A fertile area of recent research has demonstrated concrete polynomial time
lower bounds for solving natural hard problems on restricted computational
models. Among these problems are Satisfiability, Vertex Cover, Hamilton Path,
Mod6-SAT, Majority-of-Majority-SAT, and Tautologies, to name a few. The proofs
of these lower bounds follow a certain proof-by-contradiction strategy that we
call alternation-trading. An important open problem is to determine how
powerful such proofs can possibly be.
We propose a methodology for studying these proofs that makes them amenable
to both formal analysis and automated theorem proving. We prove that the search
for better lower bounds can often be turned into a problem of solving a large
series of linear programming instances. Implementing a small-scale theorem
prover based on this result, we extract new human-readable time lower bounds
for several problems. This framework can also be used to prove concrete
limitations on the current techniques.Comment: To appear in STACS 2010, 12 page