
Synchronization of ylultiple Agents in
Rule-Based Development Environments

-- Thesis Proposal --

Naser S. BarghoUli 1

Departmem ot Computer Sdence

Columbia Cnivcrsi(y

~ew York. ~y 10027

Technical Rep:m Cl:CS-504-89

8 December 19H9

Abstract

The Rule-Based Development Environment I RBDE) is a rcc-"nLly-.Jevcloped approach for providing imelligem
asslstan~ to developers working on a large-scale software prOJecl. RBDEs model the developmem process in terms
of rules. lI1d then cnact this modc! by ;}utomalJ~llly iinng ruks Jt the JPproprillC time. The RBDE approach has
been used to develop single-user :!nvironmen~. but suppon for mulllpk developers cooperating on the same project
is still not available because oi the lack oi mcc:,anisms that C.:IO synchronil.e the effons of multiple developers. who
concurrently selcx:t commands. cau.sing the firing of multiplc rules (eilher dircctly or via chaining) thm concurrently

. access shared data ContlicLS between different rules and concurrcnt .Icc~ss to shared dat:l may cause the violation
of consistency in the project database. and thus nc.;c~sitatl.! the~ynt.:hroni/.ation of concurrem activities. The
conjccture of this proposal is that an RBDE ClI1 provide the rC4uircd synchronization if it is provided with
knowledgc about what it m~ for the dat:l oi J specific projc:.:t to be in a c.:onsistem Slll.e. md about the semantics
of oper:ltions thar developers perform on the data. The rCSQIch that thiS paper proposes will formulate l framework
for s~ifying consistency of data in an RBDE. and formulltt: J mt:cnailism for synchronizing the actions of
concurrcnt rules fIred on behalf of multiple de elopers coopt:r.Hmg \.>0 J common or different tasks.

Copyright © 191'l9 :\ascr S. Barghouti

! Barghouli is 5uppor:.:d In pm by GR. R~S\!:lI'ch nn Progr;Jmmmg S~ 'l.:m~ IS suq)(Jrtl!U by ~ationa.l Sc:enc.:: Foundation
g:-;:.'1ts CCR·83S;:!O:9 l.-.C CCR·~80::7.;,\. by ;~1.-:LS irom AT.1T. C:lt.:,:",. fB\1. Si.::x-::1S. :)U;: Uld X ,-":'0". by :ne c.!nlC' for
.-\J J..,-H.:..!C -; ~~ oio~: . .l::a 'Jy :he C.::-:.t.o.!:' ~'or T ";~l.!~·vr..m:..:ni(..!uo,l.!- R..:~~;,:; ":.~

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161439624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents
1. Introduction

1.1. The Problem
1.1. Importance of Solving This Problem
1.3. Approach to a Solution
lA. Requirements on the Solution

2. Derinition of the ~odel
2.1. Background: The RBDE Model
2.2. A More Specific Statement of the Problem

3. The Proposed Research
3.1. Contlict Resolution

3.1.1. Problem Formulation
3.1..2. Related Work
3.1.3. Proposed Approach to the solution

3.1. Knowledge-Based Consistency
3.2.1. Problem Formulation
3.1.1. Related Work
3.2.3. Approach to a solution

3.3. Concurrency Control
3.3.1. Problem Formulation
3.3 . .2. Related Work
3.3.3. Approach to a Solution

JA. Contributions of the Proposed Research
3.S. Measuring the Success of the Solution

·t "{ARVEL
5. Plan of Action
6. Proposed Outline of the Thesis
References

Figure 2·1:
Figure 3-1:
Figure 3-2:

II

List of Figures
The Multi-Agent prublem in RBDEs
Example of connict reSQlution problem
Multile .. -el transaction

1
1
1
2
3
3
3
5
6
6
6
7
8
9
9
9

11
12
12
12
15
15
16
16
18
18
20

5
7

10

1. Introduction

1.1. The Problem

Rule-based development l!nvirorunents (RBDEs) provide intelligent assistance to developers of large­
scale projecrs by modeling the development process of a project in terms of rules. and enacting that
process model. Existing RBDEs. however. arc cimer single-user cnvirorunents or suppon minimal
synchronization mechanisms such as lo(;king the e:1lire database: whenever a developer is accessing iL
They do not suppon the needs of multiple developers working concurrently on related subtasks of the
same projecL These needs include maimaining the project database in a consistent state. but at the same
time not obstructing the need for multiple developers to cooperate by sharing data among them. More
spccirIcally. existing RBDEs lack appropriate mechanisms for providing them with:

1. A specification of what is meant exactly by :naimaining me data of a panicular project in a
consistent state.

_ 2. A definition of what level of concurrent a~c~ss to me shared project database should be
allowed between different developers? Spccifi(;ally. should the RBDE tolerate any incon­
sistency in the databasc in order to allow multiple devc!opers cooperating on a common task
more concurrent access to shared data than dl!vclopcrs working on disjoint tasks?

3. A method of synchronizing concurrent actions triggered by mulliple developers that would
use the sp!cilicauon of bOlh consistcncy and concurrency in ordcr to maintain whatever
consistency is desired in the panicular projcct and still be able to allow cooperation among
developers.

A more precise statement of the problem in terms of the a:\swned RBDE model is made in the next
section.

1.2. Importance of Solving This Problem
RBDEs model thc dcvdopment process ot" a projcc~. such :1." developing a software system. in terms of

a set of rulcs that. when tired automatically (to enact th~ process model). perform some of the develop­

ment lI1d data managementta.sks that would omerwisc be done manually by the developers or not done at

all. This idc:! of integraling rulc-b~cd process modding wilh database capabiliti~s within the fr::unework
of a development envirorunent has gained popularity rcc~nLly. In fact at the Fifth International Workshop

on Software Specification and Design (lSPW-5). aboUl half ot" the position papers were concerned with

rule-based process modding lPerry 89/. Thus. it ~ccms LhaL pursuing the RBDE approach to suppon

"re~" large-scale projects is a worlhwhile elTon.

These "real" projecrs typically involvc many developers. J compli(;Jtcd process modclthal may require

hundreds of rules to describe it. and a si!,rnilicJnL mloum of highly strucrurcd data that is stored in a

shared projcct databasc. Existing RB DEs. however. do nOL selle up to all of these requirements.

Rescarch in AI has already produced [Uk-based sysLems thal con:\isl oi thousands of rules. and it seems
that the problem of supponing a large i:UT1oum ot" data is Jiso txing solved. The proposed research aims at

<.; :5 .!S.,~'T.~ ~':al :1:.: ~r.)DE ,LOr.:, .111 :h.: d.il.l :-':llln:;m,; to ~ ;;r"J":~l :n .l J,jlJ;;4~":. W..: Jo not J5sum..: .my parucuiar dal.loas..:
::':I>:.!!. :"'..:~ .!5.C: ~": • .: :\".~ :;"'~ ~i': ~ . .!~"::':t.: ... ~:15\!.

~ [Xc(!mber 1989

2

providing the mechanisms necessary for R8 DEs to scale up LO support multiple developers by providing

them with a synchronization mechanism. which aims at maintaining me consistency of data while provid­

ing the highest possible level of concurrent accc:-.:i to this oaL:!. Sue!l a ml.!~~anism would enable RBDEs

to support me consistency maintenance needs ot" multiple developers ',v'ithOUl obstructing their coopera­
tion. and mus make the RBDE model a more powerful one in terms of providing intelligent assistance in

the development process of large·sc:lle projects.

1.3. Approach to a Solution
Synchronization in an RBDE docs nOl involve only me human devdopers but also rules mat aur.omati­

cally perform ope;.uions on meir behalf. since those rules also access me shared database. The term
agenr is used in this proposal to refer to both human developers and rules that are tired automatically by

the RB DE on their behalf. \\!hat is lacking. then. in existing R8 DEs is the ability to synchronize concur­

rent accesses by multiple agents to shared data. while still providing an environment that suppons

cooperation among its users (called cooperative environment hereafter).

Synchronization of multiple agenLS involves: (I) cont1ict resolution in order to guarantee that rules that
directly connier with each other are not allowed to be fired concurrently on behalf of the same or different

developers: and (2) concurrency control in order to ensure that consistency of data is not violated because
0(concurrent access to the same data items. An R8DE may be able LO support the required synchroniza­

tion if it is provided with knowledge about what it me:.ms Cor the data of a specific project to be in a

consistent state. and about the sem:.mtics of operations pcriormed by agents on the database. These two

pieces oi iniormation are differem for differem projccL'; :.md thus they have to be provided to the RBDE

rather than built into it. Given this knowledge. an RB DE can actively participate in both automating

some tasks and maintaining consistency in the SC.1se that it could monilOr the activities of multiple
developers and be able to automatically pcrionn soml.! operations. which would either retain consistency

of :he data in case oi violation or automatic:.lily perfonn some la:-.K. in response to changes made to me

data. A passive environment. allcmatively. would provide only an interface to the data and to the tools

used by the dcve!ope:-s.

The research Lhat this paper proposes will usc the fo llo v. ing approach lO fonnulate a solution to the
problcm:

1. In order to solve the conlliet resolution problem. the tasb performed by both the developers
and the RBDE on their behalf have to be encapsulated in 10gic.1l units. which resemble
transactions in databasc svstcms. The similarities and diffcrences between the logical units
used here and transactions are dan fied later.

2. [n order to solve the consistem:y specitication problem. there is a need [0 design a
fr:lITlework in which it is possible to: (I) deline c:(actly what is meant by maimaining a
specilic proje~t in a consistent stale: and (2) :-.ret:li'y aJlov.Jolc kveis of concurrency be­
tween di fferent developer.;' Lr:.msactions.

3. Develop a synchronization m&hanism that uxs this framework to achieve a reasonable
compromise between two conflicting goals:

a. \-ta:(imizing concurrency or' access by muitiric agcnL'i LO the shared project database.
and thus maximil.ing the numocr Ll! op.:ral1on:-. that -.:an proc~cd concurrently. This
has u-:c effect of minimizing the cnvironment':-. rcspon:-\! time :c ~scr comm:.mds. Jnd
L':uS :;:;provir.g the o\~~all pmJu(ti\ 1l: ,)1' ":Dopcr:!ung JC·/C!OPC:-S.

.3

b . .'tiaimaining the project database in a consistent state as specified in the consistency
fr:lITlcwork. thus reducing the time wasted on fixing up inconsistent data. and
thereby facilirating the success lui completion of the development task.

lAo Requirements on the Solution
The synchronization mechanism should allow multiple developers to share knowledge among them­

se!vcs. to cooper-uc on J common task. md to be lOIc to comrol the progress of their tasks without much
cbstructionJ• Specifically. the concurrency comrol requiremems in m RBDE model include:

• Supponing both long-Iivcd database operations that last for an arbitrarily long period of time
(e.g .• cditing a source file in a software project). as well as shon darabase operations that are
similar to operations in traditional databases.

• Supponing a spectrum of aUowable interaction between multiple agents. ranging from synei­
gistic cooperalion among them to their isolation from e:H.:h other. depending on the project
specification. For example. if multiple developers arc working on the S:lITle part of J.project.
they should be lble to look at each other's modific~llions. even if these modifications are not

_ complete. rather than having to wait until the modifications arc committed. loolcing:u par­
tial modifications might help developers discover inconsistcm.:ics early on rather than at the
end when they have to imegrate their work. At the same time. these cooperating developers
should not be :illowed to modify the same object at thc same time in cont1icting ways if that
violates the consistency of data required in the panicular project.

• Supponing interactive user comroi over transactions. which me:.lns that the users make up the
operations of the transaction as they go rather than programming all operations that they want
to periorm in batch transactions before hand.

The remainder of this proposal is structured as follows. Scction :; describes the rule-based developme:-l[

environment model assumed in the proposed lhesis. and presents a statement of the problem in terms of

the model. Section 3 presents the approach Lhat will be follow~d to solve the problem and describes how

the success of the solution can be measured. Section ~ presents .'t[ARVEL. the development envirorunent

kernel thaL will serve as the expcrimenLll fr:.lfficwork Cor the proposed work. Section 5 describes the ste;Js

thaL will be followed to formulate a solution LO the problem. and a tcntative schedule for achieving these

steps. Section 6 outlines the organization of the proposed dissertation.

2. Definition of the 'Iodel
Tnis section describes the development model assumed in the proposed research. and more precise

statement of the problem. We state what is assumed as a given and what is part of thc problem.

2.1. Background: The RBDE :\-fodel
Somc of the most well-known development environmcnts arc rulc-based. for example. the Common­

Lisp Framework (O-F) [ClF ProjCl:t 881 support.~ ruk-ba~cd process modeling through what ir c::llls

consistency and automation rules I Co ile n 861. Reline [Sm ith ct :il. S51. an automatic transformation sys­

tcm for the purpose of program synthesis. also provides a IimiLcLl rorm of controlled automation in the

'It 5houl,j ::.c ~ot.:d :h.lt · ... e u:: :lSsumlng .1 .:ocp..:rlllvc .. :nVITOr_'"":1..::1L :n ~l\;~ ,n..: J.:'I.:iope:s do not competl! ior ~esources wlli1

.!;,:"..:~ ~)t.hl!:.

slyle of CLF. Darwin [~insky and Rozenshlein 881 is a rule-based system implememed in Prolog that

resuicts what programmers can do by lre:lling rules as t:onstrainls. and automates checking and enforce­

ment of these constraints. Grapple [Huff md Lessc:- ~~ J is a system thal uses rules [0 do planning and

plan ;-ccognition in order [0 cnact and monitor the process model. ylarvel [Kaiser el a1. 88al enacts the

process model by providing comrolled automation via fOCVIJrd and backward chaining among rules.

We assume a general RBDE model. which includes all of the syslems mentioned above. that enacts a

model of the developmem process of a panicular projecl by automalic:lily tiring rules that enc:lpsulate

operations on the project database. These rules arc :lot built-in but arc specified [0 the RBDE and c:m be

changed dynamically during a session. The commands thal a devcioP'!r can select from in an RBDE

either correspond to rules or are provided by the environment ;.IS built-in commands. such as adding and

deleting objects. Each rule has a condition (also called the lejt Jzand side or precondition) that must be

salisfied before the second pan. which is the developmem activity the rule encapsulates. is executed on

the database. The activity is modeled as a black box whosc inputs and OUlputs are known. but in order to

~know which OUlput it will produce. the black box has to be invoked. The third pan is a set of murually

exclusive actions (also called the right hand side or postconditions). which change values in the database.

Which action to assen depends on the results of the rulc's activity.

If the actions of a rule change the objecLo.; in thc database in such 1 way that the condition of other rules

become satisl1cd. those rules arc tired automalically. This behavior is tcrmedjorward chaining and it is

the model that production systems impkmem. Alternatively. if a condition of a rule is nor satisfied.

backward chaining is performcd to satisfy it. The backward chaining model (also called backtracking) is

implememed in theorem provers. constraint systems. and some production systems. Forward and back­

ward chaining arc two mechanisms for enacting the process model.

RBDEs in general provide either a fOf\l,ard chaining modd or a backward chaining model or both in

order to do one or more of the following:
I. \1aintain consistency as defined by the conditions and actions of rules. Thus. no operation

will be pcrfOlmed until iLS condition is satisiled: anLl if an operation is performed. all im­
plications tin tenns of performing other oper~lions) arc taken care or.

2. Automatc the performance of some operalions thal would otheCVIise be performed manually
by developers. Thus. by requesting one Llalabasc operation. several other operations might
be pcrfonncd automalically by the RB DE on ochalr of the Llcvc10per who requested the first
operation.

3. \1onitor the development process and collect information aboul any violalions of it. The
RBDE might only warn developers about the~c violations ralher than eniorcing thc model.

Some existing RBDEs dislinbruish octwecn automalion rules and consislency rules (CLf). some provide

only consister.cy rules {DaCVIin). while other.-; pro\'ide onl: Jutomation rules (\larvel). In this proposal.

we assume a general model in v,hich: (I) both fo~an.l anLl backward chaining are supponed: and (2)

rules may serve either the purpose or ~lomat.ion or con~islcncy maintcn:mce.

5

2.1. A ~ore Spedfic Statement of the Problem
When multiple developers cooperate on a project wi thin an R 8 DE. they share a common darabase that

COntains all the objects of the project. These developers ~lan concurrent sessions in order to complete
their specific rasks. During their sessions. the developers concurrently request operations that access
objects in the shared project database. These concurrent operations might violate the consistency of the
objects they access if they concurrently change either the same attribute or dependent aaributes of the
same object in corulicting ways.

Shared Database

Agentl Agent2 AgentJ

Figure 1·1: The ~1ulti-Agem probiem in RB DEs

Since most operations correspond to rules and since chaining might leJd co firing other rules that

p!rforrn more corulicting operations on the databasc. more inconsistencies might be introduced in the

database. More generally. the overall behavior of cooperating developers in 1I1 RBDE can be modeled as

multiple sets of rules. where mulliple rules from each _sct are fired concurrently to perform operations on
the shared project database. This siruation is depicted in figure 2-1. Based on this. the synchronization

problem that the proposed researeh lims LO solve can be divided into three subproblems:

• The conflict resoiuriofl problem: deciding whcther or not tWO or more rules can logically be
fired within concurrent chaining cycles (i.e .. making sure that the conditions and actions of
these rules do not negate each other).

• The consisul1Cy specifictJliofl problem: specifying what kind of consistency has to be main­
tained in !he database of the pank:ular project. anI.! what kind of concurrency is allowable
bel ween developers' tasks?

• The cOflc:urel1C)' r.:omroi problem: given that several rules have !::cen tired concurrently after
passing the conllict resolution "phase. how can we make sure thal their access to data is
consistent with the specificauon_ of the proJect.

We now precisely formulate each of these !Subproblems. dcsaioc the re!ated work that has been done LO

provide panial solutions to each subproblem. JI1d pres.;m proposed approac~ to solving it.

;3 S<!C.!mber 19~9

6

3. The Proposed Research
The proposed research addresses three problems a.ssoci;lLed with synchronizing multiple concurrent

agenrs in an RBDE: (1) the conllict resolution problem. which involves choosing which rules [Q fire
aULOmatic:llly in response to changes in the project databasc: (2) the knowledge-based consistency
problem. which involves formulating a specification iramework in which it is possible to provide an
RBCE with the data consistcncy desired for. and the level of inconsistency that can be tolerated by. a
s~ciiic proje:.:t.: lI1d (3) the concurrency comrol problem. which requires finding a mechanism that
enables the RBDE [Q prevem concurrem access to dala if that access violates the data consistency defined

for the panicular project. In this section. we formulate each problem. present related work that addresses

it.. and describe the proposed approach to solving it.

3.1. Conflict Resolution

_3.1.l. Problem Formulation

Assume that two developers Bob and :Vlary ;Ire working on a common task within the context of an

RBDE. The objects.! that Bob and Mary need to access in order to complete their task are stored in a

shared dal.J.base. All the commands that access the database (e.g .• read. write. edit. compile. fonnat. etc.)
arc implemented in terms oi rules as described in se:;uon 2. E:lch command that either Bob or :vtary

selecrs causes a chain of rules. each of which may ac::css objects in the database.

The problem is that when Bob and :Vlary request commands concurrently, Bob's command might uig­

ge:- J chain of rules. one or more of which might conllict with on of the rules on the in-progress chain that

M:lry's command has triggered. Altemativcly. the contlict might have occurred even in a single-user

context if. for example. Bob had requested two commands concurrcmly (e.g .. Bob is executing two com­

mands in two different windows concurrently). This problem arises when the RBDE allows multiple

r,.!les chains to execute concuITCntly. The trivial solution of simply scrializing chaining cycles is not

satisfactory since chaining might invoke long-lived operaLions.

Lct us illustT:HC the problem by pursuing thc example above. Assume that Bob requested a command

c j 1t time tl. which triggered the forward chaining cycle shown in tigure 3-\. Before the chaining

resulting from cI is finished. Mary requests a command L'~, which corresponds to the rule r2. at time !~.

The condition of r2 is not satisfied. which causes a back ward chaining cycle in order to satisfy it. The

conditions and actions of the rules involved in both chains arc shown in figure 3-1. From the detinition or"

the rules. it should be noted that the condition of rule r4 is negaled by the actions of r5.

~ow assume that the operations involved in both chaining cycl~s occur in the order depicted in the

fig·~re. [f the RBDE allowed r5 to be cxecuted. it v.ould invalidate the backward chaining cycle that

:Vlary's command triggered. The LWO possible actior.s to take in Lhis situation are: (1) do not tire r5 and

thus end Bob's forviard chaining cyi;lc: or (2) fire r5 Jnd then invalidate :V1ary's chaining cycle by

.!tr.;! :'::-:11 oO!l!c: IS ".:s..::i :n :he gC::'::-IC '.:ns.: ~.:r.: :0 m.::m :l d:!l:l :t'::11. For ..:"\a:r. ::Ji.:. :h.: source .::odc of .1 procedur..: em be
:)tcrzc :lS J.n oOJCC! J5 '';'''C:! l.S .1 ;':;'JPu.:~ :n ' ... 'e '..!s\".~·) ;-nan U.l i ..}(J .;:q~:n. 1:1 th~ :1\.!·'l ~ub~~:.Jon '-.\re cietlnc! d:lt.l oOJCcts more

:or:":"!:.~<.'

r5: acnons:-p
r4: condition: p

Tl\tIE
command c1

r:> r5 causes condirior~of_
r4 ro be not true.

command c2

r4 condition of r4 was
sarisfied at this point.

~
~

, Forward chaining

t Backward chaining.

Figure 3-1: E.tamph; of canllict resolution problem

backtrJcking (i.c .. from the poim when r4 ',I,'as tired). The Jppropriate 3ction to take. it seems. depends on

the specification of Ltx! autOmation model oC the project.

.3_1.2_ Related Work

The contlict resolution problem has been addres:-.ed in .-\1 ruk-based systems. such as OPS5 production

systems I Forgy 81 J, which are typically composed or J .;et or rules that operate on a shared database of

facts called the woriUng memory. Each rule has J i.:ondiulln pan. which is a panial des<.:ription of working

memory: if the facts in the wOrXing memory sali:-.ry thi:'> de:-.(nplion. the rule ClIl be tired. The production

system imerpreter executes a cyck that ha:-. thn:.: pha:-.c,\. (I) J mJti.:h phase in \IIhi<.:h the left hand ~ides

of all productions arc matched 3gainst the working memo!,). rc:-.ullln~ rn l set of instantiations of produc­

tions that are ready to be fired: (2J the c.:unlli..:t-il.::-.olullon ptla:-.e in which one of the instantiations is
chosen for execution; and (3) the aCl ph:1:le rn hich the .lclions ur the selected production are executed.

resulting in changes to working memory This ..:~d; is rep..:.llcJ unlll il 4uiesccs. In a SOAR produc~ion

system [Laird 861. the conflict resolullon 'ilCp i:'\ 'klpp..:Lf anJ ali the produ<':~lon inslantiJtions selected in

the match step are executed. The propo~d RB DE muJl.:1 In lhl:- pap..:r I~ ..:loser to the SOAR model in

thiS rcSPCCL

~C:;I:; ?rcpo~

The match step is the most time consuming step in the cycle since it involves seJrching the knowledge

base (the working memory and the rules) in order to find in/ormation relevant to solving a

problem [Gupta 36j. March algorithms attempt to t.!ecreasc the number of search operations in J ma[c~

step by saving the results of executing the previous recognize-act t:ycle so that only the changes (0

working memory need to be considered for the following cycle. The Rete algorithm [Forgy 82} is an

I!xample of a state-saving match algorithm used in OPS5 produc:ion systems. This solution, however. is

nm appropriate lor our model because we assume an environment that is interJctive. which mems that the

developer might J.l any point suspend his session. consistency preserving, which might require saving

checkpoints, and dynamic, which means that rules can be added and deleted dynamically. These charac­

teristics would require either saving the state of the match network. which consumes a very significant

amount of space. or reconfiguring the match network. which consumes a considerable amount of time.

Many reseJI'chers have attempted to significamly specd up the execution of production systems rhrough

the use of parallelism. Both Gupta [Gupta 86J and ~firanker [Miranker 86} have concluded in their

.= respective theses that the speed up that can be eXpCcted from paralJclism is quite limited in the context of

OPS5 production systems that are implemented using the Rete algorithm.

In the proposed research, we address l different problcm that sounds superficially similar. Multiple

developers working to complete a project, concurrently perform their tasks. which are made up of sets of

operations, each of which is implemented by a rule. c:.Iusing multiple ruks to be fired concurrently. Since

each rule has a precondition that needs to be satisfied. the match steps for these rules might be performed

in paralleL Thus, parallelism in this case is a given and not a mechanism to improving performance.

However, any proposed solution will require the use of the best algorithm possible for synchronizing

parallcl rule executions. It is thus of interest to look at the results of parallel production system im­

picmemations.

3.1.3. Proposed Approach to the solution

The approach that we propose to solve this problem is to usc a t:oncc?[similar to tr.:msactions in

database systems. The transaction concept was d~_veloped in tradilional database research in order to

- solve the consistency maintenance problem in these -databases. There is a lack of knowledge in tradilional

daLJbase systems about the application-specific semantics of database opentions, and a need to design

general mechanisms that cut across many polential Jpplic:llions. Thus. the best a DBMS can do is [0

abstract all operations on J database to be either a re:lU operation or a write Op;!r.ltion. irrespective of the

panicular computation. All computations arc then programmet.! as transactions that consist of a sequence

of rcJd operations, write operations, :md conoition:J1 stJtements. The DB~tS can guarantee that the

database is always in a consistcnt statc with respe-.:t to re:.llis anll v. rites by executing tr.l.Osac:ions atomi­

cally: i.e .. either all the operations in a tr:.msaclion arc ;x:rt'ormed in order or none arc.

In addition to being consistcm;y (aLOmidty) units. lransat:tions are also logical units that group sets of

operations that comprise a logical las~ It is in this sense lhat I propose to :.lSI! transactions to solve the

conl1ict resolution problem by grouping the sel of rules that arc tir~d by the RBDE automatically in

responsc to a developer's command either directl: (i.e .. the ruk corresponding to the command) or in­

dire::~y (i.e .. through ·.:haining) dunng a s~s.-;icn i:ilO]ogit::J! units. nest:: units would be most similar to

9

interactive transactions, where me code of me transaction is made up as rules are fired and their actions

arc asscrted. In other words, ~Jch chaining cycle mat is triggered in response to a developer's command
is cncapsulaLCd in a transaction.

Given that eJch rule now occurs within a transaction. the match step of the rule should take imo

consideration nor only the condition of the rule. but also how the actions of the rule might affect the truth

of conditions of other rules that have alreJdy been fired in other in-progress transactions (chaining units).

3.2. Knowledge-Based Consistency

3..2.1. Problem Formulation
Consistency of a database is maintJined if eJch data item in the database satisfies some consistency

constraints that depend on the application. The database is said to be in a consistent state if every data

item in it satisfies all the consistency constraints. In RBDEs. some inconsistency can be tolerated as a

pri~e for expanding the set of aUowable interleavlngs between concurrent transactions, thus increasing

-concurrency. The level of tolerable inconsistency depends on me operations in a panicular application.

For example. if two programmers John and \Ifary arc working on coding related parts of the same

subsystem, their respective tasks might last for several days or weeks. It is important [() have a norion of a
task that needs to be completed (i.e .. all the coding has to be tlnished in order to reach a satisfactory state

of the project). but that task certainly docs not need to be atomic. If ~fary is modifying a module that

somehow depends on a module in John's pan. she would usually rather be able to look at the partial

modirications done to John's module than have to wail until the modific:ltions are completed and made

available to others. The reason is that it might be that :Vlary wanted to look at John's module in order to

look up the type of a variable that she knows John has changed recently. bm that will most likely nor be

changed by John in the future. In this cas\.!, ~lary will not be conccmed Jbout John's part not being in a

"consistent" state before she C:lI1 access it.

The problem thus is finding l framework for specifying which intericlvings are allowable in a par­

ticular environment. The framework should specify the. granularity at which different database operations

can be interleaved. This specification framework can then be used by a concurrency control algorithm to

provide maximum concurrency while maintaining consistency_

3..2.1. Related Work
The idea of defining a fram\.!work for specifying the consi~lency unit in database transactions was

proposed by Lynch [Lynch 83 J, Garcia-y10lina [Garcia-~folina ~3. Garcia-Molina and Salem 87). and the

CAD group at ytCC [Bancilhon ct aI. 851. Gan:il-Molina's semantic atOmicity scheme stalically divides

transactions into ltomic steps. and specilles compatibility set:. that Jetine the allowable imerlelvings with

respect to those steps. Thus if transactions of type X arc compatible with transactions of types Y and Z.

thcn any two transactions T i , of type ~ Y. and Tr or type Z. can arbitranly imerleave their steps with a

transaction T j(' of type X. There is thus no distinction oct.,.,c(:n intericlving with respect to Y and inter·

leaving with respect to Z.

Lynch observed thlt it might x more appropriJle to have Jil(crcnt S":~5 of ime:klvings (in thc form of

10

specific brc:lkpoims) with respect to different lr:msaction types [L~nch 831. This observation seems to be

valid for RBDEs in which lc:ivities tend to be hicrarc~i(,;al In n:llure. for example. software deveiopment
environments. Transactions in such systems can often be ncstcd into levels. where at elch level. trans­

actions that have something in common. in tenns Df acc~ss to JalJ ilems. arc grouped. Level one groups

III the cr;msactions in the system v..hilc subsequent levels group transactions that are more strongly related
to e:lch other. A strong relation between two transactions might be that they often need [0 access the

same objects at the same time in a non-conllicting way. A set of breakpoints (defining interieavings) is

then described for each level of the nesting where the higher order sets (for the higher levels) always

includes the lower order sets: This results in a tOtal ordering of ~I sets of breakpoints. This means thar

the breakpoints mat specify imerie:lvings at a level cannot be more restrictive man mose that define
imerieavings at a higher level.

Let us illustrate rltis concept by an example from the soltware development domain. Let us suppose
that Bob. John and ~ary are cooperatively developing a software project. [n rbeir development effort.

they need [0 modify objects (code and documental ion) as well as get infonnation about the current Starus

-=- of de vela pm em (e.g .. me latest cross-reference information bctwe~n procedures in two modules A and B).

L:t us suppose mat ~ary starts two transactions (in two different windows. for example) T Maryl and

T'tfary2 to modify a procedure in module A. and gel cross-reference infonnation. respectively: Bob startS 1

transaction T Bobl to update a procedure in module B: John stans two lr.lnsactions T1ohn1 to modify

module A. and T1ohnl LO get cross-relerencc information.

L:'1c! 1

L~vel 3

Level 4

Figure J-2: ~1ul[t1evcltr;msaction

More
Allowable
Interleavings

A nesled transaction syslem can ~-"ct up as shov..n in ligurc 3-2. The top level includes :lil trans­

actions. Level:; groups all modi (icat~on lransactions (T ~t.!r. I' T Rob I and T John i) togcther and all cross­

refercn~ transactions (T \-far ... l and T]olm.!) togcther. Lcv~1 3 separales [he transactions according to

...... hich modules they al"fect: f~r c~m1ple. il separales the lr.ln"';'II':lions lhat modify module A (T ~1ryl and

T·· It !rom those modifvinl.! mcJulc B ITR '-II. LC'/cl (our l.:OnlJln~ all the ~jr.gktOn lran!lJc:.ior:s.
JOM • - 011

;nCSIS ?:-oPOsaJ

I I

Then. the setS of breakpointS are specified by dcscrihing thc transaction segmems between the break­

pointS. For example. the top level set might speci fy thaL no imcrlcJving is J.!Iowed: the second· level set

might specify that ill modification transactions mighL intcrlcave aL some granularity. Jnd that cross­

reference transactions might similarly intcrleJve, bUL Lhat modi fi(;aLion and cross-reference transactions

cannot interleave (ro guarantee that cross-reference inrormaLion docs nm change while the rransaction is
in progress).

lsing the setS of brelkpoims, the concurrency control mcchanism can provide as much concurrency as

delined by the multilevel aromiciLY s(;hcmc. Thus. the mc(;hanism in our example might allow trans­

actions T Maryl and TJohnl to interlcave their steps while modifying module A (i.e .• allow some level of

cooperation so as nm to block OUL modulc A for a long Lime by onc of them). but it will not allow T.\1ary 1

and TJohnl to interleave their operations.

Both Garcia-Molina's and Lynch's schemcs assume Lhat Lhc body of each rransaction is known. and

thus they can statically define the breakpoints and J:!lIowcd imcrleavings. However. as was noted in the

~~temem of the problem. developers operatc on the projcct database imeractively. Thus, their long

transactions will not be programmed (Le .• it will nm be known what operations might be executed in

thcm). Also. the results of databasc operations are nondctcrminisLic. which necessitates having multiple.

possibly mutually exclusive. actions in the rules lhal implement lhe operations. Given the interactive

naLure of developers' scssions :'lOd the nondetcrminism of daLabase operaLions. the assumptions made

aoove become inappropriatc. Specilically, it would be impossiblc to classify transactions apriori into

differem types and then specify thc imerleavings between these LypeS. Thus. we need to develop a

framework that builds on the semantics-based consistency work. but that takes into consideration the

interactive and open~nded nature of transactions in RBDEs .

.3.1 • .3. Approach to a solution

The approach LO solve the problem of defining con:-istcncy for J specific project is three·pronged: (1)

define the smallcst consistency unit in RB DE tasks: (2) delinc developers' tasks. that may last for several

sessions. in terms of transactions: (3) develop J fr~~ework for specifying consistency for J parricular

project and allowable concurrency levels. .

Defining the Smallest Consistency Cnit: [n an RBDE. clch rule has l condition that ensures that the

daLabase operation it impicments happens in the correct comcxt (i.c .. in a consistent stale), and since the

actions cxplicitly describe all the efrects of each opcration. elch rule. like an aLomic transaction. tr:lI1S­

forms the database from one consisLent state to anoLher. Thus, iL mighL be reJsonable to detine the rule as

the smallest consistency unit. This uniL mighL be tOO small for some projeCL'i. and thus the actual project­

specific consistency units wiU have 10 be spccilied in tcrms of a set of rules.

Defining Tasks as TranS4lctions: Each devclopcr's la~k involvc a non-dcterministic set of chaining

units. and can be modeled as a ncstct! transaction made up of sublransactions which arc the operations

performed during thc session. Each 1)per:'lLion is itsci r a nestcd trJOsaction that includes the subtran­

sactions represeming the operations Lhat are performcd due to chaining. Each developer's long lr:lI1S­

ac~ion stans with a "begin task", cnds with a "end task". and is interactive.

!-\.i1owledge-Based ConsislenC): Finally. I).C need to Jc':c!np a notion of J projec~-specillc consistency

12

unit !hat is more flexible than the traditional scria.lizability-based Jtomicity unit The desired consistency

can be specified in tenns of breakpoints in !he long transa(;tion. where the unit of consistency is me

oper:llions between two breakpoints. Other transactions can look :.H the pamal results of a long trans­

JC:.ions only at the breakpoints. Thus. the breakpoints speci fy points at which transactions can be inter­
leaved. In other words, they specify which Lransactions (or morc likely, what types of transactions) can

be imerleaved at specific breakpoints. Thus, different developers will be able [0 see the state of me me

same developers' transactions at differem breakpoints. This results in a flexible specification of concur­
rency levels between different kinds of tasks.

3.3. Concurrency Control

3...3_1. Problem Formulation

As outlined in section 1. one of the problems associaLed wim synchronization of multiple agents is

concurrency control. which stems from having a sfiared project database. The reason for storing objects

..:_belonging [0 a project in a database in the first place is that RBDEs. like other development environment
models, utilize database technology to uniformly manage data (e.g .• design documents. circuit layouts.

source filcs. ere.) manipulatcd by cooperating developers. Clilizing database technology in development

e:wironmems is desirablc for sevcral reasons including daLa integration. data imegrity. convenience of

ac~ss. and data independence [Bernstein 87, Diurich CL al. ~7, Ncstor 86. Rowe and Wensel 89].

Given the :lcsted transaction model dcveloped above to represent devclopers' long transactions. the

problem then becomes how to control the concurrent access to the shared database by operations within

me developers' concurrent nested transaclions.

3.3 • .2. Related Work

It might occur to the reader that an appropriate concurrc:1cy control mechanism to usc is ~loss's nested

transactions mechanism [Moss X5 i. This mechanism. however. Iik~ all other concurrency control

mechanisms developed for trJditional databases would requi rc that the developers' long tranSactions be

atomic and serializable. Scrializable execulions of transaclions with respect to reads and updates on the

-database arc enforced in conventional concurrency comrol mechanisms because of: (1) the lack of seman-

tic information aboul the database operations. and (2) thc desire lO design gencr:ll-purpose mechanisms

mal do not depend on applicalion-specifk information I Bernstein and Goodman 811. But there is nothing

thal makes a non-serializablc schedule inherently inconsistcnt. And although serializability is acceptable

in traditional applicalions. which involve transactions thal last for a short period of time and that are

programmed (i.e .. the code that thc transaction executes is known before the transaction starts). it is too

restrictive for advanced applicalions. such as multi-agent RBDEs.

Even in thc simplitied elSe of programmed long transal.:Lions. the performance of such an algorithm

would not be acceptable because the o~raLions ot' the tran~;Ktions might take 1I1 arbitrarily long time to

complete. Some oi these long lransa(;trons need to access the partial results of concurrent transactions in

order to achieve coopcr:llion among designs. Thus. isolating long transactions not only constrains concur­

rency, but it also prevents desired coopcr:llion among ,,kvdl)pcrs J.f1d prevcnt:i transformation of the

projcc~ :.iatabase to a n~';. consistcnt :-;iJtc i i that :ransl-OrITlJlion rCljUl res concerted actions by multiple

de·ic:c~c:-s.

S C-ec;!:nber 19~9

J3

The concurrency conlfol requiremenLS for developmcnt environmcnts include supporting long trans­
actions, cooperative transactions. uscr control. and complex objcc[s [Bancilhon ct a1. 85, Barghouti
39. Yeh et a1. 37J. Researchcrs have recentl v addressed these reuuircmems and have desi!!l1ed several . . "
unconventional conc:mency comrol mechanisms. The problem wilh lhese mechanisms is that most of
them only address one requirement, and that none of them completely dcfine the semantics of database

operaLions and the user tasks in which lhese operations occur. It is important. however. to understand
these mechanisms because a more salisfactory solution LO Lhe concurrency conuul problcm will definitely
build on many of the concepts and ideas they explore.

Semantics-Based Consistency: One of lhe key ideas that the proposed rescarch will rely on is that of
utilizing application-specific semantics of database operations and user tasks in order to increase concur­
rency. This idca has been explored in two main approaches that have been pursued to support long.
transactions (L Ts): (I) exrcnding seriaiizabiliLy-bascd mechanisms while still maintaining serializable

schedules: and (2) relaxing serializability of schedules containing L Ts. The first approach makes use of
any additional information that can be extracted ab;ut transactions. and uses that information with one of

-the "traditional techniques. while maintaining thc same "tradiLional scheme in case the additional infor­
mation is not available. yfcchanisms such as lltruistic locking [Salem et al. 87], commutativity-based

concurrency control [Weihl 88]. and snapshot validation [Pradd elal. 86] are examples of the extension
approach. Thl" probiem with lhis approach is that it assumes the availability of specit1c semantic infor­
mation to· extract. such as informalion about access paLterns of transactions. which might not be ap­

propriate for all applicJtions. Another problem is lh:ll they assume programmed transactions and do static
analysis using the semantic information. Tne solution we desire cannot assume eilher of these twO things.

In addition to long transactions. it is important LO address the issuc of cooperation among concurrent
ag~nts in lhe proposed research because even in a relatively small project in which developers work.

indc~ndemly most of the time on the parts of the projet:t they :Ire responsible for. they need (0 interact at
various points to inL.egrJte lheir work. In a larger projct:t. which involves a large group of developers

divided into several groups. each responsible for a pan of the dcvelopmcnt task. members of each group

usually cooperate to complete lhe part they are resp?nsible for. In this case. there is a need to suppon

·cooperation among members of the same group. as "well as coordination between multiple groups. Thus.

isolating long transactions that encapsulate individual developers' tasks not only constrains concurrency.

but it also prevents desired cooper.ltion among developers and prevents transformation of the project

database to a new consistent Slate if that transformation requires concerted actions by multiple developers.

There arc several mcchanisms and concepts thaL were developed LO address the issue of cooperation
among concurrent transactions. We present these concepl" and mechanisms and explain why they do or

do not help us in formulating our approach to a complete solution.

Dynamic Restructuring: One concept that has becn proposed is that of dynamically restructuring

transactions as more informalion about Lhe usage of resources bcwmes available. The concept was
proposed by Pu e!. ai. [Pu ct :11. 8X I)nd used in a me-.:hanism called commiL-serillizabi1ity. which. in

addition to supporting long transactions. supports user control o\e~ transactions by allowing users to split

and join their transacions dynamically in order to re~lruCtUrC tht.: in-progress transactions as new infor­

malion tx:comes available.

3 ~c:!mbcr 1989

[.!

Coordinated Access: AnOl.her approach that has been used to coordinate access to shared data (in the
form of individual files) is the reserve/deposit mechanism (Tichy 85 i. which has been extended to worle
on collections of files by providing J two-level database hierarchy consisting of J public shared database

and private databases for each developer [Lorie and Plouffe 83. Katz :md Weiss 84. Kaiser md Feiler 871.
Other mechanisms provide a multilevel database hierarchy capable of providing more
concurrency [Kaise:"lIld Perry 87. Honda 88 J.

L'ser Groups: The concept of coordinated access. however. only addresses the issue of accessing the

database from the viewpoint of data in the sense that it docs not associate collections of data with specific
developers. In order to do that two new facilities were introduced [0 be used by concurrency comrol
mechanisms. These are the concepLS of groups I Abbadi and Toueg 88. Skarra and Zdonik 89]. and
notification [Yeh et aI. 87. Leblang and Chase. Jr. 87]. Several mechanisms use these concepLS to imple­

ment concurrency comrol policies that suppon synerglsl1c cooperation among multiple

developers (Klahold et aI. 85. Bancilhon et al. 85. Kaiser 90J.
-

..-:. The third requirement that has also been recently addressed by some researchers is that of complex

objecLS. In advanced database applications. data is often defined in :nultiple levels of granUlarity. For

example. a data object that represenLS a program in a software project might consist of modules. each of

which contains procedures and documentation. If a user wants to gain . exclusive access to the whole

program (perhaps to ouild the executable of the program). he has to make sure that every subobject is
made unavailable to other users. [n lhis case. it is convenient [0 be able to lock the entire nested object in

one operation rather than requiring a separate operaLion for each subobject. This. however. should not

prevent the user from locking a subobject exclusively without having to lock the whole complex object.

There is thus a need for a concurrency control mechanism that opcflles on complex objects.

To suppon complex objects. the hierarchic:l1 data model of advanced applications has to be incor­

porated imo the concurrency control mechanism. The Orion Object-Oriented database system incorporates

such a muitiple granularity data model into 5crializabilily-bascd 2PL prOlocols lKim ct aI. 88. Garza and

Kim 881. Another approach is LO model hierarchical access to data as a nested object system [Marrin 871.

Each object in the system exists at a panicular level ?f data abstraction. Operations are specified for

objects at alllcveis where operations atlcvel i are specified in terms of operations at level i·/.

The mcchanisms presented above follow the trend of using more semantics that is now available in

order to improve concurrency. The semantics used includes information about imerleavings between

transactions. about the division of tasks among learns of developers. about the structure of complex
objects. and the access pallems of transactions. In a multi-agent RBDEs. all these kinds of information

are available and can thus be used to imegratc the mechanisms for supponing L T5 with those supponing

synergistic cooperation and comple.'(objecL'I. What is missing in the above mechanisms is the ability to

define the exact 5Cmantics of database operJtions: i.e hat each operation changes in the daLabase and

what are the implications of those ,-hanges. I r this information were available in the form of the
knowledge-based consistency framew(}rK as proposcu in the previous subsection. it can be used [0 provide

more flexible concurrency control mechanisms.

--

15

3.3.3. Approach to a Solution

The approach to solving this problcm builds on the SoluLion that was suggested by the CAD group at

~ICC [Bancilhon ct ale 85j, which allows Lhe opcr . .1lions of developcrs' long transactions to be inter­

IC:lvcd. The mcchanism thaL Lhe CAD group proposed is [0 trcJL all Lhe operJ£ions that are performed

wilh.in the long tr.lIl.Sactions of developers in Lhe same [e:un J.,) if they were requested by the same trans­

acuon. Thus, the mechanism would only insist that the leaf operations (nm the nested transactions) be

serializable. This mechanism C:.umOl be used "as is", howcvcr. in a multi-agem RBDE because of inter­

active and open-<!nded naLUrc of developers' sessions Jnd operations,

An appropriate mechanism would have [0 Lake imo accoum the consistency framework as described

above. as well the noLion of [cams (or groups) of developers working on the same task. The idea would

be that the mechanism would provide more concurrency for members of the same team at the expense of

sacrificing somc consistency as long as the sources of the inconsislencics are known to the system, This

would enable developers to query the system abouL remaimng inconsistencies and remove them.

One remaining problem is the integration of the conflict resolution mechanism and the concurrency

comrol mechanism. One approach that shows some promise at this point is the use of an anribute

grammar to represent the rule network, whcrc the conditions and actions of the rules are coded as at­

tributes to the nodes representing [he rulcs in thc grammar. Concurrency camrol can then be imegrared

with the change propagation algorithm that comrols the re-cvaiu:.1lion of lnrib'Jtes (Le,. preconditions and

postconditions) in the anributcd grJph. A big advantage of pursuing this approach is the existence of

multi-agem change propagltion algorithms for allribute grammars (Josephine ~licallefs thesis) .. -\nolher

advantage is that the algorithm (or at le:lst simplilicd ver.;ion of it) has already been implemented in lhe

Mercury system here It Columbia. and il might be possible to use the ideas in ~lercury.

3.·t Contributions of the Proposed Research
The main comributions of the proposed rese:m:h .,,,,-ill be: (I) lO provide 1 fnmework for specifying

consislenl:Y in a project database underl ying an RB DE: and (2) lO provide 3Jl efficient synchronization

mCl:hanism for multi-agent RB DEs that uses the framework to ailow the highest level of concurrency

- while maimaining the specified consislency. We expec·ttO be able to demonstrate the feasibility of such l

concurrency conlIOl framework by implementing il in an exisling RBDE cllied i\tfARVEL. which is

described in the next section. Addilional COOlribulions include the formalization of the concurrency

control problem in the contexl of RB DEs. This formalizalion will be useful for object-oriented databases,

III of which lack a flexible concurrency control mechanism. The delivcrables that are to be completed in

the proposed work are:
1..-\ framework for specifying conSiSlenl:Y in a multi-agcOl RB DE in terms of imerleavings

between transactions that encapsulale dcvcloper.;· la~ks.

2 . .-\ corresponding concurrency COOlrol :J.Jgorithm thal suppons coopa:lLivc. long and imer­
activc transactions.

3. A svnchroniz:l.lion mechani~m- lhat iOlC!!ralCS lhe concurrencv control mechanism wilh l . -'
conniet resolulion mcchanism.

4 . .-\ sc~ of J.nalytical mc~rics La mCJsure lhe n.:lauvc productivilY of mulliple agC:1ls .

. ~ Dcc:!:nixr 1989

16

5. Implementing the synchronization mechanism in MARVEL.

3.5 .. \tleasuring the Success of the Solution
The purpose of developing a llexible synchronizalion mechanism is to be able to maximize concurrent

ac~ss to data so that concurrent developers will not need to be delayed (by being locked out) longer than
necessary before accessing dau. The purpose is to improve Lhc productivity of developers working

concurrently on the same projecl Two problems that should be addressed in Lhe thesis are: (I) how to

model the relative productivity of developers. and (2) how to measure this relative productivity.

In order to solve these problems, we need to dcvelop mctrics for analyzing the relative productivity. At

this time, the approach of doing this is not clear.

4. 'tARVEL
_ A software devc!opment environment kernel, :VIARVEL, that combines ideas from rule-based systems

-and object-oriented databases has been implemented here at Columbia. Currently. MARVEL is a single

user system. A multi-agent implementation of :V1ARVEL using Lhe algorithm that is proposed as pan of

this thesis would provide a proof-oC-concept implementation of the solution. In the rest of this section.
~IARVEL is described, and some ideas about how tCJ provide it with J multi-agent capability are outlined.

MARVEL is a kernel for software developmcnt environments based on rule-based process modeling and

controlled automation [Kaiser ct al. 88b, Kaiser et a1. 88al. The kernel is tailored by specifications writ­

ten by designated .ltfARVEL administrators in an object-oriented language called :V1ARVEL Strategy Lan­

guage (~ISL). MSL specific:uions are dividcd into modules callcd sm.uegies that describe the organizJ­

lion of data in the panicular project, as weB as the process of Jevelopmcnt of the projccl Organization is

described in terms of object classes, where each object in the daubase is an instance of one of me

SIXcificd classes. ~lultiplc inheritance and complex objecL~ arc supported in Y[ARVEL. The process

model is describcd in terms of rules.

MARVEL administrators typically develop a library of strategies that are appropriate for the particular

project. which are then loaded on requcst by into the ~IARVEL kernel by end-users (i.e .• developers

working on a project). who need not be directly involved in writing stratcgies. In fact there is no need for

developers to be aware that the environment is drivcn by rules.

The definition of classcs in the strategies that are loaded by \IARVEL dcscribe the organization of the

database in which ~1ARVEL stores all thc objeCL'i that are crc:lled in the lifetime of the project. Each

object is an instance of a panicular class which defines the attribules associated with the Object The

values of the object's :mribuLCs are manipulated by the ruks defined in the strategies. \1ARVEL'S rule

model is 5imil3I to the general model descriocd in section 2. It supports both forward and backward

chaining. \1ARvEL's rules. however, ;u-c automalion rules and not consistency maintenance rules.

The most signific:1IU limitation of \IARVEL's curren! implementation is iL'i lack of support for multiple

users working on the same project. "Vheneycr J user :-.tarts J \lAR VEL session on 3 project database. the

whole database is !ockcd 50 that other users will not tx: JDIe to in',oke \tARvEL on it. Within the same

\1.AR"EL sessicn. ffi'Jltipic activities car,nct be lX,:'ormcIJ .;oncuricnLly even on ~half of the same user.

,~ Ccc.:!mi?er 1989

17

rn order to use MARVEL as a framework for implementing the research in the proposed thesis. we need to

tr:lIls[orm .'I1ARvEL into a mUlti-agem system by implementing lhc proposed synchronizalion mechanism.

T:1csis ?-:opo::.al

IX

5. Plan of Action
This section desc;ibcs the steps that will complctcd in pursuit of thc de1iverables described in section 3.

The ~oal of Jchieving the contributions c:1o be de::omposed into Lhrcc subgoals: (1) comple~ing the design

of a generalized mechanism for synchroni/.ing multiplc agcnts in an RBDE; (2) implementing the

mcchanism in MARVEL: and (3) dcveloping mctrics for mcasuring difference in productivity as a result of
applying the synchronization mechanism.

To Jchic'/C the tIm subgoal. the following stcps need to be taken:
1. Design and implemem a parallcl match nctwork for rulc exccution. As mentioned in section

3. this might be based on attribUle grammars.

2. Design and implemcm a framcwork to specify imcrkavings between sets of rules. taking
into accoum forv;ard and backward chaining.

3. Design a concurrency control mechanism along the lines described in section 3

4. Integrate the concurrency control mechanism with the match network.

_ To achieve the second subgoal. the following needs to be done:
1. Analyze the differences between MARVEL and other RBDEs as far as concurrency control

requirements arc concerned.

2. Tlking these differences into account. Jcsign a .vfARVEL-spet:ific version of the imerleJv­
ings spccitic:llion framework ior RB DEs.

3. Implemem the concurrency control algorithm in ."IARVEL.

4. If time and other logistics permit. apply the algorithm to the ClF environment.

6. Proposed Outline of the Thesis
T1C plan of action provided in the previous seclion should give an insight into the organization of the

dissenation. The temative organiz~llion is as follo~:'\:
I. IntrOduction: staling the problem and context.

2. Related Work
a. Concurrency Control in Advanced Databas.; Appiil.:ations: much of it would be from

my area paper [Barghouti ~91.

b. P3n1lcl Rule-BJ.'icd Syslems: hasicall y Gupta' s thesis [Gupta 86 J. ~1iranker's
thesis [~1iranker 86[. van Bicma's lhesis [van Biema ar/. and backward chaining
rulc-based systems. as well J.S a quid louk al expcrt databases and concurre!"H
Prolog.

c. Distributed Artificial Intelligence.

3. Conflict Resolution

a. Transaction ."tode!

b. Categorization of Conni~ts

-+. Knowledge-Based Consistency -

a. Semantics-Based :\lomicily

b. Frlffic' ork for Spcl:ifying InLerleJvin:;~ .-\mon:; Transactions

c. 5fX:ci i:. ir.~ Consislc~CY in Intc~:.l<.:tivc T ~:lr.~aClI0ns

19

5. Concurrency Control in RBDEs

a. General Concurrency Comrol Requiremems

b. Long Transactions

c. Cooperative Transactions

d. Interactive Transactions

e. Complex Objects

6. ~1ARVEL
a. Single-Cser :V!ode!

b. Objectbase and Object Management System

c. Comrolled Automation

d. Yiulti-agem MARVEL

7. Conclusions and Furure Work

:0

References

[Abbadi and Toueg 381
Abbadi. A .• and Toueg. S.
The Group paradigm for Concurrem:y Comrol Protocols.
In Proceedings of the AC.l1 SICMOD Incer!Ultionai Conference on the l'danagemenc of

Data, pages 126-134. ACYl Press. Chic:.1!jo, IL. June. 1988.

[Bancilhon et a1. 35]
Bancilhon. F .• Kim. W .• and Konh. H.
A Model of CAD Transactions.
In Proceedings 0/ the 11th Incer!Ultionai Conjerence on Very Large Data Bases. pages

25-33. Morgan Kauimann. Stockholm. August. 1985.

[Barghouti 89] Barghouli. N. S.
Concurrency Concrol in Advanced Database Applications.
Technical Rcpon CUCS~25-89. Columbia L'niversity Depanrnent of Computer

Science. New York. NY. \-1arch. 1989 .

.-[Bernstein 87] Bernstein. P.
Database System Suppon for Software Engincering -- An Extended Abstract.
In Proceedings of the 9th International Conference on Softy",'are Engineering, pages

166-178. ~10nterey. CA. March. 1987.

[Bernstein and Goodman 81 J

Bernstein. P .. lnd Goodman. :--l.
Concurrency Control in Distributcd DaLabas~ Systems.
AC.\1 Computing Surveys 13(2): 185-221. June. 1981.

[CLF Project 88] CLF Manual

[Cohen 861

L'niversity of SOUtI1Crn California, Information Scicnces Institme, Marina Del Rey,
CA. 1988.

Cohcn. D.
:\utomatic Compilation or Logical Spcl:it'ic!Lions into Efficient Progr:uns.
In Proceedings of the 5th SatiunaL Cunjat:nt_e un Ar:ijiciallnreUigellCt!. pages 10-25.

AAAI. Philadelphia. PA. AU~T1Jst. 1986.

[Diurich et al. 87] Dittrich. K .• Gotthard. W.o and Lockcmann. P.
DA .. 'v10KLES -- Thc Databasc System for thc LiNIBASE Software En!!ineering En-. -

vironmcm.
I£EE Bullerin on Datt.lbt..lSe £ll~ineering 10(I):37--H. ~Iarcho 1987.

[Forgy 81 J Forgy. C. L.
OPS5 User's Manual.
Technical Rcpon Cyl(j-CS-~1-135o C:lrn~;;i~-Mdlon University. 1981.

[Forgy 821 Forgy. C. L.
Rete: A Fasl Algorithm for tl'lc \-Iany PJllcrn/Ylany Objecl Pattcrn Match Problem.
Artificiallntelfigefll.:e 19. Scpl~mtx:r. 1q~2.

[Garcia-y10lina 83)
Hector Garcia- \,101 ina.
Csin!! S~mamic Knowlcd!!c for Transaction Proccssin!.! in a DistribUled Database.
ACM-Transactions on Datahase Sy.liems :-112 I: 186-213~ Junc. 1983.

11 - ,

[Garcia-Molina and Salem 87J
Garcia-Molina. H .. and Salem. K.
SAGAS.
In Dayal. U .• and Traiger. r. (editor). Proc:eeciin',{s oj the AC.\1 SIGMOD 1987 Annu.ai

Conference. pages 249-259. ACyl Press. San Francisco. CA. Mav. 1987.
Special issue of SIGMOD Record. 16(3). December 19!P. .

[Garza md Kim 88)

[Gup[a 861

-fHonda 88J

Garza. J .• and Kim. W.
Transaction Ylanagemem in an Object-Oriemed Dalabase System.
In Proceedings of (he ACM SIGMOD InternationaL Conference on the Management of

Data. pages 37-45. ACyl Press. Chic:lgo. IL. June. 1988.

GUPla. A.
ParaLLelism in Production Svstems.
PhD thesis. Carnegie MelIo~ univer:;ity. Dcparuncm of Computer Science. \I1arch.

1986.
Technical Report CytU-CS-86- I~2.

Honda. M.
Support for Parallel Developmem in the Sun Network Software Environment.
In Proceedinxs oj the 2nd 1 nternationai W vrkshop on Computer-Aided Software

Engineering. pages 5-5 - 5-7. 1988.

(Huff and Lesser 88)

(Kaiser 90J

Huff. K. E .. and Lesser. V. R.
A Plan-based Imelligent Assislanllhal Supports the Software Developmem Process.
In Henderson. P. (editOr). Proceedings of the ACM SIGSOFTISIGPlAN Software En-

gineering Symposium on Pracru:aL So/r,..,·are Development Environments. pages
97-106. ACyl Press. Boston. ivlA. November. 1988.

Special issue of SIGPLAN Notices. 241.2). February 1989 and of Software Engineering
,Vmes. 13(5) .. 'Jovember 1988.

Kaiser. G. E .
. -\ Flexible TrJns~H.:tion \I1odcl for Software Engincl!ring.
In Proceedings of (he 6th InternaliunuL Conference on Data Engineering. IEEE Com­

puter Society Prcss. Los Angeies. CA. F\!bruary. 1990.
To Jppe:lf. -

(Kaiser and Feiler 87)
Kaiscr. G. E .. and Feiler. P. H.
Intelligcnt Assistance without Artificial Imelligence.
In Proceedings o/the J=n.d IEE£ Compllrcr Society InternationaL Conference. pages

236-241. IEEE Computer Socicty Press. San Francisco. CA. February. 1987.

[Kaiser and Pcrry 87)
Kaiser. G. E .• and Perrv. D. E.
Workspaces and E;(pcrimem:l1 Databas.:s: AutOmaled Support for Software \I1ain­

lcnance and Evolution.
In Proceedings oj the Conjerena on So/nmre .Haintenance. pagcs I08-11~. Austin.

TX. Scptemocr.J9l'!7.

[Kaiser Cl al. 88a I KJiser. G. E .. Feilcr-. P. H .. :md Popovich. S. S.
Imelligent Assistance for Software Developmcnt :md \Iaimenance.
IEEE Soj{y.,ure 5(3): .. W--l9 . . \-Iay. 191;:-\.

..,

(Kaiser ct al. 88b / KJiscr. G. E .. Barghouti. ~. S .. Feiler. P. H .. md Sl.:hwanke. R. W.
Database Suppm for Knowledge-Bascd Engineering EnvironmentS.
IEEE Experr 3(2): 18-32. Summer. 19HH.

(KJtz and Weiss 841
Katz. R .• md \-\leiss. S.
Design Transaction Yfanagcmcm.
In Proceedings oj the AC.WIEEE 21 Sf Desif?n Automation Conference. pages 692-693.

fEEE CompuLer Socicty Press. Albuquerquc ~M.lune. 1984.

[Kim et al. 88/ Kim. W .• Ballou. X. Chou, H .. md Garza. J.
Integrating an Object-Oriented Programming System with a Database System.
In Proceedings of (he 3rd InternationaL Conference on Object Oriented Programming

Systems. Languages and Applications. pagcs 142-152. San Diego CA. September.
1988.

[Klahold et al. 85J Klahold. P .• Schlagetcr. G .• Unland. R .. and Wilkes. W.
A Trmsaction Model Supponing Complex Applications in Integrated Information Sys­

tems.
In Proceedings of the ACM SIGMOD Inter!U.ltionaL Conference on [he Management of

--- Dara. pages 388-tO 1. AC~I Press. Austin. TX. May. 1985.

[LJird 86J Laird. J. E.
Soar User's .Wanual
Xerox PARCo 1986.
Founh Edition.

[Lcblang and Chase. Jr. 871
L~blang. D. B .• md Chase. R. P .. Jr.
P:lnllel Software Coniiguralion ~I;magcmcnt in a ~etwork Environment.
IEEE Software ~(6):28-35. :--;ovembcr. 19H7.

(Lorie md Plouffe 83]

JLynch 83)

Lone. R .• md Plouffe. W.
Cumplex ObjccL" md Their Use in iXsign Trmsaclions.
In Proceedings of [he :1flJtual .H ee!Uz:; oj DuluDt.J.\t! Week: E.'lgineering Design

Applications. pagcs 115-121. IEEE Com pUla Socicty Press. San Jose CA. May.
1983.

Lynch. N. A.
Multilevel Alomicity - A New Correl:Ln~ss Cril~rion for Database Concurrency Con­

lrol.
AC.W Transactions on Duwhase Systems H(~):-+84-502. December. 1983.

[~anin 87] ~1anin. B.
Modeling Concurrent A,liviLics with l\csLed Objel:LS.
In Proceedings of the 7th Internutivnal Conference on DiSlributed Computing Systems.

pages 432-t39. IEEE Compuler SO(;iClY Prc!'Is. West Bertin. September. 1987.

[Minsky and Rozenshlein 881
Minsky. N. H .. Jnd ROl.enshlcin. D.
A Software Developmcnt Environment for LJv.-Govemcd Systems.
In Henderson. P. (cdTtOrl. Proceedings of lilt! 4C:H SIGSOFTSIGPLJ.N Soff'rl;'are En­

gineering Symposium on PracticaL SIJ/rwurc De':e[opmenr Environments. pages
65-75. AC~I Press. Boslon ~lA. ~ovemlx:r. 1988.

Special issuc of SICPL.J...V ,Vmices. 2~(21. FebruJry 19H9 .lnd oi Sofr. .. 'are Engineering
.vales. 13(5). ~ovcm ocr 19H:-l.

[Mir.rnker 86]

[\-10ss 85 J

[Nescor 36]

[Perry 89J

(Pradel et al. 86]

iPu et al. 88]

23

~[jr.rnker. D. P.
TREAT: A New and Effidem Match A Lgrithm for AI Produ.ction Systems.
PhD thesis. Columbia CniversilY Depanmem of Compulcr Sciencc. June. 1986.

~foss. J. E. B.
Nested Transactiof/.l;: An Approach to Reliable Distributed Compuung.
~aT Press. Cambridge, MA, 1985.

:"iestor. J. R.
Toward a Persislent Object Base.
In Conradi. R .. Didriksen, T. ~f., and Wanvik. D. H. (edicors). LectUre Notes in Com­

purer Science. Volume 244: Advanced Programming Environments. pages
372-394. Springer-Verlag, Berlin. 1986.

Perry, D. (ediLOr).
5th Internarional Software Process Worlcihop.
AD(Press. Kcnncbunkpon. ~k. 1989.
To appear.

Pradel, U .• Schlageter, G., and Unland. R.
Redesign of Optimistic \-fcthods: Improving Performance and Availability.
In Proceedings of the 2nd InternationaL Conference on Data Engineering. pages

~66-473. IEEE Computer Sodety Press. Los Angeles. February. 1986.

P'J. C. Kaiser. G .. and Hutchinson. :'-i.
Spiit Transactions for Open-Ended Activities.
In Proceedings of the Nth I nrufW1.ionaL Conference on Very Large Databases. pages

26-37. Morgan Kaufmann. Los Angeles CA. August. 1988.

[Rowe and Wensel 89J
Rowe. L. A. and Wensel. S. (editors).
1989 AC.\1 SIGMOD Workshop on SO/Mare CAD Databases.
AC~I Press. ~apa. CA. 1989.

[Salem ctl!. 871 Salem. K .. Garcia-Molina. H .• and Alonso. R.
Altruistic Locking: A Stratcgy for Coping wilh Long Lived Transactions.
In Proceedings of the 2nd InternationaL Workshop an High Perform.ance Transaction

Systems. pages 19.1 - 19.24. PJcitic Grove CA. September. 1987.

-[SkJITa and Zdonik 89]
Skarra. A. H .. and Zdonik. S. B.
Concurrency Comrol and Object-Orientcd Databases.
Objecr-Orienred Concepes. Databases. and AppLicarions.
AD1 Press. New York. :"iY. 1989. pages 395-r~ 1.

[Smith c[l!. 851 Smith D. R .• Kotik. G. B .. and Weslfold. S. J.
Research on Knowledge-Based Software EnvironmenlS al Kestrel Institute.
IEEE Traruacrioru on Sofrv.,;are Engineering SE-ll(ll): 1278-1295. ~ovember. 1985.

[Tichy 85] Tichy. w. F ..
RCS - A Syslcm for Version Comrol.
Software - Practice arui Experience IS(7):637-65 .. L July. 1985.

[van Biema lI'J VJIl Biema. ~1.
Tile Constraint-Bused Paradigm.
PhD thcsis. Columbia CnivcrsilY Dcpanmcm or Computcr Scicnce. To 3ppear.

(Weihl88j

(Ych er al. 87)

Weihl. W.
CommUlalivity-Ba!;Cd Concurrency Control lor Abstract Data Types (Preliminary

Rcpon).
In Shriver. B. (cdilOr). Proceedim;s vj the ~ 1st Annual Ha',1,'aii InternationaL Con­

ference vn System Sciences. pages 205-21-+. IEEE Computer Society Press. Kona.
HI. January. 19H8.

Yeh. S .• Ellis. C. Egc. A .. and Konh. H.
Performance AnalYSis of Two Cvncurrenc;,; Control Schemas for Design Environments.
Technical Rcpon STP-036-87. \-tCc, Austin. TX. June. 1987.

.,.,

[Kaiser et Jl. 88bl K.liscr. G. E .• Bargnouli. :'-i. S .. Feiler. P. H .• and Schwanke. R. W.
Database Support for Knowlcdge·Ba~cd Engineering Environments.
IEEE Experc 3(2): I 8-32. Summcr. 19H8.

[KJtz and Weiss 84)
Katz. R .• and Weiss. S.
Design Transaction :Vlanagement.
In Proceedings oj the ACI\-! IEEE 21 sc Design Auromarion Conjerence. pages 692·693.

IEEE Computcr Society Pre~s. Albuquerque :'-i:V1. June. 1984.

(Kim et al. 88) Kim. W .• Ballou. N .• Chou. H .• and Garza. J.
Integrating an Object-Oriented Programming System with a Oacabasc System.
In Proceedings of the 3rd International Conjerent.:e on Object Oriented Programming

Systems. Languages and AppLications. pages 142·152. San Diego CA. September,
1988.

[Klahold et al. 85) Klahold. P .. Schlageter. G .. unland. R .• and Wilkes. W.

(Laird 86J

A Transaction \todcl Supporting Complex Applil.::nions in Integrated Information Sys-
tems. __ '

In Proceedings of rhe ACM SIGMOD InternationaL Conference on the Management of
Data. pages 388-401. ACvt Press. Austin. TX. \fay, 1985.

Laird. J. E.
Soar User's I'vi alUUll
Xe:"Ox PARC, 1986.
Founh Edition.

(Lcblang IDd Chase. Jr. 87)
Leblang. D. B .. and Chase. R. P .. Jr.
Parallel Software Configuralion \1anagcment in a ~ctworic Environment.
IEEE Sojrware -1.(6):23·35. :--;ovcmbcr. 19H7.

(Lorie IDd P!ouffe 831

[L:mch 831

(~fanin 37]

Lorie. R .. and Plouffe. W.
Complex ObjecL,\ and Their Usc in Design Tr:lnsactions.
In Proceedings of [he Annual.'v! atin:; oj Database Week; Engineering Design

Applicacions. pages 115- I:: I. IEEE Computer Socicty Press. San Jose CA. :V1ay.
1983.

Lynch.:'-i. A.
\1ulLilcvcl Atomicity - A ~ew Correctness Criterion for Database Concurrency Con­

trol.
ACM TransacciofL.'i on Database Systems H(4):484-502. December. 1983.

Manin. B.
Modeling Concurrem Activities with Nested Objects.
In Proceedings oj the 7th /ncernatioflf.ll Conjerenc:e on Distribured Computing Systems.

pages 432~39. IEEE Computcr Society Press. West Berlin. September. 1987.

[Minsky IDd Rozenshte:n 881
Minsky. N. H .. Jnd RO/cnshtcin. D.
A Software Devclop~em Environment ror LJw-Govemcd Systems.
In Henderson. P. (editor>. Pr(}(.:atiings oj che AC.\-f SIGSOFTiSIGPL4N SojMare En­

gineering Symposium on Practiu.J.l S()/rwure Developmenc Environments. pages
65· 75. AC\1 Press. Boston MA. :--;ovemocr. 1988.

Special issuc of SIGPLJ..N NOlices. 2~(2 I. February 19X9 Jnd of Sojrware Engineering
St)ies. 1:(5 J. :\ov;;:nbcr I%~_

(:v1irankcr 861

(:vfoss 851

[~estDr 86]

[Perry 89)

[P~el ct aL 86J

[P..J (!t al. 88]

:'vtirankcr. D. P.
TREAT: A New and Efficiem vtau:h Alr;rirhmfor AI Production Systems.
PhD thesis. Columbia Cnivl!fsiLy Department of Computer Science. June. 1986.

.\1oss. J. E. B.
Nested Transactions: An Approadl to RcliuhLe DiSlrihwed Computing.
:'vUT Press. Cambridge • .\1A. 1995.

Nestor. J. R.
Toward l Persistem Objcct Base.
In Conradi. R .. Didrikscn. T. M .. and Wanvik. D. H. (editors). Lecture Notes in Com­

puter Science. Volume 244: Ad"'anced Programming Environments. pages
372-394. Springer-Verlag. Berlin. 1986.

Perry. D. (editor).
5th InternatiolUlL SO/Mare Process Workshop.
AC:'v1 Press. Kcnnebunkpon. :'vII!. 1999.
To appear.

Pradel. U .. Schlagctcr. G .• and C-nland. R.
Redesign of Optimistic :'vlclhods: Improving Performance and Availability.
In Proceedings of the]'nd InternuriolUlL Conference on Data Engineering, pages

-+66-'+73. IEEE Computer Society Press. Los A,ngcles. February. 1986.

Pu. C. Kaiscr. G .. and HUlchinson. :'4.
Split Transactions for Open-Ended ,-\.:tivilics.
In Proceedings of the f.+ch Inrernucionul Conference on V~!)' Large Databases. pages

26-37. ~forgan Kaufmann. Los Angcles CA. August. 1998.

[Rowe and Wensel 89)
Rowe. L. A. and Wensel. S. (cditors).
1989 ACoW SIGMOD Workshop on Soft'r'.:are CAD Databases.
AC:'v! Press. :"-[apa. CA. 1989.

[Salem et ll. 871 Salem. K .. Garcia-Molina. H .. and Alonso. R.
Allruistic Locking: A Slratcgy ror Copin~ Wilh Long Lived Tnnsactions.
In Proceedings of {he ~llJ IntcrnalionuL V,:orksJwp on High Performance Transaction

Systems. pages 19.1 - 19.2'+. P:ici fic Grove CA. Scptcmber. 1987.

- [S karra and Zdonik 891
Skarra. A. H .. and Zdonik. S. B.
Concurrcncy Comrol and Objecl-Oriemed Dalabases.
Objecc-Orienred Com:cprs. Dutu/Juscs, und AppLicl.llions.
AC:'vf Press. New York. :--iY. 1989. pages)95~21.

[Smith et al. 851 Smith D. R .. KOlik. G. B .. and \Veslrold. S. 1.
Rescarch on Knowled~c-Bascd Software Environments al K~strellnslitute.
IEEE Transaction::; on ~)()ft',.,;ure Engineerill.:; SE-Il (11): 1278-1295. ;\ovember. 1985.

[Tichy 851 Tichy. w. E.
RCS - A Svstcm (or Version Com:ol.
Sojr'r'v·l.lre - 'P rl.lcliL'! I.lrui Experience IS(7 }:6.37 -654. July. 1985.

[van Biema ar) van Bicma. :-"1.
Th~ COflSlrwnt-Bl.lsed Pc.1rt.Uii.:;m.
PhD thesis. Columbia lnivcrsily D~partmem or Compulcr Scicnce. To ap{X!lr.

[Weihl 88]

(Yen I!t al. 8i}

Weihl. W.
Commutativity-Based Concurrency Control for :~bslract Dara Types (Preliminary

Rcpon).
In Shriver. B. (ediwr). Proceedin~5 oj the ~'5t Annual Hawaii InternationaL Con­

ference on System Sciences. pages 205-11 .. t IEEE Computer Society Press. Kona.
HI. Januarj. 1988.

Yeh. S .. Ellis. C. Ege. A .. and Korth. H.
Performance Analysis oj Two Concurrency Control Schemas for Design Environments.
Technical Rcpon STP-036-87. ~1CC. Austin. TX. June. 1987 .

3 December 1989

