2,126 research outputs found

    Lower Bounds for Alternating Online State Complexity

    Full text link
    The notion of Online State Complexity, introduced by Karp in 1967, quantifies the amount of states required to solve a given problem using an online algorithm, which is represented by a deterministic machine scanning the input from left to right in one pass. In this paper, we extend the setting to alternating machines as introduced by Chandra, Kozen and Stockmeyer in 1976: such machines run independent passes scanning the input from left to right and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem , stating that the polynomial hierarchy of alternating online state complexity is infinite, and the second is a linear lower bound on the alternating online state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model

    Alternation-Trading Proofs, Linear Programming, and Lower Bounds

    Get PDF
    A fertile area of recent research has demonstrated concrete polynomial time lower bounds for solving natural hard problems on restricted computational models. Among these problems are Satisfiability, Vertex Cover, Hamilton Path, Mod6-SAT, Majority-of-Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow a certain proof-by-contradiction strategy that we call alternation-trading. An important open problem is to determine how powerful such proofs can possibly be. We propose a methodology for studying these proofs that makes them amenable to both formal analysis and automated theorem proving. We prove that the search for better lower bounds can often be turned into a problem of solving a large series of linear programming instances. Implementing a small-scale theorem prover based on this result, we extract new human-readable time lower bounds for several problems. This framework can also be used to prove concrete limitations on the current techniques.Comment: To appear in STACS 2010, 12 page

    Two-Way Automata Making Choices Only at the Endmarkers

    Full text link
    The question of the state-size cost for simulation of two-way nondeterministic automata (2NFAs) by two-way deterministic automata (2DFAs) was raised in 1978 and, despite many attempts, it is still open. Subsequently, the problem was attacked by restricting the power of 2DFAs (e.g., using a restricted input head movement) to the degree for which it was already possible to derive some exponential gaps between the weaker model and the standard 2NFAs. Here we use an opposite approach, increasing the power of 2DFAs to the degree for which it is still possible to obtain a subexponential conversion from the stronger model to the standard 2DFAs. In particular, it turns out that subexponential conversion is possible for two-way automata that make nondeterministic choices only when the input head scans one of the input tape endmarkers. However, there is no restriction on the input head movement. This implies that an exponential gap between 2NFAs and 2DFAs can be obtained only for unrestricted 2NFAs using capabilities beyond the proposed new model. As an additional bonus, conversion into a machine for the complement of the original language is polynomial in this model. The same holds for making such machines self-verifying, halting, or unambiguous. Finally, any superpolynomial lower bound for the simulation of such machines by standard 2DFAs would imply LNL. In the same way, the alternating version of these machines is related to L =? NL =? P, the classical computational complexity problems.Comment: 23 page

    How Much Lookahead is Needed to Win Infinite Games?

    Get PDF
    Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. For ω\omega-regular winning conditions it is known that such games can be solved in doubly-exponential time and that doubly-exponential lookahead is sufficient. We improve upon both results by giving an exponential time algorithm and an exponential upper bound on the necessary lookahead. This is complemented by showing EXPTIME-hardness of the solution problem and tight exponential lower bounds on the lookahead. Both lower bounds already hold for safety conditions. Furthermore, solving delay games with reachability conditions is shown to be PSPACE-complete. This is a corrected version of the paper https://arxiv.org/abs/1412.3701v4 published originally on August 26, 2016
    • …
    corecore