Springer-Verlag, Venice, Italy, March, 1988. 

[Ben-Shaul 91] Ben-Shaul, I. Z. 
An Object Management System for Multi-User Programming En

vironments. 
Master's thesis, Columbia University Depamnent of Computer 

Science, April, 1991. 
Technical Report CUCS-OI0-91. 

[Benali et al. 89] Benali, K. et al. 
Presentation of the ALF Project. 
In Ninth International Conference on System Development Environ

ments and Factories. Berlin, Germany, May, 1989. 

[Bernstein 87] Bernstein, P. 
Database System Support for Software Engineering -- An Extended 

Abstract. 
In Ninth International Conference on Software Engineering, pages 

166-178. IEEE Computer Society Press, Monterey, CAt March, 
1987. 

[Bernstein and Goodman 81] 
Bernstein, P" and Goodman, N. 
Concurrency Control in Distributed Database Systems. 
ACM Computing Surveys 13(2):185-221, June, 1981. 

[Bernstein et aI. 87] 
Bernstein, P. A., Hadzilacos, V. and Goodman, N. 
Concurrency Control and Recovery in Database Systems. 
Addison-Wesley, Reading, MA, 1987. 



[Bjork 73] 

[Bobrow 86] 

252 

Bjork, L. A. 
Recovery Scenario for a DB/DC System. 
In 28th ACM National Conference, pages 142-146. ACM Press, At

lanta, GA, August, 1973. 

Bobrow, D., Kahn, K., Kiczales, G., Masinter, L., StefIk M. and 
Zdybel, F. 
CommonLoops: Merging Common Lisp and Object-Oriented Pro

gramming. 
In Conference on Object-Oriented Programming Systems, Languages, 

and Applications, pages 17-29. ACM Press, Portland, OR, Sep
tember, 1986. 

[Boehm 88] Boehm, B. W. 
A Spiral Model of Software Development and Enhancement 
Computer 21(5):61-72, May, 1988. 

[Chang and Lee 73] 
Chang, C-L., and Lee, R. C. 
Symbolic Logic and Mechanical Theorem Proving. 
Academic Press, New York, NY, 1973. 

[Cheatham 90] Cheatham, T. E. 
The E-L System Support for Process Programs. 
In Katayama, T. (editor), Sixth International Software Process 

Workshop. IEEE Computer Society Press, Hakodate, Hokkaido, 
Japan, October, 1990. 

In press. 

[Chrysanthis and Rarnamritham 90] 
Chrysanthis. P. K., and Ramamritham, K. 
ACf A: A Framework for Specifying and Reasoning about Trans

action Structure and Behavior. 
In ACM SIGMOD International Conference on the Management of 

Dala, pages 194-203. ACM Press, Atlantic City, NJ, May, 1990. 

[Clemm 88] Clemm, G. M. 
The Workshop System - A Practical Knowledge-Based Software 

Environment. 
In Henderson, P. (editor), ACM SIGSOFTISIGPLAN Software En

gineering Symposium on Practical Software Development 
Environments, pages 55-64. ACM Press, Boston, MA, Novem
ber,1988. 

Special issues of SIGPLAN Notices, 24(2), February 1989. 

[CLF Project 88] CLF Manual 
University of Southern California, Information Sciences Institute, 

Marina del Rey, CA, 1988. 



[Cohen 86] Cohen, D. 
Automatic Compilation of Logical Specifications into Efficient 

Programs. 

253 

In Fifth National Conference on Anificial Intelligence, pages 20-25. 
AAAI, Philadelphia, PA, August, 1986. 

[Cohen 89] Cohen, D. 
Compiling Complex Database Transition Triggers. 
In ACM SIGMOD International Conference on the Management of 

Data, pages 225-234. ACM Press, New York, NY, 1989. 
Published as a special issue of SIGMOD Record, 18(2). 

[Dart et al. 87] Dart, S. A., Ellison, R. J., Feiler, P. H., and Habermann, A. N. 
Software Development Environments. 
Computer 20(11):18-28, November, 1987. 

[Davies 73] Davies, C. T. 
Recovery Semantics for a DBIDC System. 
In 28th ACM National Conference, pages 136-141. ACM Press, At

lanta, GA, August, 1973. 

[Deiters and Gruhn 90] 
Deiters, W. and Gruhn, V. 
Managing Software Processes in the. Environment MELMAC. 
In Taylor, R. N. (editor), Founh ACM SIGSOFT Symposium on 

Software Development Environments, pages 193-205. ACM 
Press, Irvine, CA, December, 1990. 

Special issue of Software Engineering Notes, 15(6), December 1990. 

[Dowson and Nejmeh 89] 
Dowson, M., and Nejmeh, B. 
Nested Transactions and Visibility Domains. 
InACM SIGMOD Workshop on Software CAD Databases, pages 

36-38. ACM Press, Napa, CA, February, 1989. 
Position paper. 

[Eastman 80] Eastman, C. 
System Facilities for CAD Databases. 
In 17th ACM Design Automation Conference, pages 50-56. ACM 

Press, June, 1980. 

[Eastman 81] Eastman, C. 
Database Facilities for Engineering Design. 
In Proceedings of the IEEE Computer Society, pages 1249-1263. 

IEEE Computer Society Press, October, 1981. 

[El Abbadi and Toueg 89] 
El Abbadi, A. and Toueg, S. 
The Group Paradigm for ConcUITency Control Protocols. 
IEEE Transactions on Knowledge and Data Engineering 

1(3):376-386, September, 1989. 



254 

[Eswaran et al. 76] 
Eswaran, K., Gray, J., Lorie, R. and Traiger, I. 
The Notions of Consistency and Predicate Locks in a Database Sys

tem. 
Communications of the ACM 19(11):624-632, November, 1976. 

[Feldman 79] Feldman, S. I. 
Make - A Program for Maintaining Computer Programs. 
Software - Practice & Experience 9(4):255-265, April, 1979. 

[Fernandez and Zdonik 89] 
Fernandez, M. F., and Zdonik, S. B. 
Transaction Groups: A Model for Controlling Cooperative Work. 
In Third International Workshop on Persistent Object Systems: Their 

Design, Implementation and Use, pages 128-138. Queensland, 
Australia, January, 1989. 

[Garcia-Molina 83] 
Garcia-Molina, H. 
Using Semantic Knowledge for Transaction Processing in a Dis

tributed Database. 
ACM Transactions on Database Systems 8(2):186-213, June, 1983. 

[Garcia-Molina and Salem 87] 
Garcia-Molina, H., and Salem, K. 
SAGAS. 
In Dayal, U., and Traiger, I. (editor), ACM SIGMOD Annual 

Conference, pages 249-259. ACM Press, San Francisco, CA, 
May, 1987. 

[Gisi and Kaiser 91] 
Gisi, M. and Kaiser, G. E. 
Extending A Tool Integration Language. 
In First International Conference on the Software Process, pages 

218-227. Redondo Beach, CA, October, 1991. 

[Gray 78] Gray, I. 
Notes On Database Operating Systems. 
IBM Research Repon RI2188, IBM Research Laboratory, San Jose, 

CA,1978. 

[Grayet aI. 76] Gray, 1., Lorie R., Putzolu, G. and Traiger, I. 
Granularity of Locks and Degrees of Consistency in a Shared 

Database. 
Modeling in Data Base Management Systems. 
North Holland, Amsterdam, Holland, 1976, pages 365-395. 

[Heineman et aI. 91] 
Heineman, G. T., Kaiser, G. E., Barghouti, N. S. and Ben-Shaul, I. Z. 
Rule Chaining in MARVEL: Dynamic Binding of Parameters. 
In Sixth Annual Knowledge-Based Software Engineering Conference, 

pages 276-287. Syracuse, NY, September, 1991. 



[Hoare 69] 

[Huff 89] 

Hoare, C.A.R. 
An Axiomatic Approach to Computer Programming. 
Communications of the ACM 12(10):576-580,583, October, 1969. 

Huff, K. E. 
Plan-Based Intelligent Assistance: An Approach to Supporting the 

Software Development Process. 

255 

PhD thesis, Computer and Information Science Department, Univer
sity of Massachusetts at Amherst, September, 1989. 

[Ishida and Stolfo 85] 

[Kaiser 90] 

[Kaiser 91] 

[Kaiser 92] 

Ishida, T. and Stolfo, S. J. 
Toward the Parallel Execution of Rules in Production System 

Programs. 
In International Conference on Parallel Processing, pages 568-575. 

IEEE Computer Society Press, 1985. 

Kaiser, G. E. 
A Flexible Transaction Model for Software Engineering. 
In Sixth International Conference on Data Engineering, pages 

560-567. IEEE Computer Society Press, Los Angeles, CA, 
February, 1990. 

Kaiser, G. E., Ben-Shaul, I. Z. and Popovich, S. S. 
Implementing Activity Structures Process Modeling On Top Of The 

MARVEL Environment Kernel. 
Technical Report CUCS-027-91, Columbia University, September, 

1991. 

Kaiser, G. E. and Pu, C. 
Dynamic Restructuring of Transactions. 
Database Transaction Models/or Advanced Applications. 
Morgan Kaufmann, San Mateo, CA, 1992, Chapter 8. 
In press. Available as Columbia University Department of Computer 

Science, CUCS-012-91, August 1991. 

[Kaiser et al. 88a] Kaiser, G. E., Feiler, P. H., and Popovich, S. S. 
Intelligent Assistance for Software Development and Maintenance. 
IEEE Software 5(3):40-49, May, 1988. 

[Kaiser et at. 88b] Kaiser, G. E., Barghouti, N. S., Feiler, P. H., and Schwanke, R. W. 
Database Suppon for Knowledge-Based Engineering Environments. 
IEEE Expen 3(2):18-32, Summer, 1988. 

[Kaiser et at. 90] Kaiser, G. E., Barghouti, N. S., and Sokolsky, M. H. 
Preliminary Experience with Process Modeling in the Marvel 

Software Development Environment Kernel. 
In 23rd Annual Hawaii International Conference on System Sciences, 

pages 131-140. IEEE Computer Society Press, Kona, Ill, 
January, 1990. 



256 

[Katayama 89] Katayama, T. 
A Hierarchical and Functional Software Process Description and its 

enaction. 
In 11th International Conference on Software Engineering, pages 

343-352. IEEE Computer Society Press, May, 1989. 

[Katayama 90] Katayama, T. (editor). 
Sixth International Software Process Workshop: Support for the 

Software Process. 
IEEE Computer Society Press, Hakodate, Hokkaido, Japan, 1990. 
In press. 

[Kim et al. 87] Kim, W., Banerjee, J., and Chou, H. 
Composite Object Suppon in an Object-Oriented Database System. 
In Conference on Object-Oriented Programming Systems, Languages 

and Applications, pages 118-125. ACM Press, Orlando, FL, Oc
tober, 1987. 

[Klahold et al. 85] Klahold, P., Schlageter, G., Unland, R., and Wilkes, W. 
A Transaction Model Supporting Complex Applications in Integrated 

Information Systems. 
In ACM SIGMOD International Conference on the Management of 

Data, pages 388-401. ACM Press, Austin, TX, May, 1985. 

[Korth and Silberschatz 86] 
Korth, H., and Silberschatz, A. 
Database System Concepts. 
McGraw-Hill Book Company, New York, NY, 1986. 

[Korth and Speegle 90] 
Korth, H., and Speegle, G. 
Long-Duration Transactions in Software Design Projects. 
In Sixth International Conference on Data Engineering, pages 

568-574. IEEE Computer Society Press, Los Angeles, CA, 
February, 1990. 

[Kuo et aI. 90] Kuo, S., Moldovan, D., and Cha, S. 
Control in Production Systems with Multiple Rule Firings. 
In International Conference on Parallel Processing, pages 11-243 -

II-246. The Pennsylvania State University Press, August, 1990. 

[Kutay and Eastman 83] 
Kutay, A., and Eastman, C. 
Transaction Management in Engineering Databases. 
In Annual Meeting of Database Week; Engineering Design 

Applications, pages 73-80. IEEE Computer Society Press, San 
Jose, CA, May, 1983. 

[Laird 86] Laird. 1. E. 
Soar User's Manual 
Xerox P ARC, 1986. 
Fourth Edition. 



[Linton 81] 

[Lynch 83] 

257 

Linton, M. 
A Debugger for the Berkeley Pascal System. 
Master's thesis, University of California at Berkeley, June, 1981. 

Lynch, N. A. 
Multilevel Atomicity - A New Correctness Criterion for Database 

Concurrency Control. 
ACM Transactions on Database Systems 8(4):484-502, December, 

1983. 

[Marvel 91] Programming Systems Laboratory. 
Marvel 3.0 Administrator's Manual 
Columbia University Department of Computer Science, 1991. 
Technial Report # CUCS-032-91. 

[Minsky and Lockman 85] 
Minsky, N. H. and Lockman, A. D. 
Ensuring Integrity by Adding Obligations to Privileges. 
In Eighth International Conference on Software Engineering, pages 

92-102. IEEE Computer Society Press, London, UK, August, 
1985. 

[Minsky and Rozenshtein 88] 
Minsky, N. H., and Rozenshtein, D. 
A Software Development Environment for Law-Governed Systems. 
In Henderson, P. (editor), ACM SIGSOFl'ISIGPLAN Software En-

gineering Symposium on Practical Software Development 
Environments, pages 65-75. ACM Press, Boston, MA, Novem
ber,1988. 

Special issue of SIGPLAN Notices, 24(2), February 1989. 

[Minsky and Rozenshtein 90] 
Minsky, N. H., and Rozenshtein, D. 
Configuration Management by Consensus: An Application of Law

Governed Systems. 
In Taylor, R.N. (editor), FounhACM SIGSOFl'Symposium on 

Software Development Environments, pages 183-192. ACM 
Press, Irvine, CA, December, 1990. 

Special issue of Software Engineering Notes, 15(6), December 1990. 

[Miranker et al. 90] 

[Moss 85] 

Miranker, D. P., Kuo, C. M., and Browne, J. C. 
Parallelizing Compilation of Rule-Based Programs. 
In International Conference on Parallel Processing, pages 11-247 -

ll-251. The Pennsylvania State University Press, August, 1990. 

Moss, J. E. B. 
Nested Transactions: An Approach to Reliable Distributed 

Computing. 
MIT Press, Cambridge, MA, 1985. 



[Osterweil 87] Osterweil, L. 

[Papadimitriou 86] 

Software Processes are Software Too. 
In Ninth International Conference on Software Engineering, pages 

1-13. IEEE Computer Society Press, Monterey, CA, March, 
1987. 

Papadimitriou, C. 
The Theory of Database Concurrency Control. 
Computer Science Press, Rockville, MD, 1986. 

[Pasik 89] Pasik, A. J. 

258 

A Methodology for Programming Production Systems and its Implica
tions on Parallelism. 

PhD thesis, Columbia University Department of Computer Science, 
1989. 

[Perry 87] Perry, D. E. 
Software Interconnection Models. 
In Ninth International Conference on Software Engineering, pages 

61-69. IEEE Computer Society Press, Monterey, CA, March, 
1987. 

[Perry 89a] Perry, D. (editor). 
Fifth International Software Process Workshop. 
ACM Press, Kennebunkport, ME, 1989. 

[Perry 89b] Perry, D. E. 
The Inscape Environment 
In 11th International Conference on Software Engineering, pages 2-9. 

IEEE Computer Society Press, Pittsburgh, P A, May, 1989. 

[Pu et aI. 88] Pu, C., Kaiser, G. E., and Hutchinson, N. 
Split Transactions for Open-Ended Activities. 
In 14th International Conference on Very Large Databases, pages 

26-37. Morgan Kaufmann, Los Angeles, CA, August, 1988. 

[Reed 78] Reed, D. 
Naming and Synchronization in a Decentralized Computer System. 
PhD thesis, MIT Laboratory of Computer Science, September, 1978. 
MIT LCS Technical Report 205. 

[Riddle 91] Riddle, W. E. 
Activity Structure Definitions. 
Technical Report 7-52-3, Software Design & Analysis, March, 1991. 

[Rochkind 75] Rochkind, M. J. 
The Source Code Control System. 
IEEE Transactions on Software Engineering SE-l(4}:364-370, 

December, 1975. 



259 

[Royce 87] Royce, W. W. 
Managing the Development of Large Software Systems: Concepts 

and Techniques. 
In Ninth International Conference on Software Engineering. IEEE 

Computer Society Press, Monterey, CA, March, 1987. 

[Salem et al. 87] Salem, K., Garcia-Molina, H., and Alonso, R. 
Altruistic Locking: A Strategy for Coping with Long Lived Trans

actions. 
In Second International Workshop on High Performance Transaction 

Systems, pages 19.1 - 19.24. Pacific Grove, CA, September, 
1987. 

[Schmolze 89] Schmolze, J. G. 
Guaranteeing Serializable Results in Synchronous Parallel Produc

tion Systems. 
Technical Report 89-5, Tufts University Department of Computer 

Science, October, 1989. 

[Skarra 91] Skarra, A. H. 
A Model o/Concurrency Control/or Cooperating Transactions. 
PhD thesis, Department of Computer Science at Brown University, 

May, 1991. 

[Skarra and Zdonik 89] 
Skarra, A. H. and Zdonik, S. B. 
Concurrency Control and Object-Oriented Databases. 
Object-Oriented Concepts, Databases, and Applications. 
ACM Press, New York, NY. 1989, pages 395-421. 

[Stallman 84] Stallman, R. M. 
EMACS: The Extensible, Customizable. Self-Documenting Display 

Editor. 
Interactive Programming Environments. 
McGraw-Hill Book Co., New York, NY, 1984, pages 300-325. 

[Stolfo 84] Stolfo, S. J. 

[Sutton 90] 

Five Parallel Algorithms For Production System Execution on the 
DADO Machine. 

In National Conference on Anificiallntelligence. AAAl-84, pages 
300-307. August, 1984. 

Sutton, S. M. Jr. 
APPUA: A Prototype Language/or Software Process Programming. 
PhD thesis, Department of Computer Science, University of Colorado 

at Boulder, July, 1990. 



[Tayloret al. 88] Taylor, R. N., Selby, R. W., Young, M., Belz, F. C., Clarke, L. A., 
Wileden, J. c., Osterweil, L. and Wolf, A. L. 
Foundations of the Arcadia Environment Architecture. 

260 

In Henderson, P. (editor), ACM SIGSOFTISIGPLAN Software En
gineering Symposium on Practical Software Development 
Environments, pages 1-13. ACM Press, Boston, MA, November, 
1988. 

Special issue of SIGPLAN Notices, 24(2), February 1989. 

[Tichy 85] Tichy, W. F. 
RCS - A System for Version Control. 
Software - Practice and Experience 15(7):637-654, July, 1985. 

[Yeh et al. 89] Yeh, S., Ellis, C., Ege, A., and Korth, H. 
Performance Analysis of Two Concurrency Control Schemes for 

Design Environments. 
Information Sciences 49:3-33, 1989. 





A.I. Acronyms 

Appendix A 

Glossary 

261 

2PL Two-Phase Locking: the most popular concurrency control protocol employed by 
traditional schedulers in DBSs. 2PL depends on well-fonned transactions that 
have two phases, one in which they acquire all the locks and a second phase in 
which all the locks are released. 

CRL Control Rule Language: the language in which control rules are written. 

CE Command Executor: the RBDE component responsible for executing built-in com
mands such as add, delete, copy, move and link. 

DBS Data Base System: a general tenn that denotes any system that uses a database, 
including a simple fIle system with a transaction management facility 

EMSL 
Extended MARVEL Strategy Language: the language in which the data and process 
models of a project are encoded. EMSL is based on the MARVEL Strategy Lan
guage (MSL) but differs slightly in its syntax. 

LM Lock Manager: the component of RBDE responsible for setting and releasing 
locks on objects. The LM employs a locking protocol (NGL) to detect incom
patible locks. 

MGLMuitipie Granularity Locking: a locking protocol suggested by Gray et al. to min
imize the number of locks necessary in a composite object hierarchy. 

NGL Nested Granularity Locking: the protocol used by the LM to detect locking con
flicts. NGL employs a compatibility matrix that is coded by the project ad
ministrator. NGL is also provided with the lock types and the relative strength of 
locks; none of the lock types is built-in. 

pcep 
Programmable Concurrency Control Protocol; the protocol employed by the 
Scheduler to select and execute control rules. 

RBDE 
Rule-Based Development Environment: the kernel of our architecture; RBDE con
sists of the RP, the OMS, the TM, the Scheduler, and the LM. 

RP Rule Processor: the component of RBDE responsible for executing rules and 
providing assistance through rule chaining. 

SCCP 
Semantics-based Concurrency Control Protocol; the default protocol employed by 
the Scheduler to resolve conflicts. 



262 

SDE Software Development Environment: a software system that assists developers of 
a software project. SDEs typically provide a collection of tools, an object manage
ment system, and a uniform interface to the objects and the tools. 

TM Transaction Manager: the component of RBDE responsible for encapsulating the 
execution of rules in transactions, and implementing a 2PL locking policy. 

A.2. General Terms 

Interference 
occurs between two transaction Ti and Tj , when the interfering transaction Ti re
quests a lock that is incompatible with a lock that Tj holds; also referred to as a 
concurrency conflict or conflict situation. 

Process-centered SDE 
an SDE that provides specialized assistance in carrying out the software develop
ment process of a project. Such an SDE is based on a formalism for encoding the 
software process. 

Nested Transaction 
a composition of a set of subtransactions; each subtransaction can itself be a nested 
transaction. To other transactions, only the top-level nested transaction is visible 
and appears as a normal atomic transaction. 

Rule-based process modeling 
using a rule language as a formalism for encoding the software process. Such an 
encoding is used to provide automated assistance in a process-centered SDE. 

Transaction 
a unit that groups a set of database operations and guarantees that this set will be 
executed as if they were executed atomically. A transaction transforms the 
database from one consistent state to another. 

Serializability 
a correctness criterion that establishes that an execution of concurrent transactions 
is correct only if it is either serial or if it is equivalent to a serial execution. 

A.3. RBDE Terms 

Access Unit 
a set of database operations (either read or write) that are executed as one unit by 
the server. 

Agent 
a sequence of one or two database access units that must appear to have been per
formed atomically. An agent abstracts the execution of an individual rule or a 
built-in command. See Nested Agent. 

Attribute 
a typed field in an object An attribute can be of four kinds: status, data, structural, 
or link attribute. The four kinds of attribute store information about the status, 
contents, structure, or relationships of an object, respectively. 



263 

Backward chaining 
the process of flring rules in order to attempt to make the condition of a rule 
satisfled. 

Client 
a process with which the developer interacts. The client presents the developer 
with the RBDE built-in commands, and commands corresponding to the rules that 
the administrator loaded into RBDE. 

Classa template that defines attributes. Each project's components are abstracted as an 
instance of a class. 

Cooperation 
exchanging objects in a non-serializable manner. 

Envelope 
an executable program that is invoked by RBDE (MARVEL) to initiate an external 
tool resident on the operating system. Envelopes serve as intermediaries between 
RBDE and external tools. 

Forward chaining 
the process of flring rules as a result of asserting the effect of a rule. 

Nested Agent 
a composition of a set of agents, each of which can itself be a nested agent. A 
nested agent abstracts the execution of a rule chain. . 

Original rule 
a rule which is fIred in direct response to a user command and not through chain
ing. 

Object 
an abstraction for a project component. An object is an instance of one of the 
classes defined in the project type set; it inherits attributes from the class. 

Project database 
the database where RBDE stores objects belonging to a single project. 

Read operation 
a database operation that returns the value stored in an attribute of an object in the 
project database; we use Read [0. att] to denote a read operation. 

Read Set 
is the set of all objects bound to the variables of the rule, including the parameters. 

Rule a construct that prescribes the condition, the activity and the effects of a develop
ment activity. There are two kinds of rules: inference rules, in which the activity 
is empty, and activation rules, which invoke external tools. 

Server 
a process that controls all access to the project database. There is a single server 
per project database. A server can service several clients concurrently by inter
leaving the execution of their requests. 

State of a transaction 
a field in the transaction's entry in the transaction table that indicates the state of 
execution of a transaction. There are five states: 

1. Active: the transaction is acquiring locks. 



2. Inactive: the transaction is waiting for backward chaining to com

plete before it can continue its execution. 

3. Pending: the transaction is waiting until the client completes the ex

ecution of the activation rule whose execution the transaction encap

sulates. 

4. Ended: the transaction has finished executing all of its operations, 

but it has not committed yet because some of its subtransactions 

have not terminated yet. 

5. Suspended: the transaction's execution has been suspended by the 

TM pending the completion of another transaction. 

Transaction 

264 

an entity that the TM creates to encapsulate the execution of an individual rule or a 
built-in command. A transaction has nine attributes: its identifier, a set of access 
units, a set of subtransactions, the command it encapsulates, its owner, its times
tamp, its lock set, its type and its state. 

Type of a transaction 
a categorization of transactions that indicates the purpose of initiating the trans
action. There are five types of transactions: 

1. Top-level (tl): the transaction encapsulating the execution of an 

original rule. 

2. Consistency forward chaining (efc): a transaction that encapsulates 

the execution of a rule that is fll'ed within a consistency forward 

chain. 

3. Automation forward chaining (afc): a transaction that encapsulates 

the execution of a rule that is fired within an automation forward 

chain. 

4. Backward chaining (be): a transaction that encapsulates the execu

tion of a rule that is fired within a backward chain. 

5. Built-in (bi): a transaction encaps,ulating the execution of a built-in 

command. 

Write operation 
a database operation that changes the value of a single attribute of an object in the 
project database; we use Write [0. att, val] to denote a write operation. 

Write Set 



265 

the set of all objects bound to the variables used either as output arguments in the 
activity or in the left hand side of any assignment predicate in the effects of the 
rule. 





Appendix B 

Implementation of Example in MARVEL 

266 

In this appendix we give the complete set of class definitions, rule definitions and con

trol rules used throughout the dissertation. These defitions were loaded into a MARVEL 

environment and used to test the validity of our examples. The syntax used in this ap

pendix is that of MSL, which differs slightly from EMSL. MSL groups definitions into 

modules called strategies. 

B.l. The Project Type Set 

The following classes model the organization and structure of the example project in 

chapter 1. 



strategy data_model 

imports none; 
exports all; 

objectbase 

# Top-level program instances. 
PROGRAM :: superclass ENTITY; 

modules : set of MODULE; 
libraries : set of LIB; 
includes : INCLUDE; 

end 

# Superclass of any class whose instances can be reserved. 
RESERVABLE :: superclass ENTITY; 

locker : user; 
purpose: string; 
reservation status (CheckedOut, Available, None) None; 

end 

# All files share have a content and a timestamp 
FILE :: superclass RESERVABLE; 

timestamp : time; 
contents : text; 

end 

t The extension of include files is ".h" by convention. 
HFILE :: superclass FILE; 

contents: text - ".h"; 
end 

267 



# Group include files that are related into one object. 
INCLUDE :: superclass ENTITY; 

hfiles : set of HFILE; 
archive status (Archived,NotArchived,INotArchived) 

- z NotArchived; 
end 

* A C source file has many more attributes than other files, 
t specifically an object code and some status attributes. 
CFILE :: superclass FILE; 

end 

contents: text = ".c"; 
error msg : text -= ". err" ; 
includes : set of link HFILE; 
status : (NotCompiled, Compiled, NotArchived, 

Archived, Error, Initial) ~ Initial; 
object code: binary'"' ".0"; 
test status : (Tested, Not Tested, Failed) - NotTested; 
object timestamp : time; 
archive timestamp : time; 
libs : set_of link LIB; 

# Each library object has a binary file whose extension is ".a" 
t in which the object code of C source files are archived. 
LIB :: superclass ENTITY; 

afile : binary ".a"; 
archive status: (Archived,NotArchived,INotArchived) 

- - NotArchived; 
timestamp : time; 

end 

t A Module object groups together several C source files. 
MODULE :: superclass RESERVABLE; 

end 

archive status : (Archived, NotArchived,None) 
- z NotArchived; 

test status : (Tested, Not Tested, Failed) - Not Tested; 
cfiles : set of CFILE; 
modules : set of MODULE; 
lib : link LIB; 

TEST SUITE :: superclass FILE; 
test : string; 

end 

end_objectbase 

268 



269 

B.2. The Tool Definitions 

The following are the tool definitions of all the tools we used in our examples. Each 

definition models a tool with possibly several operations. Each operation is handled by 

invoking the envelope whose name is given after the "string" type keyword. 

strategy tools 

imports data_model; 
exports all; 

objectbase 

* The editor tool has two operations; the first invokes the * editor and supplies it with a TAGS file while the other * invokes the editor without a TAGS file. The two envelopes 
* specified invoke emacs. 

EDITOR :: superclass TOOL; 
edit : string - editor; 
editnt : string - editor_no_tags; 

end 

* The various operations for the compiler are used to handle * Yacc and Lex files. 
COMPILER :: superclass TOOL; 

end 

compile : string - compile; 
lex compile : string - lex compile; 
yacc_compile : string - yacc_compile; 

ARCHIVER :: superclass TOOL; 

end 

archive 
list archive 
randomize 
update 

: string - stuff; 
string - list archive; 
string - randomize; 
string - update; 

t The RCS tool si used to either reserve or deposit a file. 
ReS :: superclass TOOLi 

end 

reserve : string - reservei 
deposit : string - deposit; 

TESTER :: superclass TOOL; 
run_test : string - test; 

end 

end_objectbase 



270 

B.3. The Project Rule Set 

The following are the MSL (MARVEL Strategy Language) defInitions of all the rules 

used as examples in this dissertation. All of these rules work in MARVEL and have been 

tested. Note that the syntax of the condition part is different from EMSL (although the 

underlying semantics are the same); also, the keywork "output" is not implemented yet, 

and thus all arguments in the activity part are considered both readable and writeable. 

strategy ruleset 

imports data model, tools; 
exports all;-

rules 

reserve [?f:FILE] : 

(?f.reservation_status - Available) 

{ RCS reserve ?f.contents ?f.version 

(and no forward (?f.reservation status - CheckedOut) 
no=chain (?f.locker - CurrentUser»; 

edit [?h:HFILE]: 

(and no forward (?h.reservation status - CheckedOut) 
(?h.locker - CurrentUser»-

{ EDITOR edit ?h.contents 

no_backward [?h.tirnestamp - CurrentTirne]; 

edit [?c:CFILE]: 

(and no forward (?c.reservation status - CheckedOut) 
(?c.locker - CurrentUser»-

{ EDITOR edit ?c.contents } 

(and (?c.status - NotCompiled) 
no_backward (?c.timestamp - CurrentTime»; 

outdate compile [?f:CFILE]: 
(exIsts HFILE ?h suchthat (linkto [?f.includes ?h]» 

(?h.timestamp > ?f.object_tirnestamp) 

{ } 

(?f.status - NotCompiled); 



compile [?f:CFILE]: 
(forall HFILE ?h suchthat (linkto [?f.includes ?h]» 

no_backward (?f.status s NotCompiled) 

{ COMPILER compile ?f.contents ?h.contents "-g" 
?f.object_code ?f.error_msg } 

(and [?f.status = Compiled] 
[?f.object_timestamp - CurrentTime]); 

(?f.status = Error]; 

dirty(?c:CFILE] : 

no backward (?c.status = Compiled) 
{T 
[?c.status - NotArchived]; 

archive (?f:CFILE]: 
(and (forall MODULE ?m suchthat (member [?m.cfiles ?f]» 

(exists LIB ?l suchthat (linkto (?m.lib ?l]») 
. 
no_backward (?f.status - NotArchived) 

{ ARCHIVER archive ?f.object_code ?l.afile 

(and [?f.status - Archived] 
(?f.timestamp - CurrentTime»; 

(?f.status - Error): 

archive (?m:MODULE]: 
(and (forall CFILE ?f suchthat (member (?m.cfiles ?f]» 

(forall MODULE ?q suchthat (member (?m.modules ?q]») 

(and (?f.status - Archived) 
(?q.archive_status - Archived» 

{ } 

(?m.archive_status = Archived); 

test (?f:CFILE , ?t:TEST_SUITE]: 

(?f.reservation_status - Available) 

( TESTER run_test ?t.contents ?f.object_code 

(?f.test status - Tested); 
(?f.test:status - Failed); 

test [?mod:MODULE , ?t:TEST SUITE]: 
(forall CFILE ?f suchthat (member C?mod.cfiles ?f]» 

(?f.test_status - Tested) 

( TESTER run_test ?t.contents ?mod } 

(?mod.test status - Tested); 
(?mod.test:status - Failed); 

271 



272 

B.4. The Project Coordination Model 

Following are all the control rules that were given in the dissenation. All of these con

trol rules are parsed correctly by the CRL parser. Only the first one, however, can be 

executed by the current implementation; the suspend and merge actions have not 

been fully implemented yet. 

edit-outdate-cr [ FILE 

selection criterion: 
commands: outdate-cornpile, edit; 

bindings: 
ttl requested_lock(); 
?t2 = holds_lock(); 

body: 

if (and (?tl.type - cfc) 
(?t2.state - pending» 

then 
{ 

) ; 
terminate (?tl); 

* The same control rule as above with obligations added. 

edit-outdate-cr [ FILE ] 

selection criterion: 
commands: outdate-cornpile, edit; 

bindings: 
ttl - requested lock(); 
?t2 - holds loCk(); 
?sl - session(?tl); 

body: 

t the interfering transaction 
t the other conflicting trans. 
t ?tl's session. 

if (and (?tl.type - cfc) 
(1t2.state - pending» 

then 
{ 

terminate (?tl); . 
add obligation (?sl, (conflict object.status-NotCornpiled»; 

}; - -



selection_criterion: 

bindings: 
?tl - holds lock(); 
?t2 - requested lock(); 
?sl = session(?tl); 
?s2 .. session(?t2)i 
?dl = dornain(?sl)i 

body: 

if (and (?tl.type = cfc) 
(?t2.state = pending) 
(?dl .. ?d2) 

then 
{ 

(linkto [conflict_object, ?dl)) 

terminate (?tl); 
add_obligation (?sl, (conflict_object.status-NotCornpiled»; 

} ; 

selection criterion: 
commands: edit, compile; 

bindings: 
?tl - holds lock (); 
?t2 - requested lock (); 

body: 

; 

if (?tl.command = edit) then 
{ 

abort (?t2); 
notify (?t2,"Another user is updating the object"); 

} ; 

if (?t2.command - edit) then 
{ 

} ; 

notify (?t2, "Another user is compiling the object, 
I will let you edit it when he's done."); 

suspend(?t2, ?tl); * suspend c2 until rl is finished. 

273 



# Control rule that resolves conflict between outdate-compile 
# and archive rules by suspending the archive rule, which 
# is waiting for backward chainig to complete, until after the 
# execution of outdate-compile is completed. 

cornpile-archive-cr [ CFILE ] 

selection criterion: 
commands: outdate-compile, archive; 

bindings: 
?tl requested_locke); 
?t2 = holds_lock(); 

body: 

if (and (?tl.type - cfc) 
(?tl.state - active) 
(?t2.state = inactive» 

then 
{ 

suspend(?t2, ?tl); 
} ; 

if (and (?t2.state - pending) 
(?t2.command !- edit» 

suspend(?tl, ?t2); 
} ; 

# Control rule that resolves conflict between outdate-compile 
# and archive rules by merging the two chains, if they belong 
# to sessions in the same domain. 

cornpile-archive-cr [ CFILE ] 

selection criterion: 
commands: outdate-cornpile, archive; 

bindings: 
?t1 - requested_locke); 
?t2 - holds lock(); 
?s1 - session(?t1); 
?s2 - session(?t2) 

body: 

if (and (?t1.type - cfc) 
(?t2.state - inactive) 
(?s1.domain - ?s2.domain» 

then 
{ 

merge (?tl, ?t2); 
} ; 

274 



" 


