1,146 research outputs found

    Adding modular predicates to first-order fragments

    Full text link
    We investigate the decidability of the definability problem for fragments of first order logic over finite words enriched with modular predicates. Our approach aims toward the most generic statements that we could achieve, which successfully covers the quantifier alternation hierarchy of first order logic and some of its fragments. We obtain that deciding this problem for each level of the alternation hierarchy of both first order logic and its two-variable fragment when equipped with all regular numerical predicates is not harder than deciding it for the corresponding level equipped with only the linear order and the successor. For two-variable fragments we also treat the case of the signature containing only the order and modular predicates.Relying on some recent results, this proves the decidability for each level of the alternation hierarchy of the two-variable first order fragmentwhile in the case of the first order logic the question remains open for levels greater than two.The main ingredients of the proofs are syntactic transformations of first order formulas as well as the algebraic framework of finite categories

    Covering and separation for logical fragments with modular predicates

    Full text link
    For every class C\mathscr{C} of word languages, one may associate a decision problem called C\mathscr{C}-separation. Given two regular languages, it asks whether there exists a third language in C\mathscr{C} containing the first language, while being disjoint from the second one. Usually, finding an algorithm deciding C\mathscr{C}-separation yields a deep insight on C\mathscr{C}. We consider classes defined by fragments of first-order logic. Given such a fragment, one may often build a larger class by adding more predicates to its signature. In the paper, we investigate the operation of enriching signatures with modular predicates. Our main theorem is a generic transfer result for this construction. Informally, we show that when a logical fragment is equipped with a signature containing the successor predicate, separation for the stronger logic enriched with modular predicates reduces to separation for the original logic. This result actually applies to a more general decision problem, called the covering problem

    Languages of Dot-depth One over Infinite Words

    Full text link
    Over finite words, languages of dot-depth one are expressively complete for alternation-free first-order logic. This fragment is also known as the Boolean closure of existential first-order logic. Here, the atomic formulas comprise order, successor, minimum, and maximum predicates. Knast (1983) has shown that it is decidable whether a language has dot-depth one. We extend Knast's result to infinite words. In particular, we describe the class of languages definable in alternation-free first-order logic over infinite words, and we give an effective characterization of this fragment. This characterization has two components. The first component is identical to Knast's algebraic property for finite words and the second component is a topological property, namely being a Boolean combination of Cantor sets. As an intermediate step we consider finite and infinite words simultaneously. We then obtain the results for infinite words as well as for finite words as special cases. In particular, we give a new proof of Knast's Theorem on languages of dot-depth one over finite words.Comment: Presented at LICS 201

    The FO^2 alternation hierarchy is decidable

    Get PDF
    We consider the two-variable fragment FO^2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Th\'erien and Wilke have shown that it is decidable whether a given regular language is definable in FO^2[<]. From a practical point of view, as shown by Weis, FO^2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO^2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO^2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Th\'erien, and Vollmer

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    One Quantifier Alternation in First-Order Logic with Modular Predicates

    Get PDF
    Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison x<yx<y and predicates for x≡imod  nx \equiv i \mod n has been investigated by Barrington, Compton, Straubing and Therien. The study of FO[<,MOD]-fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two-variable fragment FO2[<,MOD] is decidable. In this paper we continue this line of work. We give an effective algebraic characterization of the word languages in Sigma2[<,MOD]. The fragment Sigma2 consists of first-order formulas in prenex normal form with two blocks of quantifiers starting with an existential block. In addition we show that Delta2[<,MOD], the largest subclass of Sigma2[<,MOD] which is closed under negation, has the same expressive power as two-variable logic FO2[<,MOD]. This generalizes the result FO2[<] = Delta2[<] of Therien and Wilke to modular predicates. As a byproduct, we obtain another decidable characterization of FO2[<,MOD]

    On FO2 quantifier alternation over words

    Full text link
    We show that each level of the quantifier alternation hierarchy within FO^2[<] -- the 2-variable fragment of the first order logic of order on words -- is a variety of languages. We then use the notion of condensed rankers, a refinement of the rankers defined by Weis and Immerman, to produce a decidable hierarchy of varieties which is interwoven with the quantifier alternation hierarchy -- and conjecturally equal to it. It follows that the latter hierarchy is decidable within one unit: given a formula alpha in FO^2[<], one can effectively compute an integer m such that alpha is equivalent to a formula with at most m+1 alternating blocks of quantifiers, but not to a formula with only m-1 blocks. This is a much more precise result than what is known about the quantifier alternation hierarchy within FO[<], where no decidability result is known beyond the very first levels

    Subshifts, MSO Logic, and Collapsing Hierarchies

    Full text link
    We use monadic second-order logic to define two-dimensional subshifts, or sets of colorings of the infinite plane. We present a natural family of quantifier alternation hierarchies, and show that they all collapse to the third level. In particular, this solves an open problem of [Jeandel & Theyssier 2013]. The results are in stark contrast with picture languages, where such hierarchies are usually infinite.Comment: 12 pages, 5 figures. To appear in conference proceedings of TCS 2014, published by Springe
    • …
    corecore