
University of South Wales

2064783

x\. t> t> e y
Bookbinding Co.,

Cardiff, South Wales

Tel:(01 222) 395882

THE LIMITING ERROR CORRECTION
CAPABILITIES OF THE CDROM

JONATHAN D. ROBERTS

A thesis submitted in partial fulfilment of the
requirements of the University Of Glamorgan

for the degree of Doctor of Philosophy

November 1995

Acknowledgments

I would like to express my thanks to all those who have given
their support and time in the duration of this research
programme. This research was funded by EPSRC (formerly
known as SERC) in the form of a CASE Award with
sponsorship from British Gas PLC. I would like to convey my
thanks to all those at the British Gas Engineering Research
Station in Killingworth with whom I have worked. With
particular thanks to David Burke and Martin Morey.

I would also like to thank Professor Alan Ryley and Dr.
David Jones for their continued support, interest and
enthusiasm. Additional thanks to Dr. Warwick Clegg of
Manchester University for reading my PhD Transfer Report and
his continued interest in my work.

Special thanks to my parents who always believed in my
abilities when I and others did not. Finally, deep thanks to my
wife Anne for her continued support.

(i)

Declaration

This is to certify that neither this thesis or any part of it has been

presented or is being currently submitted in candidature for any

degree other than the degree of Doctor of Philosophy of the University

of Glamorgan.

Candidate....................................

(ii)

Abstract

The purpose of this work was to explore the error correction

performance of the CDROM data storage medium in both a

standard and hostile environment. A detailed simulation of the

channel has been written in Pascal. Using this the performance

of the CDROM correction strategies against errors may be

analysed.

Modulated data was corrupted with both burst and

random errors. At each stage of the decoding process the

remaining errors are both illustrated and discussed. Results are

given for a number of varying burst lengths each at different

points within the data structure. It is shown that the maximum

correctable burst error is approximately 7000 modulated data

bytes.

The effect of both transient and permanent errors on the

performance of a CDROM was also investigated. Here software

was written which allows both block access times and retries to

be obtained from a PC connected to a Hitachi drive unit via a

SCSI bus. A number of sequential logical data blocks are read

from test discs and access times and retry counts are recorded

for each.

Results are presented for two classes of disc, one which

is clean and one with a surface blemish. Both are exposed to

both standard and hostile vibration environments. Three classes

of vibration are considered: isolated shock, fixed state

sinusoidal and swept sinusoidal. The critical band of

frequencies are demonstrated for each level of vibration. The

effect of surface errors on the resistance to vibration is

investigated.

(iii)

Contents

Chapter One : Introduction and Outline
1.1 Introduction 1
1.2 Outline 2

Chapter Two : Mass Storage Devices
2.1 Various Mass Storage Devices 4
2.2 The Winchester Disk Drive 4
2.3 High Speed Tape Drives 5
2.4 The Optical Disc 7

Chapter Three : A Mathematical Basis For Error Control In Optical
Recording

3.1 The Need For Error Control 11
3.2 Reed Solomon Codes 11
3.3 Enhancing The Effectiveness Of Error Correcting Codes 20

Chapter Four : The Production Of Channel Code By Modulation
4.1 The Need For Modulation 23
4.2 Simple Channel Codes 23
4.3 The Block Codes 25

Chapter Five : The Encoding Processes Of The CDROM
5.1 Introduction 28
5.2 Sector Encoding 28
5.3 The CIRC (Cross Interleaved Reed Solomon Codes) Scheme 40
5.4 The Eight Fouteen Modulation (EFM) Code 46

Chapter Six : The Decoding Processes Of The CDROM
6.1 Introduction 50
6.2 Error Detection and Correction Using CIRC 51
6.3 Sector Decoding 59

Chapter Seven : Illustrating the Effects Of Errors Upon The CDROM
By Use Of The Simulation Model

7.1 Introduction 62
7.2 The Effect Of A Burst Error On the Channel Data 63
7.3 The Effect Of Random Errors On the Channel Data 76
7.4 Conclusions 85

(iv)

Chapter Eight: Performance Measurement and Inferencing Using
The Simulation Model

8.1 Outline 85
8.2 Burst Correction Performance Analysis Of The CDROM 86
8.3 Inferencing Burst Errors 92

Chapter Nine : Obtaining A Measure For CDROM Performance
9.1 The Need To Measure Performance 96
9.2 The Hardware and Software Requirements 97
9.3 The Low Level Communications Objectives Of ASPI 100
9.4 Transferring Data Using The SCSI Bus 101
9.5 The Access Times and Retry Counts From The Drive 107

Chapter Ten : Measured Perfomance Of The CDROM Against
Transient Errors

10.1 Introduction 109
10.1 Test Disc Details 109
10.3 Outline Of Experiments 112
10.4 Experimental Results 115

Chapter Eleven : Conclusions and Future Work
11.1 Conclusions 135
11.2 Future Work 136

Appendices
Appendix A : Using The Simulation Model A-l

A.I Encoding Programs A-2
A.2 Decoding Programs A4
A.3 Error Incorpration Programs A-5
A.4 Illustration Programs A-8
A.5 Inferencing Software and Database AD

Appendix B : Drive Communication Issues
B.I Assemble Module 1 : OPEN.ASM B-l
B.2 Assembly Module 2 : SEND_DATA.ASM B-TO
B.3 Main C Program : COMMUN.C B14

Appendix C : The Effects Of Multiple Burst Errors C-l
C.I niustration Of Two Bursts Within A Sector C-2

References

Biblography

Glossary

(v)

	List Of Figures

Number Heading page
2.1 The Layout of Tracks On RDAT 6

3.1 Generation Of Galois Field Elements 13

3.2 Parity Production In Product Codes 20

4.1 Illustration Of FM and Miller2 25

4.2 Illustration Of DSV Control 27

5.1 The Compact Disc Encoding Processes 29

5.2 The Three Sector Configurations 30

5.3 The Sector Encoding Processes 31

5.4 Matrix For P Parity Calculation 33

5.5 VP Vector 34

5.6 Hp Matrix 35

5.7 Matrix For Q and P Parity Calculation 36

5.8 Q Matrix Parity Calculation 37

5.9 HQ Matrix 37

5.10 The Scrambler Circuit 39

5.11 Example Of The Circuit On Real Data 39

5.12 The CIRC Encoding Processes 40

5.13 An Example Of Delay 41

5.14 VQ Vector 42

5.15 HQ Matrix 42

5.16 Hp Vector 44

5.17 Hp Matrix 44

5.18 Control Of DSV By Use Of Merging Bits 47

5.19 Minimisation Using Multiple Look-ahead 48

6.1 Flow Diagram Of Cl Error Correction 52

6.2 Flow Diagram Of C2 Error Correction 56

7.1 Error Incorporation Into The Channel 63

2900 bit burst

7.2 Effect Upon The Channel 64

7.3 Synchronisation Loss 64

	(vi)

7.4 Deinterleave Strategy III 64

7.5 Cl Decoding 66

7.6 Deinterleave Strategy II 66

7.7 Effect Of C2 Decoding 66

3000 bit error

7.8 Effect Upon The Channel 67

7.9 Synchronisation Loss 67

7.10 Deinterleave Strategy III 67

7.11 Cl Decoding 68

7.12 Deinterleave Strategy II 68

7.13 C2 Decoding 68

7.14 Deinterleave Strategy II 70

7.15 Byte Interchanging 70

7.16 Position Of Errors In Product Matrices 70

7.17 Q Decoding 71

7.18 Decoding On Raw Data 71

3600 bit error

7.19 Effect Upon The Channel 72

7.20 Synchronisation Loss 72

7.21 Deinterleave Strategy III 72

7.22 Cl Decoding 73

7.23 Deinterleave Strategy II 73

7.24 C2 Decoding 73

7.25 Deinterleave Strategy II 74

7.26 Byte Interchanging 74

7.27 Position Of Errors In Product Matrices 74

7.28 Q Decoding 75

7.29 P Decoding On Raw Data 75

Random Error with Probability 0.0018

7.30 Effect Upon The Channel 77

7.31 Synchronisation Loss 77

(vii)

7.32

7.33

7.34

7.24

7.36

7.37

Random

7.38

7.39

7.40

7.41

7.42

7.43

7.44

7.45

7.46

8.1

8.2

8.3

8.4

8.5

9.1

9.2

9.3

9.4

10.1

10.2

10.3

10.22

Deinterleave Strategy III

Cl Decoding

Deinterleave Strategy II

C2 Decoding

Position Of Errors In Product Matrices

Q Decoding

Error with Probability 0.0019

Effect Upon The Channel

Synchronisation Loss

Deinterleave Strategy III

Cl Decoding

Deinterleave Strategy II

C2 Decoding

Position Of Errors In Product Matrices

Q Decoding

P Decoding On Raw Data

Error Statistics Produced By Bursts At Frame 40

Error Statistics Produced By A 4000 Bit Burst

Error Statistics Produced By A 7000 Bit Burst

Maximum Burst Correction Along A Sector

Inferencing Package

Hardware Set-up

Simplistic Communication

Relationship Between SRB and CDB

Program Structure

CDROM With Error

Output From Performance Software

Illustration Of The Effects Of Frequencies On Drive

77

78

78

78

80

80

81

81

81

82

82

82

83

83

83

87

88

90

91

93

97

98

99

n
no
m

At 0.5g-2g

122-133

(viii)

CHAPTER ONE

Introduction and Outline

1.1 Introduction

In recent years the development of computers with greater processing power

and greatly increased storage requirements has led to an inexorable demand

for storage devices which are physically smaller, have an increased capacity,

but are cheaper in real terms. The increases in storage capacity occur at such

a rate such that many of these figures mentioned here will have been

surpassed.

Mass storage devices can be divided into 3 main categories. These are

thin film magnetic, thick film magnetic and optical storage. Thin film

magnetic devices are used for fast random access and relatively low storage

applications, particularly for rapid file handling in computers. For example

the Winchester hard disk now has a capacity of 550 MByte. Thick film

magnetic tape devices are used for applications with sequential access, for

example data backup and archiving. A Digital Data Storage (DDS) Tape

currently has a 1.4 Gbyte storage capacity. Optical disk devices are used for

relatively slow random access and high storage applications, for example

large commercial databases. A Compact Disc Read Only Memory (CDROM)

has a storage capacity of 553 Mbytes Sponheimer[l,pp 39].

The CDROM data structure has been developed from the CD

(Compact Disc) audio. The Compact Disc interpolation procedure while

appropriate for audio is clearly unsuitable for data storage. To compensate

for this additional error control strategies are incorporated.

Each of the three classes of application is served by proprietary

devices. All must therefore conform to International Standards, e.g. ECMA

(European Computer Manufacturers Association). The standards for the

CDROM have been devised in the context of a controlled environment. One

purpose of the present work is to explore the performance of the CDROM

media and drive operations in environments which may be hostile.

The aims of the work were :

 to understand the full encoding and decoding error correction of the

CDROM;

 to assess the limits of the error correcting performance of the

CDROM operating against permanent error mechanisms;

 to conduct detailed investigations into the retry strategy against

transient error mechanisms;

 to measure the effect of imperfect disk surfaces on error control

performance;

 to investigate the effect of an adverse vibrating environment on the

CDROM;

 to produce software in procedural and user language which will :

(1) simulate the response of the CDROM to a permanent error;

(2) allow access individual Sectors of the CDROM and to

monitor the access times and retries of the blocks involved.

1.2 Outline
In Chapter Two the three main classes of Mass Storage Devices are reviewed,

with particular emphasis upon the CDROM.

The CDROM error correction strategy is based upon Reed Solomon

Codes. In Chapter Three the theoretical basis and treatment of Reed Solomon

Codes is discussed. In addition a practical computer simulation

implementation of these strategies is considered. This Chapter also gives an

account of product codes and interleaving, both of which are major features

of the CDROM.

The CDROM uses EFM (Eight Fourteen Modulation code) which is a

Block Modulation Code. In Chapter Four, Block modulation coding is

introduced and briefly discussed.

Chapter Five gives a detailed account of the specific strategies for

encoding data of the CDROM and how they are simulated. Chapter Six

describes the inverse operations of Chapter Five. It explains how the

modulated data together with its errors is decoded and how the signal

processing uses the error syndromes which are introduced by corrupted data.

Chapter Seven gives examples of the use of a simulation model to

illustrate and correct both burst and random errors. In each example, data is

generated, encoded, modulated and corrupted. The corrupting errors which

have been introduced are addressed by each stage of the strategy in turn. At

each stage the remaining errors are illustrated with a commentary. Examples

are used to illustrate the full scope of the error control of the CDROM.

In Chapter Eight the performance of the CDROM for a large

systematic range of burst errors is illustrated and discussed. Here the

simulation model is exposed to bursts which range between 100 and 8000 bits

in length, with varying starting position through the Sector. In every case

interim results are produced for residual errors within the sector at each

stage of the decoding. Using this data, it is possible to illustrate the

performance of the correction strategies.

In addition Chapter Eight discusses the uses of the data for

inferencing errors on the CDROM. Here the intermediatory error results

produced by the model may be used as a database which may be compared

to empirical results. The intermediatory decoding errors from a practical

CDROM with a blemished surface are measured. The most likely form of the

blemish is then inferred by interrogating the database.

Some error mechanisms produce permanent errors: surface scratches

for example. In this case, if the data corruption defeats the error control

procedures the Sector decoding fails and that Sector is lost. Further attempts

to access the Sector will fail in exactly the same manner. By contrast in

Chapter Nine the effect of transient and semi-transient errors are considered.

Here a sector of data may be successfully accessed after several attempts.

Data on Sector access times and retries is obtained using a Hitachi CDROM

drive connected via a SCSI bus to a PC which monitors CDROM error

performance. Both assembler and 'C software are used to access the CDROM

control information. The results of the experiments are described in Chapter

Ten. Conclusions and proposals for future work are offered in Chapter

Eleven.

CHAPTER TWO

Mass Storage Devices

2.1 Various Mass Storage Devices
Since digital computers established a widespread industrial and commercial

application some three decades ago, the demands made on digital storage

media by digital technology have increased inexorably and exponentially.

Interestingly throughout this period the two principal classes of storage

media have remained unchanged. In general storage devices continue to

employ either disk or tape for the storage media.

The demands for data storage are addressed by storage media and the

associated enabling technologies. Very high areal densities have been

achieved using Write Once Read Many (WORM) optical media, or by writing

and reading to magnetic media using rotatory heads. The advances in storage

media technology have been accompanied by sophisticated signal processing

procedures Bell[2], Bell[3], Wood[4] & Laub[5]. Taken together these

developments necessitate enhanced error protection, even as areal densities

increase and costs drop.

This chapter considers the common examples of each of the three

principal classes of data storage. The Winchester disk as an example of thin

film magnetic storage. The RDAT (Rotary Digital Audio Tape) and associated

and RDAT-DDS (Digital Data Storage) as an example of thick film magnetic

storage. Lastly the CD and CDROM as an example of optical storage

Alford[6].

2.2 The Winchester Disk Drive
The development of storage disk technology has been driven by computer

technology. Random access computer storage is prohibitively expensive for

general data storage. The exploitation of computers would have been

impossible without a cheap mass storage medium which nevertheless offered

acceptable access times Zoellick[7,pp 177].

The Winchester disk (or Hard Disk) is a thin film device with a higher

areal density than the thick film floppy disk. For Hard Disks the head

positioning equipment together with the disk itself are sealed as a single unit.

This permits track width reduction and hence greater capacity. The single

unit inhibits disk exchange, however, and the use of the floppy disks remains

widespread for data exchange and back up. More recently high speed tape

drives such as DDS have been developed for this purpose.

A disk consists of a number of platters, the more platters the greater

the storage capacity. Each platter consists of many concentric rings from the

hub to the rim, each ring is called a track. Each platter is subdivided into

sectors. A disk is formatted so that data is stored in blocks which contain a

fixed number of bytes. Each sector of a track holds one data block. Thus a

block of data occupies more space at the rim than at the hub due to the

constant angular velocity. Since data is accessed at the same rate since the

Constant Angular Velocity of the disk produces linear disk/head speeds

across the surface Christodoulakis[8,pp 152]. Data is written to these sectors

by magnetising particles in medium.

Hard disks with capacities in excess of 100 Megabytes are of particular

importance as fixed computer disks or file servers.

2.3 High Speed Tape Drives
Two high speed tape devices of particular interest are RDAT and RDAT-

DDS. Both devices use an advanced form of helical scan technology which

was originally developed for VHS video. Fixed head tape magnetic recording

devices pass thick film magnetic tape across fixed, mounted recording heads

usually with a velocity that greatly exceeds 5 cm/s. Recording tracks are

therefore laid down along the axis of the tape. Although recording densities

using fixed head recording continue to improve, developments are hampered

by such error mechanisms as crosstalk and mechanical tolerance. The guard

bands of un-magnetised tape between adjacent tracks are required to

overcome these errors.

In RDAT the tracks are recording diagonally across the tape Dare[9].

This is achieved by using two heads mounted on a rotating drum at 180

degrees Baugh[10]. The drum rotates at a speed of 200 rpm whilst the tape

moves at 8 mm/sec in the same direction. A helical pattern is described over

the tape by each head. The two heads are offset by equal and opposite

azimuth angles. By this method alternative tracks are skewed. This reduces

crosstalk, since the heads will pick up stronger signals from data written in

the same azimuth angle as itself. The heads are wider than the tracks, so

avoiding the need for guard bands. Hence very high areal densities are

obtained Watkinson[ll,pp 280]. RDAT data integrity is further reinforced by

complex signal processing procedure incorporating multiple interleaving and

Reed-Solomon coding. In RDAT digital signals which are being recorded are

interleaved between adjacent tracks, so dispersing burst errors due to

dropouts and abrasions of the tape. In addition RDAT also employs

interpolation which is acceptable for audio application. There are two levels

of error correction coding called Cl and C2 codes respectively. Each is

supported by a Reed Solomon Code error control strategy.

+ Azimuth track' ^ ^ ^_
iL , , \ \ ̂N. Head Motion 3.133 m/s

- Azimuth track x x x ^

Tape Motion
8.15 mm/s

Figure 2.1 : The Layout of Tracks On RDAT

DDS is a recording format developed by Hewlett-Packard and Sony,

which develops RDAT for computer applications. In RDAT continuous tracks

of data are used, but in DDS frames are organised into groups in which each

contains 22 frames. A third error correcting code, C3 is introduced at group

level. By contrast with Cl and C2 codes all error correction occurs within a

single track Odaka[12]. In addition to an extra level of error correction the

DDS format incorporates Read after Write and Multiple group writing.

High speed tapes have the advantage of many write - many read

media. However the sequential mean access times can be unsatisfactory,

particularly when accessed data is widely dispersed along the tape.

2.4 The Optical Disc
The present work is concerned with the CD and associated CDROM

Lambert[13] & Poel[14]. The CD offers enormous advantages as a storage

medium which were originally exploited for the digital storage of speech and

music Carasso[15], Goedhart[16]. Complex strategies for data integrity such

as interleaving, second order Reed Solomon coding and an extended block

modulation code were developed to ensure that advances in areal density

were allied to suitably low recording error rates for this purpose Vries[17].

The compact disc has been specified in a number of standards ECMA[18],

BSI[19] & ECMA[20].

Compact Discs are produced as a physically protected medium from

which data can be repeatedly read without degradation of the medium. The

channel bits are incorporated into an aluminium layer which is physically

protected on the read side by plastic and on the other side by both a specially

designed lacquer and a chemically inert paint Verkaik[21], Watkinson[22,pp

70]. In order to destroy data on the aluminium one side must be penetrated

and the metal thereby rendered ineffective. In addition the channel data is

protected by the sophisticated algorithms to correct those errors which are

sustained by the disc.

The data on a Compact Disc is stored in a spiral from the centre to the

rim, however initial data is stored at the centre Watkinson[23, pp 1046]. The

head-disc speed is significant. The CD is rotated with a Constant Linear

Velocity 1.3 m/s so that the relative angular head-disc speed varies

depending upon which part of the disc is being read, varying from the

highest speed (458 revs/min) at the centre to the lowest at the rim (197

revs/min) Christodoulakis[24,pp 152], Barbosa[25,pp 189-191],

Miyaoka[26,pp 37]. The CD was been designed as a compromise between

access time and capacity Christodoulakis[27], Davies[28,pp 38]. The quantity

of data stored is determined by two parameters, track pitch and linear

information density Immink[29,pp 410]. The use of CLV has facilitated the

data capacity of the Compact Disc to be double that which would have

existed if it were a CAV application. The linear data density along the spiral

also varies inversely with the head-disk speed, thus ensuring that data is

read at a constant rate of 176.4 Kbytes/s over the whole of the disc

Watkinson[ll,pp 463].

The data is laid out on the disc in sectors within tracks Zoellick[7,pp

177]. The distance between each track is known as the track pitch and this is

1.6 micrometers Miyaoka[26,pp 35]. This is similar to the format of a

Winchester Disk except that with a CD sectors are laid along a spiral instead

of lying in concentric rings. The data nearest the hub is the Table Of Contents

Peek[30,p 8]. This is the index of the disk which coveys control data to

communicating hardware: how many tracks are present, where the starting

sector of each track is or whether the disc is a CD or a CDROM. A CD can

in be played in a CDROM player but not vice versa.

When a CD is placed in the player the initial concern is to accelerate

the disc to reading speed Sponheimer[l,pp 41]. The read laser is pushed to

the centre of the disc where it reads the Table Of Contents. On looking for

a designated sector or block (they are the same) of data the laser head will

be moved further out until it finds a sector which is near to that of the target.

Finding the designated sector is dependant upon both the tracking and

focusing abilities of the laser Watkinson[31] & Miyaoka[26,pp 36]. Each

sector has associated control data which aids addressing, the address being

the time displaced from the start of the track.

When the target Sector is accessed the channel bits are decoded and

raw data retrieved. By the time that decoding of a CD sector has been

completed the disc will have rotated sufficiently to read the next logical

sector. Access time is crucial and sophisticated algorithms have been

developed which predict the best arrangement of logically sequential blocks

on the medium; i.e. minimising average access times. Furthermore this

procedure enhances the protection of data against physical damage by

distributing associated data around the disc. Due to the refractive index

properties of the transparent layer are also used to reduce the effects of

scratches. The 0.8 mm diameter read laser spot on the surface is reduced via

a convex lens and diffraction to a 1.7 um spot upon the channel data surface

Watkinson[22,pp 70]. Any obstruction or scratch smaller than 0.5 mm will not

effect the laser spot at the pit and land of the channel data level Hoever[32,pp

70] & Miyaoka[26,pp 35]. The depth of each pit is approximately 0.11

micrometers.

External vibration to the CD will degrade its performance, since the

read laser may be propelled in any direction. This may cause the hardware

to fail to read the channel data accurately and the attempt to access the

Sector to fail. In this case the hardware will reseek to the appropriate sector.

The choice of sector to be resought is specified by the CD drive and

associated hardware. For example, in an audio CD player any sector in the

current track can be resought, although the quality of the sound would be

degraded. The two error correcting codes of the CD are able to cope with

specific levels of byte errors. However if errors do remain after such

correction schemes have been applied then labelling occurs and interpolation

is used, where corrupted data is estimated using associated data Vries[33,pp

2].

More recently the CDROM has been developed as a major mass data

storage medium for computing applications Cardinali[34]. The CDROM

contains an extra layer of error correction and detection. Two extra layers of

protection are required to attain the error performance necessary for mass

data storage Sako[35,pp 3996]. After these stages a Cyclic Redundancy Check

is applied to the data. If this fails then the whole sample of data is considered

erroneous and discarded. Note that a verified Sector of CDROM data is

absolutely correct, no interpolation is involved Chen[36]. Clearly latency

cannot be exploited when reseeking the same sector. Reseeks will

consequently increase a Sector access time.

Each of the three storage media discussed in this chapter has a specific

computing application. The Winchester Disk is used for fixed disk computer

storage, the CDROM where mass storage with random access is required and

DDS, which has sequential access is used for data backup. The storage device

of greatest interest is the CDROM.

10

CHAPTER THREE
A Mathematical Basis For Error Control In

Optical Recording

3.1 The Need For Error Control
Any digital data encoding channel is liable to produce recording errors in

which there are inconsistencies between the data which is written onto the

medium and the data which is read from it Forney[37], Shannon[38] &

Shannon[39]. Even in controlled environments like computer storage

recording errors will occur due to such error mechanisms as additive noise

or abrasions on the surface of the medium.

In environments which are less well controlled the error rate will be

correspondingly higher. The need therefore is for an error coding strategy

which will identify that a recording error has occurred and will then correct

the error to re-establish the input data Berlekamp[40], Watkinson[41].

3.2 Reed Solomon Codes
Every bit of a binary data stream is drawn from a two state alphabet {0,1};

thus if a single bit is known to be in error it can be corrected by simply

reversing its state. When data is considered as a sequence of code vectors,

each containing multiple bits, more complicated correction strategies must be

employed Doi[42]. Such strategies must detect and then correct all bits which

are in error.

The most simple strategy of error detection and correction is the single

error correcting Hamming code, which is of limited practical value

Hamming[43]. The more complex Reed Solomon Codes (RSC) are designed

to deal with error bursts, where several contiguous bits are in error. These

codes are able to achieve multiple error correction, these are now investigated

Berlekamp[44], Golomb[45,pp 204] & Reed[46]. In contrast to Hamming codes,

11

in which codewords of bits are considered separately, Reed Solomon codes

group codeword bits into sub-codewords, or symbols. For the CDROM each

symbol has eight bits and referred to as a code byte.

Reed Solomon Codes are Linear Block Codes Vries[17,pp 3J,

Hoeve[32,pp 167]. Such codes are called systematic (n, k) codes where k is

number of symbols or bytes entering the encoding process; n is the number

of symbols being output. Hence the codes introduce (n-k) parity check

symbols.

3.2.1 Galois Fields

Galois Fields are the mathematical basis upon which much complex error

coding is based Golomb[45,pp 208]. Galois fields are finite fields and consist

of a finite set of elements and two defined binary operations. In finite field

arithmetic, any operation carried out on two elements from the field results

in a member of that field Sweeny[47,pp 73].

A Galois field in which there are n elements is referred to as GF(q),

where q must be prime. The Galois Field GF(q) is defined over the set

{0, ... , q-1}.

3.2.2 Binary Extensions To The Galois Field

The Galois Field GF(qm) is known as an extended field. If q=2 then the Galois

Field is called an extended binary field.

For the field GF(2m), it is known that:

az =1

az + 1 = 0 where z = (2m - 1).

A polynomial g(cc) is irreducible in GF(2) if it has no roots in GF(2m);

but any irreducible polynomial does have roots in the extended field GF(2m),

where m is the degree of the polynomial. In GF(23) the polynomial is a7 + 1

and it can be reduced to three constituent polynomials:

a7 + 1 = (a + l)(a3 + a2 + l)(a3 + a + 1).

12

The three constituent polynomials cannot be reduced any further, i.e.

they are irreducible. The generation of all the elements in the field is

illustrated in Figure 3.1. The generator polynomial equation being :

a3 = a + 1.

The polynomial a3+a+l=0 (a3=a+l) is used to generate the field

elements, e.g.a3, a4 etc. If the code generator polynomial is prime then it

generates a cyclic code. A table of such polynomials is available in most

related texts Sweeny[47,pp 52]. For simplicity this is illustrated using a small

field.

Figure 3.1 : Generation Of Galois Field Elements

The first few elements are simple to produce Doi[42,pp 176]:

0 = 0 = 000

ct° = 1 001

a1 = a 010

a2 a2 100

The irreducible generator equation can be used to find the remaining

elements.

a3 = a + 1 =011

a4 = a(a3)

	a(a + 1) = a2 + a = 110

Similarly: a5 = a + 1 + a2 =111

a6 = a2 + 1 = 101

a7 = a + a +1 =001

hence,i.e. a7 = a° which illustrates the cyclic properties.

After a6 the GF elements will repeat because the code is cyclic. The

operations work as shown.

13

a4 x a5 = a9(mod ^ = a2

a3 x a1 = a4(mod ^ = a4

a4 + a5 = HO + 111 = 001 = a°

a3 + a1 = Oil + 010 = 001 = a°

3.2.3 Direct Production Of The Galois Fields
In the previous section elements of the finite fields have been generated by

algebraic means. However so as to generate elements of larger fields it is

appropriate to use logical operations. In this case higher powers of the field

element 'a' may be generated simply by a sequence of bit shift and exclusive

'OR' (XOR) operations. The algorithms is as follows;

To generate at+1 from a':

(i) Left shift the binary representation of a', introducing a zero to

the least significant end. The shift causes overflow at the most

significant end.

(ii) If the overflowing bit is a '0' then the shifted binary pattern

represents oct+1 .

(iii) If the overflowing bit is a T then the shifted pattern is Xor'd

(logical exclusive OR operation) with the binary representation

of the generator equation g(a). This gives new pattern

represents at+1 .

As an example consider the generation of a, a2, a3, where a° has the

bit pattern of 001 and the generator equation g(a) is a3 = a + 1. (-> signifies

the binary shift).

a° : 0 0 1 -» (0) 0 1 0 = a.

14

a1 : 0 1 0 -> (0) 1 0 0 = a2 .

a2 : 100^ (1) 0 0 0 = Oil = a3 .

xor 0 1 1

By the use of this logic the field elements can be generated for any

sized field for any polynomial. This is how such elements can be generated

for use in the simulation model which will be discussed later.

3.2.4 Encoding Using Reed Solomon Codes

Reed Solomon Codes are designed to correct bursts, i.e. the number of

consecutive bits in error Hoeve[32,pp 166], Peek[31,pp 11]. The number of

correctable symbols is governed by the amount of redundancy added to the

data. The number of correctable symbols is half the number of check symbols

added. Reed Solomon Codes are effective as burst correcting code, however

random errors spread evenly through the codewords can frustrate their

effectiveness McEliece[48].

The data bits are assembled into symbols which are elements of the

extended Galois Field. An illustration of how parity equations are produced

from data follows. To ensure ease of illustration the three bit GF discussed

previously is used. For three bit Reed Solomon Codes over GF(23) there will

be seven three bit symbols, this is a (7,5) code. The chosen generator

polynomial is a3+a+l.

The equations which describe the relationship between data and parity

symbols are produced using the following matrices. V is the matrix holding

the data and parity symbols. In addition H describes the GF coefficients

which will be combined with the seven symbols to produce the desired

equations, with result zero. A-E are data symbols and P & Q are parity

symbols,

and these are combined thus

15

= [ABCDEPQ] (3.1)

1 1 1 1 1 1 1
<x° a 1 a2 a3 a4 a5 a6

(3.2)

(3.3)

The matrix equations are rearranged in terms of P and Q using Galois

Field operations. From the equations it can be seen that the result of adding

the data to the parity bytes should be zero. The matrix describing the

mathematical equation linking data and parity is as follows:

P
Q

a" a1 a2 a5 a3

a2 a3 a6 a4 a 1

A
B
C
D
E

(3.4)

As an example of parity byte production consider the 15 bit data word

{101 100 010 100 111}, where n=3. The parity symbols P and Q are found to

be 100 and 100, respectively. A-E, P and Q are collectively known as the

codeword.

3.2.5 Decoding Using Single Error Detection and Correction

The codewords previously produced can be used to assess whether

corruption has occurred, this shall now be investigated. At the destination the

codeword is tested in order to ascertain whether an error has occurred, Ve

denotes the received codeword. Decoding is carried out using the identical

equations described in equations (3.1), (3.2) and (3.3). Thus by definition if

there is no error present then the result of adding VT to H is zero. If any

contamination is present then the result will be non-zero. The linear

difference will produce unique error syndromes. By working back from these

syndromes both the location and value of the contamination may be found.

16

R (3.5)

The outputs S0 and St are the syndromes, if both are zero then no error has

occurred Vries[17,pp 6].

If a one symbol error does occur then the syndromes will be non-zero,

these syndromes can be used to locate the error Doi[42,pp 152]. It should be

stressed that errors referred to are symbol errors and that a single or multiple

bit error in a symbol will produce a symbol error. The codeword has been

corrupted from {101 100 010 100 111 100 100} to {111 100 010 100 111 100

100}.

0101 cc°
0 0 1 " a6

(3.6)

In this example the syndromes are non-zero indicating that at least one

symbol error is present in the codeword. The syndrome S0 gives the error bit

pattern within the symbol whereas Sl identifies the symbol which is in error.

Sj has been calculated by multiplying symbols with different power of a

depending upon the position of the symbol within the codeword. An error

in A will be multiplied by a6 whereas an error in Q would be multiplied by

a°. The erroneous symbol can be located as follows:

6

^0
(3.7)

Symbol in error = Symbol (7 - power of alpha) = symbol 1

This indicates that symbol one is in error, i.e. symbol A is in error.

This is now represented by A*,(Symbol A is the first symbol and symbol Q

is seventh). The correct bit pattern of symbol A can now be determined by

adding the erroneous symbol A* to the S0 syndrome.

17

Hence A = A* + S0 = lll + 010 = 101 (3.8)

as required.

This method only works if one symbol is in error, for multiple errors

the same logic can be used. However the application is slightly different.

3.2.6 Decoding Using Multiple Error Detection and Correction

The power of a Reed Solomon Code is decided upon at the design stage, the

number of correctable bits being half the redundancy Doi[42,pp 153]. If

however the location of the symbols in error has been identified by other

means, the number of symbols that can be corrected is equal to the

redundancy. As an example consider the same (7,5) code where two known

symbols have been corrupted. The codeword has been corrupted from {101

100 010 100 111 100 100} to {111 100 010 OOP 111 100 100}, where A*=lll and

D*=000. The erroneous codeword gives syndromes of value S0=110 and

S^llO Hoeve[32,pp 168]. Since the positions of the corrupted symbols are

known the following equations are true.

(A* + A) + (B* + B)] \ SA + SB (3 . 8)
<xe(A* + A) + a3(fi* + B) J " <x6Sx + a3SB

By solving these equations the correct bit values of the two erroneous

symbols can be found. The first row of the matrix described as Equation 3.8

can be rearranged such that:

SA = SD+ S0 (3.9)

Using the second row of Equation 3.8 and substituting Equation 3.9

where possible Equation 3.10 is produced as shown:

Si = oc6SA + ct3S D = a6(S D+ S 0) + oc3 S D

a6S D + a6S0 + a3S D = a6S0 + S D(a3 + a6)

a6S0 + S D(a4) (3.10)

18

Rearranging and using the known syndromes :

S D(a4) = a'So + S!

SD = a(M)S0 + a^S1 = oeSo + a^

(looxiio) + (oii)dio) = 100

Using Equation 3.9 and the value of SD :

^A = SD+ S0

= 010.

Applying the given correction:

A = A* + SA = 1 0 1.

D = D* + SD = 1 0 0.

In practical applications of Reed Solomon Coding in data storage there

are far more than three bits per symbol. A good example is that of CDROM

and RDAT, where 8 bit symbols are used. Eight bits fit in conveniently with

both sixteen bit audio samples and byte orientated computer chips.

3.3 Enhancing The Effectiveness Of Error Correcting Codes
The effectiveness of Reed Solomon error correction can be significantly

enhanced by using those codes in combination.

There are two methods. The first involves Product Codes Sweeny[47,pp

144]. Here a sequence of data codes is fed into an array. Reed Solomon parity

are computed for both the data rows and columns of the array, so enhancing

burst error capability. This is illustrated in Figure 3.2.

19

Figure 3.2 : Parity Production In Product Codes

row checks

F

G

H

R

S

A

X

V

V

B

X

V

V

C

X

V

V

D

X

V

V

E

V

V

V

p Q

column checks check on checks

If all the bytes of one codeword were in error denoted by X, then the

row checks would be unable to correct the errors. However the column

checks use the bytes from the other correct codewords denoted by V. Thus

the whole codeword can be re-established byte by byte.

The second combination involves multiple order Reed Solomon

encoding which exploits the ability of Reed Solomon codes to either detect

and correct symbols in error, or to correct error symbols at known locations.

As an example consider the (7,5) Reed Solomon code above. Five data

symbols are encoded into a seven symbol codeword. Using CIRC encoding

these 7 symbols are treated as data and are now encoded into a nine symbol

codeword using a (9,7) code.

The first Reed Solomon code may locate two symbols in error and the

second may correct two error symbols of known location. Thus the

combination may find and correct up to two data symbols in error. By using

an intermediatory strategy know as interleaving between the calculation of

parity bytes in the (7,5) and (9,7) codes greater error correction is possible

Doi[42,pp 154] & Ramsey[49]. Interleaving ensures that the error bytes are

deposited over a wide number of codewords so enabling greater total error

20

correction to be applied Vries[17,pp 2], Verterbi[50,pp 144].

For Reed Solomon codes corresponding symbols of successive

codewords are interleaved. As an example, consider the three, 7 - symbol

Reed Solomon codewords.

Codeword A : Al A2 A3 A4 A5 A6 A7

Codeword B : Bl B2 B3 B4 B5 B6 B7

Codeword C : Cl C2 C3 C4 C5 C6 C7

These could be interleaved to produce the symbol sequence

Al Bl Cl A2 B2 C2 A3 B3 C3 C7

on the medium.

Here a three byte burst error on the medium which effects bytes Bl,

Cl and A2 will only cause one byte error in each of the three codewords

after interleaving. In CDROM applications the more powerful Cross

Interleaved techniques are applied. Hence Reed Solomon codewords are

produced both before and after interleaving. In the CDROM all symbols

used in Reed Solomon codes are eight bit bytes. As an example of Cross

Interleaving consider the same seven byte (symbol) Reed Solomon

codewords.

Codeword A : Al A2 A3 A4 A5 A6 A7

Codeword B : Bl B2 B3 B4 B5 B6 B7

Codeword C : Cl C2 C3 C4 C5 C6 C7

Interleaving in a predefined manner the resultant codewords are:

21

Codeword 1 : Al B2 C3 A4 B5 C6 A7

Codeword 2 : Bl C2 A3 B4 C5 A6 B7

Codeword 3 : Cl A2 B3 C4 A5 B6 C7

These codewords are now encoded and then recorded on the medium.

Any burst errors now effect the all encoded codewords 1-3. The power of the

parity symbols of all these codewords is combined to correct some of the

errors. The three codewords are then deinterleaved into A,B and C. These are

decoded and further error correction may take place. This process is used by

the CDROM though in a very much more complex application of the

technology. This is discussed in Chapter Five.

22

CHAPTER FOUR
The Production Of
Channel Code By

Modulation

4.1 The Need For Modulation
In the previous chapter it was seen that errors can cause data loss, but also

that sophisticated error correction strategies exist which can result in data

recovery. However, errors will not only corrupt the data but will also affect

clocking or sampling of the signal. Channel codes, also called modulation

codes or recording codes, aim to overcome the problem. The Channel codes

may be regarded as the code which is actually written onto the disk.

The modulation code must introduce a further layer of redundancy.

For example an eight bit data byte may take any of 256 bit patterns. Without

the presence of modulation these patterns would be laid down directly as

channel bits on the medium. This would lead to significant problems and

introduces major recording errors.

A continuous sequence of identical symbols will disrupt timing

recovery, as reclocking occurs at state changes. Repetitions of the same

channel bit will also generate DC content (or low frequency content) in the

recording signal. The DC content of such a signal is required to be as small

as possible in both magnetic and optical recording. In magnetic recording the

channel cannot reproduce the low frequencies with sufficient SNR. To

minimise distortions on the reproduced data the DC content should be

removed by a channel code Immink[51,pp 99]. In optical recording the servo

systems controlling the laser are sensitive to low-frequency signals. The servo

systems for track following and focusing are controlled by low frequency

signals, thus low frequency components in the code could interfere with the

servo systems Immink[52,pp 587] Immink[29,pp 410-31] & Immink[51,pp 27].

23

Recording codes must be designed to:

 minimise DC content;

 match the Power Density Spectrum of the encoded data to the

frequency response of the channel;

 provide a data clock to facilitate reclocking.

Additional functions include those which are device specific. Thus the

eight-fourteen (EFM) code of the CDROM and CD:

 provides positional information for the servo systems;

 enables the system to resynchronise automatically;

 provides additional error detection by detecting channel code

violations.

In general such codes attempt to smooth deterioration in signals due to the

channel imperfections.

4.2 Simple Channel Codes
Examples of simple codes are Manchester Encoding and Miller2 encoding.

Such codes impose their own rules to the data sequence Mallinson[53],

Mackintosh[53].

4.2.1 Manchester Encoding
Manchester Encoding manipulates the data code by ensuring that there is

always a transition at the bit cell boundary, thus ensuring self clocking. For

a data 'one' there is an additional transition at the bit cell centre. Each data

bit is thus represented by two recording bits. Although this is not an efficient

use of bandwidth, it is highly effective.

Manchester Encoding is efficient since one data bit may be represented

by two channel bits. Data recovery is possible for a wide range of speeds. An

example of this code is illustrated in Figure 4.1(a). Note that although

Manchester Encoding is effective as a code, it is not DC free Watkinson[ll,pp

176].

24

Figure 4.1 : Illustration Of FM and Miller2

(a)
FM

(b) 2

MILLER

0

mmm

mmt

0

^H

1

J

I

1

J

J

1

;

\

0

mm

mm

1

I

J

0

^M

 M

0

mm

mm

0

^H

1

If

I

0

 i

1

I

f

1

I

\

1

H

J

0

^H

^H

0

mm\

mm

0

^H

 M

0

mm

0

^ 1

^M

4.2.2 Miller2 Encoding
The Miller2 code minimises the DC content of a data code. It is a modification

of Miller. Miller is an extension of Manchester Encoding where bit cell

boundary conditions only occur between successive 'zeros'. In Miller2 when

an even number of 'ones' occur between 'zeros' the transition at the last 'one'

is omitted Watkinson[ll,pp 178]. This code is illustrated in Figure 4.1(b).

4.3 The Block codes
Both the RDAT-DDS and CDROM employ Block Recording Codes. This relies

on a codebook method, in which the modulation encoding of a data byte is

looked up directly. An m-bit data symbol can be mapped via the codebook

to an n-bit channel symbol. In Eight Fourteen Modulation (EFM) an 8-bit data

byte is associated with a 14 bit block of recording code Ogaiva[55].

4.3.1 Run Length Limited Codes
The number of modulation bit cells between channel transitions is known as

the run length and in most recording codes is constrained to lie between

fixed maximum and minimum values. This class of codes are known as the

25

Run-Length-Limited (RLL) Codes. Such codes are introduced to satisfy

channel constraints and assist with channel clocking.

EFM is a (2,10)RLL code for which the maximum number of zeros

between two channel 1's is 10, the minimum number is 2 Heemskerk[56] &

Immink[52]. These constraints are introduced so as to aid the sampling

Tang[57]. If clocking is lost then the a state change will occur after not more

than 10, when reclocking is possible. The minimum distance of two exists so

as to reduce the Inter Symbol Interference between two channel state

changes.

Channel codes are produced from data bytes using a codebook. For

EFM there are 214 possible 14 bit codes of which only 267 of these satisfy the

desired criteria Watkinson[58,pp 27]. For each 8 bit code there is an

associated 14 bit channel code, thus only 256 are necessary. In fact 258 are

used since two of the unused codes are employed as unique synchronizing

codewords. The remaining codes are not used. If they do occur they

represent a code violation and indicate an error.

4.3.2 The Digital Sum Variation (DSV)

The DSV of the channel bits is used as a measure of DC suppression and

RLL use. The channel codes were designed with this concept in mind, the

RLL is also chosen so as to minimise DC Patel[59]. The DSV of the channel

symbols are determined by adding one for every high channel bit period and

removing one for each low channel bit Watkinson[ll,pp 183]. This is

illustrated in Figure 4.2. In EFM successive channel symbols are separated by

three extra bits, the binary pattern of these being chose to minimise the

resultant DSV. In the 8/10 Block code which is used for RDAT each eight

data symbols has two associated ten bit channel symbols, one with positive

and one with a negative DSV Fukuda[60]. Which code is chosen depends on

the current DSV total. If the current DSV is positive then the channel symbol

with negative DSV content is chosen and vice versa. This is in direct

comparison to EFM which has one associated channel symbol but uses merge

26

bits to select whether it will be negative or positive.

Figure 4.2 : Illustration of DSV Control

BIT STREAM

EFM
DSV

BIT STREAM

EFM
DSV

0

-1

0

-1

0

-2

0

-2

0

-3

0

-3

1

-2

0

-4

0

-1

0

-5

0

0

0

-6

1

-1

0

-7

0

-2

0

-8

0

-3

0

-9

0

-4

0

-10

1

-3

1

-9

0

-2

0

-8

0

-1

0

-7

0

0

1

-8

DSV = 0

DSV = -8

An extended discussion of the EFM code of the CDROM is given in

Chapter Five.

27

CHAPTER FIVE

The Encoding Processes

Of The CDROM

5.1 Introduction

The Compact Disc is an example of the application of the error control

strategy discussed in Chapter Three. Multiple Reed Solomon Codes are used

extensively for error protection together with interleaving strategies and as

product codes Vries[17,pp 8].

In this Chapter the Error Detection Code (EDC) and the scrambler are

introduced. The EDC is a Cyclic Redundancy Check (CRC) and is the final

stage of the error protection strategy. The scrambler produces a pseudo-

randomisation of the data in a logical sector, which has the effect of

whitening the Power Density Spectrum.

The three stages of the encoding of raw data into channel bits are

Watkinson[61] :

• Sector Encoding.

 CIRC Encoding.

 EFM Encoding.

These stages are defined in specified standards and are discussed in

turn ECMA[18,pp 18-22]. Figure 5.1 gives a diagrammatic representation of

these processes.

5.2 Sector Encoding
Throughout the encoding process data bits are processed as eight bit bytes

which form the eight bit subcode of the Reed solomon codes using GF(2S).

The digital data to be recorded is thus represented by eight bit bytes which

are grouped into logical Sectors. This comprises of the raw data,

synchronisation bytes and header and as shown in Figure 5.2.

28

Figure 5.1 : The Compact Disc Encoding Processes

DATA (2048 bytes)

SECTOR ENCODING

(2352 bytes)

CIRC ENCODING

(3136 bytes)

EFM MODULATION

\
DATA ON MEDIUM

57624 channel bits

The area on the disc where data is stored is called the physical Sector

and is the smallest part of the Information Area that can be independently

addressed. The sectors are encoded, modulated and laid down on the

medium as Sections. A Section is thus the physical representation of the data

which originated from a logical Sector. The size in bytes of each component

of a logical Sector is shown in Figure 5.2.

5.2.1 The Difference Between The CD and the CDROM

In the CD-ROM there is a need for greater data protection, thus two further

Reed Solomon Codes are used, each adding two bytes of redundancy

Sako[35,pp 3997]. An EDC is also used in the CD-ROM. Both these additional

strategies are applied when data is placed into a logical sector. Hence the

sector configuration of the CDROM will differ from that of the CD.

There are three possible layouts depending upon the setting of the

Sector Mode byte as shown in Figure 5.2. Figure 5.2(a) depicts Mode 0 where

no data is stored. Such sectors are found in the lead in and lead out areas of

the disc. The lead in and lead out areas of the disc are regions where no data

is stored. Figure 5.2(b) portrays Mode 1 which

29

Figure 5.2 : The Three Sector Configurations

(a)SECTOR MODE 00 : NO DATA PRESENT

SECTOR 2352 BYTES

Synch

HEADER

SECTOR ADDRESS MODE

(00)

NULL DATA

12 BYTES 3 BYTES 1 BYTE 2336 BYTES

(b)SECTOR MODE 01 : CDROM DATA PRESENT
SECTOR 2352 BYTES

Synch HEADER

SECTOR

ADDRESS

MODE

(01)

USER
DATA

EDO INTER P PARITY Q PARITY

bytes: 12 3 1 2048 4 172 104

(c)SECTOR MODE 02 : CD DATA PRESENT

SECTOR 2352 BYTES

Synch

HEADER

SECTOR ADDRESS MODE

(02)

USER DATA

12 BYTES 3 BYTES 1 BYTE 2336 BYTES

30

indicates that CDROM data is present and that there are three extra levels of

error protection. Finally Figure 5.2(c) illustrates Mode 2. This is the mode

used by the CD where only the CIRC protects the data. In this case there is

less protection, hence less redundancy and more data can be stored.

Figure 5.3 : The Sector Encoding Processes

2048 bytes DATA

________T
ADD SYNCH AND HEADER

2064 bytes T

2068 bytes T

ADD INTERMEDIATE BYTES

2076 bytes

P ENCODER RSC(26,24)

2248 bytes,

Q ENCODER RSC(45,43)

2352 bytes

+ 12+4

+ 8

+ 172

+ 104

98 (24 byte) F1 FRAMES

Although the section layout differs between CD and CDROM the

sector sizes are the same. Hence hardware associated with the CDROM can

communicate with the CD format, but not vice versa.

The extra error protection is the only structural difference between the

CDROM and the CD. The CDROM requires the extra layers of protection to

ensure better data retrieval Sako[35,pp 3996]. Whereas the CD has

applications when it is possible to interpolate data, this is not the case with

31

the CDROM where the application is digital data storage Hoeve[32,pp 171].

The various stages of encoding the 2048 bytes of data in a CDROM sector are

as illustrated in Figure 5.3. All these stages shall be reviewed in turn.

5.2.2 The Synchronisation Field

The Synchronisation field is a twelve byte block that acts as an identifier and

signifies that the beginning of a sector has been located. The synchronisation

field is identical for all sectors as it is unrelated to the data present. It informs

the hardware that important information is following, also providing a fixed

time for the hardware to synchronise to the signal.

5.2.3 The Header Field

The header field comprises of a three byte Sector Address and the single

Mode byte which indicates the extent of the error protection which is to be

used and also the quantity of data.

The Sector Address contains the Physical Address of the sector. This

is represented by the elapsed time from the beginning of the User Data Area,

in minutes, seconds and fractions. The User Data Area is the area on the disk

with physical tracks containing data as opposed to bytes for format

overheads.

5.2.4 The Error Detection Code (EDO

This four byte code is a 32 bit CRC (Cyclic Redundancy Check), where the

EDC codeword must be divisible by the check polynomial P(x) ECMA[18,pp

20]:

P(x) = (x 16 + * 15 + x 2 + 1)°(* 16 + x 2 +x + 1) (5' l)

Each byte of data is applied to the polynomial such that two values

are found, the remainder and the quotient. These are stored as the CRC

Doi[42,pp 149]. If on decoding the calculated values do not agree with the

32

CRC either the data is erroneous or the CRC is in error.

The intermediate field adds eight bytes of null data which are not used

at present. It is there for any future requirements.

5.2.5 The P-Parity Field

The P-Parity field consists of 172 bytes of redundancy, these are

calculated using a (26,24) Reed Solomon Code on bytes 12-2075 Sako[35,p

3999]. Using the 2064 remaining bytes, there are eighty-six 24-byte frames.

Two parity bytes are calculated for each of these thus 172 parity bytes are

produced. The bytes are ordered into 1032 words each of two 8-bit bytes,

each consisting of a Most Significant Byte (MSB) and a Least Significant Byte

(LSB). For example byte 0 and byte 1 are the constituent bytes of word one,

byte 0 being the MSB and byte 1 being the LSB.

Figure 5.4 : Matrix For P Parity Calculation

0
1
2
3

:

23

24
25

u i 2 :::::::::::::::::::: :41 42

QOOO 0001 0002 0041 0042

CJ043 0044 0045 0084 0085

0

0

086 0087

129

axis of matrix
P Parity is
calculated along

I (column)

0989 0990 1030 1031

1032 1073 1074
1075 11161117

DATA
input
into

matrix

P Parity

Two equally sized matrices are constructed with 43 columns and 28

rows, into which the bytes are fed row by row as shown in Figure 5.4. One

matrix is filled with the MSB whereas the other is arranged with the LSB,

33

both have the same pattern as illustrated.

The redundancy can now be added using a Reed Solomon Code

(26,24) applied as a Product code, the GF(28) field is generated by the

primitive polynomial where :

P(x) = (x* + x* + jc 3 + x 2 + 1) (5 - 2)

The primitive element a of GF(28) = (00000010), in which the right

most bit is the least significant bit. The GF and polynomial generator are the

same for all the RSC used by the CD and CDROM.

The parity bytes are produced using Equation 5.3.

Here:

Vp is the vector containing the position in the matrix of each of the 26

bytes which is used. Each byte is obtained from subsequent rows of

the matrix. For example the first element of the vector is the first byte

of a column and so on. It's structure is displayed in Figure 5.5.

Figure 5.5 : Vp Vector

K/ = [A, B1 C, D, r, U, V, W,

Hp is the parity check matrix, it contains the powers of a by which

each of the 26 bytes must be multiplied. It's structured is displayed in

Figure 5.6 ECMA[l8,pp 32].

34

Figure 5.6 : Hp Matrix

„ a° a° a° a° «° a° a° a0'
P ~ a25 a24 a23 oc4 a3 a2 a 1 a°

By rearranging the equations in terms of the parity bytes, the following
equations are produced.

PI = a231 A, + oc229^ + amQ + a210^ + a^E, + a17^ + c^G, + a215H,
+ a43Ia + a120!! + a% + a199L, + a74M, + a102^ + a220O, + a251P,

+ a95Q! + a175^ + a87S, + a166!! + a11^! + a^V, + a198W,

+ a25Xr (5.4)

P2 = a^A, + a172B! + a211^ + a241D, + al8E, + a68^ + ^G, + a44^

+ a^ + a9^ + a200^ + <x75L, + a103Mj + amN, + a252O, + a96P,
+ a176Qj + a88^ + a167S 1 + a114T! + a76Ux + al"Vl + a26Wj

+ a1^. (5.5)
In these equations the letters represent the 24 bytes originating from

any given column of the matrix of Figure 5.4, Aa is the first byte and Xl is
the 24th byte.

Thus the two parity bytes for a column are found. This is repeated for

all 43 columns. The parity bytes are inserted into the matrix in the positions
as illustrated in Figure 5.4. For example the two parity bytes associated with

the first column are labelled 1032 and 1075, these are placed into the matrix

in this order, as illustrated.

5.2.6 The Q-Parity Field
The Q-Parity field consists of 104 bytes of redundancy being added using a
RSC(45,43), on bytes 12-2247 Sako[35,p 3999]. Using the 2236 remaining bytes,

there are fifty-two 43-byte codewords, two parity bytes are calculated for

each of these thus 104 parity bytes are produced.

35

Figure 5.7 : Matrix For O and P Parity Calculation

23
24

25

26
27

0 1 2 :::::::::::::::::::: :41 42

JO 0001 0002
,0045

086 0087

129

axis of matrix
P Parity is

calculated along
(column)

0989 0990

1032
1075

1118
1144

0041 0042
0084 0085

axis of matrix

Q Parity is
calculated along
(diagonal)

1030 1031

1073 1074
1116 1117

1143
1169 Q Parity

DATA

input
into

matrix

P Parity

25

The same process occurs as with P-Parity. This time, however there

will be 43 columns and 26 rows ECMA[18,pp 33] as show in Figure 5.7.

Previously the bytes were fed into vector V column by column. However as

with all product codes the redundancy is determined along a different axis

than previously used.

In the Q-Parity process the group of bytes operated upon are on the

axis parallel to the diagonals of the matrix, this is identical to that used in the

P-Parity plus the added parity. The matrix illustrated in Figure 5.8 is

obtained when this process occurs.

The redundancy equations are produced in the usual manner using

Equation 5.6.

HQ * VQ - 0 (5-6)

VQ is the vector containing the position in the matrix of each of the

43 bytes which is used.

36

HQ is the parity check matrix. It contains the powers of a with which
to multiply the 45 bytes as displayed in Figure 5.9 ECMAflS^p 34].

Figure 5.8 : O matrix Parity Calculation

0
1
2

23
24

25

n
0000
0043

1075

1

0044
0087

0001

2 ::::::::::::: :40

0088

0131

0045

41

0686
0729

0643

42

0730
0773

0687

QO Q1

1118 1 1 44
1119 1145

1143 1169

The Q parity bytes are calaculated using the LSB and MSB
bytes along the diagonals of the matrix

Figure 5.9 : HQ Matrix

oc° tx° cc°.
a44 a43 a42

. . «° cc° a° a° a°
. . a4 a3 a2 a 1 <x°

The parity generating equations were found to be as illustrated in
Equation 5.7 and 5.8 ECMA[18,pp 33].

Q1 = a215A2 + a121 B2 + a20C2 + a!57D2 + a84E2 + a106p2 + ^84^ +

a179H2 + a225I2 + a32J2 + a136K2 + a15L2 + a35M2 + a45N2 +
a6602 + a181P2 + a193Q2 + a104R2 + a]98S2 + a23^ + a229B I +
amQ i + oc240E : + a17^ + a6^ + a215^ + a43!, +
a120!! + a8Kj + amL, + a74M! + a102N, + oc22^, + a25^, +
a^Q, + a175^ + a87S, + a166!, + a11^, + a75V, + a198W, +
a25X, (5

37

Q2= oc97A2 + a251 B2 + a133C2 + a60D2 + a82E2 + a160F2 + a155G2 +

a201H2 + a8I 2 + amJ2 + a246K2 + anL2 + a21 M2 + a42N2 +
a15702 + a169P2 + a80Q2 + a174R2 + a232S2 + a^A, + a17^ +

a2UC, + a24^ + a18E, + a68F1 + a^G, + a^H, + a121I a +
a9Jj + a200^ + a75L! + a103M, + a22H + a25^ + a.96?, +
a17^ + a88^ + a16^ + a114!! + a^U, + a19^ + a26Wj +

a%. (5.8)
The power of the RSC and the way in which they have been applied

will prove highly significant in the decoding processes. The parity is fed into
the matrix in the manner described in Figure 5.7.

This process is repeated for all axis parallel to the diagonal of each

matrix in turn. The parity bytes are inserted into the matrix in the positions

as illustrated in Figure 5.8. For example the two parity bytes associated with

the first diagonal are labelled 1118 and 1144. The bytes are placed back into

the sector by reading each MSB and LSB byte from the matrices row by row.

5.2.7 Scrambling The Data

A regular bit pattern fed into the EFM encoder can cause large values of the

DSV which cannot be reduced by the merging bit strategy. The scrambler

reduces the risk by converting bytes 12-2351 of a Sector in a predefined

manner, such that the original data can be reclaimed. Each bit of the input

stream of the scrambler is added modulo 2 to the least significant bit of a

maximum length register.
The 15-bit register is illustrated in Figure 5.10 is of the parallel block

synchronized type, and fed back according to the polynomial (x15 + x + 1)

ECMA[l8,pp 35].
As each bit, least significant bit (Isb) first is passed through the

scrambler it is added, modulo 2 to the contents of the Isb of the register. The

Isb is altered in accordance with the polynomial.

38

Figure 5.10 : The Scrambler Circuit

(register after reset)

U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

! 1
vy

= exclusive or
INPUT DATA

(bit by bit)
OUTPUT DATA

Figure 5.11 : Example Of The Circuit On Real Data

DATA
IN

1
0
1
1

0
1

1

1

0
1
1
0

1
0

1
1
1
0

REGISTER ^
0

1
0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1

u
0
1
0

0

0

0

0

0

0

0

0

0

0

0

0

0
1

0
0
0

1
0

0

0

0

0

0

0

0

0

0

0

0

0
0

0
0
0

0

1
0

0

0

0

0

0

0

0

0

0

0

0
0

0
0
0

0

0

1
0

0

0

0

0

0

0

0

0

0

0
0

0
0
0

0

0

0

1
0

0

0

0

0

0

0

0

0

0
0

0
0
0

0

0

0

0

1
0

0

0

0

0

0

0

0

0
0

0
0
0

0

0

0

0

0

1
0

0

0

0

0

0

0

0
0

0
0
0

0

0

0

0

0

0

1
0

0

0

0

0

0

0
0

0
0
0

0

0

0

0

0

0

0

1
0

0

0

0

0

0
0

0
0
0

0

0

0

0

0

0

0

0

1
0

0

0

0

0
0

0
0
0

0

0

0

0

0

0

0

0

0

1
0

0

0

0
0

0
0
0

0

0

0

0

0

0

0

0

0

0

1
0

0

0
0

0
0
0

0

0

0

0

0

0

0

0

0

0

0

1
0

0
0

0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

1
0
0

1
0
0

0

0

0

0

0

0

0

0

0

0

0

0

0
1
0

DATA
OUT

0
0

1
1
0
1
1
1
0

1
1

This process
continues

1 until

the register
' is reset by

1 a synch field
0
0

Figure 5.11 illustrates how this would work in practice. Before being
fed into the CIRC encoder each scrambled sector is mapped onto a series (98)
of consecutive 24-byte frames. The consecutive bytes of each frame are
switched as follows ECMA[18,pp 20]:
For example:
(Frame) 12345 6........23 24 -> (Fl Frame) 21436 5......24 23

This byte interchanged frame is known as the Fl Frame and it is these frames
which are the input to the CIRC encoder.

39

5.3 The CIRC (Cross Interleaved Reed-Solomon Code) Scheme

CIRC consists of two encoding processes which use RSC not dissimilar to

those seen in Chapter Three. However much greater redundancy is

introduced Hoeve[32], Vries[62], Doi[42,pp 170], Driessen[63,pp 386] &

Doi[64]. Instead of the RSC being used as product codes three interleaving

stages are employed. Figure 5.12 illustrates the various stages which occur

in the CIRC encoding scheme.

Figure 5.12 : The CIRC Encoding Processes

The CIRC Encoding Scheme

98 F1 FRAMES (24 bytes)

Deloy Strategy

C2 ENCODER : RSC(28,24)

Delay Strategy

C1 ENCODER : RSC(32,28)

Delay Strategy

98 F2 FRAMES (32 bytes)

5.3.1 Interleaving Delay Strategy I

All interleaving strategies in CIRC are based upon delaying schemes much

like that illustrated in Figure 5.13 Watkinson[61,pp 80], Doi[42,pp 155].

40

Figure 5.13 : An Example of Delay

CODEWORDS

A
B
C
D
L
F
G

H
1

J
K
L
M
N

0
P
0
R
S
T
U

V
W
X
Y
Z
1
2

2D
3D
4D
5D
6D

INTERLEAVING
DELAYS

A H
B

0
I
C

V
P
J
D

W
Q
K
E

X
R
L
F

A
H
B
0

I
C
V

P
,|
D
W
Q
K
F

X
R
L
F
I
*

•

t

;

•

•

•

!

.

;

;

•

;
'.

;

• RESULTANT
CODEWORDS

In the example codewords consisting of seven bytes are input into a

delaying circuit. The delay experienced by each byte will be determined by

its position in the codeword. Byte one will have no delay, byte two

experiences a one codeword delay and so on. In the example byte B is

observed to delayed by one codeword and byte E to be delayed by four

codeword times.

The first stage interleave introduces a two 24-byte frame delay

between odd and even samples. At the end of this stage the even bytes have

all been displaced by two 24 byte frames ECMA[18,pp 37].

5.3.2 The C2 Encoder

The delayed bytes are fed into the first of the two Reed Solomon Encoders.

This encoder uses a (28,24)RSC, generating four parity bytes referred to as the

Q Parity Bytes (Q1-Q4). This labelling is unfortunate as it is similar to the

41

identification of the Q-Parity Code in the logical sector coding; it is

completely unrelated. As was seen with the previous Reed Solomon Codes

the parity equations satisfy Equation 5.9:

HQ * VQ - 0 (5.9)

Where:

VQ is the vector containing the bytes from the same frame which are

to be used in the operation. For example the first element of vector VQ

is the first byte of the codeword, the last element being the last byte.

The structure is displayed in Figure 5.14.

Figure 5.14 : VQ Vector

VP T = [^ ^ C, £>, 7, £7, F, F^ J

HQ is the parity check matrix, the structured of which is displayed in

Figure 5.15 ECMA[l8,pp 38].

Figure 5.15 : HQ Matrix

a° a° a° .
a27 a26 a25
a54 a52 a 50
a81 a78 a75 .

. . a° a° a° a°
. . . a4 a3 a2 a 1 cc°

. . a8 a6 a4 a2 ex°
. . a 12 a9 a6 a3 cc°

By use of this information the following parity equations can be

determined. The parity equations were found to be :

Ql = cc5^ + cc152B, + a173Q + a95Dj + a^E, + a43?, + a134G, +
a205H, + a143^ + aI3IJ! + a163K, + a75L! + a249M: + a^Nj +

! + a116?! + a125Qj + a184R, + a11^, + a1^ + a5

(5.10)

42

Q2 = CC^A! + a21^ + aU8C, + a^D, + an2E, + oc 15^ + a^G, +
a96^ + a49!, + o:198^ + a18% + a249L, + o^X + a47!^ +
a.H70: + a235?, + a151^ + a47^ + a209Sl + a183!, + a138!^ +
a232Vi + a205Wi + a!20Xi _ (5

Q3 = a162A! + a244B! + a13C, + a171 Dj + a2l3E, + a236?, + a^G, +
a177^ + a253!, + a162j! + a^K, + a7HL, + amM, + a^N, +
a18^ + a34?! + a78Q! + a136^ + a13^! + a85^ + aws\J, +
a115^ + a^X + a246X!. (5.12)

Q4= a15^ + a17^ + cTQ + a9^ + a49^ + a140^ + a21^ +
a149Hj + a137^ + a169)! + 0% + a6Lx + a72!^! + al57N, +
al22O, + a131 Pj + al90Q, + aU6R, + a22S, + a64T1 + a68Uj +

a14^! + all9W, + a22Xj. (5.13)

For each 24-byte frame entering the encoder there now exists a 28-by te
Frame. The parity bytes are inserted into the centre of the Frame with twelve
data bytes going to either side. This is a characteristic of audio recording, by
doing this the odd /even delay of two blocks permits greater interpolation.

5.3.3 Interleaving Strategy II
This scheme subjects each byte of the codeword to a differing measure of
delay. The delay algorithm being:

The Delay of a Byte = (Byte number) * 4 Frames ECMA[18,pp 37].
Thus byte 0 experiences no delay and byte 27 experiences a (27*4) 108 28-byte
Frame delay.

5.3.4 The Cl Encoder
This encoder generates a (32,28)RSC, creating four parity bytes referred to as
the P Parity Bytes P1-P4. Again the labelling is unfortunate ECMA[18,pp 37].

43

The parity byte equations must conform to equation 5.14 :

(5.14)

Where:

Hp is the parity check matrix, the structured of which is displayed in

Figure 5.16 ECMA[18,pp 38].

Figure 5.16 : HP Matrix

o° a° a°.
a31 a30 a29 . .
a 62 a60 «58 . .
a93 a90 a87 . .

. . a° a° a° a° a°

. . a4 a3 a2 a 1 a°
. . a8 a6 a4 a2 a°
. . a 12 a9 a6 a3 a°

VP is the vector containing the bytes from the same frame, used in the

operation. This vector is organised in the manner illustrated in Figure

5.17.

Figure 5.17 : VP Vector

V/ - [A, B, C, D, W, X, F, Z, A2 B2 }

be:

By use of this information the following parity equations are found to

PI =
+ a76L, + al02Ml + a155N,

P2 = a205A, + a252B, + a218Q + a199Dt + a20^ + a41?, +

44

a154Vl + a15^ + a9% + a49Y: + a198Z, + a189A2 + a249B2(5.16)

P3 = CC^A! + anBj + a131Cj + a41^ + a^ + a41 Fj + a8^ +

a228©! + a116?! + a162Q! + a244R: + a1^ + amT, + a™Ul +
a236V, + a711^ + amX, + a253Y, + al62Z, + a59A2 + a78B2.(5.17)

a! + a + a14^! + a137^ + a169Z: + a81A2 + a6B2 . (5.18)

Wliere each letter indicates a byte from the vector V. Each 28-byte frame is

thus augmented to a 32-byte frame, the four parity bytes having been

appended to each frame.

5.3.5 Interleaving Strategy III

The third and last delay strategy delays alternate bytes of the 32-byte frames

by one frame ECMA[18,pp 38]. The result of CIRC encoding/interleaving is

that the ninety eight 24-byte Frames are augmented to 32-byte F2-Frames

ECMA[18,pp 21].

5.3.6 The Control Byte

An extra byte is added to the beginning of each F2-Frame thus yielding a 33-

byte F3 Frame. This is the Control byte and is added for addressing purposes

Watkinson[65], ECMA[18,pp 21]. A group of 98 F3 Frames are collectively

known as a Section. The control bytes from each of the 98 frames have an

associated table for the purposes of addressing.

45

5.4 The Eight Fourteen Modulation (EFM) Code
As discussed in Chapter Four the Modulation code of the Compact Disc must
operate under a number of restrictions Vries[33,pp 2], Watkinson[58,pp 27].
The DC content of the code is required to be as small as possible for a
number of reasons associated with disc technology Ogawa[55,pp 118]. DC
content in the code will appear as noise in the tracking. The optical servo
systems that position the laser spot are also sensitive to low frequency
content Watkinson[22,pp 70-71] & Immink[52].

The EFM scheme records the F3 Frames on the disc with each 8-bit
byte being represented by a 14-bit channel byte Doi[66,pp 235], ECMA[18,pp
43]. Each F3 Frame is thus represented by a Channel Frame. To enable self
clocking the data remains as a Frame. This consists of a synchronisation
header, Merging bits and thirty three 14-bit channel bytes. This process can
be separated into three stages ECMA[18,pp 21-2]:

• The 8-bit byte mapping to a 14-bit channel Byte.
• Selection of Merging Bits.

• Coding onto The Medium.

5.4.1 Eight To Fourteen Encoding
EFM is a self clocking Run Length Limited Block Modulation Code which
conforming to the rules of such codes Immink[67] ,Vries[33,pp 2&1Q]. A
lookup table is used which holds the 256 combination of eight bits. Each 8-bit
byte is thus mapped to a 14-bit channel byte. Contiguous channel bytes
comply with the (2,10)RLL block code constraints. Between two channel 'ones'
there is at least two channel zeros and at most ten. This is in order to retain
a reasonable clock content in the signal whilst providing acceptable immunity

to jitter Peek[30,pp 8].

46

5.4.2 Selection Of The Merging Bits

If successive channel bytes are written onto the medium the Digital Sum

Variation (DSV) will vary greatly. The DSV is required to be as close to zero

as possible. In order to achieve a minimal DSV three merging bits are

inserted between successive channel bytes Immink[67,pp 64]. The value of

each bit is altered so as to minimise the DSV.

Merging bits and their adjacent channel bytes must also conform to the

RLL constraints of the code. Thus if ten 'zeros' have preceded the merging

bits then the first merge bit must be a 'one'. Equally, if the last bit before the

merging bits is a 'one' then merging bits one and two must be 'zeros'.

Although there are three merging bits there are only four possible

combinations which obey the RLL guidelines.

Figure 5.18 shows examples of merging bits where two successive

channel bytes are merged (a) without DSV control; (b) with DSV control.

With the control strategy in place there are at most eight combinations of the

merging bits, though of them some will violate the RLL constraints of the

code. If this process were occurring in the middle of the code then the initial

DSV would arise from the previous minimisation.

Figure 5.18 : Control Of DSV By Use Of Mereing Bits

01000000000010: : : 01000000000010 N0 MBIT CONTROL

-1 + 10* +7 + 18
+ 16

01000000000010000 01000000000010 MBITS=000

+ 15 + 13

01000000000010010 01000000000010 MBITS=010
+ 1

-1 +10 +7 +10 -1

The merging bit patterns which do not violate the RLL are

000 and 010.
Without merging bit control DSV=16.

With merging bit control DSV= + 1.

47

Using the same system the next minimisation which occurs after that

illustrated would begin with an initial DSV value of +1.

The benefits of the use of Merging bits can be developed further by

using a look ahead method. Here the DSV is averaged over several

successive channel bytes Immink[67]. At present EFM uses a look-a-head

method of four bytes . This is illustrated in Figure 5.19.

Each time a channel symbol and associated merging bits are selected

the resulting DSV is noted. This DSV value is employed as the starting value

for the DSV calculations when minimisation occurs. If the noted DSV value

is -4 then minimisation will proceed starring from this value. If the first bit

is a 'zero 1 the resulting DSV for this bit is -5; if it is a 'one' then the resulting

DSV is -3. The four channel symbols are combined with all possible viable

merging bit combinations.

Figure 5.19 : Minimisation Using Multiple Look-ahead

DSV MINIMISED FOR 4 MBITS AND 4 CHANNEL SYMBOLS

01 l()l 101 101

1= 14 BIT CHANNEL SYMBOL

Q= MBITS

With a maximum of 23 combinations for each four Merging bit sets

there are (23)4/ i.e. 212, possible combinations of channel symbols and merge

bits. The combination which gives the minimum DSV will be chosen. The

first merge bit and byte set are written and the resulting DSV noted. The

three remaining bytes are shifted forward such that second becomes first,

third becomes second and fourth becomes third. The next sequential 8-bit

byte is encoded into a 14-bit channel symbol. This becomes the fourth

symbol. The process is repeated using the four new channel bytes and the

48

new DSV. This occurs for each four byte set in each frame.

Clearly by extending the number of bytes considered at any one time
to a greater number a greater system averaging could be achieved, but at the
cost of increasing the processing time of the encoding process.

5.4.3 Storing the Channel Frames On The Medium

The three stages, 8-to-14 encoding, Merge bits selection by minimisation and
storage organisation, occur in conjunction with one another. Each of the

ninety eight F3 Frame is converted to a Channel Frame with the following
configuration ECMA[18,pp 22], Vries[33,pp 11] & Doi[66] :

I Synchronisation Header : 24 Channel Bits Watkinson[58,pp 28]
3 Merging Bits : 3

1 Control Byte : 14
3 Merging Bits : 3

44 channel bits
32 Data Bytes : 14

32 Merging sets : 3 .

32*(14+3) = 544

A 24-bit synchronisation is added to enable recovery from loss of
clocking due to channel errors Golomb[68], Gilbert[69] & Ullman[70,pp 95],

Levenshtein[71,pp 707].

For a CDROM the medium surface consists of a sequence of
depressions or pits and mounds or lands ECMA[18,pp 22]. Each channel
frame of 588 bits, each of which is recorded along the physical track of the

CDROM, i.e. along the spiral from hub to rim which is traversed by the
optical system. In the recording process a channel 'one' is represented by a

transformation between pit and land, a 'zero' is signified by no change

Davies[28,pp 35]. The account of the encoding process has covered the stages

by which raw data input to an encoder can be transformed to channel code
by coding, scrambling and modulation. The decoding process is considered

in the next Chapter.

49

CHAPTER SIX

The Decoding Processes

Of The CDROM

6.1 Introduction

This Chapter is concerned with decoding the data which is held on the

CDROM in the form of the EFM recording code. In the absence of errors the

decoding procedure will be the inverse of the operations of the encoding: i.e.

channel decoding, CIRC decoding and de-interleaving; descrambling and

double RSC decoding. In addition, the decoding algorithm must detect and

correct recording errors. Hence a component of the decoding procedure is the

identification and resolution of error syndromes.

All optical data is recorded directly onto the medium at the mastering

stage. Hence recording channel errors which occur are read errors and occur

when a channel bit is missed or mis-interpreted. It is the function of the

decoding strategy to correct all such errors.

Reed Solomon Codes have been designed for the correction of burst

errors since they deal with symbols (e.g. bytes) of data rather than individual

bits, as discussed in Chapter Three Forney[37], Preparata[72] & Doi[42,pp

148]. Nevertheless Reed Solomon Codes have a limited capacity for dealing

with low levels of random errors or with both burst and random errors

together. However the performance falls below those of codes designed for

random errors alone Helgerson[73,pp 406].

The fourteen bit modulation codes offer a potential 2 14 distinct

codewords. However, due to the RLL constraints only 267 bit patterns

produce valid codewords. Fourteen bit codewords are mapped to the

corresponding data byte from a look-up table. Those patterns falling outside

the table may either be interpreted as the nearest legal 14 bit pattern

(interpolation), or treated as a codeword violation. This will produce a data

byte in error, which is the starting point for the CDROM error control

50

strategy. The 33 byte F3 Frame is obtained by demodulation. The first byte

of the F3 Frame is the control byte, this is used by the drive hardware and

then disguarded, so producing a 32 byte Frame.

6.2 Error Detection and Correction Using CIRC
The decoding strategies must resolve the full diet of error syndromes

Johnson[74]. Hence decoding algorithms are far more complex and more time

consuming than their encoding counterparts, Special LSI (Large Scale

Integration) Circuits have been designed to accommodate this additional

complexity Arai[75,pp 356].

All three interleaving stages of the CIRC encoding process were

discussed and illustrated in Chapter Five. Clearly the de-interleaving must

always be the exact reverse of the deinterleaving strategies. Various strategies

concerning CIRC have been investigated Ko[76] & Vries[62]. In the following

work the Cl decoder locates and corrects two errors in each frame, the C2

uses the Cl flags to correct a maximum of four erasures.

6.2.1 Cl Decoding

The 32-byte frames produced after demodulation and control byte removal

are fed into the CIRC Decoder. The first stage is to reverse Interleaving

Strategy III such that the frames acted upon by the original Cl Encoder are

recovered. The Cl decoder is intended to both detect burst errors and correct

random errors Vries[62,pp 184]. The purpose of detecting burst errors is to

provide flags for the C2 decoder Watkinson[61,pp 82].

Each 32-byte Cl Frame contains 4 parity bytes and thus has the

capacity to correct a maximum of two erroneous bytes per frame Hoeve[32,pp

168] & Ko[77]. The parity byes were originally obtained by the use of

equations from equation 6.1 (see Section 5.3.4). For Reed Solomon codes the

decoding matrix is identical to the encoding matrix. Hence the Cl decoding

is given by:

51

Hp * = S (6.1)

where Hp and Vp are specified in the Cl Encoder of Chapter Five and right

hand side is now the error syndrome. Clearly with no error in the data the

syndrome S equals zero, consistent with Section 5.3.4.
Each syndrome is the result of the row multiplication matrix and

vector, and subsequent addition of rows. The Cl Error Correction algorithm

is illustrated in Figure 6.1 Arai[75,pp 355], Vries[62,pp 184].

Figure 6.1 : How Diagram Of Cl Error Correction

32 BYTE CODEWORD

BYTES
IN

ERROR N
FU\G-0

ADD FUGS
TO CODEWORD

(28 BYTES)

52

Using Syndromes For Error Correction and Byte Location

The syndromes are calculated in the same manner as for the three bit symbol

case which was discussed in Chapter Three/ however with far greater

complexity. If the syndromes are non-zero than the frame is erroneous. The

syndromes are exploited so as to find the byte(s) in error. With S = (S0, S]7 S2/

S3). The four error syndromes (S0/ Slf S2, S3) are calculated as in Chapter

Three, noting that here there are more symbols in each codeword.

If all four syndromes are zero then no bytes are in error. If this is not

so then the Frame is checked for a single byte error. The necessary condition

for this is SJ/SQ = S2 /Sl = S3 /S2 = ~k, where k is the number of the byte in

error. Note that k can be at most 32, any value returned greater than this

maximum is incorrect. If the above condition is not valid then the Frame is

checked for two byte errors.

Two Byte Error Location

If one byte is not in error then there are two or more bytes in error in the

codeword. The use of syndromes in the location of a two byte error is

possible by using them in an error location equation Peterson[78,pp 114].

Following Ko[77]:

S = aaiE + a (6.2)a

Where the two byte errors are Ea and Eb at byte locations a and b

respectively then i =0,1,2 an 3.
It has been shown that the error locations satisfy the following error

location quadratic Patel[79] :

(SI2 + SOS2)x z + (S1S2 + SOS3)x + (S22 + S1S3) = 0 (6- 3)

Patel showed that the error locations a"a and a"b are the roots of the

quadratic Patel[79j. Heise has shown that Equation 6.3 can be solved by

substitution Heise[80]:

53

x = py (6.4)

where :

C'7C'5 4- CflCSp = MM + WM (6 5)
SI2 + SOS2

by applying this Equation 6.3 becomes:

y 2 + y + Y = 0 (6' 6)

where:

Y = (S22 + S1S3)IS1S2 + 5Q53 l2 (6.7)
1 S/2 + SOS2]

that is:

= S?+S1S3^ (6. 8)
SI2 + SOS2

Equation 6.6 is a quadratic based upon the constant Y arid this can

be solved by using a look up table. The two roots of equation 6.6 are fa (Y)

and fb (Y) and thus the byte locations are given by:

or" =/a(Y) < 6 -9>

and

A table lookup method is used in order to determine the byte locations from

the values generated by the above equations. The bytes in error can be

54

corrected using the algorithms illustrated in Section 3.2.6.

If the location of the bytes which are in error exceeds 32, they will lie
outside the frame boundary and thus are wrong. If the positions could not

be found the frame is deemed to contain more than two bytes in error. So as
to facilitate greater error correction power in the C2 Decoder each byte of

every frame is flagged Hoeve[32,pp 169]. This flag indicates the error status
of the Frame from which the byte originated. This strategy is clearly efficient
for burst errors but not random Ko[77,pp 17]. There are four types of flags
Vries[33,pp 8]:

Flag A : no errors Flag B : 1 error
Flag C : 2 errors Flag D : >2 errors (uncorrectable)

The purpose of the flag will be discussed in the description of the C2
Decoder. Now that the parity bytes have fulfilled their function they are
removed to produce a flagged 28-byte frame. At present CDROM error
correction does not differentiate between flags B,C and D. Valuated flagging

does enable further complexity to be incorporated in the decoding procedures
to improve correction.

6.2.2 C2 Decoding
The data is manipulated so as to reverse the effect of Interleaving Strategy
II. Any faulty bytes which may exist are dispersed amongst the 98 28-byte
Frames. The purpose of the C2 decoder is to correct burst errors and those
random errors that the Cl could not Vries[62,pp 184].

Each 28-byte C2 Frame has 4 bytes of parity, so that two erroneous
bytes can be again corrected per frame. Unlike the 32-byte Cl Frame, the C2
Frame has a flag associated with each byte. The identity of bytes which have
been flagged as possible errors are known and 4 bytes per frame can be
corrected. This is known as erasure correction Peek[30,pp 11]. An erasure is
a byte in a known position where the integrity of that byte is in question. The
C2 Error Correction is carried out as illustrated in Figure 6.2 Arai[75,pp 354-

5] & Vries[62,pp 185].

55

Figure 6.2 : Flow Diagram Of C2 Error Correction

28 byte codeword

* = BYTE
CORRECTION
MAY OCCUR

USE FLAGS
FOR 3 OR

4 BYTE
ERROR CORRECTION

ADD FLAGS TO
CODEWORD

The parity bytes and their associated syndromes are obtained from Equation

6.11.

HQ *VQ =S (6.11)

Where HQ and VQ are as specified in Section 5.3.2 and again S=0 if no bytes

are in error.

56

Using Syndromes in Conjunction With Flags

The four syndromes SO-S3, can be used to find any two bytes in error in the

same way as seen in the Cl Decoding. If the error bytes fall outside the 28-

byte Frame boundary then more than two bytes are in error within that

frame.

If more than two bytes are in error then the syndromes cannot be used

to both locate and correct the bytes in error. Instead the flagged bytes are

considered. Each flag illustrates that the byte has been deinterleaved from a

Cl Frame where error correction has been attempted. The bytes originating

from such Frames are all considered to be potentially in error. If more than

four bytes have been flagged as potentially in error then no error correction

is applied for fear of possible mis-correction. Otherwise these four bytes are

assumed to be in error and are corrected.

The Correction Of Four Byte Errors

The correction of up to four flagged bytes follows the approach of Ko[77].

Let there be four suspect bytes written A,B/C and D respectively.

These are processed to produce the equivalent Galois Field elements CXA, «B,

occ & a°. The corresponding errors are EA, EB, Ec & ED . As before the

syndromes are denoted by SO-S3, which are the associated Galois Field

elements. Three bytes in error can also be corrected by using the following

methodology.
By using Equation 6.12 which illustrates the relationships between the

syndromes and associated errors, the errors may be found.

Following Ko[77,pp 19]:

1111
<x a a a
a24 a28 a2c a20

a3*

EA

E B

E c

E D

(6.12)

57

By Gaussian Elimination equation 6.13 is produced:

<?0

<?1
<?2

C3

1

o (
0
0

1
<x^

0
0

1
(ac +aA)

(aD +a'4)(aD +aB)(aD +<x c).

6.13)

where:

Co

Qi
Q*
Q3

1000
0100
0010

.0 0 cc c 1

"1000
0100

0 <X B 1 0

0 0 «B 1.

1 0 00

aA 1 0 0

0 aA 1 0

.0 0 o^ 1.

So

«1

S2

S3.

(6.14)

The errors correction symbols EA, E B ,EC and ED, may be produced by the

back substitution of equation 6.13:

ac)
(6.15)

(«'
(6.16)

a*) ac) (6.17)

EA = Q0 + EB + Ec + ED (6.18)

58

Using this method the four bytes in error may be corrected, however
there is a chance of miscorrection McEliece[48,pp 701-703]. The processing

time taken to implement two error location and correction, or four error
correction in the CDROM is less than 4 urn Ko[77,pp 24J.

The reversal of Interleaving Strategy I will further disperse errors
across the Frames of the Sector, thus aiding error correction and error
interpolation.

This concludes Compact Disc error correction. The stages which
remain are unscrambling and addressing the logical sector. All 24-byte Fl
frames are flagged in the same manner as discussed previously. In the
Compact Disc these flags are used for byte interpolation before digital to
analogue conversion Hoeve[32,pp 172], Goedhart[16,pp 174]. In the CD-ROM
however these flags are passed to the sector decoding codes which employ
two Reed Solomon Codes. Instead of using complex interleaving strategies
these codes are treated as product codes. These are discussed in the next
section.

6.3 Sector Decoding
The configuration of the sector is shown in Figure 5.2 and the encoding
processes in Figure 5.3. A number of decoding processes are carried out,
most are the merely the inverse of the coding process.

The synchronisation field (bytes 0-11) is used to identify the beginning
of a sector to the CD hardware. The synchronisation field also prompts the
scrambling register to be reset to the initial settings. Hence the scrambler is
reset at the beginning of each new block. Before the bytes were fed into the
CIRC encoder the consecutive bytes of each frame were interchanged. This
process is reversed before unscrambling of the data. The unscrambling of the

data is a repetition of the scrambling procedure and not the inverse; the same
circuit, register and polynomial are used. Since modulo two arithmetic is

employed.
The Header Field holds addressing information for the sector,

59

establishing for example that the CD is addressing to the correct sector. The

Header Field also holds details of the sector type, whether CDROM, CD or
empty of data.

6.3.1 Decoding Using Q-Parity

There remain 2340 bytes which are read into two 43 by 26 matrices in the

same manner as described in Section 5.2.6 and illustrated in Figures 5.4 and

5.7?. The remaining 104 bytes are known to be the parity bytes and are read

into two associated 2 by 26 parity matrices. Each matrix's 26 byte axis parallel

to the diagonal and associated two parity bytes are read from the matrix.

2352 - 12 = 2340

2340 = 2236 (data) + 104 (parity)

2 x 43 x 26 = 2236 bytes

What follows is another standard Reed Solomon Decoding strategy.

The parity bytes and hence the syndromes are generated using Equation 6.19:

HQ * VQ = S (6.19)

Any byte in error which is left uncorrected by the C2 decoder will be

dispersed by the reversal of Interleaving Strategy I, again spreading

erroneous bytes over a number of codewords.

The two syndromes can be used to locate and correct one erroneous

byte per 26 byte codeword. This is done in the same manner as discussed in

Section 6.2.1. Again C2 flags are used to correct a maximum of two bytes in

error.
Once the two parity bytes have fulfilled their usefulness they are

discarded. Again frames which held erroneous bytes are flagged non-zero for

use by the P-Parity check.

6.3.2 Decoding Using The P-Parity
The identical 43 x 24 matrices are again used for this error correction

strategy. Equation 6.20 is used to generate error Syndromes.

60

Hp * VP = S (6.20)

Hp and Vp are specified in the Encoding Process. The code can be

employed in the same manner as seen previously. Two parity bytes are

present in the codeword and one byte may be corrected, whereas the flags

from the Q-Parity can be used to correct two. Since the bytes are sampled
from the matrix along a different axis from that of the Q-Parity, greater error

correction is possible. This is an application of product codes. In the same

way that interleaving disperses errors over a number of codewords, so

product codes aid error correction by calculating parity along different axis.

6.3.3 Using The EDC Check

The error correction of the CD-ROM also contains an error detection code as

the final stage of the strategy.

A CRC code is used at the encoding stage to add parity bytes to the

data. Since this parity is determined bit by bit from each symbol, any

remaining errors will be detected at this point. The two checks associated

with the CRC are calculated from the data in the manner as discussed in

same way as Section 5.2.4. If there are any residual discrepancies from the

encoded data the CRC check fails the whole Sector.

In this case the block of data must then be re-sought and accessed

afresh from the disc. Data can only be resought up to a fixed maximum

number of times from an area of the disc; continual failure of the EDC will

constitute a hard error when the disc is considered corrupt.

61

CHAPTER SEVEN
Illustrating The Effects

Of Errors Upon The
CDROM By Use Of The

Simulation Model

7.1 Introduction
A deterministic model of the full signal processing of the CDROM has been

built. This enables a channel burst error to be precisely prescribed within a

Sector. Both the bursts duration in modulated bits, and its starting position

in the Sector can be varied. The ability of the CDROM to contend with this

particular error may be analysed completely.

The simulation model covers a full CDROM Sector on the surface of

the disc. Its operation is shown diagrammatically in Figure 7.1. Data is

generated and encoded using the full sequence of CRC, Sector, CIRC and

EFM encoding. The error normally in the form of a burst is imposed on the

modulated data. The decoding is applied, with the associated error

syndromes being generated for each of the steps. In this way the correction

of the burst error, as well as its residual disposition across the Sector can be

traced and output at each level of the decoding, from EFM to the final CRC.

At present the use of this model is the only method in which to

investigate the effect of varying sizes of burst at varying positions along a

Sector. No other method is thought to exist in Academia or in Industry.

By this method the main error types, both random and burst may be

incorporated. The effect of these errors upon the code and the subsequent

dispersal and correction may be investigated.
Due to the complexity of the decoding process it was decided that the

software should identify the errors remaining after each stage of the process.

62

RECORDING
CHANNEL

RAW DATA ENCODE/
MODULATE

DATA DECODE/
DEMODULATE

Figure 7.1 : Error Incorporation Into The Channel Data

7.2 The Effect Of A Burst Error On The Channel Data
The following examples illustrate situations where : CIRC corrects the burst
errors, Sector correction corrects the errors, and where the error control
strategy fails.

7.2.1 Burst Length Of 2900 Bits
As an example a burst error of length 2,900 bits is used, this is equivalent
approximately 1.8 mm scratch upon the medium Vries[33,pp 8]. The effect
upon the modulated bits is shown in Figure 7.2. This burst begins at bit 580
of Frame 10. The Figure displays all 98 Frames of the Sector by rows with the
darker shading indicating the bits in error. With 588 modulated bits in each
Frame, the burst extends almost to the end of Frame 15.

63

2900 Bit Burst

Figure 7.2 Figure 7.3 Figure 7.4
rrrmF, M m m m ?. i£,n n^n^ Synchronisation Loss Deinterleave Strategy III

•MITIMHIil-l-M4tmfl'H44'|44*^

64

In Figure 7.3 the effect of synchronisation loss is illustrated. Since the
synchronisation bits of Frame 15 are lost, no part of this Frame can be read
and all its bits are held to be in error. Thus there are six Frames in error at
this stage.

Deinterleave Strategy III disperses bytes between adjacent Frames,
each of 32 bytes, as shown in Figure 7.4. There are now seven Frames
containing errors. The Cl decoding can resolve a maximum of two byte
errors per Frame. Since all seven corrupted Frames have multiple errors no
correction is possible, as shown in Figure 7.5. Note that the four Cl parity
bytes have been removed giving 28 bytes per Frame.

Deinterleave Strategy II spreads the error bytes over most of the 98
Frames, as shown in Figure 7.6. By referring to the Cl error flags the C2
decoding can correct up to four suspect bytes per Frame, and in Figure 7.7
it is shown that there is complete error correction. Again the C2 parity bytes
have been removed giving 24 bytes per Frame.

Since all errors have been resolved by CIRC, further the error
correction and dispersal schemes are discussed and illustrated with a larger
burst. The CD audio error correction codes were able to resolve the bytes in
error, the extra CDROM schemes were not utilised. In this case the errors
would be corrected by either the CD or the CDROM.

7.2.2 Burst Length Of 3000 Bits
Here, a burst initiating at the same position but of larger magnitude is
applied. The progression of the errors may be followed in the same manner
as discussed for the 2,900 bit burst. A burst of 3000 bits is equivalent to a

approximately 1.9 mm scratch upon the medium.
In Figure 7.8 the effect of the error upon the medium is illustrated.

Here, the increase in magnitude of 100 bits is shown to cause overlap into
Frame 16. The effect of the subsequent synchronisation loss is illustrated in
Figure 7.9. Here, error propagation occurs, to the end of Frame 16. Thus the

65

Figure 7.5
Cl Decoding Figure 7.6

Deinterleave Strategy II

SBSBSHB raroa

Figure 7.7
C2 Decoding

66

3000 Bit Burst

Figure 7.8 Figure 7.9 Figure 7.10
Upon The Channel Synchronisation Loss Deinterleave Strategy III

SHE miiiimiilllllllllllllimim.

<sm

67

Figure 7.11 Figure 7.12 Figure 7.13
Cl Decoding Deinterleave Strategy II C2 Decoding

ffiWIHHIHII'Hil'Hil'

68

burst is perceived as approximately 3,500 bits. Figures 7.10, 7.11 and 7.12

shown the effect of Deinterleave Strategy III, Cl Decoding and Deinterleave

Strategy II, respectively.

In the 2900 bit case, the effect of C2 Decoding resolved all the errors.

In this case errors persist. Figure 7.13 illustrates the errors remaining after C2

Decoding. Here eight Frames are affected.

Deinterleave Strategy I now spreads the bytes over adjacent Frames as

shown in Figure 7.14. This completes those deinterleaving and decoding

procedures which are common with the Compact Disc.

Figure 7.15 shows the position of the errors after successive bytes of

each Frame have been interchanged. Figure 7.16 illustrates the position of the

errors within the two matrices, as explained in Chapter Five, to enable

product decoding by a pair of orthogonal Reed Solomon codes.

In Q decoding, where reference is made to the C2 flags, a maximum

of two bytes in each of the 26 rows can be corrected. The results are shown

in Figure 7.17, where only two errors remain. In P decoding, in association

with Q flags, up to two bytes may be corrected in each of the 43 columns. As

can be seen in Figure 7.18, no errors now remain and the integrity of the

Sector data has been restored.

In this case CIRC has been unable to resolve the burst. The CD has no

further error correction schemes, although interpolation is used. However in

the CDROM the two extra levels of error correction have corrected the

remaining errors.

7.2.3 Burst Length Of 3600 Bits

By applying bursts of greater magnitude at the same position it is possible

to ascertain the size at which error correction fails. The progression of the

errors arising from a 3600 bits can be observed in Figures 7.19 - 7.29. A burst

of 3600 bits is equivalent to approximately 2.3 mm scratch upon the medium.

In this example, the CDROM error correction scheme cannot cope with the

quantity of errors. Errors persist after P correction. These are detected by the

EDC which signals that the data is in error.

69

Figure 7.14 Figure 7.15 Figure 7.16
Deinterleave Strategy I Byte Interchanging Position Of Errors In Product Matrices

70

Figure 7.17 Figure 7.18
Q Decoding P Decoding On Raw Data

71

3600 Bit Burst

Figure 7.19 FiSure 7' 20 Figure 7.21
Effect Upon The Channel synchronisation Loss Deinterleave Strategy III

72

Figure 7.22 Figure 7.23 Figure 7.24
immi!i?mCOding Deinterleave Strategy II C2 Decoding

73

Figure 7.25 Figure 7.26 Figure 7.27
Interchanging Position Of Errors In Product MatricesI

^nrt

74

Figure 7.28 Figure 7.29
Q Decoding P Decoding On Raw Data

75

7.3 The Effect Of Random Errors On The Channel Data
The CDROM was not designed to resolve high proportions of random errors
it is nevertheless appropriate to investigate the effect of such errors on the
correction scheme. A random error is defined as an error affecting a single
bit of the channel code regardless of the mechanism behind that error. If a bit
error has no correlation with other bit errors it may be called a random error
Doi[42,pp 148]. In the CDROM an asperity must be of size 0.8 mm so as to
obstruct channel data from the lens, this is due the refractive index of the
plastic. From this it is evident that any asperity affecting channel data will
always cause a burst error. Surface debris small enough to cause a random
error would not obstruct the read lens sufficiently to cause an error.

Random errors will only exist in low quantities, much less than those
investigated here. Examples of both successful and unsuccessful error
correction are given

7.3.1 Probability 0.0018 Error Rate
In a physical sector of data there are 98 Frames, each composed of 588
channel bits,i.e. 57624 bits. The expected number of bits in error per Sector
will therefore be 104 with a standard deviation of 10.

In Figure 7.30 the effect of the random errors upon the channel data
is illustrated. Of considerable significance are Frames 18,21,54 and 74 where
the synchronisation bits are effected. This can be seen to have striking effects
upon the related Frames in Figure 7.31. Here, synchronisation errors have led
to Frame errors, where all 588 bits are considered lost. In addition all random
bit errors will cause a symbol or byte error. It is clear from this that occurring
random errors will give rise to a mixture of symbol and burst (or Frame)

errors.
Deinterleave Strategy III is illustrated in Figure 7.32, here again the

errors are dispersed between adjacent Frames. This has little or no
consequence for the symbol errors, however as usual the bursts are
successfully dispersed. The effect of the Cl Decoding scheme is shown in

76

0.0018

Figure 7.30 Figure 7.31 Figure 7.32
Effect Upon the Channel Synchronisation Loss Deinterleave Strategy III

'MimuUj'mm tmtmtmHta_ „„_.....,_____ ii»i*mm»eatHttttttBtaE

77

Figure 7.33 Figure 7.34 Figure 7.35
ClDecoding Deinterleave Strategy II C2 Decoding

BH'Miiniutffffij

8S!

78

Figure 7.33. Here, the majority of the symbol errors have been corrected,

although the burst effected Frames remain. After correction fifteen Frames
remain in error.

The dispersal of the remaining errors by Deinterleave Strategy II is

shown in Figure 7.34. Upon C2 error correction being applied to this data,

one Frame remains in error. This is depicted in Figure 7.35. In Figure 7.36 the

remaining errors before Q correction scheme are shown. Figure 7.37

illustrates that Q correction has corrected these errors.

7.3.2 Probability 0.0019 Error Rate
The expected number of bits in error per Sector is 110 with a standard

deviation of 11. In Figure 7.38 the effect of the random errors upon the

channel data is illustrated. Frames 18,21, 54, 74 and 81 have synchronisation

bits which are effected. This can be seen to have the typical effect upon the

related Frames in Figure 7.39. Deinterleave Strategy III is illustrated in Figure

7.40.
The result of the Cl Decoding scheme is shown in Figure 7.41. After

correction seventeen Frames remain in error. The dispersal of the remaining

errors by Deinterleave Strategy II is shown in Figure 7.42. When C2 error

correction is applied to the data, thirteen Frames remain in error. This is

depicted in Figure 7.43.
In Figure 7.44 the distribution of errors in the product matrices is

depicted. In Figure 7.45 the effect of Q correction upon these matrices is

shown, here nine of the matrix rows remain effected by errors. After P

correction, Figure 7.46 illustrates that only one matrix column remains

effected by error, however this is enough to fail the data integrity check.

79

Figure 7.36 Figure 7.37
Position Of Errors In Product Matrices Q Decoding

SBfi

80

0.0019

Figure 7.38 Figure 7.39 Figure 7.40
Synchronisation Loss Deinterleave Strategy III

81

Figure 7.41
Cl Decoding Figure 7.42

Deinterleave Strategy II
Figure 7.43
C2 Decoding

82

Figure 7.44 Figure 7.45 Figure 7.46
Position Of Errors In Product Matrices Q Decoding P Decoding On Raw Data

83

7.4 Conclusion
In the case of both random and burst errors it is shown how synchronisation
loss can be of considerable significance. With burst errors, synchronisation
loss leads to burst propagation to the end of that Frame. This can be of
profound importance in situations where the error correction is at its limit.

When random bit errors are applied to channel data and
synchronisation is lost the result is to produce both symbol and burst errors.
This occurrence complicates the issue and lowers the tolerance of the system
to random errors. Synchronisation loss is further discussed in Chapter Eight,

where its effect upon the maximum error correction performance is
illustrated.

84

CHAPTER EIGHT
Performance Measurement and Inferencing

Using The Simulation Model

8.1 Outline
One of the objectives of this research was to identify the sources of errors
effecting the CDROM and to assess their effects. For any Mass Storage
Device, such as the CDROM, it is possible to obtain error counts at each stage
of the decoding process. For the CDROM this will be after the Cl and C2
Decoding of the CIRC and the decoding of the Sector. Also the status of the
final CRC check will be reported.

The model described in Chapter Seven can easily generate the
equivalent statistics for simulated errors. The examples in Chapter Seven
show that varying the position and length of a burst error will affect the error
counts. A systematic programme of such simulations will generate a large set
of such error counts. One can then use this information to infer the position
and length of an error from empirical error counts. Error statistics for a DDS
drive have been produced Odaka[12], Woolley[81] & Woolley[82].

8.1.1 Data Production
To obtain a comprehensive set of error counts the simulation model was used
for burst errors of length 100 bits to 10,000 bits (in steps of 100) and starting
positions at 100 bit intervals in each Frame. Each simulation took
approximately 1.5 minutes due principally to the file handling involved.
Consequently the model was run on ten PC's using a supporting platform,
so enabling execution. This still takes one week to complete. Here each PC
is responsible for running bursts between specified sizes. There are 6
positions per Frame, 80 Frames to which each burst is applied and 100 bursts
(10,000/100). There is therfore (6*80*100) 48,000 jobs to carry out each taking

1.5 minutes.

85

8.2 Burst Correction Performance Analysis of the CDROM
Recall that the statistics produced for each simulation run were: Cl

and C2 error counts, the P and Q error counts and the status of the final CRC
check. The Cl and C2 counts (which derive from Sector Frames) will lie in
the range 0-98, whereas the P and Q counts which come from the product

codes of the sector encoding have maximum values of 86 and 52 respectively.

Each error count points to the number of Frames (codewords), which remain

in error after one of the four decoders has been applied to the data. It has

been found that the Cl count increases with burst length whereas the C2

count reflects the position of the burst within the Sector. The CRC status is

simply PASS/FAIL.

Figure 8.1 shows the response of the CD-ROM to bursts of varying

length with a common starting point within the Sector. It shows the effect of

bursts of 100 - 8000 bits all beginning at bit one of Frame 40 and gives the

Cl, C2, P and Q counts and the CRC status in each case. As expected, the Cl

count rises steadily with burst length and reflects the adjacent Frame

deinterleaving strategy of Deinterleave III. As observed in Chapter Seven a

burst affecting a number of Frames will be spread marginally between

adjacent Frames. The burst length is therefore related to the number of

Frames in error at Cl Decoding. The C2 count is largely static at zero,

reflecting the fixed burst position. However, there is a threshold at a burst

length of approximately 6,500 when the C2 count rises suddenly to 52. This

reflects the Deinterleave II strategy which spreads the error bytes evenly
across most of the Frames of the Sector. The C2 decoding fails (and the C2

count is augmented) at all 52 Frames on or near to the threshold value of the

burst length. The P and Q counts follow the behaviour of C2. Both are zero

below the threshold burst length: thereafter P rises sharply to 20 and Q to 55.

By contrast Figure 8.2 shows the effect of a fixed burst length with

different starting positions within the Sector. In this case the Figure shows

the Cl and C2 counts and the CRC status for a burst of length 4000 bits. The

results confirm that a burst of this size is readily correctable when it occurs

near the middle of a Sector: ie between Frames 18 and 74. The results of

86

Fi
gu
re

3.
1

:
Er
ro
r

St
at
is
ti
cs

Pr

od
uc

ed

BL
;
Bu

rs
ts

At

Fr
am
e

40

ui 3 -P
 d -P CO

TJ c d -P

00

(j u
•
rH -P

U1 d -P u; O L L. LL

J

40
:

30
J

2
0

:

0

-1
0

J

2
>e

eo
 ^

oo
oo

o

i i
i i

i

T
--

H
-+

+
+

++
-M

--
M

-+^
••^

^•+
^

3S
f3

D

u
00

0
20
00

30
00

40
00

50
00

60
00

70
00

30
00

(D in IT (D IP 0)

0) •rt O z I (D

B
u
rs

t
S

iz
e

(B

it
s
)

0) i i-

+
1

cl

er
ro
r

st
at
is
ti
c

0
2

c2

er
ro
r

st
at
is
ti
c

a
3

Q
er
ro
r

st
at
is
ti
c

x
4

P
er
ro
r

st
at

is
ti

c
•>

5
CR
C

st
at

us

cc u CD

O

Fi
gu
re

3=

2
s
Er

ro
r

S
t
a
t
i
s
t
i
c
s

Pr

od
uc

ed

By

A

40
00

Bi

t
Bu

rs
t

50

r. _> o
oo

,

.
oo

^ -P •J
 >

M
J

30
.:

2
0

.

10
- 0

-2
0:

0
0

30
40

c
80

St
ar

ti
ng

Po
si
ti
or

OP

Bu

rs
t

+
1

cl

er
ro
r

st
at
is
ti
c

o
2

c2

er

ro
r

st
at
is
ti
c

i
3

cr
c

st
at
us

70
80

on

in o in en 01 o Z i H

< DC

HI

ffi O

Figure 8.2 confirm that Cl counts reflect burst length and C2 counts show
burst position within a Sector. In this case the Cl count is approximately
constant at 10 as the burst moves across the Sector. Note that the C2 count
changes in an approximately symmetric fashion across the Sector. Initially the
C2 count rises. This is because Deinterleave II has spread the burst over a
larger number of Frames. However the C2 decoding remains unable to cope
and the number of error Frames increases appropriately. As the starting point
of the burst progresses across the Sector the burst error bits are dispersed
over still more Frames. The number of error bytes within each Frame falls
and C2 error correction is successful in each of them. The C2 count drops to
zero and the CRC status moves from FAIL to PASS. The reverse process
occurs towards the end of the Sector. Near the transition at Frames 12 and
78, where correction is marginal, the CRC status fluctuates between PASS
and FAIL due to synchronization loss.

If the burst contaminates the first 24 bits of a Frame, synchronisation
is lost and the entire Frame is treated as being in error. This increases the
effective burst length with a corresponding reduction in the error correction.
Figure 8.2 also shows an example of CIRC miscorrection. In Frame 21
aliasing has occurred which has allowed the C2 decoding to apply ostensibly
successful correction to the bytes of this Frame and to produce a valid
element of the C2 data set. Hence no C2 count is recorded for the Frame.
However the incorrect element has been generated and this has been
identified at the CRC check.

Figure 8.3 shows the results for a burst error of 7000 bits duration and
shows similar correction characteristics. In this case the burst length is close
to the limit of CD-ROM error correction capacity. Successful correction is
confined to bursts near the centre of the Sector, starting in Frames 33 to 54.
In this case, near to the limits of correction performance, the effects of
synchronisation loss are still more marked. Limiting performance is again
considered in Figure 8.4 which shows the maximum correctible burst length
as the burst moves across the Sector derived from the CRC PASS/FAIL
status. Again Deinterleave Strategy III is shown to be the most effective

89

F
i
g
u
r
e

3,
3

:
:r
ro
r

S
t
a
t
i
s
t
i
c
s

Pr
od
uc
ed

3y

A

70
00

Bi
t

Bu
rs
t

-£] -j -P e -P
 e o u liJ

-1
0

-2
0

;

V <
H

G in a 0) o z en I

St
ar
ti
ng

Po
si
ti
on

OF

Bu
rs
t

+
1

cl

er
ro
r

st
at
is
ti
c

0
2

c2

er
ro
r

st
at
is
ti
c

a
3

cr
c

st
at
is
ti
c

tr UJ CD o oc

16
Maximum Correctable Burst Size

U3
C
1
0)

CO
D

-*

p
XI—'•

3
<:
3

GD
c 1

o
o"5
"5
fD
n c*-
(-••

O

0

0)
n

DROBERT[MATHS] S-NOV-199S: SB . 9

dispersal scheme near the centre of the Sector.

These results suggest that the maximum correctable burst is 7,100 bits
long. Also, as expected when operating near its limit the CDROM
performance is critically affected by synchronisation loss.

8.3 Inferencing Burst Errors
Simple inferencing may be done by observing trends in the data which occur
with bursts of specific sizes. This is discussed in Section 8.3.1. For maximum

likelihood decision making it is necessary to use a dedicated software
package.

8.3.1 Inferencing By Observation
In Section 8.3.2 the Inferencing Package will be discussed in full and some
results reviewed. However it is possible to make some conclusions about a

burst from the error statistics without reverting to the software package. By
observing the magnitude of the Cl statistic it is possible to determine the

probable burst sizes affecting the data channel. The Cl error statistic is a
reflection of the number of Frames which are in error after De-interleave III
and Cl error correction have been carried out. De-interleave III is a mild byte
disperser. The bytes in error will only be spread between adjacent Frames.

Due to synchronisation loss, burst results only occur in certain ranges.
The Cl count attributed to a burst can also vary. For example a burst of 4000
may result in a Cl count between 7 and 10. This is dependent upon its

position in both the Frame and the Sector.

92

8.3.2 Inferencing The Burst
A software package has been produced which carries out the required
inferencing. The Cl and C2 values are input into the package. Using these
variables the data sets searched and all the possible bursts logged in a linked
list. Figure 8.5 summarises the functions of the package. Since the P and Q
values follow the C2 and CRC, they have been excluded

On the search concluding the user may interrogate the package about
the bursts which fit the specified values.

Figure 8.5 : Inferencing Package

onions

(1) DISPLAY BURSTS AND ASSOCIATED PROBABILITIES

(2) DISPLAY BURSTS AND ASSOCIATED DATA (FRAflE/BIT/CBC)

(3) DISPLAY SPECIFIC BUBST AND ASSOCIATED DATA

(4) DISPLAY AREAS AND ASSOCIATED PROBABILITIES

Quit

WPUT OPTION : .

Consider Cl and C2 counts of eight and 36, respectively. From these
variables it is possible to obtain the bursts which generate such outcomes.

93

8.3.3 Example

The output from these stipulated tests is as follows:

(i) Associated Bursts

The bursts and crc status associated with cl=8 and c2=36:

burst frame bit crc burst frame bit crc

3400

3500

3500

3600

3600

3600

3700

3700

3700

3800

3800

3800

3900

3900

3900

4000

4000

4000

4100

4100

4100

4200

4200

4200

4300

4300

4400

6

6

10

6

6

10

5

6

10

5

6

9

5

5

9

5

5

9

5

5

9

5

5

9

5

9

5

201

101

101

1

201

101

501

101

1

401

1

501

301

501

401

301

501

401

301

501

401

301

501

401

301

301

301

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

3400

3500

3500

3600

3600

3600

3700

3700

3700

3800

3800

3800

3900

3900

3900

4000

4000

4000

4100

4100

4100

4200

4200

4200

4300

4300

4400

10

6

10

6

10

10

6

9

10

5

9

10

5

9

9

5

9

9

5

9

9

5

9

9

5

9

9

201

201

201

101

1

201

1

501

101

501

401

1

401

301

501

401

301

501

401

301

501

401

301

501

401

401

301

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

94

(ii) Bursts and Associated Probabilities

The bursts associated with cl=8 and c2=36 and their probabilities are:

burst

3400

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

probability

0.04

0.07

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.07

0.04

From these results it can be seen that the most likely burst size ranges from 3600 to 4200.

(iii) Most Likely Areas

The burst occurring with the designated error statistics occur in specific areas. There
may be a number of different area, each has an associated probability. In this example there
is only one area of interest, however in other cases there will be multiple areas. The areas
of bursts associated with cl=8 and c2=36 and their associated probabilities are:

area_______probability

3400-4400 1.00

95

CHAPTER NINE

Obtaining A Measure For

CDROM Performance

9.1 The Need To Measure Performance
It has been shown how errors are dispersed and corrected by the CDROM

error correction scheme. However, if the final CRC fails then a reseek (or

retry) is attempted. Here a second attempt to find and decode the Sector is

undertaken. In this case the full error correction scheme is reapplied.

The burst errors considered in Chapters Seven and Eight may be

regarded as permanent errors (for example a scratch). Here reseeking will

encounter exactly the same error Woolley[82]. In contrast, if the errors are

transient (electrical interference or a vibration) or semi-permanent (a

moveable hair, dust fragment) then a reseek may well result in the data may

be corrected at the second attempt Watkinsonfll, pp 202].

Clearly the presence of reseeks will affect the access times for a given

block1 , of data. An access time is composed of rotational latency, data transfer

time and seek times Barbosa[25,pp 195]. Whilst the times to access multiple

blocks can be measured. Here attention is concentrated on the time to access

a single specified block of data. The time taken to access several blocks, some

of which require reseeks, can be measured. This only indicates that the

reseeks have taken place. It will not show which blocks required retries. To

allow a more direct analysis of the performance, attention has been restricted

to inter-block access times: i.e. the time to access a single block.

In Chapter Ten it will be seen how both access times and the number

of retries can be used to measure the performance of a CDROM system,

whilst subject to vibration. The remainder of this Chapter explains how these

two measures of performance are obtained from a drive unit.

In order to obtain information regarding access times and reseeks,

1 In order to avoid confusion a sector is referred to as a homogeneous data block.

96

dedicated software has been written to facilitate the communication between

the CDROM drive unit and the host PC. The role of the SCSI (Small

Computer System Interface) card is described here together with ASPI (the

Advanced SCSI Programming Interface), the protocol on which the

communication is based. The communication commands, both device specific

and non-device specific commands. These commands are incorporated into

a piece of dedicated software. This facilitates controlled communication

between the host (PC) and the target (CDROM).

9.2 The Hardware and Software Requirements

The list of the hardware used is as follows:

• 486 Personal Computer.

• SCSI card which is ASPI programable.

• CDR-1950S CDROM drive.

• Interconnecting cable.

These devices are connected as shown in Figure 9.1. The software is

written in both 'C and Assembly language.

/ \
/ /)

//
\s

A A

// /
/ /

/////
/

I\

/
/

1 1 n

A
T
PC INTERNAL

SCSI
CARD

CABLE CDROM

Figure 9.1 : Hardware Set-up

97

9.2.1 The SCSI

The successive introduction of new computer peripherals has led to a widely
recognised need for a common interface between host computers and these
peripheral devices NCR[83]. The SCSI was introduced to fulfil this need. The
SCSI bus has a standard interface with the computer and each new
peripheral is viewed as another device connected to the SCSI bus. There is
no longer any need for specialised hardware to accommodate each new
device to the computer itself.

SCSI specifies two communication protocols between the target and
host. These are asynchronous and synchronous. Asynchronous
communication requires handshaking for each byte transferred, whereas
synchronous communication transfers a series of bytes before further
handshaking is necessary. Here only the synchronous mode is used. An
example of the communication is given in Figure 9.2. The initiator decides on
an operation. It sends a command code specifying that operation to the
target. The target then executes the specified operation.

PC : INITIATOR CDROM : TARGET

SEND COMMAND ^——————————————— \s
^SEND ACKNOWLEDGMENT^j ———————————————

EXECUTING
COMMAND —

. COMMAND FINISHED
^ RETURNED DATA

Figure 9.2 : Simplistic Communications

The figure provides a simplified view of SCSI communication. In practice
data transfer is more involved than simply sending a control code. A
command is sent in the form of a control contained within a data block called

98

a SCSI Request Block (SRB). The command code and additional information
necessary to execute the operation are known collectively the Command Data
Block (CDB). This forms part of the SRB. These data structures are crucial
to the use of ASPI.

9.2.2 Using ASPI To Communicate With A CDROM Drive

EXECUTE
COMMAND

A

HOST
COMMAND
CODE

ENCAPSULATE!
\

ASSOCIATED f^ p. r^
DATA U U C

u
TARGET

[COMMAND
CODE

ASSOCIATED
DATA

A
7

DATA CDB SRB

I1
STRIP

DATA CDBt
Figure 9.3 : Relationship Between SRB and CDB

Figure 9.3 illustrates the relationship between the SRB and the CDB and how

the data is used. To enable full communication ASPI must :
• obtain the address of the target device must be resolved in

order to locate the point to which data shall be sent;
• establish a communications route between the two devices, so

that data can be sent and received with relative ease;

• establish a procedure for obtaining the information specified in

Section 9.1 (access times and retry counts).

A dedicated piece of software has been built so that these functions are

transparent to the user. This is discussed in Appendix B.

99

9.3 The Low Level Communications Objectives Of ASPI

The ASPI Manager manages the PC and provides the hardware independent

ASPI for SCSI applications. This manages the communications channel and

provides the SCSI commands. It is implemented transparently using MS-

DOS. This SCSI card is manufactured by the ADAPTEC company who

originally produced the ASPI protocols. User information on ASPI has not yet

appeared as yet in the public domain. It is believed that this is the first

academic application of this protocol.

Furthermore the documentation that does exist appears only to exist

in synoptic form and outlines assembly code which may be used Adaptec[84].

For the present work C was used. A High Level Language was considered

easier to manipulate and update. Assembly language is used in order to carry

out the low level requirements. These are incorporated as functions which are

called by the C main program.

9.3.1 Getting The ASPI Entry Point

The ASPI entry point is the address from which the ASPI protocol is called

prior to communication via the SCSI bus. It must be obtained from the ASPI

manager. Details are given in Appendix B.

9.3.2 Sending and Receiving Data

The main program accesses two assembly modules. Both modules contain

low level functions which may be called from the C program.

The first module contains the function responsible for obtaining the

ASPI entry point. Once this address is obtained communication can be

started. The second assembly module contains the function which facilitates

communication. This module is continually called in order to send the SRB

to the target. This may be considered as the send/receive module.

The main program is also responsible for file handling, message

interpretation and message handling. Full listings are given in Appendix B.

100

ASSEMBLY
FUNCTION 2

<

C

1_J-

MAIN 'C 1 PROGRAM

CALL FUNCTION 1

FILL SRB
= SEND SRB
^RECEIVE SRB

EXAMINE DATA

ASSEMBLY
FUNCTION 1

=£> GET ASPI
ENTRY

^ — POINT

1N

Figure 9.4 : Program Structure

Figure 9.4 illustrates how the C program initially calls the first assembly

function and so obtains the ASPI entry point. The SRB, including the CDB is

now filled with command data by the main C program.

The contents of the SRB are sent to the CDROM device. The C

program waits until the target sends an updated SRB to the host. Its contents

are examined. It can then be reset so that another command can be sent to

the target device for execution.

9.3 Transferring Data Using The SCSI Bus
Establishing a communication channel is non-device specific. However

obtaining information from the CDROM is device specific and requires device

specific commands. The two significant elements of each SRB are the

command code and the status field.

The command code specifies the non-device specific command which

is to be performed. For example, one command is Get Device Type. This

101

indicates the type of devices which are installed on the SCSI bus. However,

the most important command code is the Execute SCSI Input/Output

command. This facilitates data transfer.

The status field refers to the progress of a command: whether or not

it has been completed and if errors have arisen. The status values and their

descriptions are as follows:

Status value Description
OOh2 SCSI request in progress.

Olh SCSI request completed without error.

02h SCSI request aborted by host.

04h SCSI request completed with error.

80h Invalid SCSI request.

81h Invalid Host Adapter Number.

82h SCSI Device Not Installed.

A zero status is reported when a SRB has been sent but not returned.

Since the software must pause at this point, until the SRB is returned, the

status field is constantly polled for a non-zero value.

A command request has a number of associated fields. Important

fields are : the Data Allocation Area Length and Address, the Sense

Allocation Area Length and Address, the CDB Length and Address, the Host

Status and the Target Status.

The CDB defines the area in which the device dependant commands

will be placed Hitachi[85]. These commands describe the I/O function to be

performed. The address of the data area and its length are placed in the SRB.

Similarly for the Sense and Data Allocation Area. The Sense Allocation

Area is filled with data when an error status is returned from a command.

This sense data may be used to deduce where and why an error occurred. It

will be shown in Section 9.3.2 that this is significant when diagnosing errors.

The Data Allocation Area may be filled with data by either target or

host as specified in the CDB. For example, if a Read operation is specified

2 All values are in hexadecimal

102

then data will be read from the medium and placed in the Data Allocation

Area.

The SRB may be considered as a packet of data which may be accessed

by both the host and the target via the SCSI bus. This is done by passing the

address of the SRB structure to the Send Data Module.

9.3.1 Error Status Flagging Of Host and Target Devices

Initially the length and contents of the CDB are set to zero, so that no device

operation is selected. This enables the communication channel to be tested

in isolation.

The initial aim is to test whether the Send Assembly module was

correctly transmitting the contents of the SRB to the drive unit. Problems

which could arise include: incorrect addressing, the difficulties associated

with imbedding assembly language in C, and sharing variables between

languages.

The Send Data Module uses the SRB pointer to send the address of

the SRB to the CDROM hardware. The SCSI bus is used to access the SRB

dynamic stack. The status field of the SRB is initialised to a value which

would not be produced by a SCSI request. The SRB is now sent.

There are a number of possible responses. If information is not sent

correctly the status field is not altered. The Send module must then be

examined for erroneous communication. If an error status is returned the

communication channel is functioning correctly. However one of the devices

is causing an error. Two further status fields are examined to determine

which device is at fault.

Host States Adaptec[84]:

OOh Host Adapter did not detect any error.

llh Selection Timeout.

12h Data overrun

13h Unexpected Bus Free

14h Target bus phase sequence failure

103

Target States :

OOh No Target Status

02h Check status (i.e.Sense Data in Sense Allocation Area)

08h Specified Target/LUN busy

18h reservation conflict

The most likely error attributed to the host is a timeout, in this

instance the Target device has taken too long to respond to the SRB. This

may be due to either incorrect addressing or a busy device. The following

example illustrates the three status fields associated with sending an SRB:

SRB Status : 04h

Host Status : llh

Target Status : Oh

The SRB Status:04h states that the SCSI request was completed with

error and the host status reports a timeout. The target status reports no

problem. This occurs when no target devices is installed on the SCSI bus.

If an error status is reported then data is stored in the Sense Allocation Area.

9.3.2 The Sense Allocation Area

The Sense Allocation Area (S.A.A) may be regarded as an array, it is a data

area within the SRB. In this example the SRB status indicates that an error

has occurred. The Target status reports that sense data is in the Sense

Allocation Area and that the Host status did not detect any error. In the

following example, the sense data is the information which aids error

diagnosis.
Sense Allocation Area For Absent Medium

SRB status: 4 70 00 02 00

Host Adapter Status : 0 00 00 00 06

Target Status : 2 00 00 00 00

3a 00 00 00

104

A diagnosis of the error is possible by cross referencing this

information with the error reports in the CDROM device specifications

Hitachi[85]. The three important items are the Sense Key, the Additional

Sense Code and the Additional Sense Length, all of which lie within the

Sense Allocation Area. Important codes for each of these are:

Sense Key codes (lower 4 bits of byte 2) :

02h Logical unit not ready.

04h Hardware error.

05h Illegal Request (illegal parameter in CDB)

Additional Sense codes (byte 12) :

04h Logical unit not ready,

llh Unrecovered read error.

24h illegal field in CDB.

3ah Medium not present.

Error code (byte 0):

70h Current errors.

Additional Sense Length (byte 7):

Onh There are n additional bytes of data following.

Whenever data is placed in the S.A.A the error code of 70h will be

present in byte zero. In the above example the sense and additional sense

are 02h and 3ah respectively.

The Sense Key indicates that the device is Not Ready. The logical unit

addressed cannot be accessed. The additional sense key, reports that the

medium is not present, i.e the compact disc was absent.

This is a simple example. The two sense keys enable more complex

situations to be diagnosed. Use of the S.A.A and sense key descriptions allow

diagnosis of problems.

105

With successful transmission of the SRB, the contents of the CDB are
filled and the device specific commands may now be used.

9.3.3 Specifying Operations Using The CDB
In the same way that the SRB is used to facilitate SCSI commands, the CDB
is used to perform specified input/output operations. In the example above
no data has been sent in the CDB. This was to simplify SCSI communication
and limit the factors which cause error. The CDB is a small packet of
information which is contained in the SRB. As well as specifying the
required operations the CDB also contains data associated with that
operation. A good example is the Read command. Here the starting address
and number of blocks to read must also be given. In the example below
failure to insert correct information in both position and value has led to a
status check, implying failure.

Status Values S.A.A For An Incorrect CDB
SRB Status : 04h 70 00 05 00
Host Status : OOh 00 00 00 06
Target Status : 02h 00 00 00 00

24 00 00 00

The Sense Key indicates that an illegal request has been made and
furthermore the Additional Sense Key indicates that an illegal field is present

in the CDB.

9.3.4 Obtaining and Sending CDB Data
Some CDB commands require data to be sent back to the host. This can be
either the contents of a data Sector, or details of the performance statistics,
e.g. the retries. To keep the SRB at a manageable size, only the address of the

Data Area is stored in the SRB.

106

The device specific commands are used to obtain a block of data from

the medium. Commands were designed using the Hitachi product manual

Hitachi[85]. With devices from other manufacturers their product manuals

must be used Sony[86] & Philips[87]. The Verify command is used to check

the integrity of a block on the CDROM medium using CIRC and the CRC.

This command was used in preference to the Seek or Read command. The

Seek command seeks a block of data without verifying it. The Read

command does verify the data, but it also returns the decoded raw data to

the host. Since this is unnecessary and requires a large data area to be

considerably large (2048 bytes), Verify is the preferred command.

When data is read from the CDROM, log statistics are updated within

the drive unit. These statistics include the number of retries. Here the total

number of retries, the number per command and the address of the last retry

is given. There is also a field which identifies the cause, however this is not

defined in the current release of information from Hitachi. These statistics are

obtained by the PC, using the LogSense and the LogSelect CDB commands.

LogSelect is used to specify which statistics are to be recorded. After

each block is accessed, LogSense obtains the error statistics. In addition,

ModeSense and ModSelect may be used together in order to change the

CDROM mode. For example, the maximum number of retries may be altered.

A default maximum of ten retries was used throughout.

9.4 The Access Times and Retry Counts From The Drive
The communications link has been established and the device specific CDBs

have been constructed. These are used to obtain performance measures for

the transient and semi-permanent errors.

As discussed in Section 9.1, the inter-block access time is recorded, i.e.

the time taken to read an individual block of data, including retries. The

access time is taken to be the interval between Time A and Time B.

Time A is taken before a block is requested by and SRB being sent. It

is recorded immediately before the Send assembly module is accessed.

107

Time B is the time recorded upon the SRB being returned successfully.

This is recorded when a successful status is reported from the Send Module.

This interval includes the access time plus an additional command

overhead, which is constant for each access.

108

CHAPTER TEN
Measured Performance Of The

CD-ROM Against Transient Errors

10.1 Introduction
In this Chapter the data generated by the methods outlined in Chapter Nine
is presented and analysed. The performance measures are obtained both in
a standard working environment and when the CDROM drive is subject to
vibrations. The results are outlined in Section 10.3 and presented in Section
10.4. The results for the vibrated system were obtained using dedicated
equipment at the British Gas Engineering Research Station in Killingworth.

Blocks are read from the CDROM disc in sequential logical order. This
is not necessarily the order in which they are physically recorded, which is
dependant upon both the manufacturer and the mastering software. In the
results below blocks are presented in two ways. Either individual blocks or
a number of sequential blocks are used. A number of sequential blocks used
are referred to as a block sample. The experiments are carried out by
verifying one thousand logically sequential blocks in each case.

10.2 Test Disc Details
Two discs are used in the following investigations. Disc A is as clean as
possible, having being stored and handled with care. Consequently it
contains no errors. Disc B has been partially covered by a piece of non-
transparent adhesive tape, as illustrated in Figure 10.1. The effect of the tape
will be similar to that of a scratch or obstruction in that the underlying data
cannot be read by the optical hardware.

109

Figure 10.1 : CDROM With Error

\

Note that the adhesive tape cannot be positioned to cover given blocks
of data since the disc does not contain a common reference point from which
to measure any angular displacement. So, in contrast to Chapter Seven a
burst error of known length and position cannot be investigated.

Measurements were taken for Disc A both near the centre of the disc
and near the rim. The inner blocks area were read from block zero to 1000.
Block zero is the first block of the data area. For the outer area the same
number of blocks are read, however access begins from block 200,000. The
error statistics for the first block access (0 and 200,000) are discarded for
reasons which will become apparent later in this chapter. The access times
will increase for blocks further from the centre of the disc and it is also
possible that the physical faults, such as disc wobble, will affect the results.

For each run of the software the inter-block access time and the
number of reseeks are recorded. The access times are recorded to the nearest

110

hundredth of a second. After ten reseeks a block is deemed to contain

permanent errors that cannot be corrected and is abandoned. In such a case

the access time does not represent the time taken to access a block, but the

time taken to carry out the ten reseeks, use both CIRC and the CRC.

10.2.1 Typical Error statistics

Figure 10.2 illustrates typical error statistics associated with a run of six

blocks. To limit the quantity of data the retries are only recorded when non­

zero.

Figure 10.2 : Output From Performance Software

Inter Block Access Times Read Retry Count
1 22

17
22

15
46 5:2

17

In the instance of a retry occurring for a given block, the access time

of that block should increase markedly from the normal range. This can be
observed in the figure where block five has two associated retries, this is

referred to as a soft retry. A hard retry is described as a block where the
maximum number (ten) of retries have been applied, without success. Here
the access time is also seen to rise. Despite this apparent relationship between
these two statistics it will be shown later that this is not always the case. For

this reason it is important to use both statistics.

Ill

10.3 Outline Of Experiment
All experiments were carried out in both standard and hostile environments.
The standard environment is defined as the normal working conditions of the
CDROM drive and medium.

Unlike humidity and temperature there is no vibration specification in
ECMA and other standards. For this reason vibration was chosen
ECMA[18,pp 4]f BSI[19,pp 6] & Hitachi[88,pp 1193]. This is applied in three
forms: a shock test; fixed frequency vibration; and swept sine vibrations.

Note that it is not possible to run repeated runs of the software for
swept frequency and sudden shock tests, for this reason the results rely on
a single run. In most results an average is taken over a number of blocks.

10.3.1 Standard Environment With Disc A
In this environment the performance of this disc in the drive unit

should be at an optimum level, i.e. low access times and zero retry counts
should prevail. For both data areas the block access times will vary. These
variations should be small in comparison to those generated by reading
problems.

It also likely that the average access time observed in each areas will
differ. This is due to increased latency Barbosa[25,pp 31] and the Constant
Linear Velocity. For this reason it is necessary to only compare like areas of

a disc.

10.3.2 Standard Environment With Disc B
Information is accessed from the area of Disc B near the centre. This is the
area affected by the incorporated error. It is expected that the existence of
errors will be highlighted by the presence of both high access times and non­
zero retry counts. These retries are likely to be hard errors, i.e. the block in

question is affected by a permanent error.

112

10.3.3 Hostile Environment With Disc A

(i) Shock Test

Only the inner data area of Disc A is used for this test since these results are
almost identical. The drive is affected by an impulse which is unmeasured.
This is

in contrast to (ii) and (iii) where the applied vibration is measured. The
physical displacement of the laser will prevent access of the current block. Its
subsequent performance is of significance.

(ii) Constant Fixed Vibration
The frequencies used in these tests range from 10 to 100 Hz, in steps of 10

Hz. In addition the maximum acceleration levels applied range from 0.5 to
2 g, in steps of 0.5 g.

In order to establish the effect of a given frequency and acceleration
level, the drive is exposed to each combination in turn. For example, the first

experiment is lOHz at 0.5g, the second is 20Hz at 0.5g, and so on.

(iii) Swept Sine Vibration

Identical ranges of frequency and acceleration to those in (ii), apply to these

experiments. In contrast to the previous experiments the frequency increases
from 10 to lOOHz as the experiment progresses. To maintain a constant

maximum acceleration the amplitude decreases as shown below.

The equation of motion of the vibration is:

x" + yv*x(t) = 0 (10.1)

113

with solution:

x(t) = ACos(wt + 4>)

The acceleration is:

x" = -Avf2Cos (wf + <|>) (10.3)

with peak value: Aw2 .

Hence for constant peak acceleration:

A « -L (10.4) w2

10.3.4 Hostile Environment With Disc B
The hostile environment discussed in Section 10.3.3 are identical to those
applied to Disc B. However, in this case two error mechanisms will affect
performance: both surface errors and vibration. By comparison of the data
produced in both standard and hostile environments the effect of the latter
may be established.

114

10.4 Experimental Results

The experiments follow the order outlined in Section 10.3. The relevant graphs are

illustrated for each experiment.

10.4.1 Standard Environment With Disc A

(i) Inner Area

Graph 10.1 depicts the typical access times associated with the inner data area.

12

10

8

Access Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Block Number

^H Access Time

Graph 10.1 : Access Times For Inner Data Area

The access times are not constant. They vary between 6 Hsec (Hundreths of

a second) and 11 Hsec. As would be expected for a clean disc no retries were

observed.

115

(ii) Outer Area

In Graph 10.2 typical access times for this area are illustrated.

Access Time
SO

40

30

20

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Block Number (200,000 + block number)

^H Access Time

Graph 10.2 : Access Times For The Outer Data Area

Excluding the first, these vary between 11 Hsec and 18 Hsec. The access

times are larger than those shown in Graph 10.1. This difference is due to the

increased latency experienced by the laser as it accesses data nearer the rim. Again

no retries are observed.

The access time for the first block is atypical. This is due to the system being

at rest when the block access was requested. If a drive is unused for a period of time

the unit enters a waiting state. Upon a data block being requested the read laser must

move from rest and find that block's position on the disc by reading the Table of

Contents. The Table Of Contents is positioned at the centre of the disc. A large

initial access time always occurs when a block is accessed from an inactive drive.

Hence the initial block of data is always discounted.

116

10.4.2 Standard Environment With Disc B

Graph 10.3 illustrates the statistics associated with Disc B.

Access Time Number Of Retries
160

140

120

100

80

60

40

20

0

..

-

'

_

-

-

7

/
X

X

X
X
X
X

//

X
X

/

X
X
X
X

X
X
X
X

x
X
X
X

12

- 10

- 8

- 6

- 4

- 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Block Number

HH Access Times Y//A Retry Counts

Graph 10.3 : Error Statistics Generated By Disc B

Here blocks 3 and 12 are observed to be affected by the surface error,

with access times of 132 and 137 Hsec respectively. The blocks in error

experience maximum retries, due to the permanent error upon the disc

medium. Here the access time represents the time taken to reseek the block

ten times and attempt decoding.

117

10.4.3 Hostile Environment With Disc A

(i) Shock Test

Graph 10.4 illustrates the affect of a shock test on the drive. This test can be seen

to affect block eleven significantly. Here the block access time can be seen to rise

to 153 Hsec. Of further significance is the lack of any retries.

160

140

120

100

Access Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Block Number

^H Access Time

Graph 10.4 : A Shock Test On The Inner Data Area Of Disc A

The applied force affects the read laser such that it cannot find the next

sequential block, in this case block eleven. However since the block was not found,

the data is not read. For this reason no retries are present, since the block is retrieved

successfully upon the block being found. Further tests did cause retries to occur. The

effect of a shock is therefore dependant upon the reading stage, whether finding

(seeking to) or reading (accessing) the block.

118

(ii) Constant Vibration

Inner Data Area

Graphs 10.5 to 10.8 depict the average access times and retry counts for the
inner data area which are plotted against frequency for acceleration levels 0.5,
1, 1.5 and 2g respectively.

Here the adverse frequency regions for each acceleration level can be
identified by the rise in both statistics. As the acceleration level increases the
region of 'none functioning' broadens. At some frequency values the system
is unable to retry or access due to the inability to find the specified block. In
this case the system is observed to crash without completing the specified
block accesses. This is denoted on each graph by a box, within this the
system crashes.

80
Average Access Time Average Number Of Retries

10 20 30 40 50 60 70 80 90 100

IH Access Times V/A Retry Count

Graph 10.5: Error Statistics Arising From Fixed Frequency With 0.5g Tests

119

Average Access Time Average Number Of Retries

area in which system crashes

10 20 30 40 50 60 70 80 90 100

Frequency

^H Access Tlmss £££4 Retry Count

Graph 10.6 : Error Statistics Arising From Fixed Frequencies With Ig Tests

200 Average Access Time Average Number Of Retries

150 -

100

area in which system crashes

40 50 60 70 80

Frequency

•H Access Times E%4 Retry Count

Graph 10.7 : Error Statistics Arising From Fixed Frequency Tests With 1.5g

120

200

150

100

Average Acc«s« Tim*

area in which system crashes

Frequency

H Ace*** Times Efra Retry Count

Graph 10.8 : Error Statistics Arising From Fixed Frequency With 2g Tests

Figures 10.3 to 10.6 depict the area of vibration for each acceleration level and

the effect upon the performance of the drive with the inner data area. In each

figure the white area depicts the region where the drive behaves normally.

These and all such figures are produced by the same data used to produce

the associated graphs.

121

KEY

I I normal functioning

[j^S area of retries

^3 high access times

rive unable to function
(crashes)

10hz 50hz 100hz

Figure 10.3 : Illustration Of The Effects Of Frequency On Drive At 0.5g

10hz 50hz 100hz

Figure 10.4 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.5 : Illustration Of The Effects Of Frequency On Drive At 1.5g

10hz 50hz 100hz

Figure 10.6 : Illustration Of The Effects Of Frequency On Drive At 2g

122

Outer Data Area

Graphs 10.9 to 10.12 depict the average access times and retry counts for the
outer data area.

Average Access Tim* Average Number Of Retries

10 20 30 40 SO 60 70 80 90 100

e^l Access Times Y//A Retry Count

Graph 10.9: Error Statistics Arising From Fixed Frequency With 0.5g Tests

200
Average Access Time Average Number Of Retries

area in which drive crashes

150 -

100 -

10 20 30 40

Frequency

•^•1 Access Times V/A Retry Count

Graph 10.10 : Error Statistics Arising From Fixed Frequency With Ig Tests

123

200
Average Ace*** Time Average Number Of Retries

150 -

30 40 50 60 70 80 90

Frequency

^H Access Times WA Retry Count

Graph 10.11: Error Statistics Arising From Fixed Frequency With 1.5g Tests

250
Average Access Time Average Number Of Retries

area in which drive c -ashes

• Access Times E££4 Retry Count

Graph 10.12 : Error Statistics Arising From Fixed Frequency With 2g Tests

Figures 10.7 to 10.10 illustrate the effect of each area of vibration for
each acceleration level upon the drives operation at the outer data area. The

same key applies as used in the inner area.

124

KEY

I I normal functioning

j^9 area of retries

EiiJII high access times

m$ drive unable to function
(crashes)

10hz 100hz

Figure 10.7 : Illustration Of The Effects Of Frequency On Drive At 0.5g

10hz 50hz 100hz

Figure 10.8 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.9 : Illustration Of The Effects Of Frequency On Drive At 1.5g

10hz 50hz 100hz

Figure 10.10 : Illustration Of The Effects Of Frequency On Drive At 2g

125

In the 0.5g test, Graph 10.5 shows that the drive is adversly affected

over the frequency range of 30 to 50 Hz. By comparison Graph 10.9 shows

difficulties occur only between 40 and 50 Hz. At 0.5g the outer area is

observed to perform marginally better than the inner.

At the Ig acceleration level both areas experience serious problems

which lead to a system crash. However again the outer area can be seen to

be marginally more resilient than the inner. In Graph 10.6 the inner area is

observed to fail between the frequencies of 40 and 70 Hz. In Graph 10,10 this

range only occurs between 50 and 70 Hz.

In comparison, the inner area can be seen to perform better at 1.5g.

Here the inner areas problem frequencies range from 40 to 80 Hz, whereas

the outer area frequencies range from 30 to 90 Hz. At 2g both areas react in

a similar manner. Both experience problems in the frequencies ranging from

20 to 90 Hz.
It is apparent from the results that some difference exists between the

two areas. However these differences are only marginal. The range of

frequencies which are seriously effecting the drive must be attributed to an

area of resonance of one or more of the drive components.

126

(iii) Swept Sine Vibration

The frequency of vibration is constantly increasing, even at the period of

seeking. It is therefore not possible to determine the exact frequency of each

block. In the event of a crash, the present frequency may be recorded.

However this may not be the frequency at which access problems began. An

overall picture can be produced for the various maximum acceleration levels.

These are illustrated in Figures 10.11 to 10.14. Due to the similarity between

the inner and outer data area, the latter is not illustrated.

KEY

| | normal functioning

[g$§i area of retries

g^high access times

gg§| drive unable to function
(crashes)

10hz 50hz 100hz

Figure 10.11 : Illustration Of The Effects Of Frequency On Drive At 0.5g

10hz 50hz 100hz

Figure 10.12 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.13 : Illustration Of The Effects Of Frequency On Drive At 1.5g

127

10hz 50hz 100hz

Figure 10.14 : Illustration Of The Effects Of Frequency On Drive At 2g

These ranges of frequencies which cause the CDROM system to crash

can be compared with those produced by those at the fixed frequency.

In all cases it is apparent that the CDROM system functions far worse

under this type of vibration than that of fixed frequency. This is probably

due to the greater susceptability to resonsance. Whilst some frequencies only

cause accessing problems others cause the system to crash. Those frequencies

which only cause access problems will effect sequential blocks increasing

those blocks access times. If during the period that a block is being accessed

the frequency changes from an 'access problem' frequency to a 'system crash'

frequency then that block will not be accessed and lost. However the

frequency will be perceived as causing the block loss. It is this effect which

causes the apparent widening of the hostile frequency range.

128

10.4.4 Hostile Environment With Disc B
(i) Constant Vibration

Graphs 10.13 to 10.16 depict the average access times and retry counts which
are plotted against frequency for acceleration levels 0.5, 1, 1.5 and 2g
respectively.

Average Access Tim* Average Number Of Retries

10 20 30 40 50 60 70 80 90 100

Frequency

^H Access Times K<^ Retry Count

Graph 10.13: Error Statistics Arising From Fixed Frequency Tests With 0.5g

250
Average Access Time Average Number Of Retries

area in which drive fails

10 20 30 40 50 60 70 80

- 1

90 100

Frequency

^1 Access Times IZ2 Retry Count

Graph 10.14 : Error Statistics Arising From Fixed Frequency Tests With Ig

129

200

ISO

100

Average Access Tim* Average Number Of Retries

area in which drive fails

10 20 30 40 SO 60 70 80 90

Freauencv

s^l Access Times K£24 Rstry Count

Graph 10.15: Error Statistics Arising From Fixed Frequency Tests With 1.5g

200

ISO

100

Average Access Time Average Number Of Retries

area m which drive fails

10 20 30 40 SO 60 70 80 90

Freauencv

•^•1 Access Times £22 Retry Count

Graph 10.16 : Error Statistics Arising From Fixed Frequency Tests With 2g

130

The region of non-functioning is depicted in the following figures.

KEY
I I normal functioning

1^3 ai"ea of retries

gH high access times

8M drive unable to function
(crashes)

10hz 50hz 100hz
I I I

Figure 10.15 : Illustration Of The Effects Of Frequency On Drive At 0.5g

10hz 50hz

Figure 10.16 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.17 : Illustration Of The Effects Of Frequency On Drive At 1.5g

10hz 50hz 100hz
I__I

Figure 10.18 : Illustration Of The Effects Of Frequency On Drive At 2g

131

Here both retries and high access times are far more numerous in
comparison to the inner and outer areas of Disk A. Without vibration a low

level of retries are expected, due to the surface errors.
The results are similar to those illustrated in Figures 10.3 to 10.6 and

Figures 10.7 to 10.10, for the inner and outer area of Disk A. The statistics
due to the surface errors are compounded by those caused by the adverse
vibrations. The retries and high access times cause the drive system to

completely crash within certain frequencies.

132

(ii) Swept Sine Vibration

KEY

I | normal functioning

^ area of retries

H^ high access times

J drive unable to function
(crashes)

10hz 50hz 100hz

Figure 10.19 : Illustration Of The Effects Of Frequency On Drive At 0.5g

10hz 50hz

Figure 10.20 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.21 : Illustration Of The Effects Of Frequency On Drive At 1.5g

10hz 50hz 100hz

Figure 10.22 : Illustration Of The Effects Of Frequency On Drive At 2g

133

The Effect of the Swept Sine Frequency on Disc B is illustrated in
Figures 10.19-10.22. A comparison with Figures 10.11-10.14 illustrates the

differences between the effects on Disc A and B. The results again show how
the operational frequency of the drive works decreases in the presence of
vibration.

134

CHAPTER ELEVEN
Conclusions

and
Future Work

11.1 Conclusions
The CDROM has been discussed and its error control strategies reviewed.
Each stage of the encoding/decoding schemes detailed in the Standards
(ECMA, BSI, etc) has been investigated. This was necessary to fully develop
the simulation model produced at the University of Glamorgan. Chapter Five
discussed the encoding and Chapter Six the decoding. The simulation was
described in Chapter Seven, an account of which is given in Appendix A.

Each stage of the decoding is simulated to enable error control to be traced
from start to finish.

Note that within existing technology it is impossible to place an error
in a fixed prescribed position on the media. This could be achieved only if
the error were introduced by the write laser itself, which is clearly

impractical. It was shown that the maximum correctable burst size is
dependant on the burst position in a Sector. When the burst is at the middle

of the Sector, the burst correction limit is approximately 7000. This figure
decreases towards the ends. At the limits of performance the synchronisation

of a channel Frame is critical.
The simulation model is therefore believed to be the only means by

which error on CDROM media may be incorporated and investigated. It is
further believed that this novel solution to the problem is of both academic

and commercial importance.
In Chapter Nine novel software is described which obtained the access

times and retries for a given Sector of data. These values are important when

determining the performance of the CDROM to adverse environments caused

by vibration.

135

In Chapter Ten the software is used to identify the ranges of hostile
vibrations within which the CDROM fails. It was established that both error
statistics were necessary to describe the systems response to its environment.

The ranges of frequency which cause the CDROM to malfunction were
established for a given range of maximum acceleration values. At

accelerations of 2g there was almost complete system failure, i.e. 2g is the
maximum force which the CDROM can sustain. It was established that
surface blemishes make the discs less resilient to vibration. It was also shown

that the CDROM was not particularly resistant to impulse shock, which
displaces the reading laser.

The error control strategy is designed to combat both permanent and
transient error mechanisms. The work addresses these two classes of error in

complimentary styles. Permanent error mechanisms will produce
deterministic errors. It is therefore best investigated by a detailed

deterministic simulation of every stage of the decoding. Practical data is not
feasible since true error (e.g. a scratch) may not be attributed to any

particular Sector.
By their very nature transient error mechanisms are non-deterministic

and must be investigated experimentally. Hence the user code software was
written to monitor and access retry data of individual blocks. Together the
two methods provide a comprehensive analysis of the error performance of

the CDROM.

11.2 Future Work
11.2.1 The Simulation Model

(i) Extending The Existing Model
The simulation model has been used to model the effect of errors on the
CDROM. However model results were restricted to an independent sector of

data. This was due to the run time and computing requirements which

would be made by a more general model. Future work could include

extending the model to incorporate burst errors across adjacent sectors.

136

(ii) Multiple Error Application

To date only single burst errors within a Sector have been investigated. It is

reasonable to suppose that multiple errors within a Sector will occur. It is of

interest to investigate the effect of these errors on the decoding scheme.
Preliminary work suggests that a systematic investigate into multiple bursts

would be very long and complicated, and would require very extensive

computing support. To produce a guide for multiple bursts input would

include length and position of all the bursts. This would be a huge database,

several times more complex than the single burst database discussed in

Chapter Eight.

(iii) Compressed Areal Densities

Derivatives of the CDROM will have higher areal densities and greater disc-

read head speeds Nadeau[89], Fox[90]. It may be presumed that the error

correction strategies will largely follow those of the CDROM. A variant of the

model may be used to investigate the tighter specifications likely to be

encountered.

11.2.2 Future Uses Of Performance Measures

(i) Additional Hostile Environments

In Chapter Ten, the performance measures were used in order to investigate

the effects of vibrations on the CDROM. This software may also be used for

testing the drive with other hostile conditions, such as temperature and

humidity. It could be used to measure drive operations near the boundaries

of the values outlined in the standards ECMA[18].
The platform vibration is monitored independent of retries and access

time data. More information could be obtained if the vibration information

was integrated with the access time and retry data. In this way the ambient

conditions for each block can be associated precisely for the performance

data.

137

(ii) Conformance To Standards

It was shown in Chapter Ten that disc blemishes reduce the robustness

against vibration. Although discs are manufactured to a standard, the

conformance to these standards may vary from manufacturer to

manufacturer. At the margins of the conformity one may suppose that the

error correction is degraded. It would be most useful to explore and quantify

the relationship between the error correction capability and conformance with

standards.

11.2.3 Using The ASPI Program

The ASPI template used for the CDROM may be adapted for RDAT-DDS.

Equally it could be applied to the CDROM derivatives.

138

[!] E.W.Spnnheimer and J.C.Santon.

"A CD-ROM Drive For HP 3000 and HP 9000 Computer Systems".

Hewlwett Packard Journal. December 1990. pages 38-41.

[2] A.E.Bell and V.Marmlln.

"Magnetic and Optical Data Storage : A Comparison Of The Technological

Limits". IBM San Hose Research Lab. Proceedings IEEE COMPCON. 1984.

pages 512-517.

[3] AJE.Bel_l.

"Critical Issues In High Density Magnetic and Optical Storage". Proceedings

of SPIE. 1983. Volume 382. pages 2-15.

[4] R.Wood.

"Magnetic and Optical Storage Systems : Opportunities For Communications

Technology". IEEE International Conference On Communications. 1989. Vol

3. Pages 1605-1612.

[5] L.Laub.

"The Evoloution Of Mass Storage". BYTE Magazine. May 86. pages 161-

175.

[6] B.Zoellick.
"CDROM Software Development". BYTE Magazine. May 86. pages 177-188.

[7] R.CAlford.
"CD-ROM Inside and Out". BYTE. March 1993. pages 197-206.

[8] S.Christodoulakis and D.A.Ford.

"File Organisation and Access Methods For CLV Optical Disks". ACM

SIGIR Forum 23 (1+2). 1989. pages 152-159.

[9] P.A.Dare and T.Katsumi.
"Rotating Digital Audio Tape (RDAT) : A Format Overview". SMPTE

(Society Of Motion Picture and Television Engineers, Incorp.) Journal.

October 1987. pages 943-948.

[10] R.A.Baush. D.J.Bromlev and B.F.Spenner.

"Extremely Low Error Rate Digital Recording With A Helical Scan

Recorder". Colloquium On Mass Storage Devices For Computers. IEE.

October 1986. pages 1-3.

[11] J.Watkinsnn

"The Art Of Digital Audio". Focal Press. First Edition. ISBN 0-240-51270-7.
1988.

t 12] K.Odaka. T.Tan and B.VermeuIen.

"Designing A Data Storage Format For Digital Audio Tape (DAT)". DDS
Manufacturing Group. October 1988.

[13] S.Lambert and S.Rnpi^qnpf

"CDROM - The New Papyrus". Microsoft Press. First Edition. ISBN 0-
914845-74-8. 1988.

[14] W.Poel and N .Barton

"The CDROM Story". Computer Shopper. October 1989. pages 85-88.
[15] M.G.Carasso. J.B.H.Peek and J.P.Siniou.

"The Compact Disc Digital Audio System". Philips Technical Review.

Volume 40. Number 6. 1982. pages 151-156.

[16] D.Goedhart R.Van de Plassche and E.Stikvoort.

"Digital-To-Analog Conversion In Playing A Compact Disc". Philips
Technical Review. Volume 40. Number 6. 1982. pages 174-179.

[17] L.B.Vries.

"The Error Control System Of The Philips Compact Disc". Presented at the

64th AES Convention. November 2-5, 1979. AES. 1548 (G-8). pages 1-9.

[18] ECMA (European Company Manufacturers Association).

"ECMA-130 : Data Interchange On 120mm Optical Data Disks (CD-ROM)".

July. 1988.

[19] British Standards Institution.
"British Standard Specifications For The Compact Disc Digital Audio

System". BS 7064 : 1989. IEC 908 : 1987.

[20] ECMA (European Computer Manufacturers Assocation).
"ECMA-119 : Volume and File Structure Of CDROM For Information

Interchange". Second Edition. December 1987.

[21] W.Verkaik.

"Compact Disc Mastering - An Industrial Process". The AES conference -

The New World of Digital Audio. New York. June. 1982. part 3-6.

[22] J.R.Watkinsnn

"Principles Of Optical Storage". Electronics and Wireless World. March
1986. pages 70-72.

[23] J.R.Watkinsnn

"CD : The 600 Megabyte ROM". Electronics and Wireless World. June 1987.
pages 1046-1049.

[24] S.Christndoulakis

"Analysis Of Retrieval Performance For Records and Objects Using Optical

Disk Technology". ACM Transactions On Database Systems. Volume 12.

Number 2. June 1987. pages 137-169.

[25] E.F.Barhosa and N.Ziviani.

"Data Structures and Access Methods For Read-Only Optical Disks", llth
International Conference Of Chilean Science Society. 15-18 October 1992.
pages 189-207.

[26] S.Mivanka.

"Digital Audio is Compact and Rugged". IEEE Spectrum. March 1984. pages
35-39.

[27] S.Christodoulakis and D.A.Ford.
"Performance Analysis and Fundemental Performance Trade Offs For CLV
Optical Disks". ACM SIGMOD Proceedings. June 1988. pages 286-294.

[28] D.H.Davies.
"The CD-ROM Medium". Journal Of The American Society For Information

Science. Volume 39. Number 1. January 1988. ISSN:0002-8231. pages 34-42.
[29] K.A.S.Tmmink.

"Coding Methods For High Density Optical Recording". Philips J. Re.

Volume 41. September 1986. pages 410-431.

[30] J.B.H.Peek.
"Communications Aspects Of The Compact Disc Digital Audio System".
IEEE Communications Magazine. Volume 23. Number 2. February 1985.

pages 7-15.

[31] J.R.Watkinson.

"Principles Of Optical Storage - 2". Electronics and Wireless World. April
1985. pages 43-46.

H.Hoeve. I.Timmermans and L.B.Vrip.s.

"Error Correction and Concealment In The Compact Disc System". Philips
Technical Review. 40. 1982. Number 6. pages 166-172.
L.B.Vrip.s. K.A.S Tmmink. T.G.Niiboer. H.Hoeve. T.T.Doi. K.Odaka and
H.Ogawfl

"The Compact Disc Digital Audio System : Modulation and Error
Correction". 67th AES Convention. 1980. October. (H-8). pages 1-14.

[34] R.Cardinali

"Optical Storage: Future Educational Impact". Journal of Educational
Technology Systems. Volume 19. Part 3. 1991. pages 181-190.

[35] Y.Sako and T.Suzuki.

"Data Structure Of The Compact Disk - Read - Only Memory System".
Applied Optics. Volume 25. Number 22. November 1986. pages 3996-4000.

[36] P.P.Chen.

"The Compact Disc ROM : How It Works". IEEE Spectrum. April 1986.
pages 44-49.

[37] G.D.Fornev.

"Burst Correcting Codes For The Classic Bursty Channel". IEEE Transactions

On Communications. Volume COM-19. Number 15. October 1971. pages

772-781.

[38] C.E.Shannon.
"A Mathematical Theory of Communication". Bell Systems Technical
Journal. Volume 27. Number 3. July 1948. pages 379-423.

[39] C.E.Shannon.
"A Mathematical Theory of Communication (Conclusions Of July 1948
Issue)". Bell Systems Technical Journal. Volume 27. Number 4. 1948.pages

623-656.

[40] E.R.Berlekamp.
"The Technology Of Error Correcting Codes". Proceedings Of The IEEE.
Volume 68. Number 5. May 1980. pages 564-593.

[41] J.R.Watkinson.
"Data Error Detection and Correction". Wireless World. February 1983. pages

44-48.

[42] T.T Doi

"Error Correction For Digital Audio Recordings". Digital Audio. AES

Conference. 1982. June, pages 147-177.

[43] R.W.Hamming

"Error Detecting and Error Correcting Codes". Bell System Technical Journal.

Volume 26. Number 2. April 1950. pages 147-160.

[44] E.R.Berlekamp.

"Error Correcting Codes For Digital Audio". Digital Audio. AES Conference.

June. 1982. pages 127-138.

[45] S.W.Golomh.

"Optical Disk Error Correction". BYTE Magazine. May 86. pages 203-210.

[46] I.S.Reed and G.S.Solomon.

"Polynomial Codes Over Certain Finite Fields". Journal Of The Society Of

Industrial and Applied Mathematics. Volume 8. 1960. pages 300-304.

[47] P.Sweeny.

"Error Control Coding : An Introduction". Prentice Hall. ISBN 0-13-284118-

5.

[48] RJ.McEliece and L.Swanson.

"On The Decoder Error Probability For Reed Solomon Codes". IEEE

Transactions On Information Theory. Volume IT-32. Number. 5. September

1986. pages 701-703.

[49] J.L.Ramsev

"Realisation Of Optimum Interleaves". IEEE Transactions On Information

Theory. Volume IT-16. Number 3. May 1970. pages 338-345.

[50] A.J.Verterbi.
"Coding and Interleaving For Correcting Burst and Random Errors In

Recording Media". Digital Audio. AES Conference. June. 1982. pages 139-

146.

[51] K.A.S.Immink.
"Coding Techniques For Digital Recorders". 1991. ISBN 0-13-140047-9.

[52] K.A.S.Tmmink

"Modulation Systems For Digital Audio Discs With Optical Readout". IEEE

International Conference On Acoustic Speech and Signal Processing. March.

1981. pages 587-589.

[53] J.C.Mallinson and T-W.Miller.

"Optimal Codes For Digital Magnetic Recording". Radio and Electronic

Engineer. Volume 47. April 1977. pages 172-176.

[54] N.D.Mackintosh

"The Choice Of A Recording Code". The Radio and Electronic Engineer.

Volume 50. April. 1980. pp 177-193.

[55] H.Ogawa and K.A.S.Immink.

"EFM - The Modulation Method For The Compact Disc Digital Audio

System". Digital Audio. AES. Collected Papers from the AES Premiere

Conference. New York. June 3-6. 1982. pages 117-124.

[56] J.P.J.Heemskerk and K.A.S.Immink.

"Compact Disc : Systems Aspects and Modulation". Philips Tech Review.

Volume 40. Number 6. 1982. pages 157-164.

[57] D.T.Tang and L.K.Bahl.

"Block Codes For A Class Of Constrained Noiseless Channels". Information

and Control. 17:436. 1970. pages 200-210.

[58] J.R.Watkinson.

"Channel Code and Disc Format - 1 ". Electronics and Wireless World. May

1985. pages 27-28.

[59] A.M.Patel.
"Zero-Modulation Encoding In Magnetic Recording". IBM J. Res. Dev.

Volume 19. 1975. pages 366-78.

[60] S.Fukuda. Y.Koiima. Y.Shimpuku. K.Odaka.

"8/10 Modulation Codes For Digital Magnetic Recording". IEEE Transactions

On Magnetics. Volume MAG-22. Number 5. September 1986. pages 1194-

1196.

[61] J.R.Watkinson.

"Channel Code and Disc Format - 2 ". Electronics and Wireless World. June

1985. pages 80-82.

[62] L.B.Vries and K.Odaka

"CIRC - The Error Correcting Code For The Compact Disc Digital Audio

System". Digital Audio. AES. Collected Papers from the AES Premiere

Conference. New York. June 3-6. 1982. pages 178-186.

[63] L.M.Driessen and L.B.Vries.

"Performance Calculations Of The Compact Disc Error Correcting Code On

A Memoryless Channel". Proceedings Of 4th IERE Conference On Video and

Data Recording. Part 54. 1982. pages 385-395.

[64] T.T.Doi. K.Odaka. G.Fukuda and S.Furukawa.

"Cross Interleaving Code For Error Correction Of Digital Audio Systems".

Presented At The 64th Convention Of The Audio Engineering Society.

Journal Of the Audio Engeering Society. Volume 27. Part 1559 (H-4).

November 2-5. 1979. pages 1-4.

[65] J.R.Watkinson.

"Subcodes Explained". Electronics and Wireless World. September 1986.

pages 26-30.

[66] T.T.Doi.

"Channel Codings For Digital Audio Recording". Presented At The 70th

Convention Of The Audio Engineering Society. Journal Of The Audio

Engineering Society. Volume 31. Number 4. April 1983. pages 224-238.

[67] K.A.S.Immink and U.Gross.

"Optimization Of Low Frequency Properties Of Eight-To-Fourteen

Modulation". The Radio and Electronic Engineer. Volume 53. Number 2.

February 1983. pages 63-66.

[68] S.W.Golomb. J.R.Davev and I.S.Reed.

"Synchronisation". IEEE Transactions On Communication Systems. Volume

CS-11. December 1963. pages 481-491.

[69] E.N.Gilbert.
"Synchronisation Of Binary Messages". IRE Transactions On Information

Theory. Volume IT-6. September 1960. pages 470-477.

[70] J.D.Ullman

"On The Capability Of Codes To Correct Synchronisation Errors". IEEE

Transactions On Information Theory. Volume IT- 13. Number 1. January

1967. pages 95-105.

[71] V.

"Binary Codes Capable Of Correcting Deletions, Insertions and Reversals".

Soviet Physics.-Doklady. Volume 10. Number 8. February 1966. pages 707-

710.

[72] F.P.Preparata

"Systematic Construction Of Optimal Recurrent Codes For Burst Error

Correction". Calcolo (PISA). 1964. pages 147-153.

[73] L.Helgerson.

"Detecting and Correcting Errors On CDROM". CD Data Report. April 1985.

pages 405-409.

[74] B.LJohnson.

"Design and Hardware Implementation Of A Versatile Transform Decoder

For Reed Solomon Codes". Impact Of Processing Techniques On

Communications. 1985. pages 447-464.

[75] T.Arai. H.Okamoto. K.Nishimura, M.Kobavashi and T.Takeuchi.

"High Capability Error Correction LSI For CD Player and CD-ROM". IEEE

Transactions On Consumer Electronics. Volume CE-30. Number 3. August

1984. pages 353-359.

[76] C.C.Ko and T.T.Tihung.

"Comparison Of Simple Cross Interleaved Reed Solomon Decoding Strategies

For Compact Disc Players". TENCON 1987. pages 378-382.

[77] C.C.Ko and T.T.Tihung.

"Simple Programmable Processor For Decoding Reed Solomon Codes In

Compact Disc Devices at High Speed". Int Journal of Electronics. 1989.

Volume 67. Number 1. pages 15-25.

[78] W.Peterson and E.J.Weldon.

"Error Correcting Codes". MIT Press. 1972. ISBN 0-262-16-039-0. pages

283-299.

[79] A.M.Patel.

"On-The-Fly-Decoder For Multiple Byte Errors". IBM Journal Of Research

and Development. 30. 1986. pages 259-269.

[80] N.N.Heise and T.J.Krzvstan.

"Direct Hardware Solution To The Quadratic Equation y2+y+c=0 in GF(2m)".

IBM Technical Disclosure Bulletin, 27. 1986. pages 4767-4771.

[81] S.I.Woollev. B.K.Middlton. A.Rvlev. M.E.Morev. W.N.Carrick and

R.Saunders.

"Error Statistics of Magnetic Recording In Severe Environments".

International Conference On Storage and Recording Syetems 1994. IEE. 5-7
April 1994. pages 98-102.

[82] SJ.Woolley.

"Error Statistics and Data Compression in Digital Instrumentation Recording
Systems". PhD Thesis. 1994.

[83] NCR Corporation.

"Understanding The Small Computer System Interface (SCSI)". Prentice Hall.

1988. ISBN 0-13-796855-8.

[84] Adaptec.

"Advanced SCSI Programming Interface (ASPI), DOS Specifications". May.

1990.

[85] Hitachi.
"Interface Specification For CD-ROM Drive : Model CDR - 6750". Hitachi

Ltd. 1994. ISE-0250-00.

[86] SONY.
"Theory Of Operations Of A CDROM Drive Unit". Revision 1.20. December

1989.
[87] Philips Laser Magnetic Storage International Company : Optical Storage

Division.
"Product Specifictation : CDROM Drive SCSI". Feb 1989.

[88] Hitatchi.
"Device Specifications". Hitachi Drive Information. Product Release. NM-

E128. 1995. page 1193.

[89] M.Nadeau.

"Two Ways To Cram More Data On A CDROM". BYTE Magazine.

September. 1994. page 34.

[90] B.Fox.

"CDs : The Next Generation". New Scientist. 10 September. 1994. pages 33-

35.

Biblngraphy

[1] C.Delannov.

"Turbo Pascal Programming". Macmillan Education Ltd. First Edition. ISBN

0-333-48426-6.

[2] L.Miller. O.Ouilici.

"The Turbo C Survival Guide". Wiley. First Edition. ISBN 0-471-61708-3.

[3] Borland.

"Turbo Assembler 3.0 : User Guide". Borland International. 1991

[4] Borland.

"Turbo C++ 3.0 : User Guide". Borland International. 1992.

[5] S.Smith.

"The Waite Group's MS-DOS Bible". H.W.Sams & Company. Second

Edition. 1988. ISBN 0-672-22617-0.

Appendix A
Using The Simulation Model

The Simulation model is composed of both the encoding and decoding
strategies of the CDROM. Both schemes are composed of a number of
program modules. Each program Module uses the output of the previous
module as its input, manipulates the data in a predefined manner and
outputs the information to another data file.

The complexity of each process and storage constraints creates a need
for individual program modules rather than one large complete program.
This proves to be more useful when illustrating the progression of errors at
decoding.

A-l

Appendix A.I ; Encoding Programs

The programs

synch.pas
crc.pas
intermed.pas
ecc_p.pas

ecc_q.pas
scramble.pas
switch.pas

delayl.pas
rsc_q.pas

delay2.pas

rsc_p.pas

delay3.pas

control.pas

mod2.pas

associated with encoding are:

Add twelve byte synchronisation.

Calculate CRC and add to data.

Add intermediatory redundant bytes.

Calculate and add P parity.

Calculate and add Q parity.
Scrambles the data.

Reorder Consecutive bytes.

First stage interleave of CIRC.

C2 RSC(28,24) Encoding.

Second stage interleave of CIRC.

Cl RSC(32,28) Encoding.

Third stage interleave of CIRC.

Add control data.

Modulate Data. EFM conversion and DSV

minimisation using merge bits.

Each programs is independant, however an inter-relationship is governed

by the data file produced by each. These programs must therefore be

executed in sequence. The software suite may be run transparently using

the batch file encode.bat. Here it is only necessary to construct the desired

raw data file, all encoding runs automatically. The raw data to be encoded

is placed is tdata.txt, this consists of 2048 bytes.

The result of the whole encoding scheme is the channel data

produced in output2.txt. Again an example file is included.

Data files are necessary to enable correct performance of the Reed

Solomon parity calculations used in the four encoders.

A-2

Associated Files

P-Parity Equation Files:

P_1.DAT P_2.DAT

Q-Parity Equation Files:
Q_2.DAT Q_1.DAT

Cl-Parity Equation Files:
PI.DAT P2.DAT P3.DAT P4.DAT

C2-Parity Equation Files:

Ql.DAT Q2.DAT Q3.DAT Q4.DAT

additional files required :
codes.dat (EFM conversion table)
table.dat (Galois Field Elements)

input file : TDATA.TXT
output file : OUTPUT2.TXT

execution file : ENCODE.BAT

A-3

Appendix A.2 ; Decoding Programs

The following files are associated with the decoding simulation:

demodulate.pas decontro.pas undel_3.pas p_decode.pas

undel_2.pas q_decode.pas undeM.pas switch.pas

descram.pas q^dec.pas p_dec.pas rem_inte.pas
crc_check.pas rem_synch.pas

These files must also be used in sequence and may be run transparently

using decode.bat. Error incorporation occur before decoding and will

affect the data placed in output2.txt. This is discussed in Appendix A.3.

The error affected data is placed in output4.txt and this is decoded.

Decoding is constrained as the inverse of the encoding process. The

data is manipulated in order to reverse those schemes used in the

encoding scheme. The result of the decoding scheme is the data file

xdata.dat. The integrity of this data is checked using the CRC present in

the code. For our purposes this data may be compared with the raw data

used for encoding.

additional files required :
codes.dat (EFM conversion table)

table.dat (Galois Field Elements)

(identical to those used with the encoding files)

input file : OUTPUT4.TXT

output file : XDATA.TXT

execution file : DECODE.BAT

A-4

Appendix A.3 ; Error Incorporation Programs

The following files are associated with the production of errors upon the

channel:

burst_er.pas bur_err2.pas b2_errf.pas

b2_err.pas rand_err.pas

Each of these incorporates errors into the channel data in

output2.txt, producing a hybrid data file output4.txt. The former four files

are all associated with the incorpation of a burst into the data. The latter

simulates random errors.

A number of burst program modules are necessary in order to

simulate bursts which are both fixed and random and those causing Frame

errors. A Frame error is caused by synchronisation loss due to one or

more bits of the twelve bit channel synchronisation field. Here the burst

propagates as illustrated in Chapter Seven to the end of that Frame.

Burst_er.pas simulates a randomly positioned burst of a specified

magnitude in bits. Here a seed must be input to ensure the randomness of

the burst position. The module does not cause Frame loss when

synchronisation is lost. Frame overlap does not cause the discussed burst

propagation.
Bur_err2.pas again does not simulate synchronisation loss. The

module is not random, here the Frame and bit position are required as

input in addition to burst size. Frame position can vary between 1 and 98,

however it is recommended that care is taken not to overlap bursts with

the enc of the Sector. A burst of uncorrectable size would be perceived as

correctable if it were to affect Frame 98 since it would be addressed as a

one Frame error. Bit position within a Frame can vary between 1 and 588

bits.
B2_errf.pas simulates Frame loss by bursts overlapping the

synchronisation bits. Burst position and length are required as an input.

B2_err.pas simulates Frame loss by bursts overlapping

synchronisation. The burst size and random location seed are required as

A-5

input.

Rand_err.pas simulates random errors in the data channel. Here a
probability of error is required plus a seed to ensure varying random bit
patterns. Frame loss is produced by synchronisation bit loss.

The program modules used for the results in this thesis were
b2_errf.pas and rand_err.pas.

input file : OUTPUT2.TXT
output file : OUTPUT4.TXT
execution file : BURST.BAT

In addition to this an interactive menu driven program has been
produced. This facilitates fully trasparent incorpration of burst and
random errors into the channel data and runs the decoding simulation.

MENU : error incorporation programs
F_BUR1.PAS R_BUR1.PAS R_BUR2.PAS
RAND2_ER.PAS

F_BUR1.PAS produces a fixed burst at a fixed position.
R_BUR1.PAS produces a random burst at a random position.
R_BUR2.PAS produces a random burst at a random position.
However this is associated with the incorporation with multiple

burst incorporation.
RAND2_ER.PAS produces a random error.

associated programs
COPY6 4.PAS COPYINIT.PAS

A-6

COPY4_2.PAS FIX_SYNC.PAS
all decoding program modules

COPY6_4.PAS and COPY4_2.PAS are associated with multiple
error incorporation. These copy the error file output4.txt to

output2.txt so that further errors can be incorporated.
COPYINIT.PAS initialises output2.txt to original data after multiple

errors have been utilised.
FIX_SYNCPAS causes Frame errors when synhronisation bits have

been lost. All error incorporation programs exhibited here do not

examine synchronisation loss.

A-7

Appendix A.4 ; Illustration Programs

It is possible to check the integrity of final data produced by the decoding
simulation with the original raw data. By this method it is possbible to
identify errors within the data. Since both the Decoding and Encoding
simulations produce interrnediatory data files the same approach may be
used to follow the progression and corection of errors though each
decoding stage.

There are three types of schemes used in order to illustrate these
errors. All programs locate errors by inconsistencies between
corresponding encoding and decoding files. For example, the data file
produced prior to Cl encoding and that produced after Cl decoding.

Since this software is dependant upon data file discrepancies both
the encoding and decoding simulations must be run and the
interrnediatory files produced.

A.4.1 Illustration Scheme 1
This illustratory software locates an error due to data inconsistencies and
outputs the Frame and byte position. This allows close scruteny of errors
present in the data block. The performance of the error correcting codes
can be demonstrated by the removal of errors within a Frame.
The programs are :

COMPMOD2.PAS COMPCON.PAS COMPD3DA.PAS
COMPC1.PAS COMPDEL2.PAS COMPD2DA.PAS
COMPD1.PAS COMPSCR.PAS COMPSW.PAS
COMPP_DE.PAS COMPINTE.PAS

associated data : all encode/decode data files

execution file : test.bat

A-8

A.4.2 TUustrafipn Scheme 2

By the use of a bi-level grey scale it is possible to illustrate the

actual position of persisting errors within the code block. The first scheme
found errors and output the Frame and byte positition of that error. This
scheme illustrates the changing codeblock and maps the progressing

errors. An ASCI text output is produced for each decoding stage. All

output is all piped into a text file using a batch file. This system was used
to produce the illustrations used in Chapter Seven.
The programs are :

CMOD3.PAS
CC1.PAS
GDI .PAS

CQ_DECPAS
CINTE.PAS

C1NTE.PAS
CD3DA.PAS
CD2DA.PAS

CSCR.PAS
CAQ2_DEC.PAS

CPCON.PAS
CDEL2.PAS
CSW.PAS
CAQ_DEC.PAS

associated data :
execution file :
output file :

all encode/decode dat files
ill.bat

testtxt

A.4.3 Illustration Scheme 3
The progression of errors are followed in the same manner as Scheme 2.
However a graphical programme is used to illustrate this progession upon
the PC screen. The screen shots can be seen in the following pages.

associated data : all encode/decode files
execution file : illustra.exe

A-9

A.5 Inferencing Software and Database

The database was produced with a number of associated programs which

run the decoding and burst incorporation software for a range of bursts at

varying positions. An example of the type of platform used is platl.pas.

A number of these programmes were run on a group of PC's over a

number of weeks to provide the database dataf.dat. Data has been

incorporated in a readable form for ease of use.

The database is used in conjunction with infer.pas which is used to

inference bursts as shown in Chapter Eight.

A-10

Appendix B
Drive Communications Issues

In Chapter Nine the CDROM was used in order to obtain statistics which
reflect the performance of a drive with a given disk in a specificied
environment. This was demonstrated to be of significant use in Chapter Ten.
Here the drive is used with both hostile vibration environments and a disc
with a surface error.

In this Appendix, complete listings are given of the main program and
associated assembly modules used in order to facilitate communciations. Each
program module is fully commented. More information on DOS interrupts
may be founf in most related texts, e.g. Waites MSDOS Bible (bibliography).

B.I Assembly Module 1 : OPEN.ASM

; Filename: open.asm (version 6.c)
; (version 6.c replaces 6.b and 6.a which were beta test versions)

; Description: Initialises ASPI
; open aspi;
; gets SCSI manager address
; closes aspi
; places SCSI manager address in globally uable

variable

; Date: Final version : 25 September 1992

B-l

•MODEL small

Specifies the archetechture model small, medium or large

This allows specification of the size of segmentation model
to be used for program

.DATA

,************************************^

; sets up data area segment

EXTRN aspi_entry_point:DWORD

Declare aspi_entry_point as an external variable

external variables are defined outside a module
i.e aspi_entry_point is specified in the main C program.

Aspi_entry_point which is a double word i.e. 16 bits.;

public scsimgr

B-2

scsimgr is a public variable

this is a variable which may be used by other modules

scsimgr db 'SCSIMGR$',0

error dw ?

db "Working!", 13, 10, "$"

; scsimgr is a byte of characters 'SCSIMGR$' this string will be

; looked for in dos memory to find the entry point

/

; error is a word of data which will be returned by this program module

/

; error = 1 is an error caused by no 'SCS1MGR$' string being found in

memory
; error = 0 is no error caused by the 'SCSIMGR$' string being found in

memory

init_message db 13,10;initialising',13,10

no_aspi_message db 'ASPI device driver not loaded',13,10,13,10,0

aspi_message db 'ASPI device driver was loaded',13,10,13,10,0

B-3

; messages to be used if aspijnessage found

-CODE

**

; start of code segment

. >f *** **************

PUBLIC _open_aspi

; open aspi FUNCTION

; since it is defined as public this function
; can be used by other programs or modules

/

; function call used by main program

; opens the aspi manager

.**
/

_open_aspi proc near

push bp
push si

push di

push dx
push ex

push bx

B-4

;^,^^^^

; push current register values onto stacks

mov ax,03dOOh

; place open file command in ax for interrupt call

mov dx,OFFSET scsimgr

int 21h

; call interrupt with vriable settings

jnc open_ok

; look for SCSI string

; if found jump to open_ok

; else continue

/

,*********************************^^
/

mov ax,0

mov bx,OFFSET no_aspi_message

; no ASPI found message

call display_string

mov error,!

B-5

; message not found

jmp open_exit

; jump to open exit if no message found

; leave assembler module

open_ok:

mov bx,OFFSET aspi_message

; load aspi found message

mov error,0

call display_string

; display string

; since aspi found continue along program path

mov bx,ax

mov ax,4402h

lea dx/aspi_entry_point

mov cx,4

int 21h

; find aspi entry point and place in variable

mov ax,l

B-6

open^exit:

mov ax,error
; place error value into variable

pop bx

pop ex

pop dx

pop di

pop si

pop bp

; pop current register values off stacks

/

.***#**********************
/

ret

_open_aspi endp

; end of function

display_string proc near

; display_string function

; displays strings : outputs charactres to screen

/

. **

B-7

push ax

push bx

; push current register values onto stacks

next_char:

mov al,byte ptr [bx]
cmp al,0

jz string_done
; if no char left then jump to string^done

push bx
mov ah,0eh

mov bx,0

int lOh

pop bx

inc bx

jmp next_char

; output string character by character.

string_done:

pop bx

pop ax

.** /

/
; push current register values off stacks

B-8

ret
display_string endp
; end of function
END

,*************#*************^^
/

/

; end of program module

/
.**

B-9

B.2 Assembly Module 2 : SEND.DATA.ASM

; Filename : send DATA.asm (version 5.c)

; Description : uses aspi entry point produced in open.asm

; enables PC <-> SCSI communication

; Date : September 24 1995.

.MODEL small

; define model type

.DATA

/

; start of data segment

public aspi_entry_point

public _SRB_ptr

public _data_ptr

/

; aspi_entry_point : aspi entry point received from open.asm via C main

program

B-10

; SRB_ptr : pointer to the SRB data structure .

this is the predefined data structure used for data transfer
/

; data_ptr : pointer to the data areain the SRB

aspi_entry_point dd 0

_SRB_ptr dw 0
_data_ptr dw 0

; define variables

.CODE

; start of code segment

PUBLIC send data

.******************** ********************************

; send_data program FUNCTION

.***-***

send_data PROC

B-ll

; push contents of registers on stack
; registers are needed for communication

push ax
push ex
push dx
push bx
push bp
push si
push di
push ds

push es
push ds
mov bx,[_data_ptr]
mov bx,[_SRB_ptr]

; place pointers to data and SRB data structures in bx registrer

/

push bx

; push pointers (contents of bx) onto stack ready for ASPI call

lea bx/aspi_entry_point

/

; load effective address of ASPI into ax register

call dword ptr[bx]

B-12

; call ASPI : message on SCSI bus

/

add sp,4

; push contents of registers off stack

pop es

pop ds

pop di

pop si

pop bp

pop bx

pop dx

pop ex

pop ax

ret

_send_data endp

/

; end of function

/

END

B-13

B.3 Main C Program : COMMUN.C

^include "stdio.h"

^include "stdlib.h"

#include <dos.h>

^include <string.h>

/* include standard libraries V

union REGS Regs;

struct SREGS SRegs;

/* library defined regisers : ax, bx etc V

extern void send_data(void);

/^**^*****^**^*****^*^**^^*^^*^^^*^*^^»^^^^yt^^^^»^>t^»^^^^^^^^^^^^^^^^^^^^^^.^^^.^ /

/* send_data is defined as an external function : this is in scsicomm.asm */

/* this function does not return any values */

/****************>*********************^^

extern int open_aspi(void);

/**

/* open_aspi function is an external fiunction : (in open. asm) */

/* returns an integer indicating error or success */

x***************************************^

void verifydong no, long ink);

/* verify function used for verifying a sector : menu option */

B-14

void read_toc(void);

/* read table of contents function to read t.o.c of a disc : menu option */

void read6(iong no);

/* read function used to read a sector : not used */

void seek6(long no);

/* seek function used to seek a sector : not used */

void show_sense(void);

/* show_sense function used to show sense data : shows Sense allocation

area */
I* shows data !! : only used at end of program */

void init_SRB(void);

/* function initialises SRB values to default */

/* CDB area is filled up later */

void read_capacity(void);

/* function to read capacity of disc : menu option */

int test_data(void);

/* used to constantly poll SCSI bus for status received !*/

void sense_data(char a[]);

B-15

/* as show_sense but no data is shown */

void mode_sense(void);

/* carries out a mode_sense on the drive unit : menu option */

void log_sense(char a[], int answer);

/* carries out a log_sense on the drive unit : menu option */

void read_header(long no);

/* reads the header : menu option */

void log_select(char a[]);

/* carries out a log_select on the drive unit: menu option */

void mode_select(char a[]);

/* carries out a mode_select on the drive unit: menu option */

void menu(void);

/* outputs menu to screen */

char mdl,bdl,code;

/* variables are specified as characters : i.e. bytes V

struct msb

{

B-16

char command_code;

/* SCSI command code - non device specific * I

char device_status;

/* device status : status value which may be polled for */

char host_adapter_number;

/* addressing : the host adapter has an id number */

/* in this case there is only one host - but an id is still needed V

/* since ASPI requires such data */

char scsi_request_flag;

/* no used */

char reservedl [4];

/* not used : nevertheless must be present in data structure */

char target_id;

/* target id : since >1 target can be present V

char lun;

/* logical unit number : each target is allocated a lun by the resident */

/* hardware */

char data_allocation_length[4];

/* length of data address pointer in bytes V

char sense_allocation_length;

/* pointer to sense allocation area*/

char data offset[2];

B-17

/* data area offset address V

char data_segment[2];
/* data segment address V

char link_offset[2];
/* not used V

char link_segment[2];
/* not used */

char cdbjength;

/* length of CDB : this can vary : 10 bytes in this case V

char host_status;
/* status of host on response */

char target_status;

/* status of target on response V

char post_routine_offset[2];

/* not used V

char post_routine_segment[2];

/* not used V

char reserved2[34];

/* not used V

char cdb_data[10];
/* CDB area */

B-18

char sense_allocation_area[20];

/* sense allocation area : 20 bytes are set in this case */

}SRB;

/* SRB message data structure as specified in ASPI guidelines V

struct msb far *SRB_ptr;

/* SRB_ptr is defined as a pointer to the SRB data structure V

mainO

/* LIST OF VARIABLES USED V

FILE *fptr, *fptr2;

int hourl;

int Thresh;
int retry;

long blocks;

int val;

int mini;

long pres;

int seel;

int hi;

char last;
int hour2;

long inc;

int min2;

int sec2;

int h2;

B-19

int extra;

long block;

long start;

int h/s,m,hour;
long errs;

int chrs;

int error;

int ready;
int i;

char filename[15L filename2[15];

char *fl, *f2;

int choice;

char Data[80];

int time[4];

char far *data_ptr;

/* START OF PROGRAM V

error = open_aspi();

/* call open_aspi function - this is in open.asm */

/* if no aspi is present then error = 1 */

SRB_ptr = &SRB;

/* SRB pointer points to the SRB i.e. it is the address of the SRB structure V

data_ptr = &Data[0];

/* data pointer points to the data array i.e. it is the address of the data array

V

B-20

val = 0;

if (error == 0)

/* if aspi is present then enter loop*/

printf ("Requesting Input/Output");
init_SRB();

/* function initialises all fields in the SRB ready for use */

send_data();

/* place SRB on the SCSI bus using external assembler function*/

ready = test_data();

/* test_data constantly poll SRB status for successful transfer*/

if (ready == 0)

/* if successful communication then enter loop */

{

for(i=0;i<80;i++)Data[i] = 0x00;

/* initialise data area */

for (i=0;i<20;i++) SRB.sense_allocation_area[i]=0;

/* initialise S.A.A V

B-21

Regs.x.ax = FP_SEG(data_ptr);

/* find the data segment address of the data_ptr*/

SRB.data_segment[l] = Regs.h.ah;

SRB.data_segment[0] = Regs.h.al;

/* set address of data segment using low and high

byte*/

Regs.x.ax = FP_OFF(data_ptr);

/* find the data offset address of the data_ptr*/

SRB.data_offset[l] = Regs.h.ah;

SRB.data_offset[0] = Regs.h.al;

/* set address of data offset using low and high

byte*/

choice=5;
while (choice!=0)

{
menuQ;

/* setup menu */

scanf("%d",&choice);

/* get choice V

if (choice==0)

B-22

of data */

/* exit program */

printfC" \nENDING PROGRAM\n");

}
if (choice==6)

/* read header from a specified block

for(i=0;i<30;i++)Data[i] = Oxff;

printf("\ninput block number:");

scanf("%d"/&block);

read_header(block);

/* use function to setup CDB for chosen

operation*/

send_data();

/* send data to drive unit */

sense_data(Data);

/* poll until sucessful status received */

if (choice==7)

for(i=0;i<30;i++) Data[i] = Oxff;

read_toc();

send_data();

sense_data(Data);

if (choice==8)

for(i=0;i<30;i++)Data[i] - OxOf;

read_capacity();

B-23

send_data();
sense_data(Data);

if (choice==l)

mode_sense();
sense_data(Data);
/* show data area before command */
send_data();
sense_data(Data);
/* show data area after command V

if (choice==2)

mode_select(Data);
send_data();
sense_data(Data);

if (choice==3)

log_select(Data);
send_data();
sense_data(Data);

if (choice==4)

/* report on retries */

retry=0;
for(i=0;i<30;i++)Data[i] = 0x00;

log_sense(Data,retry);

send_data();

ready = test_data();

B-24

sense_data(Data);

if (Data[0]==0x30)

printf("\nRetries = %d\n",Data[5]);

}
if (choice==5)

{
printf("\ninput filename :");

scanf("%s",&filename);

fl = ".ret";
£2 = ".act";

strcpy(filename2/filename);

strcat(filename,fl);

strcat(filename2,f2);

fptr2 = fopen(filename2/"wt");

fptr = fopen(filename,"wt");

/* files to place results in */

printf("\nlnput number of blocks:");

scanf("%ld",&blocks);

/* number of blocks to gather V

printf("\nlnput Starting point:");

scanf("%ld",&start);

block = start;

/* starting point from which to get N

blocks V
inc=l;

printf("\n increment : ");
scanf("%ld",&inc);

/* increment x blocks at a time V

printf("\n Threshold : ");

scanf("%d",&Thresh);

/* set threshold T for access times */

/* times less than T are not recorded */

B-25

printf("\n retries per block (y/n): ");

last = 0;

errs = 0;

pres = 0;

blocks = blocks+block;

for(block=start;block<blocks;block=block+inc)

{
if (block==blocks)

exit(O);

printf("\nblock %ld\n",block);

verify(block,inc);
/****************************** /

/*** get time l ***/
/****************************** /

Regs.h.ah = Ox2c;

intdos(&Regs,&Regs);

hourl = Regs.h.ch;

mini = Regs.h.cl;

seel = Regs.h.dh;

hi = Regs.h.dl;

time[0] = hourl;

time[l] = mini;

time[2] = seel;
time[3] - hi;
/* time 1 is before message

transferred */
send_data();
/****************************** /

/*** get time 2 ***/
/****************************** /

ready = test_data();

B-26

Regs.h.ah = Ox2c;

intdos(&Regs,&Regs);

hour2 = Regs.h.ch;

min2 = Regs.h.cl;

sec2 = Regs.h.dh;

h2 = Regs.h.dl;

/* time 2 obtained when successful

/* status is recorded V

if (time[3]<=h2)

{extra = 0;

sec2 = sec2 - 0;

else {

extra = 100;

sec2 = sec2 - 1;

h = h2 - time[3] + extra;

if (time[2]<=sec2)

extra = 0;

min2 = min2 - 0;

else {

extra = 60;

min2 = min2 - 1;

s = sec2 - time[2] + extra;

if (time[l]<=min2) {

extra = 0;
hour2 = hour2 - 0;

B-27

HSECS",block,s*100+h);

else {

extra = 60;

hour2 = hour2 - 1;

1
m = min2 - time[l] + extra;
hour = hour2 - time[0];

/* calculates time taken V
fprintf(fptr2,"\n%ld : %d

for(i=0;i<30;i++)Data[i] = 0x00;
log_sense(Data /retry);
/* specify retries to be */
/* recorded for block accessed */
send_data();
ready = test_data();
sense_data(Data);
if ((Data[0]==Ox30)&&(Data[7]>0))

%d",block,Data[7],Data[8]);

f p r i n t f (f p t r , " \ n % 1 d : % d

pres = pres + Data[7];

for(i=0;i<30;i++)Data[i] = 0x00;
log_sense(Data,retry);
send_data();
ready = test_data();
sense_data(Data);
getcharQ;

B-28

getcharQ;
if (Data[0]==0x30)

{
printf("\n\nTotal Retries = %ld\n",pres);

fclose(fptr);

fclose(fptr2);

printf("\nfinished\n");

show_sense();

} /* end of verify choice*/

if (choice!=0)chrs=getchar();

if (choice! =0)chrs=getchar();

} /""end of while loop V

}/*end of ready loop Y

else

printf("no aspi manager");

}
return(O);

void read_capacity(void)

{
char *cdb;
char READ_CAPACITY;

printf("\nREAD_CAPACITY");

cdb = SRB.cdb_data;

READ_CAPACITY = 0x25;

B-29

*cdb++ = READ_CAPACITY;
*cdb++ = 0x00;
*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;

*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;

void read_toc(void)

{
char *cdb;
char READ_TOC;
printfC" \nREAD_TOC");
cdb = SRB.cdb_data;
READ_TOC = 0x43;
cdb++ = READ_TOC; / 0 V
cdb++ = 0x00; / 1 MSF V
cdb++ = 0; / 2 res V

cdb++ = 0; / 3 res V
cdb++ = 0; / 4 res V
cdb++ - 0; / 5 res V
cdb++ = 0; / 6 starting track V

cdb++ = 0; / 7 all V

cdb++ = 40; / 8 all V
cdb++ = 0; / 9 res V

B-30

void read_header(long no)

{
int i;
char *cdb;
char READ_HEADER;

char Log_Block_Addr[4];
for (i=Q;i<4;i++) Log_Block_Addr[i] = 0;

Log_Block_Addr[0] = (char)no;
no = no»8;

Log_Block_Addr[l] = (char)no;
no = no»8;

Log_Block_Addr[2] = (char)no;
no = no»8;

Log_Block_Addr[3] = (char)no;

printfC" \nREAD_HEADER");

cdb = SRB.cdb_data;
READ_HEADER = 0x44;
cdb++ = READ_HEADER; / 0 V

cdb++ = 0x2; / 1 MSF V

cdb++ = Log_Block_Addr[3]; / 2 LBA V

cdb++ = Log_Block_Addr[2]; / 3 LBA V

cdb++ = Log_Block_Addr[l]; / 4 LBA V

cdb++ = Log_Block_Addr[0]; / 5 LBA V
cdb++ = 0; / 6 res V

cdb++ = 8; / 7 res V

cdb++ = 0; / 8 res V
cdb++ = 0; / 9 res V

void log_select(char a[])

{
char *cdb;

B-31

char LOG_SELECT;

printf("\nLOG SELECT");

cdb = SRB.cdb_data;

LOG_SELECT = Ox4c;
cdb++ = LOG^SELECT; / 0 V

cdb++ = 0x02; / 1 lun & res & PCR & SP */

cdb++ = 0x40; / 2 PC V

cdb++ = 0; / 3 res V

cdb++ = 0; / 4 res */

cdb++ = 0; / 5 res V

cdb++ - 0; / 6 res V

cdb++ = 0; / 7 PLL */

cdb++ = 0x0; / 8 PLL V

cdb++ = 0; / 9 control V

void log_sense(char a[], int answer)

{
char *cdb;

char v2,vl;

char LOG_SENSE;

printf("\nLOG SENSE");

cdb = SRB.cdb_data;

LOG_SENSE = Ox4d;

vl=0;

v2=0;
if (answer==0)

{
printf("\npage code ");

scanf("%x",&vl);

B-32

printf("\n%x\n",vl);
printf("\nlent ");
scanf("%x"/&v2);

else

vl=0x30;
v2=20;

}
*cdb++ = LOG_SENSE;

cdb++ = 0x00; / lun & res & PPC & SP *l
cdb-t-+ = vl I 0x40; / PC & Page code */
cdb++ = 0; / res V
cdb++ = 0; / res */
cdb++ = 0; / PP V
cdb++ = 0; / PP */
cdb++ = 0; / All lent */
cdb++ - v2; / All lent V
cdb++ = 0; / control V

void verifydong no, long ink)

{
char *cdb;

int i;
char VER;
char Log_Block_Addr[4];
char length[2];
VER = Ox2f;

for (i=0;i<2;i++) length[i] = 0;
for (i=0;i<4;i++) Log_Block_Addr[i] = 0;
length[0] = (char)ink;

B-33

ink = ink»8;

length[l] = (char)ink;

Log_Block_Addr[0] = (char)no;

no = no»8;

Log_Block_Addr[l] = (char)no;

no = no»8;

Log_Block_Addr[2] = (char)no;

no = no»8;

Log_Block_Addr[3] = (char)no;

cdb = SRB.cdb_data;

*cdb++ = VER;

*cdb++ = 0;

*cdb++ = Log_Block_Addr[3];

*cdb++ = Log_Block_Addr[2];

*cdb++ = Log_Block_Addr[l];

*cdb++ = Log_Block_Addr[0];

*cdb++ = 0x0;
*cdb++ = lengthll];

*cdb++ = length[0];

*cdb++ = 0x0;

void read6(long no)

{
char *cdb;

int i;

char READ;
char Log_Block_Addr[3];

READ = 0x08;
for (i=0;i<3;i—) Log_Block_Addr[i] = 0;

Log_Block_Addr[0] = (char)no;

no = no»8;

B-34

Log_Block_Addr[l] = (char)no;
no = no»8;

Log_Block_Addr[2] = (char)no;
cdb = SRB.cdb_data;
*cdb++ = READ;

*cdb++ = Log_Block_Addr[2];
*cdb++ = Log_Block_Addr[l];
*cdb++ = Log_Block_Addr[0];
*cdb++ = Oxl;
*cdb++ = 0;

void seek6(long no)

{
char *cdb;
int i;

char SEEK;

char Log_Block_Addr[3];

SEEK = OxOb;
for (i=0;i<3;i++) Log_Block_Addr[i] = 0;
Log_Block_Addr[0] = (char)no;

no = no»8;
Log_Block_Addr[l] = (char)no;

no = no»8;
Log_Block_Addr[2] = (char)no;

cdb - SRB.cdb_data;
*cdb++ = SEEK;
5(-cdb++ = Log_Block_Addr[2];

*cdb++ = Log_Block_Addr[l];

"cdb++ = Log_Block_Addr[0];
*cdb++ = 0;

*cdb++ = 0;

B-35

void mode_select(char a[])

{
char *cdb;
char MODE_SELECT;

char val;

char erp;

printf("\nMODE SELECT");

cdb = SRB.cdb_data;

MODE_SELECT = 0x15;

printf("\npage:");

scanf("%d",&val);

*cdb++ = MODE^SELECT;

*cdb++ = 0x10;

*cdb++ = 0;

*cdb— = 0;

*cdb++ = 20;

*cdb++ = 0;

a[0] = 0;

a[7] = 0;

a[3] = 8;
a[10]= 8;/*9;V
a[ll]= 0;/*0x20; V

if (val==0)

{
a[12]= 00;

a[13]= 6;
a [14]= 0x0;

a[15]= 0;
a[16]=0;
a[17]=0;

B-36

a[18]=0;

a[19]=0;

if (val==l)

printf("\n? (00 = good/ 04 = retry):");

scanf("%x",&erp);

a[12]= 1;

a[13]= 6;

a[14]=erp;

a[15]=0xa;

a[16]=0;

a[17]=0;

a[18]=0;

a[19]=0;

if (val==0x0d)

a[12]= OxOd;

a[13]= 6;

a[14]= 0x0;

void mode_sense(void)

{
char val;

char *cdb;

char PC;

char MODE_SENSE;

char len;

char page_code;

B-37

printf("\nMODE SENSE");
cdb = SRB.cdb_data;
MODE_SENSE = Oxl a;
PC = (char)((OxO) « 6);
page_code = 0x00;
val = 0;
printf("\npage:");
scanf("%d",&val);
/* page to use */

page_code = val;
code = val;
len = 0x25;
*cdb++ = MODE_SENSE;
*cdb — = 0x00;
*cdb++ = PC I page_code;
*cdb++ = 0;
*cdb++ = len;
*cdb++ - 0;

void sense_data(char a[])

{
int i;
char *cdb;
int ready;

cdb = SRB.cdb_data;

ready = 1;
printf("\n");
while (SRB.device_status==0)

printfC'waiting for connection to..");

B-38

for (i=l;i<28;i++) printf("\b");

}
printf("\n");

if ((SRB.target_status!=0) I I (SRB.host_status!=0))

{
printf("\nstatus:%x",SRB.device_status);

printf("\nh.a.s status:%x",SRB.host_status);

printf("\nt.s status:%x",SRB.target_status);

show_sense();

printf("\nDATA");
printf("\n====");

for (i=0;i<80;i++) {

if ((i % 10) == 0) printf("\n");
printf("%x:",a[i]);

void menu(void)

{
printf("\n\t MENU");
printf("\n\t ==== \n");

printf("\n\t (0) EXIT");

printf("\n\t (1) MODESENSE");

printf("\n\t (2) MODESELECT");

printf("\n\t (3) LOGSELECT");

printf("\n\t (4) LOGSENSE");

printf("\n\t (5) READ N BLOCKS");

printf("\n\t (6) READ HEADER");

printf("\n\t (7) READ TOC");

B-39

printf("\n\t (8) READ CAPACITYXn");
printf("\nEnter option: ");

int test_data(void)

{
int i;
int ready;
ready = 1;

printf("\n");

while (SRB.device_status==0)

{
printf("waiting for connection to..");

for (i=l;i<28;i++) printf("\b");

}
printf("\n");

if ((SRB.target_status!=0) I I (SRB.host_status!=0))

{
printf("\nstatus:%x"/SRB.device_status);

printf("\nh.a.s status:%x",SRB.host_status);

printf("\nt.s status:%x",SRB.target_status);

show_sense();

}
else {

printf("\nDEVICE ok\n");

ready = 0;

}
return(ready);

B-40

void show_sense(void)

{
int i;

printf("\n\nMODE SENSE DATA");
printf("\n===============");

for (i=0;i<20;i++) {

if ((i % 4) == 0) printf("\n");

printf("%x:",SRB.sense_allocation_area[i]);

void init_SRB(void)

{
int i;

SRB.command_code = 2;

SRB.device_status = Oxff;

SRB.host_adapter_number = 0;

SRB.scsi_request_flag = 0;

for (i=0;i<4;i++) SRB.reservedl[i] = 0;

SRB.target_id = 1;

SRB.lun = 0;

for(i=0;i<3;i++) SRB.data_allocation_length[i] = Oxff;

SRB.data_allocation_length[3] = Oxff;

SRB.sense_allocation_length = 20;

SRB.cdbJength = 6;

SRB.host_status = 4;

SRB.target_status = 4;

for(i=0;i<34;i++)SRB.reserved2[i] = 0;

for(i=0;i<6;i++)SRB.cdb_data[i] = 0;

for(i=0;i<20;i++)SRB.sense_allocation_area[i] = 0;

B-41

B-42

Appendix C
The Effect Of Mutiple Burst Errors

Multiple burst errors have not been examined in the course of this thesis due
to the reasons outlined in Chapter Eleven. However the effect of such errors
on the coding scheme can be illustrated using the simulation model and
illustrations.

The effect is clear, when bursts occur in close proximety they effect the
correction possible at the C2 Decoder. The position of errors before and after
Deinterleave Strategy II is illustrated in Figure C.I and Figure C.2
respectively. The dispersal of errors is successful, however due to the
proximety of the errors, two parallel strips of errors occur along the Sector.
Error correction is compromised in each Frame where both bursts occur.

C-l

ix C.I : Illustration Of Two Bursts Within A St

Figure Cl

aMtmtmtmttrrttmtg

.LLt.l.I.1.1.1.1.1.1.1.1.1. LfcLtttlrrrrrTrm^mvvF.vw

EBt

Figure C.2

C-2

Glossary

Access Time

ASPI

Burst Error

Channel Code

Cl Code

C2 Code

Cl Error Count

C2 Error Count

CIRC

CD

CDROM

CAV

CLV

CRC

Data Block

DDS

Quantity of time taken to access a block of data. This
includes the time taken to seek to, decode and check a
given block of data.

Advanced SCSI Protocol Interface. Used to commuciate
with the CDROM

A number of contiguous bit errors occuring in sequence.

See modulation code.

The first error correction code of CIRC.

The second error correction code of CIRC.

The error statistic used to indicate the perceived number
of Frames in error after Cl error correction has been
applied.

The error statistic used to indicate the perceived number
of Frames in error after C2 error correction has been
applied.

Cross Interleaved Reed-Solomon Codes.

Compact Disc.

Compact Disc Read Only Memory. The mass data storage
application upon the compact disc.

Constant Angular Velocity.

Constant Linear Velocity.

Cyclic Redundancy Check.

A sector of information.

Digital Data Storage. This is the form of RDAT which is
specific to digital data storage as a pose to anlogue data
storage. Also referred to as DDS-RDAT.

DDS-RDAT

DSV

ECMA

EDC

EFM

Flagging

Galois Field

Inter-Block Access Time

Latency

Logical Sector

Modulation Codes

Recording Code

RDAT

Reed Solomon Codes

RLL

see DDS.

Digital Sum Variation.

European Computer Manufacturers Association.

Error Detection Code.

Eight Fourteen Modulation code. The modulation code of
the CDROM and CD.

An error location system used when more than one error
correction code is used. Symbols are flagged such that
they can be identified when the next decoding occurs. In
the Reed Solomon Codes this facilitates greater error
correction.

Finite field upon which Reed Solomon encoding, decoding
and correction is based.

The Access Time between successive logical blocks. This
is used in the course of this thesis.

The period of time it takes for a disc to rotate fully.

The 2352 bytes organisation of data before CIRC is
applied.

The coding schemes applied to data so that they may be
recorded upon a communications channel. Also known as
channel or recording codes.

See modulation code.

Rotatory Digital Audio Tape.

A family of error codes used for the correction of symbols
rather than bits. Codes with 2n parity can locate and
correct n bytes or 2n if there locations are known.

Run Length Limited. Constraints applied to data when
modulation occurs.

SCSI Small Computer Systems Inteface.

Sector The smallest addressable area upon the CDROM.

Section The physical representation of a sector on the CDROM
disc.

SNR Signal To Noise Ratio.

Symbol A number of associated bits. In the case of the CDROM
eight bit byte symbols are used.

Syndrome This is an indication of error. It can also be used for both
error location and correction in the Reed Solomon codes
used in the CDROM.

Table Of Contents A data area situated at the centre of a CD/CDROM disc.
The Table Of Contents holds addressing data for tracks
and data blocks upon the disc. This is written many times
since it is essential for data capture.

Track A area on the disc where data is held.

WORM Write One - Read Many.

