542 research outputs found

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    Multi-physics modelling and experimental validation of electrovibration based haptic devices

    Get PDF
    Electrovibration tactile displays exploit the polarisation of the finger pad, caused by an insulated high voltage supplied plate. This results in electrostatic attraction, which can be used to modulate the users' perception of an essentially flat surface and induce texture sensation. Two analytical models of electrovibration, based on parallel plate capacitor assumption, are demonstrably taken and assessed by comparisons with experimental results published in literature. In addition, an experimental setup was developed to measure the electrostatic force between the finger pad and a high voltage supplied plate in a static and out-of-contact state in order to support the use of parallel plate capacitor model. Development, validation, and application of a computational framework for modelling tactile scenarios on real and virtual surfaces rendered by electrovibration technique is presented. The framework incorporates fully parametric model in terms of materials and geometry of the finger pad, virtual and real surfaces, and can serve as a tool for virtual prototyping and haptic rendering in electrovibration tactile displays. This is achieved by controlling the applied voltage signal in order to guarantee similar lateral force cues in real and simulated surfaces

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    A vibrotactile display design for the feedback of external prosthesis sensory information to the amputee wearer

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006.Includes bibliographical references (p. 60-64).This thesis documents the development of a vibrotactile display to be incorporated into a powered ankle-foot prosthesis. Although existing devices have addressed the need for tactile and proprioceptive feedback in external prostheses, there has not yet been an attempt to develop and clinically evaluate a comprehensive vibrotactile display and signaling schematic for use with an active myoelectric prosthesis. The development and evaluation of two different hardware solutions are presented including an array of vibrating pancake motors embedded into the exterior of a carbon fiber prosthetic socket and an array of vibrating pancake motors embedded into a silicone socket liner. Three haptic mappings were designed based on previous work in psychophysics, haptics, and HCI. These schematics include a spatial discrimination pattern, an amplitude modulated pattern, and a gap detection pattern. To assess the effectiveness of the system, lower-limb amputees were asked to learn the three haptic mappings and use the feedback system to control a virtual ankle to a desired ankle position using a physical knob interface. Results show an overall recognition rate of 85% for all three haptic mappings and error response averages ranging from 8.2 s to 11.6 s.(cont.) The high recognition rates and lack of variance between the mappings suggest that the three vibration parameters of spatial discrimination, amplitude modulation, and gap detection may be successfully used to represent different ankle parameters. However, the overall successful integration of the vibrotactile display ultimately depends on the interaction between the components of the whole prosthetic system.by Andrea W. Chew.S.M
    corecore