230 research outputs found

    A parametric analysis of the state-explosion problem in model checking

    Get PDF
    AbstractIn model checking, the state-explosion problem occurs when one checks a nonflat system, i.e., a system implicitly described as a synchronized product of elementary subsystems. In this paper, we investigate the complexity of a wide variety of model-checking problems for nonflat systems under the light of parameterized complexity, taking the number of synchronized components as a parameter. We provide precise complexity measures (in the parameterized sense) for most of the problems we investigate, and evidence that the results are robust

    Proceedings of SUMo and CompoNet 2011

    Get PDF
    International audienc

    On the performance and programming of reversible molecular computers

    Get PDF
    If the 20th century was known for the computational revolution, what will the 21st be known for? Perhaps the recent strides in the nascent fields of molecular programming and biological computation will help bring about the ‘Coming Era of Nanotechnology’ promised in Drexler’s ‘Engines of Creation’. Though there is still far to go, there is much reason for optimism. This thesis examines the underlying principles needed to realise the computational aspects of such ‘engines’ in a performant way. Its main body focusses on the ways in which thermodynamics constrains the operation and design of such systems, and it ends with the proposal of a model of computation appropriate for exploiting these constraints. These thermodynamic constraints are approached from three different directions. The first considers the maximum possible aggregate performance of a system of computers of given volume, V, with a given supply of free energy. From this perspective, reversible computing is imperative in order to circumvent the Landauer limit. A result of Frank is refined and strengthened, showing that the adiabatic regime reversible computer performance is the best possible for any computer—quantum or classical. This therefore shows a universal scaling law governing the performance of compact computers of ~V^(5/6), compared to ~V^(2/3) for conventional computers. For the case of molecular computers, it is shown how to attain this bound. The second direction extends this performance analysis to the case where individual computational particles or sub-units can interact with one another. The third extends it to interactions with shared, non-computational parts of the system. It is found that accommodating these interactions in molecular computers imposes a performance penalty that undermines the earlier scaling result. Nonetheless, scaling superior to that of irreversible computers can be preserved, and appropriate mitigations and considerations are discussed. These analyses are framed in a context of molecular computation, but where possible more general computational systems are considered. The proposed model, the א-calculus, is appropriate for programming reversible molecular computers taking into account these constraints. A variety of examples and mathematical analyses accompany it. Moreover, abstract sketches of potential molecular implementations are provided. Developing these into viable schemes suitable for experimental validation will be a focus of future work

    IST Austria Thesis

    Get PDF
    In this thesis we present a computer-aided programming approach to concurrency. Our approach helps the programmer by automatically fixing concurrency-related bugs, i.e. bugs that occur when the program is executed using an aggressive preemptive scheduler, but not when using a non-preemptive (cooperative) scheduler. Bugs are program behaviours that are incorrect w.r.t. a specification. We consider both user-provided explicit specifications in the form of assertion statements in the code as well as an implicit specification. The implicit specification is inferred from the non-preemptive behaviour. Let us consider sequences of calls that the program makes to an external interface. The implicit specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We consider several semantics-preserving fixes that go beyond atomic sections typically explored in the synchronisation synthesis literature. Our synthesis is able to place locks, barriers and wait-signal statements and last, but not least reorder independent statements. The latter may be useful if a thread is released to early, e.g., before some initialisation is completed. We guarantee that our synthesis does not introduce deadlocks and that the synchronisation inserted is optimal w.r.t. a given objective function. We dub our solution trace-based synchronisation synthesis and it is loosely based on counterexample-guided inductive synthesis (CEGIS). The synthesis works by discovering a trace that is incorrect w.r.t. the specification and identifying ordering constraints crucial to trigger the specification violation. Synchronisation may be placed immediately (greedy approach) or delayed until all incorrect traces are found (non-greedy approach). For the non-greedy approach we construct a set of global constraints over synchronisation placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronisation placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronisation solution. We evaluate our approach on a number of realistic (albeit simplified) Linux device-driver benchmarks. The benchmarks are versions of the drivers with known concurrency-related bugs. For the experiments with an explicit specification we added assertions that would detect the bugs in the experiments. Device drivers lend themselves to implicit specification, where the device and the operating system are the external interfaces. Our experiments demonstrate that our synthesis method is precise and efficient. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronisation placements are produced for our experiments, favouring e.g. a minimal number of synchronisation operations or maximum concurrency

    Quantum-based security in optical fibre networks

    Get PDF
    Electronic communication is used everyday for a number of different applications. Some of the information transferred during these communications can be private requiring encryption and authentication protocols to keep this information secure. Although there are protocols today which provide some security, they are not necessarily unconditionally secure. Quantum based protocols on the other hand, can provide unconditionally secure protocols for encryption and authentication. Prior to this Thesis, only one experimental realisation of quantum digital signatures had been demonstrated. This used a lossy photonic device along with a quantum memory allowing two parties to test whether they were sent the same signature by a single sender, and also store the quantum states for measurement later. This restricted the demonstration to distances of only a few metres, and was tested with a primitive approximation of a quantum memory rather than an actual one. This Thesis presents an experimental realisation of a quantum digital signature protocol which removes the reliance on quantum memory at the receivers, making a major step towards practicality. By removing the quantum memory, it was also possible to perform the swap and comparison mechanism in a more efficient manner resulting in an experimental realisation of quantum digital signatures over 2 kilometres of optical fibre. Quantum communication protocols can be unconditionally secure, however the transmission distance is limited by loss in quantum channels. To overcome this loss in conventional channels an optical amplifier is used, however the added noise from these would swamp the quantum signal if directly used in quantum communications. This Thesis looked into probabilistic quantum amplification, with an experimental realisation of the state comparison amplifier, based on linear optical components and single-photon detectors. The state comparison amplifier operated by using the wellestablished techniques of optical coherent state comparison and weak subtraction to post-select the output and provide non-deterministic amplification with increased fidelity at a high repetition rate. The success rates of this amplifier were found to be orders of magnitude greater than other state of the art quantum amplifiers, due to its lack of requirement for complex quantum resources, such as single or entangled photon sources, and photon number resolving detectors

    Spatio-Temporal Stream Reasoning with Adaptive State Stream Generation

    Full text link

    Vulnerabilities of signaling system number 7 (SS7) to cyber attacks and how to mitigate against these vulnerabilities.

    Get PDF
    As the mobile network subscriber base exponentially increases due to some attractive offerings such as anytime anywhere accessibility, seamless roaming, inexpensive handsets with sophisticated applications, and Internet connectivity, the mobile telecommunications network has now become the primary source of communication for not only business and pleasure, but also for the many life and mission critical services. This mass popularisation of telecommunications services has resulted in a heavily loaded Signaling System number 7 (SS7) signaling network which is used in Second and Third Generations (2G and 3G) mobile networks and is needed for call control and services such as caller identity, roaming, and for sending short message servirces. SS7 signaling has enjoyed remarkable popularity for providing acceptable voice quality with negligible connection delays, pos- sibly due to its circuit-switched heritage. However, the traditional SS7 networks are expensive to lease and to expand, hence to cater for the growing signaling demand and to provide the seamless interconnectivity between the SS7 and IP networks a new suite of protocols known as Signaling Transport (SIGTRAN) has been designed to carry SS7 signaling messages over IP. Due to the intersignaling between the circuit-switched and the packet-switched networks, the mo- bile networks have now left the “walled garden”, which is a privileged, closed and isolated ecosystem under the full control of mobile carriers, using proprietary protocols and has minimal security risks due to restricted user access. Potentially, intersignaling can be exploited from the IP side to disrupt the services provided on the circuit-switched side. This study demonstrates the vulnerabilities of SS7 messages to cyber-attacks while being trans- ported over IP networks and proposes some solutions based on securing both the IP transport and SCTP layers of the SIGTRAN protocol stack

    Design and Analysis of OFDM System for Powerline Based Communication

    Get PDF
    Research on digital communication systems has been greatly developed in the past few years and offers a high quality of transmission in both wired and wireless communication environments. Coupled with advances in new modulation techniques, Orthogonal Frequency Division Multiplexing (OFDM) is a well-known digital multicarrier communication technique and one of the best methods of digital data transmission over a limited bandwidth. The main aim of this research is to design an OFDM modem for powerline-based communication in order to propose and examine a novel approach in comparing the different modulation order, different modulation type, application of Forward Error Correction (FEC) scheme and also application of different noise types and applying them to the two modelled channels, Additive White Gaussian Noise (AWGN) and Powerline modelled channel. This is an attempt to understand and recognise the most suitable technique for the transmission of message or image within a communication system. In doing so, MATLAB and embedded Digital Signal Processing (DSP) systems are used to simulate the operation of virtual transmitter and receiver. The simulation results presented in this project suggest that lower order modulation formats (Binary Phase Shift Keying (BPSK) and 4-Quadrature Amplitude Modulation (QAM)), are the most preferred modulation techniques (in both type and order) for their considerable performance. The results also indicated that, Convolutional Channel Encoding (CCE)-Soft and Block Channel Encoding (BCE)-Soft are by far the best encoding techniques (in FEC type) for their best performance in error detection and correction. Indeed, applying these techniques to the two modelled channels has proven very successful and will be accounted as a novel approach for the transmission of message or image within a powerline based communication system
    corecore