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Abstract

The purpose of this work was to explore the error correction 

performance of the CDROM data storage medium in both a 

standard and hostile environment. A detailed simulation of the 

channel has been written in Pascal. Using this the performance 

of the CDROM correction strategies against errors may be 

analysed.

Modulated data was corrupted with both burst and 

random errors. At each stage of the decoding process the 

remaining errors are both illustrated and discussed. Results are 

given for a number of varying burst lengths each at different 

points within the data structure. It is shown that the maximum 

correctable burst error is approximately 7000 modulated data 

bytes.

The effect of both transient and permanent errors on the 

performance of a CDROM was also investigated. Here software 

was written which allows both block access times and retries to 

be obtained from a PC connected to a Hitachi drive unit via a 

SCSI bus. A number of sequential logical data blocks are read 

from test discs and access times and retry counts are recorded 

for each.

Results are presented for two classes of disc, one which 

is clean and one with a surface blemish. Both are exposed to 

both standard and hostile vibration environments. Three classes 

of vibration are considered: isolated shock, fixed state 

sinusoidal and swept sinusoidal. The critical band of 

frequencies are demonstrated for each level of vibration. The 

effect of surface errors on the resistance to vibration is 

investigated.
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CHAPTER ONE 

Introduction and Outline

1.1 Introduction

In recent years the development of computers with greater processing power 

and greatly increased storage requirements has led to an inexorable demand 

for storage devices which are physically smaller, have an increased capacity, 

but are cheaper in real terms. The increases in storage capacity occur at such 

a rate such that many of these figures mentioned here will have been 

surpassed.

Mass storage devices can be divided into 3 main categories. These are 

thin film magnetic, thick film magnetic and optical storage. Thin film 

magnetic devices are used for fast random access and relatively low storage 

applications, particularly for rapid file handling in computers. For example 

the Winchester hard disk now has a capacity of 550 MByte. Thick film 

magnetic tape devices are used for applications with sequential access, for 

example data backup and archiving. A Digital Data Storage (DDS) Tape 

currently has a 1.4 Gbyte storage capacity. Optical disk devices are used for 

relatively slow random access and high storage applications, for example 

large commercial databases. A Compact Disc Read Only Memory (CDROM) 

has a storage capacity of 553 Mbytes Sponheimer[l,pp 39].

The CDROM data structure has been developed from the CD 

(Compact Disc) audio. The Compact Disc interpolation procedure while 

appropriate for audio is clearly unsuitable for data storage. To compensate 

for this additional error control strategies are incorporated.

Each of the three classes of application is served by proprietary 

devices. All must therefore conform to International Standards, e.g. ECMA 

(European Computer Manufacturers Association). The standards for the 

CDROM have been devised in the context of a controlled environment. One 

purpose of the present work is to explore the performance of the CDROM 

media and drive operations in environments which may be hostile.



The aims of the work were :

  to understand the full encoding and decoding error correction of the 

CDROM;

  to assess the limits of the error correcting performance of the 

CDROM operating against permanent error mechanisms;

  to conduct detailed investigations into the retry strategy against 

transient error mechanisms;

  to measure the effect of imperfect disk surfaces on error control 

performance;

  to investigate the effect of an adverse vibrating environment on the 

CDROM;

  to produce software in procedural and user language which will :

(1) simulate the response of the CDROM to a permanent error;

(2) allow access individual Sectors of the CDROM and to 

monitor the access times and retries of the blocks involved.

1.2 Outline
In Chapter Two the three main classes of Mass Storage Devices are reviewed, 

with particular emphasis upon the CDROM.

The CDROM error correction strategy is based upon Reed Solomon 

Codes. In Chapter Three the theoretical basis and treatment of Reed Solomon 

Codes is discussed. In addition a practical computer simulation 

implementation of these strategies is considered. This Chapter also gives an 

account of product codes and interleaving, both of which are major features 

of the CDROM.

The CDROM uses EFM (Eight Fourteen Modulation code) which is a 

Block Modulation Code. In Chapter Four, Block modulation coding is 

introduced and briefly discussed.

Chapter Five gives a detailed account of the specific strategies for 

encoding data of the CDROM and how they are simulated. Chapter Six 

describes the inverse operations of Chapter Five. It explains how the 

modulated data together with its errors is decoded and how the signal



processing uses the error syndromes which are introduced by corrupted data.

Chapter Seven gives examples of the use of a simulation model to 

illustrate and correct both burst and random errors. In each example, data is 

generated, encoded, modulated and corrupted. The corrupting errors which 

have been introduced are addressed by each stage of the strategy in turn. At 

each stage the remaining errors are illustrated with a commentary. Examples 

are used to illustrate the full scope of the error control of the CDROM.

In Chapter Eight the performance of the CDROM for a large 

systematic range of burst errors is illustrated and discussed. Here the 

simulation model is exposed to bursts which range between 100 and 8000 bits 

in length, with varying starting position through the Sector. In every case 

interim results are produced for residual errors within the sector at each 

stage of the decoding. Using this data, it is possible to illustrate the 

performance of the correction strategies.

In addition Chapter Eight discusses the uses of the data for 

inferencing errors on the CDROM. Here the intermediatory error results 

produced by the model may be used as a database which may be compared 

to empirical results. The intermediatory decoding errors from a practical 

CDROM with a blemished surface are measured. The most likely form of the 

blemish is then inferred by interrogating the database.

Some error mechanisms produce permanent errors: surface scratches 

for example. In this case, if the data corruption defeats the error control 

procedures the Sector decoding fails and that Sector is lost. Further attempts 

to access the Sector will fail in exactly the same manner. By contrast in 

Chapter Nine the effect of transient and semi-transient errors are considered. 

Here a sector of data may be successfully accessed after several attempts. 

Data on Sector access times and retries is obtained using a Hitachi CDROM 

drive connected via a SCSI bus to a PC which monitors CDROM error 

performance. Both assembler and 'C software are used to access the CDROM 

control information. The results of the experiments are described in Chapter 

Ten. Conclusions and proposals for future work are offered in Chapter 

Eleven.



CHAPTER TWO 

Mass Storage Devices

2.1 Various Mass Storage Devices
Since digital computers established a widespread industrial and commercial 

application some three decades ago, the demands made on digital storage 

media by digital technology have increased inexorably and exponentially. 

Interestingly throughout this period the two principal classes of storage 

media have remained unchanged. In general storage devices continue to 

employ either disk or tape for the storage media.

The demands for data storage are addressed by storage media and the 

associated enabling technologies. Very high areal densities have been 

achieved using Write Once Read Many (WORM) optical media, or by writing 

and reading to magnetic media using rotatory heads. The advances in storage 

media technology have been accompanied by sophisticated signal processing 

procedures Bell[2], Bell[3], Wood[4] & Laub[5]. Taken together these 

developments necessitate enhanced error protection, even as areal densities 

increase and costs drop.

This chapter considers the common examples of each of the three 

principal classes of data storage. The Winchester disk as an example of thin 

film magnetic storage. The RDAT (Rotary Digital Audio Tape) and associated 

and RDAT-DDS (Digital Data Storage) as an example of thick film magnetic 

storage. Lastly the CD and CDROM as an example of optical storage 

Alford[6].

2.2 The Winchester Disk Drive
The development of storage disk technology has been driven by computer 

technology. Random access computer storage is prohibitively expensive for 

general data storage. The exploitation of computers would have been



impossible without a cheap mass storage medium which nevertheless offered 

acceptable access times Zoellick[7,pp 177].

The Winchester disk (or Hard Disk) is a thin film device with a higher 

areal density than the thick film floppy disk. For Hard Disks the head 

positioning equipment together with the disk itself are sealed as a single unit. 

This permits track width reduction and hence greater capacity. The single 

unit inhibits disk exchange, however, and the use of the floppy disks remains 

widespread for data exchange and back up. More recently high speed tape 

drives such as DDS have been developed for this purpose.

A disk consists of a number of platters, the more platters the greater 

the storage capacity. Each platter consists of many concentric rings from the 

hub to the rim, each ring is called a track. Each platter is subdivided into 

sectors. A disk is formatted so that data is stored in blocks which contain a 

fixed number of bytes. Each sector of a track holds one data block. Thus a 

block of data occupies more space at the rim than at the hub due to the 

constant angular velocity. Since data is accessed at the same rate since the 

Constant Angular Velocity of the disk produces linear disk/head speeds 

across the surface Christodoulakis[8,pp 152]. Data is written to these sectors 

by magnetising particles in medium.

Hard disks with capacities in excess of 100 Megabytes are of particular 

importance as fixed computer disks or file servers.

2.3 High Speed Tape Drives
Two high speed tape devices of particular interest are RDAT and RDAT- 

DDS. Both devices use an advanced form of helical scan technology which 

was originally developed for VHS video. Fixed head tape magnetic recording 

devices pass thick film magnetic tape across fixed, mounted recording heads 

usually with a velocity that greatly exceeds 5 cm/s. Recording tracks are 

therefore laid down along the axis of the tape. Although recording densities 

using fixed head recording continue to improve, developments are hampered 

by such error mechanisms as crosstalk and mechanical tolerance. The guard



bands of un-magnetised tape between adjacent tracks are required to 

overcome these errors.

In RDAT the tracks are recording diagonally across the tape Dare[9]. 

This is achieved by using two heads mounted on a rotating drum at 180 

degrees Baugh[10]. The drum rotates at a speed of 200 rpm whilst the tape 

moves at 8 mm/sec in the same direction. A helical pattern is described over 

the tape by each head. The two heads are offset by equal and opposite 

azimuth angles. By this method alternative tracks are skewed. This reduces 

crosstalk, since the heads will pick up stronger signals from data written in 

the same azimuth angle as itself. The heads are wider than the tracks, so 

avoiding the need for guard bands. Hence very high areal densities are 

obtained Watkinson[ll,pp 280]. RDAT data integrity is further reinforced by 

complex signal processing procedure incorporating multiple interleaving and 

Reed-Solomon coding. In RDAT digital signals which are being recorded are 

interleaved between adjacent tracks, so dispersing burst errors due to 

dropouts and abrasions of the tape. In addition RDAT also employs 

interpolation which is acceptable for audio application. There are two levels 

of error correction coding called Cl and C2 codes respectively. Each is 

supported by a Reed Solomon Code error control strategy.

+ Azimuth track' ^ ^ ^_
iL , , \ \ ̂N. Head Motion 3.133 m/s

- Azimuth track x x x ^

Tape Motion 
8.15 mm/s

Figure 2.1 : The Layout of Tracks On RDAT

DDS is a recording format developed by Hewlett-Packard and Sony, 

which develops RDAT for computer applications. In RDAT continuous tracks 

of data are used, but in DDS frames are organised into groups in which each 

contains 22 frames. A third error correcting code, C3 is introduced at group



level. By contrast with Cl and C2 codes all error correction occurs within a 

single track Odaka[12]. In addition to an extra level of error correction the 

DDS format incorporates Read after Write and Multiple group writing.

High speed tapes have the advantage of many write - many read 

media. However the sequential mean access times can be unsatisfactory, 

particularly when accessed data is widely dispersed along the tape.

2.4 The Optical Disc
The present work is concerned with the CD and associated CDROM 

Lambert[13] & Poel[14]. The CD offers enormous advantages as a storage 

medium which were originally exploited for the digital storage of speech and 

music Carasso[15], Goedhart[16]. Complex strategies for data integrity such 

as interleaving, second order Reed Solomon coding and an extended block 

modulation code were developed to ensure that advances in areal density 

were allied to suitably low recording error rates for this purpose Vries[17]. 

The compact disc has been specified in a number of standards ECMA[18], 

BSI[19] & ECMA[20].

Compact Discs are produced as a physically protected medium from 

which data can be repeatedly read without degradation of the medium. The 

channel bits are incorporated into an aluminium layer which is physically 

protected on the read side by plastic and on the other side by both a specially 

designed lacquer and a chemically inert paint Verkaik[21], Watkinson[22,pp 

70]. In order to destroy data on the aluminium one side must be penetrated 

and the metal thereby rendered ineffective. In addition the channel data is 

protected by the sophisticated algorithms to correct those errors which are 

sustained by the disc.

The data on a Compact Disc is stored in a spiral from the centre to the 

rim, however initial data is stored at the centre Watkinson[23, pp 1046]. The 

head-disc speed is significant. The CD is rotated with a Constant Linear



Velocity 1.3 m/s so that the relative angular head-disc speed varies 

depending upon which part of the disc is being read, varying from the 

highest speed (458 revs/min) at the centre to the lowest at the rim (197 

revs/min) Christodoulakis[24,pp 152], Barbosa[25,pp 189-191], 

Miyaoka[26,pp 37]. The CD was been designed as a compromise between 

access time and capacity Christodoulakis[27], Davies[28,pp 38]. The quantity 

of data stored is determined by two parameters, track pitch and linear 

information density Immink[29,pp 410]. The use of CLV has facilitated the 

data capacity of the Compact Disc to be double that which would have 

existed if it were a CAV application. The linear data density along the spiral 

also varies inversely with the head-disk speed, thus ensuring that data is 

read at a constant rate of 176.4 Kbytes/s over the whole of the disc 

Watkinson[ll,pp 463].

The data is laid out on the disc in sectors within tracks Zoellick[7,pp 

177]. The distance between each track is known as the track pitch and this is 

1.6 micrometers Miyaoka[26,pp 35]. This is similar to the format of a 

Winchester Disk except that with a CD sectors are laid along a spiral instead 

of lying in concentric rings. The data nearest the hub is the Table Of Contents 

Peek[30,p 8]. This is the index of the disk which coveys control data to 

communicating hardware: how many tracks are present, where the starting 

sector of each track is or whether the disc is a CD or a CDROM. A CD can 

in be played in a CDROM player but not vice versa.

When a CD is placed in the player the initial concern is to accelerate 

the disc to reading speed Sponheimer[l,pp 41]. The read laser is pushed to 

the centre of the disc where it reads the Table Of Contents. On looking for 

a designated sector or block (they are the same) of data the laser head will 

be moved further out until it finds a sector which is near to that of the target. 

Finding the designated sector is dependant upon both the tracking and 

focusing abilities of the laser Watkinson[31] & Miyaoka[26,pp 36]. Each 

sector has associated control data which aids addressing, the address being 

the time displaced from the start of the track.



When the target Sector is accessed the channel bits are decoded and 

raw data retrieved. By the time that decoding of a CD sector has been 

completed the disc will have rotated sufficiently to read the next logical 

sector. Access time is crucial and sophisticated algorithms have been 

developed which predict the best arrangement of logically sequential blocks 

on the medium; i.e. minimising average access times. Furthermore this 

procedure enhances the protection of data against physical damage by 

distributing associated data around the disc. Due to the refractive index 

properties of the transparent layer are also used to reduce the effects of 

scratches. The 0.8 mm diameter read laser spot on the surface is reduced via 

a convex lens and diffraction to a 1.7 um spot upon the channel data surface 

Watkinson[22,pp 70]. Any obstruction or scratch smaller than 0.5 mm will not 

effect the laser spot at the pit and land of the channel data level Hoever[32,pp 

70] & Miyaoka[26,pp 35]. The depth of each pit is approximately 0.11 

micrometers.

External vibration to the CD will degrade its performance, since the 

read laser may be propelled in any direction. This may cause the hardware 

to fail to read the channel data accurately and the attempt to access the 

Sector to fail. In this case the hardware will reseek to the appropriate sector. 

The choice of sector to be resought is specified by the CD drive and 

associated hardware. For example, in an audio CD player any sector in the 

current track can be resought, although the quality of the sound would be 

degraded. The two error correcting codes of the CD are able to cope with 

specific levels of byte errors. However if errors do remain after such 

correction schemes have been applied then labelling occurs and interpolation 

is used, where corrupted data is estimated using associated data Vries[33,pp

2].

More recently the CDROM has been developed as a major mass data 

storage medium for computing applications Cardinali[34]. The CDROM 

contains an extra layer of error correction and detection. Two extra layers of 

protection are required to attain the error performance necessary for mass 

data storage Sako[35,pp 3996]. After these stages a Cyclic Redundancy Check



is applied to the data. If this fails then the whole sample of data is considered 

erroneous and discarded. Note that a verified Sector of CDROM data is 

absolutely correct, no interpolation is involved Chen[36]. Clearly latency 

cannot be exploited when reseeking the same sector. Reseeks will 

consequently increase a Sector access time.

Each of the three storage media discussed in this chapter has a specific 

computing application. The Winchester Disk is used for fixed disk computer 

storage, the CDROM where mass storage with random access is required and 

DDS, which has sequential access is used for data backup. The storage device 

of greatest interest is the CDROM.

10



CHAPTER THREE
A Mathematical Basis For Error Control In 

Optical Recording

3.1 The Need For Error Control
Any digital data encoding channel is liable to produce recording errors in 

which there are inconsistencies between the data which is written onto the 

medium and the data which is read from it Forney[37], Shannon[38] & 

Shannon[39]. Even in controlled environments like computer storage 

recording errors will occur due to such error mechanisms as additive noise 

or abrasions on the surface of the medium.

In environments which are less well controlled the error rate will be 

correspondingly higher. The need therefore is for an error coding strategy 

which will identify that a recording error has occurred and will then correct 

the error to re-establish the input data Berlekamp[40], Watkinson[41].

3.2 Reed Solomon Codes
Every bit of a binary data stream is drawn from a two state alphabet {0,1}; 

thus if a single bit is known to be in error it can be corrected by simply 

reversing its state. When data is considered as a sequence of code vectors, 

each containing multiple bits, more complicated correction strategies must be 

employed Doi[42]. Such strategies must detect and then correct all bits which 

are in error.

The most simple strategy of error detection and correction is the single 

error correcting Hamming code, which is of limited practical value 

Hamming[43]. The more complex Reed Solomon Codes (RSC) are designed 

to deal with error bursts, where several contiguous bits are in error. These 

codes are able to achieve multiple error correction, these are now investigated 

Berlekamp[44], Golomb[45,pp 204] & Reed[46]. In contrast to Hamming codes,

11



in which codewords of bits are considered separately, Reed Solomon codes 

group codeword bits into sub-codewords, or symbols. For the CDROM each 

symbol has eight bits and referred to as a code byte.

Reed Solomon Codes are Linear Block Codes Vries[17,pp 3J, 

Hoeve[32,pp 167]. Such codes are called systematic (n, k) codes where k is 

number of symbols or bytes entering the encoding process; n is the number 

of symbols being output. Hence the codes introduce (n-k) parity check 

symbols.

3.2.1 Galois Fields

Galois Fields are the mathematical basis upon which much complex error 

coding is based Golomb[45,pp 208]. Galois fields are finite fields and consist 

of a finite set of elements and two defined binary operations. In finite field 

arithmetic, any operation carried out on two elements from the field results 

in a member of that field Sweeny[47,pp 73].

A Galois field in which there are n elements is referred to as GF(q), 

where q must be prime. The Galois Field GF(q) is defined over the set 

{0, ... , q-1}.

3.2.2 Binary Extensions To The Galois Field

The Galois Field GF(qm) is known as an extended field. If q=2 then the Galois 

Field is called an extended binary field.

For the field GF(2m), it is known that:

az =1

az + 1 = 0 where z = (2m - 1).

A polynomial g(cc) is irreducible in GF(2) if it has no roots in GF(2m); 

but any irreducible polynomial does have roots in the extended field GF(2m), 

where m is the degree of the polynomial. In GF(23) the polynomial is a7 + 1 

and it can be reduced to three constituent polynomials:

a7 + 1 = (a + l)(a3 + a2 + l)(a3 + a + 1).

12



The three constituent polynomials cannot be reduced any further, i.e. 

they are irreducible. The generation of all the elements in the field is 

illustrated in Figure 3.1. The generator polynomial equation being :

a3 = a + 1.

The polynomial a3+a+l=0 (a3=a+l) is used to generate the field 

elements, e.g.a3, a4 etc. If the code generator polynomial is prime then it 

generates a cyclic code. A table of such polynomials is available in most 

related texts Sweeny[47,pp 52]. For simplicity this is illustrated using a small 

field.

Figure 3.1 : Generation Of Galois Field Elements

The first few elements are simple to produce Doi[42,pp 176]: 

0 = 0 = 000 

ct° = 1 001 

a1 = a 010 

a2 a2 100

The irreducible generator equation can be used to find the remaining 

elements.

a3 = a + 1 =011

a4 = a(a3)

	a(a + 1) = a2 + a = 110 

Similarly: a5 = a + 1 + a2 =111

a6 = a2 + 1 = 101

a7 = a + a +1 =001

hence,i.e. a7 = a° which illustrates the cyclic properties.

After a6 the GF elements will repeat because the code is cyclic. The 

operations work as shown.
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a4 x a5 = a9(mod ^ = a2 

a3 x a1 = a4(mod ^ = a4

a4 + a5 = HO + 111 = 001 = a° 

a3 + a1 = Oil + 010 = 001 = a°

3.2.3 Direct Production Of The Galois Fields
In the previous section elements of the finite fields have been generated by 

algebraic means. However so as to generate elements of larger fields it is 

appropriate to use logical operations. In this case higher powers of the field 

element 'a' may be generated simply by a sequence of bit shift and exclusive 

'OR' (XOR) operations. The algorithms is as follows;

To generate at+1 from a':

(i) Left shift the binary representation of a', introducing a zero to 

the least significant end. The shift causes overflow at the most 

significant end.

(ii) If the overflowing bit is a '0' then the shifted binary pattern 

represents oct+1 .

(iii) If the overflowing bit is a T then the shifted pattern is Xor'd 

(logical exclusive OR operation) with the binary representation 

of the generator equation g(a). This gives new pattern 

represents at+1 .

As an example consider the generation of a, a2, a3, where a° has the 

bit pattern of 001 and the generator equation g(a) is a3 = a + 1. (-> signifies 

the binary shift).

a° : 0 0 1 -» (0) 0 1 0 = a.
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a1 : 0 1 0 -> (0) 1 0 0 = a2 .

a2 : 100^ (1) 0 0 0 = Oil = a3 .

xor 0 1 1

By the use of this logic the field elements can be generated for any 

sized field for any polynomial. This is how such elements can be generated 

for use in the simulation model which will be discussed later.

3.2.4 Encoding Using Reed Solomon Codes

Reed Solomon Codes are designed to correct bursts, i.e. the number of 

consecutive bits in error Hoeve[32,pp 166], Peek[31,pp 11]. The number of 

correctable symbols is governed by the amount of redundancy added to the 

data. The number of correctable symbols is half the number of check symbols 

added. Reed Solomon Codes are effective as burst correcting code, however 

random errors spread evenly through the codewords can frustrate their 

effectiveness McEliece[48].

The data bits are assembled into symbols which are elements of the 

extended Galois Field. An illustration of how parity equations are produced 

from data follows. To ensure ease of illustration the three bit GF discussed 

previously is used. For three bit Reed Solomon Codes over GF(23) there will 

be seven three bit symbols, this is a (7,5) code. The chosen generator 

polynomial is a3+a+l.

The equations which describe the relationship between data and parity 

symbols are produced using the following matrices. V is the matrix holding 

the data and parity symbols. In addition H describes the GF coefficients 

which will be combined with the seven symbols to produce the desired 

equations, with result zero. A-E are data symbols and P & Q are parity 

symbols, 

and these are combined thus
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= [ABCDEPQ] (3.1)

1 1 1 1 1 1 1 
<x° a 1 a2 a3 a4 a5 a6

(3.2)

(3.3)

The matrix equations are rearranged in terms of P and Q using Galois 

Field operations. From the equations it can be seen that the result of adding 

the data to the parity bytes should be zero. The matrix describing the 

mathematical equation linking data and parity is as follows:

P
Q

a" a1 a2 a5 a3

a2 a3 a6 a4 a 1

A 
B 
C 
D 
E

(3.4)

As an example of parity byte production consider the 15 bit data word 

{101 100 010 100 111}, where n=3. The parity symbols P and Q are found to 

be 100 and 100, respectively. A-E, P and Q are collectively known as the 

codeword.

3.2.5 Decoding Using Single Error Detection and Correction

The codewords previously produced can be used to assess whether 

corruption has occurred, this shall now be investigated. At the destination the 

codeword is tested in order to ascertain whether an error has occurred, Ve 

denotes the received codeword. Decoding is carried out using the identical 

equations described in equations (3.1), (3.2) and (3.3). Thus by definition if 

there is no error present then the result of adding VT to H is zero. If any 

contamination is present then the result will be non-zero. The linear 

difference will produce unique error syndromes. By working back from these 

syndromes both the location and value of the contamination may be found.
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R (3.5)

The outputs S0 and St are the syndromes, if both are zero then no error has 

occurred Vries[17,pp 6].

If a one symbol error does occur then the syndromes will be non-zero, 

these syndromes can be used to locate the error Doi[42,pp 152]. It should be 

stressed that errors referred to are symbol errors and that a single or multiple 

bit error in a symbol will produce a symbol error. The codeword has been 

corrupted from {101 100 010 100 111 100 100} to {111 100 010 100 111 100 

100}.

0101 cc°
0 0 1 " a6

(3.6)

In this example the syndromes are non-zero indicating that at least one 

symbol error is present in the codeword. The syndrome S0 gives the error bit 

pattern within the symbol whereas Sl identifies the symbol which is in error. 

Sj has been calculated by multiplying symbols with different power of a 

depending upon the position of the symbol within the codeword. An error 

in A will be multiplied by a6 whereas an error in Q would be multiplied by 

a°. The erroneous symbol can be located as follows:

6 

^0
(3.7)

Symbol in error = Symbol (7 - power of alpha) = symbol 1

This indicates that symbol one is in error, i.e. symbol A is in error. 

This is now represented by A*,(Symbol A is the first symbol and symbol Q 

is seventh ). The correct bit pattern of symbol A can now be determined by 

adding the erroneous symbol A* to the S0 syndrome.

17



Hence A = A* + S0 = lll + 010 = 101 (3.8)

as required.

This method only works if one symbol is in error, for multiple errors 

the same logic can be used. However the application is slightly different.

3.2.6 Decoding Using Multiple Error Detection and Correction

The power of a Reed Solomon Code is decided upon at the design stage, the 

number of correctable bits being half the redundancy Doi[42,pp 153]. If 

however the location of the symbols in error has been identified by other 

means, the number of symbols that can be corrected is equal to the 

redundancy. As an example consider the same (7,5) code where two known 

symbols have been corrupted. The codeword has been corrupted from {101 

100 010 100 111 100 100} to {111 100 010 OOP 111 100 100}, where A*=lll and 

D*=000. The erroneous codeword gives syndromes of value S0=110 and 

S^llO Hoeve[32,pp 168]. Since the positions of the corrupted symbols are 

known the following equations are true.

(A* + A) + (B* + B) ] \ SA + SB (3 . 8)
<xe( A* + A ) + a3( fi* + B ) J " <x6Sx + a3SB

By solving these equations the correct bit values of the two erroneous 

symbols can be found. The first row of the matrix described as Equation 3.8 

can be rearranged such that:

SA = SD+ S0 (3.9)

Using the second row of Equation 3.8 and substituting Equation 3.9 

where possible Equation 3.10 is produced as shown:

Si = oc6SA + ct3S D = a6(S D+ S 0) + oc3 S D

a6S D + a6S0 + a3S D = a6S0 + S D(a3 + a6)

a6S0 + S D(a4 ) (3.10)
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Rearranging and using the known syndromes :

S D(a4) = a'So + S!

SD = a(M)S0 + a^S1 = oeSo + a^

(looxiio) + (oii)dio) = 100

Using Equation 3.9 and the value of SD :

^A = SD+ S0 

= 010.

Applying the given correction:

A = A* + SA = 1 0 1. 

D = D* + SD = 1 0 0.

In practical applications of Reed Solomon Coding in data storage there 

are far more than three bits per symbol. A good example is that of CDROM 

and RDAT, where 8 bit symbols are used. Eight bits fit in conveniently with 

both sixteen bit audio samples and byte orientated computer chips.

3.3 Enhancing The Effectiveness Of Error Correcting Codes
The effectiveness of Reed Solomon error correction can be significantly 

enhanced by using those codes in combination.

There are two methods. The first involves Product Codes Sweeny[47,pp 

144]. Here a sequence of data codes is fed into an array. Reed Solomon parity 

are computed for both the data rows and columns of the array, so enhancing 

burst error capability. This is illustrated in Figure 3.2.
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Figure 3.2 : Parity Production In Product Codes
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If all the bytes of one codeword were in error denoted by X, then the 

row checks would be unable to correct the errors. However the column 

checks use the bytes from the other correct codewords denoted by V. Thus 

the whole codeword can be re-established byte by byte.

The second combination involves multiple order Reed Solomon 

encoding which exploits the ability of Reed Solomon codes to either detect 

and correct symbols in error, or to correct error symbols at known locations. 

As an example consider the (7,5) Reed Solomon code above. Five data 

symbols are encoded into a seven symbol codeword. Using CIRC encoding 

these 7 symbols are treated as data and are now encoded into a nine symbol 

codeword using a (9,7) code.

The first Reed Solomon code may locate two symbols in error and the 

second may correct two error symbols of known location. Thus the 

combination may find and correct up to two data symbols in error. By using 

an intermediatory strategy know as interleaving between the calculation of 

parity bytes in the (7,5) and (9,7) codes greater error correction is possible 

Doi[42,pp 154] & Ramsey[49]. Interleaving ensures that the error bytes are 

deposited over a wide number of codewords so enabling greater total error
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correction to be applied Vries[17,pp 2], Verterbi[50,pp 144].

For Reed Solomon codes corresponding symbols of successive 

codewords are interleaved. As an example, consider the three, 7 - symbol 

Reed Solomon codewords.

Codeword A : Al A2 A3 A4 A5 A6 A7 

Codeword B : Bl B2 B3 B4 B5 B6 B7 

Codeword C : Cl C2 C3 C4 C5 C6 C7

These could be interleaved to produce the symbol sequence 

Al Bl Cl A2 B2 C2 A3 B3 C3 ........ C7

on the medium.

Here a three byte burst error on the medium which effects bytes Bl, 

Cl and A2 will only cause one byte error in each of the three codewords 

after interleaving. In CDROM applications the more powerful Cross 

Interleaved techniques are applied. Hence Reed Solomon codewords are 

produced both before and after interleaving. In the CDROM all symbols 

used in Reed Solomon codes are eight bit bytes. As an example of Cross 

Interleaving consider the same seven byte (symbol) Reed Solomon 

codewords.

Codeword A : Al A2 A3 A4 A5 A6 A7 

Codeword B : Bl B2 B3 B4 B5 B6 B7 

Codeword C : Cl C2 C3 C4 C5 C6 C7

Interleaving in a predefined manner the resultant codewords are:
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Codeword 1 : Al B2 C3 A4 B5 C6 A7 

Codeword 2 : Bl C2 A3 B4 C5 A6 B7 

Codeword 3 : Cl A2 B3 C4 A5 B6 C7

These codewords are now encoded and then recorded on the medium. 

Any burst errors now effect the all encoded codewords 1-3. The power of the 

parity symbols of all these codewords is combined to correct some of the 

errors. The three codewords are then deinterleaved into A,B and C. These are 

decoded and further error correction may take place. This process is used by 

the CDROM though in a very much more complex application of the 

technology. This is discussed in Chapter Five.
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CHAPTER FOUR
The Production Of
Channel Code By

Modulation

4.1 The Need For Modulation
In the previous chapter it was seen that errors can cause data loss, but also 

that sophisticated error correction strategies exist which can result in data 

recovery. However, errors will not only corrupt the data but will also affect 

clocking or sampling of the signal. Channel codes, also called modulation 

codes or recording codes, aim to overcome the problem. The Channel codes 

may be regarded as the code which is actually written onto the disk.

The modulation code must introduce a further layer of redundancy. 

For example an eight bit data byte may take any of 256 bit patterns. Without 

the presence of modulation these patterns would be laid down directly as 

channel bits on the medium. This would lead to significant problems and 

introduces major recording errors.

A continuous sequence of identical symbols will disrupt timing 

recovery, as reclocking occurs at state changes. Repetitions of the same 

channel bit will also generate DC content (or low frequency content) in the 

recording signal. The DC content of such a signal is required to be as small 

as possible in both magnetic and optical recording. In magnetic recording the 

channel cannot reproduce the low frequencies with sufficient SNR. To 

minimise distortions on the reproduced data the DC content should be 

removed by a channel code Immink[51,pp 99]. In optical recording the servo 

systems controlling the laser are sensitive to low-frequency signals. The servo 

systems for track following and focusing are controlled by low frequency 

signals, thus low frequency components in the code could interfere with the 

servo systems Immink[52,pp 587] Immink[29,pp 410-31] & Immink[51,pp 27].
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Recording codes must be designed to:

  minimise DC content;

  match the Power Density Spectrum of the encoded data to the 

frequency response of the channel;

  provide a data clock to facilitate reclocking.

Additional functions include those which are device specific. Thus the 

eight-fourteen (EFM) code of the CDROM and CD:

  provides positional information for the servo systems;

  enables the system to resynchronise automatically;

  provides additional error detection by detecting channel code

violations.

In general such codes attempt to smooth deterioration in signals due to the 

channel imperfections.

4.2 Simple Channel Codes
Examples of simple codes are Manchester Encoding and Miller2 encoding. 

Such codes impose their own rules to the data sequence Mallinson[53], 

Mackintosh[53].

4.2.1 Manchester Encoding
Manchester Encoding manipulates the data code by ensuring that there is 

always a transition at the bit cell boundary, thus ensuring self clocking. For 

a data 'one' there is an additional transition at the bit cell centre. Each data 

bit is thus represented by two recording bits. Although this is not an efficient 

use of bandwidth, it is highly effective.

Manchester Encoding is efficient since one data bit may be represented 

by two channel bits. Data recovery is possible for a wide range of speeds. An 

example of this code is illustrated in Figure 4.1(a). Note that although 

Manchester Encoding is effective as a code, it is not DC free Watkinson[ll,pp 

176].
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Figure 4.1 : Illustration Of FM and Miller2
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4.2.2 Miller2 Encoding
The Miller2 code minimises the DC content of a data code. It is a modification 

of Miller. Miller is an extension of Manchester Encoding where bit cell 

boundary conditions only occur between successive 'zeros'. In Miller2 when 

an even number of 'ones' occur between 'zeros' the transition at the last 'one' 

is omitted Watkinson[ll,pp 178]. This code is illustrated in Figure 4.1(b).

4.3 The Block codes
Both the RDAT-DDS and CDROM employ Block Recording Codes. This relies 

on a codebook method, in which the modulation encoding of a data byte is 

looked up directly. An m-bit data symbol can be mapped via the codebook 

to an n-bit channel symbol. In Eight Fourteen Modulation (EFM) an 8-bit data 

byte is associated with a 14 bit block of recording code Ogaiva[55].

4.3.1 Run Length Limited Codes
The number of modulation bit cells between channel transitions is known as 

the run length and in most recording codes is constrained to lie between 

fixed maximum and minimum values. This class of codes are known as the

25



Run-Length-Limited (RLL) Codes. Such codes are introduced to satisfy 

channel constraints and assist with channel clocking.

EFM is a (2,10)RLL code for which the maximum number of zeros 

between two channel 1's is 10, the minimum number is 2 Heemskerk[56] & 

Immink[52]. These constraints are introduced so as to aid the sampling 

Tang[57]. If clocking is lost then the a state change will occur after not more 

than 10, when reclocking is possible. The minimum distance of two exists so 

as to reduce the Inter Symbol Interference between two channel state 

changes.

Channel codes are produced from data bytes using a codebook. For 

EFM there are 214 possible 14 bit codes of which only 267 of these satisfy the 

desired criteria Watkinson[58,pp 27]. For each 8 bit code there is an 

associated 14 bit channel code, thus only 256 are necessary. In fact 258 are 

used since two of the unused codes are employed as unique synchronizing 

codewords. The remaining codes are not used. If they do occur they 

represent a code violation and indicate an error.

4.3.2 The Digital Sum Variation (DSV)

The DSV of the channel bits is used as a measure of DC suppression and 

RLL use. The channel codes were designed with this concept in mind, the 

RLL is also chosen so as to minimise DC Patel[59]. The DSV of the channel 

symbols are determined by adding one for every high channel bit period and 

removing one for each low channel bit Watkinson[ll,pp 183]. This is 

illustrated in Figure 4.2. In EFM successive channel symbols are separated by 

three extra bits, the binary pattern of these being chose to minimise the 

resultant DSV. In the 8/10 Block code which is used for RDAT each eight 

data symbols has two associated ten bit channel symbols, one with positive 

and one with a negative DSV Fukuda[60]. Which code is chosen depends on 

the current DSV total. If the current DSV is positive then the channel symbol 

with negative DSV content is chosen and vice versa. This is in direct 

comparison to EFM which has one associated channel symbol but uses merge
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bits to select whether it will be negative or positive.

Figure 4.2 : Illustration of DSV Control
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An extended discussion of the EFM code of the CDROM is given in 

Chapter Five.
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CHAPTER FIVE

The Encoding Processes

Of The CDROM

5.1 Introduction

The Compact Disc is an example of the application of the error control 

strategy discussed in Chapter Three. Multiple Reed Solomon Codes are used 

extensively for error protection together with interleaving strategies and as 

product codes Vries[17,pp 8].

In this Chapter the Error Detection Code (EDC) and the scrambler are 

introduced. The EDC is a Cyclic Redundancy Check (CRC) and is the final 

stage of the error protection strategy. The scrambler produces a pseudo- 

randomisation of the data in a logical sector, which has the effect of 

whitening the Power Density Spectrum.

The three stages of the encoding of raw data into channel bits are 

Watkinson[61] :

• Sector Encoding.

  CIRC Encoding.

  EFM Encoding.

These stages are defined in specified standards and are discussed in 

turn ECMA[18,pp 18-22]. Figure 5.1 gives a diagrammatic representation of 

these processes.

5.2 Sector Encoding
Throughout the encoding process data bits are processed as eight bit bytes 

which form the eight bit subcode of the Reed solomon codes using GF(2S). 

The digital data to be recorded is thus represented by eight bit bytes which 

are grouped into logical Sectors. This comprises of the raw data, 

synchronisation bytes and header and as shown in Figure 5.2.
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Figure 5.1 : The Compact Disc Encoding Processes

DATA (2048 bytes)

SECTOR ENCODING
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CIRC ENCODING
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EFM MODULATION

\
DATA ON MEDIUM 

57624 channel bits

The area on the disc where data is stored is called the physical Sector 

and is the smallest part of the Information Area that can be independently 

addressed. The sectors are encoded, modulated and laid down on the 

medium as Sections. A Section is thus the physical representation of the data 

which originated from a logical Sector. The size in bytes of each component 

of a logical Sector is shown in Figure 5.2.

5.2.1 The Difference Between The CD and the CDROM

In the CD-ROM there is a need for greater data protection, thus two further 

Reed Solomon Codes are used, each adding two bytes of redundancy 

Sako[35,pp 3997]. An EDC is also used in the CD-ROM. Both these additional 

strategies are applied when data is placed into a logical sector. Hence the 

sector configuration of the CDROM will differ from that of the CD.

There are three possible layouts depending upon the setting of the 

Sector Mode byte as shown in Figure 5.2. Figure 5.2(a) depicts Mode 0 where 

no data is stored. Such sectors are found in the lead in and lead out areas of 

the disc. The lead in and lead out areas of the disc are regions where no data 

is stored. Figure 5.2(b) portrays Mode 1 which
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Figure 5.2 : The Three Sector Configurations
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(c)SECTOR MODE 02 : CD DATA PRESENT 

SECTOR 2352 BYTES

Synch

HEADER

SECTOR ADDRESS MODE

(02)

USER DATA

12 BYTES 3 BYTES 1 BYTE 2336 BYTES
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indicates that CDROM data is present and that there are three extra levels of 

error protection. Finally Figure 5.2(c) illustrates Mode 2. This is the mode 

used by the CD where only the CIRC protects the data. In this case there is 

less protection, hence less redundancy and more data can be stored.

Figure 5.3 : The Sector Encoding Processes
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Although the section layout differs between CD and CDROM the 

sector sizes are the same. Hence hardware associated with the CDROM can 

communicate with the CD format, but not vice versa.

The extra error protection is the only structural difference between the 

CDROM and the CD. The CDROM requires the extra layers of protection to 

ensure better data retrieval Sako[35,pp 3996]. Whereas the CD has 

applications when it is possible to interpolate data, this is not the case with
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the CDROM where the application is digital data storage Hoeve[32,pp 171]. 

The various stages of encoding the 2048 bytes of data in a CDROM sector are 

as illustrated in Figure 5.3. All these stages shall be reviewed in turn.

5.2.2 The Synchronisation Field

The Synchronisation field is a twelve byte block that acts as an identifier and 

signifies that the beginning of a sector has been located. The synchronisation 

field is identical for all sectors as it is unrelated to the data present. It informs 

the hardware that important information is following, also providing a fixed 

time for the hardware to synchronise to the signal.

5.2.3 The Header Field

The header field comprises of a three byte Sector Address and the single 

Mode byte which indicates the extent of the error protection which is to be 

used and also the quantity of data.

The Sector Address contains the Physical Address of the sector. This 

is represented by the elapsed time from the beginning of the User Data Area, 

in minutes, seconds and fractions. The User Data Area is the area on the disk 

with physical tracks containing data as opposed to bytes for format 

overheads.

5.2.4 The Error Detection Code (EDO

This four byte code is a 32 bit CRC (Cyclic Redundancy Check), where the 

EDC codeword must be divisible by the check polynomial P(x) ECMA[18,pp 

20]:

P(x) = (x 16 + * 15 + x 2 + 1)°(* 16 + x 2 +x + 1) (5' l)

Each byte of data is applied to the polynomial such that two values 

are found, the remainder and the quotient. These are stored as the CRC 

Doi[42,pp 149]. If on decoding the calculated values do not agree with the
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CRC either the data is erroneous or the CRC is in error.

The intermediate field adds eight bytes of null data which are not used 

at present. It is there for any future requirements.

5.2.5 The P-Parity Field

The P-Parity field consists of 172 bytes of redundancy, these are 

calculated using a (26,24) Reed Solomon Code on bytes 12-2075 Sako[35,p 

3999]. Using the 2064 remaining bytes, there are eighty-six 24-byte frames. 

Two parity bytes are calculated for each of these thus 172 parity bytes are 

produced. The bytes are ordered into 1032 words each of two 8-bit bytes, 

each consisting of a Most Significant Byte (MSB) and a Least Significant Byte 

(LSB). For example byte 0 and byte 1 are the constituent bytes of word one, 

byte 0 being the MSB and byte 1 being the LSB.

Figure 5.4 : Matrix For P Parity Calculation
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Two equally sized matrices are constructed with 43 columns and 28 

rows, into which the bytes are fed row by row as shown in Figure 5.4. One 

matrix is filled with the MSB whereas the other is arranged with the LSB,
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both have the same pattern as illustrated.

The redundancy can now be added using a Reed Solomon Code 

(26,24) applied as a Product code, the GF(28) field is generated by the 

primitive polynomial where :

P(x) = (x* + x* + jc 3 + x 2 + 1) (5 - 2)

The primitive element a of GF(28) = (00000010), in which the right 

most bit is the least significant bit. The GF and polynomial generator are the 

same for all the RSC used by the CD and CDROM.

The parity bytes are produced using Equation 5.3.

Here:

Vp is the vector containing the position in the matrix of each of the 26 

bytes which is used. Each byte is obtained from subsequent rows of 

the matrix. For example the first element of the vector is the first byte 

of a column and so on. It's structure is displayed in Figure 5.5.

Figure 5.5 : Vp Vector

K/ = [A, B1 C, D, . . . . . r, U, V, W,

Hp is the parity check matrix, it contains the powers of a by which 

each of the 26 bytes must be multiplied. It's structured is displayed in 

Figure 5.6 ECMA[l8,pp 32].
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Figure 5.6 : Hp Matrix

„ a° a° a° ..... a° «° a° a° a0' 
P ~ a25 a24 a23 . . . . oc4 a3 a2 a 1 a°

By rearranging the equations in terms of the parity bytes, the following 
equations are produced.

PI = a231 A, + oc229^ + amQ + a210^ + a^E, + a17^ + c^G, + a215H, 
+ a43Ia + a120!! + a% + a199L, + a74M, + a102^ + a220O, + a251P, 

+ a95Q! + a175^ + a87S, + a166!! + a11^! + a^V, + a198W, 

+ a25Xr (5.4)

P2 = a^A, + a172B! + a211^ + a241D, + al8E, + a68^ + ^G, + a44^ 

+ a^ + a9^ + a200^ + <x75L, + a103Mj + amN, + a252O, + a96P, 
+ a176Qj + a88^ + a167S 1 + a114T! + a76Ux + al"Vl + a26Wj 

+ a1^. (5.5) 
In these equations the letters represent the 24 bytes originating from

any given column of the matrix of Figure 5.4, Aa is the first byte and Xl is
the 24th byte.

Thus the two parity bytes for a column are found. This is repeated for 

all 43 columns. The parity bytes are inserted into the matrix in the positions 
as illustrated in Figure 5.4. For example the two parity bytes associated with 

the first column are labelled 1032 and 1075, these are placed into the matrix 

in this order, as illustrated.

5.2.6 The Q-Parity Field
The Q-Parity field consists of 104 bytes of redundancy being added using a 
RSC(45,43), on bytes 12-2247 Sako[35,p 3999]. Using the 2236 remaining bytes, 

there are fifty-two 43-byte codewords, two parity bytes are calculated for 

each of these thus 104 parity bytes are produced.
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Figure 5.7 : Matrix For O and P Parity Calculation
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The same process occurs as with P-Parity. This time, however there 

will be 43 columns and 26 rows ECMA[18,pp 33] as show in Figure 5.7. 

Previously the bytes were fed into vector V column by column. However as 

with all product codes the redundancy is determined along a different axis 

than previously used.

In the Q-Parity process the group of bytes operated upon are on the 

axis parallel to the diagonals of the matrix, this is identical to that used in the 

P-Parity plus the added parity. The matrix illustrated in Figure 5.8 is 

obtained when this process occurs.

The redundancy equations are produced in the usual manner using 

Equation 5.6.

HQ * VQ - 0 (5-6)

VQ is the vector containing the position in the matrix of each of the 

43 bytes which is used.
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HQ is the parity check matrix. It contains the powers of a with which 
to multiply the 45 bytes as displayed in Figure 5.9 ECMAflS^p 34].

Figure 5.8 : O matrix Parity Calculation

0
1
2

23
24

25

n
0000 
0043

1075

1

0044 
0087

0001

2 ::::::::::::: :40

0088 

0131

0045

41

0686 
0729

0643

42

0730 
0773

0687

QO Q1

1118 1 1 44 
1119 1145

1143 1169

The Q parity bytes are calaculated using the LSB and MSB 
bytes along the diagonals of the matrix

Figure 5.9 : HQ Matrix

oc° tx° cc°. 
a44 a43 a42

. . «° cc° a° a° a° 
. . a4 a3 a2 a 1 <x°

The parity generating equations were found to be as illustrated in 
Equation 5.7 and 5.8 ECMA[18,pp 33].

Q1 = a215A2 + a121 B2 + a20C2 + a!57D2 + a84E2 + a106p2 + ^84^ +

a179H2 + a225I2 + a32J2 + a136K2 + a15L2 + a35M2 + a45N2 + 
a6602 + a181P2 + a193Q2 + a104R2 + a]98S2 + a23^ + a229B I +
amQ i + oc240E : + a17^ + a6^ + a215^ + a43!, + 
a120!! + a8Kj + amL, + a74M! + a102N, + oc22^, + a25^, + 
a^Q, + a175^ + a87S, + a166!, + a11^, + a75V, + a198W, + 
a25X, (5
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Q2= oc97A2 + a251 B2 + a133C2 + a60D2 + a82E2 + a160F2 + a155G2 + 

a201H2 + a8I 2 + amJ2 + a246K2 + anL2 + a21 M2 + a42N2 + 
a15702 + a169P2 + a80Q2 + a174R2 + a232S2 + a^A, + a17^ + 

a2UC, + a24^ + a18E, + a68F1 + a^G, + a^H, + a121I a + 
a9Jj + a200^ + a75L! + a103M, + a22H + a25^ + a.96?, + 
a17^ + a88^ + a16^ + a114!! + a^U, + a19^ + a26Wj + 

a%. (5.8) 
The power of the RSC and the way in which they have been applied 

will prove highly significant in the decoding processes. The parity is fed into 
the matrix in the manner described in Figure 5.7.

This process is repeated for all axis parallel to the diagonal of each 

matrix in turn. The parity bytes are inserted into the matrix in the positions 

as illustrated in Figure 5.8. For example the two parity bytes associated with 

the first diagonal are labelled 1118 and 1144. The bytes are placed back into 

the sector by reading each MSB and LSB byte from the matrices row by row.

5.2.7 Scrambling The Data

A regular bit pattern fed into the EFM encoder can cause large values of the 

DSV which cannot be reduced by the merging bit strategy. The scrambler 

reduces the risk by converting bytes 12-2351 of a Sector in a predefined 

manner, such that the original data can be reclaimed. Each bit of the input 

stream of the scrambler is added modulo 2 to the least significant bit of a 

maximum length register.
The 15-bit register is illustrated in Figure 5.10 is of the parallel block 

synchronized type, and fed back according to the polynomial ( x15 + x + 1 )

ECMA[l8,pp 35].
As each bit, least significant bit (Isb) first is passed through the 

scrambler it is added, modulo 2 to the contents of the Isb of the register. The 

Isb is altered in accordance with the polynomial.
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Figure 5.10 : The Scrambler Circuit
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Figure 5.11 illustrates how this would work in practice. Before being 
fed into the CIRC encoder each scrambled sector is mapped onto a series (98) 
of consecutive 24-byte frames. The consecutive bytes of each frame are 
switched as follows ECMA[18,pp 20]: 
For example: 
(Frame) 12345 6........23 24 -> (Fl Frame) 21436 5......24 23

This byte interchanged frame is known as the Fl Frame and it is these frames 
which are the input to the CIRC encoder.
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5.3 The CIRC (Cross Interleaved Reed-Solomon Code) Scheme

CIRC consists of two encoding processes which use RSC not dissimilar to 

those seen in Chapter Three. However much greater redundancy is 

introduced Hoeve[32], Vries[62], Doi[42,pp 170], Driessen[63,pp 386] & 

Doi[64]. Instead of the RSC being used as product codes three interleaving 

stages are employed. Figure 5.12 illustrates the various stages which occur 

in the CIRC encoding scheme.

Figure 5.12 : The CIRC Encoding Processes

The CIRC Encoding Scheme

98 F1 FRAMES (24 bytes)

Deloy Strategy

C2 ENCODER : RSC(28,24)

Delay Strategy

C1 ENCODER : RSC(32,28)

Delay Strategy

98 F2 FRAMES (32 bytes)

5.3.1 Interleaving Delay Strategy I

All interleaving strategies in CIRC are based upon delaying schemes much 

like that illustrated in Figure 5.13 Watkinson[61,pp 80], Doi[42,pp 155].
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Figure 5.13 : An Example of Delay
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In the example codewords consisting of seven bytes are input into a 

delaying circuit. The delay experienced by each byte will be determined by 

its position in the codeword. Byte one will have no delay, byte two 

experiences a one codeword delay and so on. In the example byte B is 

observed to delayed by one codeword and byte E to be delayed by four 

codeword times.

The first stage interleave introduces a two 24-byte frame delay 

between odd and even samples. At the end of this stage the even bytes have 

all been displaced by two 24 byte frames ECMA[18,pp 37].

5.3.2 The C2 Encoder

The delayed bytes are fed into the first of the two Reed Solomon Encoders. 

This encoder uses a (28,24)RSC, generating four parity bytes referred to as the 

Q Parity Bytes (Q1-Q4). This labelling is unfortunate as it is similar to the
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identification of the Q-Parity Code in the logical sector coding; it is 

completely unrelated. As was seen with the previous Reed Solomon Codes 

the parity equations satisfy Equation 5.9:

HQ * VQ - 0 (5.9)

Where:

VQ is the vector containing the bytes from the same frame which are 

to be used in the operation. For example the first element of vector VQ 

is the first byte of the codeword, the last element being the last byte. 

The structure is displayed in Figure 5.14.

Figure 5.14 : VQ Vector 

VP T = [^ ^ C, £>, ..... 7, £7, F, F^ J

HQ is the parity check matrix, the structured of which is displayed in 

Figure 5.15 ECMA[l8,pp 38].

Figure 5.15 : HQ Matrix

a° a° a° .
a27 a26 a25
a54 a52 a 50
a81 a78 a75 .

. . a° a° a° a°
. . . a4 a3 a2 a 1 cc° 

. . a8 a6 a4 a2 ex° 
. . a 12 a9 a6 a3 cc°

By use of this information the following parity equations can be 

determined. The parity equations were found to be :

Ql = cc5^ + cc152B, + a173Q + a95Dj + a^E, + a43?, + a134G, + 
a205H, + a143^ + aI3IJ! + a163K, + a75L! + a249M: + a^Nj +

! + a116?! + a125Qj + a184R, + a11^, + a1^ + a5

(5.10)
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Q2 = CC^A! + a21^ + aU8C, + a^D, + an2E, + oc 15^ + a^G, + 
a96^ + a49!, + o:198^ + a18% + a249L, + o^X + a47!^ + 
a.H70: + a235?, + a151^ + a47^ + a209Sl + a183!, + a138!^ +
a232Vi + a205Wi + a!20Xi _ (5

Q3 = a162A! + a244B! + a13C, + a171 Dj + a2l3E, + a236?, + a^G, + 
a177^ + a253!, + a162j! + a^K, + a7HL, + amM, + a^N, + 
a18^ + a34?! + a78Q! + a136^ + a13^! + a85^ + aws\J, + 
a115^ + a^X + a246X!. (5.12)

Q4= a15^ + a17^ + cTQ + a9^ + a49^ + a140^ + a21^ + 
a149Hj + a137^ + a169)! + 0% + a6Lx + a72!^! + al57N, + 
al22O, + a131 Pj + al90Q, + aU6R, + a22S, + a64T1 + a68Uj + 

a14^! + all9W, + a22Xj. (5.13)

For each 24-byte frame entering the encoder there now exists a 28-by te 
Frame. The parity bytes are inserted into the centre of the Frame with twelve 
data bytes going to either side. This is a characteristic of audio recording, by 
doing this the odd /even delay of two blocks permits greater interpolation.

5.3.3 Interleaving Strategy II
This scheme subjects each byte of the codeword to a differing measure of 
delay. The delay algorithm being:

The Delay of a Byte = (Byte number) * 4 Frames ECMA[18,pp 37]. 
Thus byte 0 experiences no delay and byte 27 experiences a (27*4) 108 28-byte 
Frame delay.

5.3.4 The Cl Encoder
This encoder generates a (32,28)RSC, creating four parity bytes referred to as 
the P Parity Bytes P1-P4. Again the labelling is unfortunate ECMA[18,pp 37].
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The parity byte equations must conform to equation 5.14 :

(5.14)

Where:

Hp is the parity check matrix, the structured of which is displayed in 

Figure 5.16 ECMA[18,pp 38].

Figure 5.16 : HP Matrix

o° a° a°. 
a31 a30 a29 . . 
a 62 a60 «58 . . 
a93 a90 a87 . .

. . a° a° a° a° a° 

. . a4 a3 a2 a 1 a° 
. . a8 a6 a4 a2 a° 
. . a 12 a9 a6 a3 a°

VP is the vector containing the bytes from the same frame, used in the 

operation. This vector is organised in the manner illustrated in Figure 

5.17.

Figure 5.17 : VP Vector

V/ - [A, B, C, D, W, X, F, Z, A2 B2 }

be:

By use of this information the following parity equations are found to

PI =
+ a76L, + al02Ml + a155N,

P2 = a205A, + a252B, + a218Q + a199Dt + a20^ + a41?, +
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a154Vl + a15^ + a9% + a49Y: + a198Z, + a189A2 + a249B2(5.16) 

P3 = CC^A! + anBj + a131Cj + a41^ + a^ + a41 Fj + a8^ +

a228©! + a116?! + a162Q! + a244R: + a1^ + amT, + a™Ul + 
a236V, + a711^ + amX, + a253Y, + al62Z, + a59A2 + a78B2.(5.17)

a! + a + a14^! + a137^ + a169Z: + a81A2 + a6B2 . (5.18)

Wliere each letter indicates a byte from the vector V. Each 28-byte frame is 

thus augmented to a 32-byte frame, the four parity bytes having been 

appended to each frame.

5.3.5 Interleaving Strategy III

The third and last delay strategy delays alternate bytes of the 32-byte frames 

by one frame ECMA[18,pp 38]. The result of CIRC encoding/interleaving is 

that the ninety eight 24-byte Frames are augmented to 32-byte F2-Frames 

ECMA[18,pp 21].

5.3.6 The Control Byte

An extra byte is added to the beginning of each F2-Frame thus yielding a 33- 

byte F3 Frame. This is the Control byte and is added for addressing purposes 

Watkinson[65], ECMA[18,pp 21]. A group of 98 F3 Frames are collectively 

known as a Section. The control bytes from each of the 98 frames have an 

associated table for the purposes of addressing.
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5.4 The Eight Fourteen Modulation (EFM) Code
As discussed in Chapter Four the Modulation code of the Compact Disc must 
operate under a number of restrictions Vries[33,pp 2], Watkinson[58,pp 27]. 
The DC content of the code is required to be as small as possible for a 
number of reasons associated with disc technology Ogawa[55,pp 118]. DC 
content in the code will appear as noise in the tracking. The optical servo 
systems that position the laser spot are also sensitive to low frequency 
content Watkinson[22,pp 70-71] & Immink[52].

The EFM scheme records the F3 Frames on the disc with each 8-bit 
byte being represented by a 14-bit channel byte Doi[66,pp 235], ECMA[18,pp 
43]. Each F3 Frame is thus represented by a Channel Frame. To enable self 
clocking the data remains as a Frame. This consists of a synchronisation 
header, Merging bits and thirty three 14-bit channel bytes. This process can 
be separated into three stages ECMA[18,pp 21-2]:

• The 8-bit byte mapping to a 14-bit channel Byte.
• Selection of Merging Bits.

• Coding onto The Medium.

5.4.1 Eight To Fourteen Encoding
EFM is a self clocking Run Length Limited Block Modulation Code which 
conforming to the rules of such codes Immink[67] ,Vries[33,pp 2&1Q]. A 
lookup table is used which holds the 256 combination of eight bits. Each 8-bit 
byte is thus mapped to a 14-bit channel byte. Contiguous channel bytes 
comply with the (2,10)RLL block code constraints. Between two channel 'ones' 
there is at least two channel zeros and at most ten. This is in order to retain 
a reasonable clock content in the signal whilst providing acceptable immunity 

to jitter Peek[30,pp 8].
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5.4.2 Selection Of The Merging Bits

If successive channel bytes are written onto the medium the Digital Sum 

Variation (DSV) will vary greatly. The DSV is required to be as close to zero 

as possible. In order to achieve a minimal DSV three merging bits are 

inserted between successive channel bytes Immink[67,pp 64]. The value of 

each bit is altered so as to minimise the DSV.

Merging bits and their adjacent channel bytes must also conform to the 

RLL constraints of the code. Thus if ten 'zeros' have preceded the merging 

bits then the first merge bit must be a 'one'. Equally, if the last bit before the 

merging bits is a 'one' then merging bits one and two must be 'zeros'. 

Although there are three merging bits there are only four possible 

combinations which obey the RLL guidelines.

Figure 5.18 shows examples of merging bits where two successive 

channel bytes are merged (a) without DSV control; (b) with DSV control. 

With the control strategy in place there are at most eight combinations of the 

merging bits, though of them some will violate the RLL constraints of the 

code. If this process were occurring in the middle of the code then the initial 

DSV would arise from the previous minimisation.

Figure 5.18 : Control Of DSV By Use Of Mereing Bits

01000000000010: : : 01000000000010 N0 MBIT CONTROL

-1 + 10* +7 + 18
+ 16

01000000000010000 01000000000010 MBITS=000

+ 15 + 13

01000000000010010 01000000000010 MBITS=010
+ 1

-1 +10 +7 +10 -1

The merging bit patterns which do not violate the RLL are

000 and 010.
Without merging bit control DSV=16.

With merging bit control DSV= + 1.
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Using the same system the next minimisation which occurs after that 

illustrated would begin with an initial DSV value of +1.

The benefits of the use of Merging bits can be developed further by 

using a look ahead method. Here the DSV is averaged over several 

successive channel bytes Immink[67]. At present EFM uses a look-a-head 

method of four bytes . This is illustrated in Figure 5.19.

Each time a channel symbol and associated merging bits are selected 

the resulting DSV is noted. This DSV value is employed as the starting value 

for the DSV calculations when minimisation occurs. If the noted DSV value 

is -4 then minimisation will proceed starring from this value. If the first bit 

is a 'zero 1 the resulting DSV for this bit is -5; if it is a 'one' then the resulting 

DSV is -3. The four channel symbols are combined with all possible viable 

merging bit combinations.

Figure 5.19 : Minimisation Using Multiple Look-ahead

DSV MINIMISED FOR 4 MBITS AND 4 CHANNEL SYMBOLS

01 l( )l 101 101

1= 14 BIT CHANNEL SYMBOL

Q= MBITS

With a maximum of 23 combinations for each four Merging bit sets 

there are (23)4/ i.e. 212, possible combinations of channel symbols and merge 

bits. The combination which gives the minimum DSV will be chosen. The 

first merge bit and byte set are written and the resulting DSV noted. The 

three remaining bytes are shifted forward such that second becomes first, 

third becomes second and fourth becomes third. The next sequential 8-bit 

byte is encoded into a 14-bit channel symbol. This becomes the fourth 

symbol. The process is repeated using the four new channel bytes and the
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new DSV. This occurs for each four byte set in each frame.

Clearly by extending the number of bytes considered at any one time 
to a greater number a greater system averaging could be achieved, but at the 
cost of increasing the processing time of the encoding process.

5.4.3 Storing the Channel Frames On The Medium

The three stages, 8-to-14 encoding, Merge bits selection by minimisation and 
storage organisation, occur in conjunction with one another. Each of the 

ninety eight F3 Frame is converted to a Channel Frame with the following 
configuration ECMA[18,pp 22], Vries[33,pp 11] & Doi[66] :

I Synchronisation Header : 24 Channel Bits Watkinson[58,pp 28]
3 Merging Bits : 3

1 Control Byte : 14
3 Merging Bits : 3

44 channel bits
32 Data Bytes : 14

32 Merging sets : 3 .

32*(14+3) = 544

A 24-bit synchronisation is added to enable recovery from loss of 
clocking due to channel errors Golomb[68], Gilbert[69] & Ullman[70,pp 95], 

Levenshtein[71,pp 707].

For a CDROM the medium surface consists of a sequence of 
depressions or pits and mounds or lands ECMA[18,pp 22]. Each channel 
frame of 588 bits, each of which is recorded along the physical track of the 

CDROM, i.e. along the spiral from hub to rim which is traversed by the 
optical system. In the recording process a channel 'one' is represented by a 

transformation between pit and land, a 'zero' is signified by no change 

Davies[28,pp 35]. The account of the encoding process has covered the stages 

by which raw data input to an encoder can be transformed to channel code 
by coding, scrambling and modulation. The decoding process is considered 

in the next Chapter.
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CHAPTER SIX

The Decoding Processes

Of The CDROM

6.1 Introduction

This Chapter is concerned with decoding the data which is held on the 

CDROM in the form of the EFM recording code. In the absence of errors the 

decoding procedure will be the inverse of the operations of the encoding: i.e. 

channel decoding, CIRC decoding and de-interleaving; descrambling and 

double RSC decoding. In addition, the decoding algorithm must detect and 

correct recording errors. Hence a component of the decoding procedure is the 

identification and resolution of error syndromes.

All optical data is recorded directly onto the medium at the mastering 

stage. Hence recording channel errors which occur are read errors and occur 

when a channel bit is missed or mis-interpreted. It is the function of the 

decoding strategy to correct all such errors.

Reed Solomon Codes have been designed for the correction of burst 

errors since they deal with symbols (e.g. bytes) of data rather than individual 

bits, as discussed in Chapter Three Forney[37], Preparata[72] & Doi[42,pp 

148]. Nevertheless Reed Solomon Codes have a limited capacity for dealing 

with low levels of random errors or with both burst and random errors 

together. However the performance falls below those of codes designed for 

random errors alone Helgerson[73,pp 406].

The fourteen bit modulation codes offer a potential 2 14 distinct 

codewords. However, due to the RLL constraints only 267 bit patterns 

produce valid codewords. Fourteen bit codewords are mapped to the 

corresponding data byte from a look-up table. Those patterns falling outside 

the table may either be interpreted as the nearest legal 14 bit pattern 

(interpolation), or treated as a codeword violation. This will produce a data 

byte in error, which is the starting point for the CDROM error control

50



strategy. The 33 byte F3 Frame is obtained by demodulation. The first byte 

of the F3 Frame is the control byte, this is used by the drive hardware and 

then disguarded, so producing a 32 byte Frame.

6.2 Error Detection and Correction Using CIRC
The decoding strategies must resolve the full diet of error syndromes 

Johnson[74]. Hence decoding algorithms are far more complex and more time 

consuming than their encoding counterparts, Special LSI (Large Scale 

Integration) Circuits have been designed to accommodate this additional 

complexity Arai[75,pp 356].

All three interleaving stages of the CIRC encoding process were 

discussed and illustrated in Chapter Five. Clearly the de-interleaving must 

always be the exact reverse of the deinterleaving strategies. Various strategies 

concerning CIRC have been investigated Ko[76] & Vries[62]. In the following 

work the Cl decoder locates and corrects two errors in each frame, the C2 

uses the Cl flags to correct a maximum of four erasures.

6.2.1 Cl Decoding

The 32-byte frames produced after demodulation and control byte removal 

are fed into the CIRC Decoder. The first stage is to reverse Interleaving 

Strategy III such that the frames acted upon by the original Cl Encoder are 

recovered. The Cl decoder is intended to both detect burst errors and correct 

random errors Vries[62,pp 184]. The purpose of detecting burst errors is to 

provide flags for the C2 decoder Watkinson[61,pp 82].

Each 32-byte Cl Frame contains 4 parity bytes and thus has the 

capacity to correct a maximum of two erroneous bytes per frame Hoeve[32,pp 

168] & Ko[77]. The parity byes were originally obtained by the use of 

equations from equation 6.1 (see Section 5.3.4). For Reed Solomon codes the 

decoding matrix is identical to the encoding matrix. Hence the Cl decoding 

is given by:
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Hp * = S (6.1)

where Hp and Vp are specified in the Cl Encoder of Chapter Five and right 

hand side is now the error syndrome. Clearly with no error in the data the 

syndrome S equals zero, consistent with Section 5.3.4.
Each syndrome is the result of the row multiplication matrix and 

vector, and subsequent addition of rows. The Cl Error Correction algorithm 

is illustrated in Figure 6.1 Arai[75,pp 355], Vries[62,pp 184].

Figure 6.1 : How Diagram Of Cl Error Correction

32 BYTE CODEWORD

BYTES 
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ERROR N
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Using Syndromes For Error Correction and Byte Location

The syndromes are calculated in the same manner as for the three bit symbol 

case which was discussed in Chapter Three/ however with far greater 

complexity. If the syndromes are non-zero than the frame is erroneous. The 

syndromes are exploited so as to find the byte(s) in error. With S = (S0, S ]7 S2/ 

S3). The four error syndromes (S0/ Slf S2, S3) are calculated as in Chapter 

Three, noting that here there are more symbols in each codeword.

If all four syndromes are zero then no bytes are in error. If this is not 

so then the Frame is checked for a single byte error. The necessary condition 

for this is SJ/SQ = S2 /Sl = S3 /S2 = ~k, where k is the number of the byte in 

error. Note that k can be at most 32, any value returned greater than this 

maximum is incorrect. If the above condition is not valid then the Frame is 

checked for two byte errors.

Two Byte Error Location

If one byte is not in error then there are two or more bytes in error in the 

codeword. The use of syndromes in the location of a two byte error is 

possible by using them in an error location equation Peterson[78,pp 114].

Following Ko[77]:

S = aaiE + a (6.2)a

Where the two byte errors are Ea and Eb at byte locations a and b 

respectively then i =0,1,2 an 3.
It has been shown that the error locations satisfy the following error 

location quadratic Patel[79] :

(SI2 + SOS2)x z + (S1S2 + SOS3)x + (S22 + S1S3) = 0 (6- 3)

Patel showed that the error locations a"a and a"b are the roots of the 

quadratic Patel[79j. Heise has shown that Equation 6.3 can be solved by 

substitution Heise[80]:
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x = py (6.4) 

where :

C'7C'5 4- CflCSp = MM + WM (6 5)
SI2 + SOS2 

by applying this Equation 6.3 becomes:

y 2 + y + Y = 0 (6' 6) 

where:

Y = (S22 + S1S3)IS1S2 + 5Q53 l2 (6.7) 
1 S/2 + SOS2 ]

that is:

= S?+S1S3^ (6. 8) 
SI2 + SOS2

Equation 6.6 is a quadratic based upon the constant Y arid this can 

be solved by using a look up table. The two roots of equation 6.6 are fa ( Y ) 

and fb ( Y ) and thus the byte locations are given by:

or" =/a(Y) < 6 -9>

and

A table lookup method is used in order to determine the byte locations from 

the values generated by the above equations. The bytes in error can be
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corrected using the algorithms illustrated in Section 3.2.6.

If the location of the bytes which are in error exceeds 32, they will lie 
outside the frame boundary and thus are wrong. If the positions could not 

be found the frame is deemed to contain more than two bytes in error. So as 
to facilitate greater error correction power in the C2 Decoder each byte of 

every frame is flagged Hoeve[32,pp 169]. This flag indicates the error status 
of the Frame from which the byte originated. This strategy is clearly efficient 
for burst errors but not random Ko[77,pp 17]. There are four types of flags 
Vries[33,pp 8]:

Flag A : no errors Flag B : 1 error
Flag C : 2 errors Flag D : >2 errors (uncorrectable)

The purpose of the flag will be discussed in the description of the C2 
Decoder. Now that the parity bytes have fulfilled their function they are 
removed to produce a flagged 28-byte frame. At present CDROM error 
correction does not differentiate between flags B,C and D. Valuated flagging 

does enable further complexity to be incorporated in the decoding procedures 
to improve correction.

6.2.2 C2 Decoding
The data is manipulated so as to reverse the effect of Interleaving Strategy 
II. Any faulty bytes which may exist are dispersed amongst the 98 28-byte 
Frames. The purpose of the C2 decoder is to correct burst errors and those 
random errors that the Cl could not Vries[62,pp 184].

Each 28-byte C2 Frame has 4 bytes of parity, so that two erroneous 
bytes can be again corrected per frame. Unlike the 32-byte Cl Frame, the C2 
Frame has a flag associated with each byte. The identity of bytes which have 
been flagged as possible errors are known and 4 bytes per frame can be 
corrected. This is known as erasure correction Peek[30,pp 11]. An erasure is 
a byte in a known position where the integrity of that byte is in question. The 
C2 Error Correction is carried out as illustrated in Figure 6.2 Arai[75,pp 354- 

5] & Vries[62,pp 185].
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Figure 6.2 : Flow Diagram Of C2 Error Correction
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The parity bytes and their associated syndromes are obtained from Equation 

6.11.

HQ *VQ =S (6.11)

Where HQ and VQ are as specified in Section 5.3.2 and again S=0 if no bytes 

are in error.
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Using Syndromes in Conjunction With Flags

The four syndromes SO-S3, can be used to find any two bytes in error in the 

same way as seen in the Cl Decoding. If the error bytes fall outside the 28- 

byte Frame boundary then more than two bytes are in error within that 

frame.

If more than two bytes are in error then the syndromes cannot be used 

to both locate and correct the bytes in error. Instead the flagged bytes are 

considered. Each flag illustrates that the byte has been deinterleaved from a 

Cl Frame where error correction has been attempted. The bytes originating 

from such Frames are all considered to be potentially in error. If more than 

four bytes have been flagged as potentially in error then no error correction 

is applied for fear of possible mis-correction. Otherwise these four bytes are 

assumed to be in error and are corrected.

The Correction Of Four Byte Errors

The correction of up to four flagged bytes follows the approach of Ko[77].

Let there be four suspect bytes written A,B/C and D respectively. 

These are processed to produce the equivalent Galois Field elements CXA, «B, 

occ & a°. The corresponding errors are EA, EB, Ec & ED . As before the 

syndromes are denoted by SO-S3, which are the associated Galois Field 

elements. Three bytes in error can also be corrected by using the following 

methodology.
By using Equation 6.12 which illustrates the relationships between the 

syndromes and associated errors, the errors may be found. 

Following Ko[77,pp 19]:

1111
<x a a a 
a24 a28 a2c a20

a3*

EA 

E B 

E c 

E D

(6.12)
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By Gaussian Elimination equation 6.13 is produced:

<?0

<?1
<?2

C3

1

o (
0
0

1
<x^

0
0

1
(ac +aA)

(aD +a'4)(aD +aB)(aD +<x c).

6.13)

where:

Co

Qi
Q*
Q3

1000
0100
0010

.0 0 cc c 1

"1000
0100

0 <X B 1 0

0 0 «B 1.

1 0 00

aA 1 0 0

0 aA 1 0

.0 0 o^ 1.

So

«1

S2

S3.

(6.14)

The errors correction symbols EA, E B ,EC and ED, may be produced by the 

back substitution of equation 6.13:

ac )
(6.15)

(«'
(6.16)

a*) ac ) (6.17)

EA = Q0 + EB + Ec + ED (6.18)
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Using this method the four bytes in error may be corrected, however 
there is a chance of miscorrection McEliece[48,pp 701-703]. The processing 

time taken to implement two error location and correction, or four error 
correction in the CDROM is less than 4 urn Ko[77,pp 24J.

The reversal of Interleaving Strategy I will further disperse errors 
across the Frames of the Sector, thus aiding error correction and error 
interpolation.

This concludes Compact Disc error correction. The stages which 
remain are unscrambling and addressing the logical sector. All 24-byte Fl 
frames are flagged in the same manner as discussed previously. In the 
Compact Disc these flags are used for byte interpolation before digital to 
analogue conversion Hoeve[32,pp 172], Goedhart[16,pp 174]. In the CD-ROM 
however these flags are passed to the sector decoding codes which employ 
two Reed Solomon Codes. Instead of using complex interleaving strategies 
these codes are treated as product codes. These are discussed in the next 
section.

6.3 Sector Decoding
The configuration of the sector is shown in Figure 5.2 and the encoding 
processes in Figure 5.3. A number of decoding processes are carried out, 
most are the merely the inverse of the coding process.

The synchronisation field (bytes 0-11) is used to identify the beginning 
of a sector to the CD hardware. The synchronisation field also prompts the 
scrambling register to be reset to the initial settings. Hence the scrambler is 
reset at the beginning of each new block. Before the bytes were fed into the 
CIRC encoder the consecutive bytes of each frame were interchanged. This 
process is reversed before unscrambling of the data. The unscrambling of the 

data is a repetition of the scrambling procedure and not the inverse; the same 
circuit, register and polynomial are used. Since modulo two arithmetic is 

employed.
The Header Field holds addressing information for the sector,

59



establishing for example that the CD is addressing to the correct sector. The 

Header Field also holds details of the sector type, whether CDROM, CD or 
empty of data.

6.3.1 Decoding Using Q-Parity

There remain 2340 bytes which are read into two 43 by 26 matrices in the 

same manner as described in Section 5.2.6 and illustrated in Figures 5.4 and 

5.7?. The remaining 104 bytes are known to be the parity bytes and are read 

into two associated 2 by 26 parity matrices. Each matrix's 26 byte axis parallel 

to the diagonal and associated two parity bytes are read from the matrix.

2352 - 12 = 2340

2340 = 2236 (data) + 104 (parity) 

2 x 43 x 26 = 2236 bytes

What follows is another standard Reed Solomon Decoding strategy. 

The parity bytes and hence the syndromes are generated using Equation 6.19:

HQ * VQ = S (6.19)

Any byte in error which is left uncorrected by the C2 decoder will be 

dispersed by the reversal of Interleaving Strategy I, again spreading 

erroneous bytes over a number of codewords.

The two syndromes can be used to locate and correct one erroneous 

byte per 26 byte codeword. This is done in the same manner as discussed in 

Section 6.2.1. Again C2 flags are used to correct a maximum of two bytes in 

error.
Once the two parity bytes have fulfilled their usefulness they are 

discarded. Again frames which held erroneous bytes are flagged non-zero for 

use by the P-Parity check.

6.3.2 Decoding Using The P-Parity
The identical 43 x 24 matrices are again used for this error correction 

strategy. Equation 6.20 is used to generate error Syndromes.
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Hp * VP = S (6.20)

Hp and Vp are specified in the Encoding Process. The code can be 

employed in the same manner as seen previously. Two parity bytes are 

present in the codeword and one byte may be corrected, whereas the flags 

from the Q-Parity can be used to correct two. Since the bytes are sampled 
from the matrix along a different axis from that of the Q-Parity, greater error 

correction is possible. This is an application of product codes. In the same 

way that interleaving disperses errors over a number of codewords, so 

product codes aid error correction by calculating parity along different axis.

6.3.3 Using The EDC Check

The error correction of the CD-ROM also contains an error detection code as 

the final stage of the strategy.

A CRC code is used at the encoding stage to add parity bytes to the 

data. Since this parity is determined bit by bit from each symbol, any 

remaining errors will be detected at this point. The two checks associated 

with the CRC are calculated from the data in the manner as discussed in 

same way as Section 5.2.4. If there are any residual discrepancies from the 

encoded data the CRC check fails the whole Sector.

In this case the block of data must then be re-sought and accessed 

afresh from the disc. Data can only be resought up to a fixed maximum 

number of times from an area of the disc; continual failure of the EDC will 

constitute a hard error when the disc is considered corrupt.
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CHAPTER SEVEN 
Illustrating The Effects

Of Errors Upon The
CDROM By Use Of The

Simulation Model

7.1 Introduction
A deterministic model of the full signal processing of the CDROM has been 

built. This enables a channel burst error to be precisely prescribed within a 

Sector. Both the bursts duration in modulated bits, and its starting position 

in the Sector can be varied. The ability of the CDROM to contend with this 

particular error may be analysed completely.

The simulation model covers a full CDROM Sector on the surface of 

the disc. Its operation is shown diagrammatically in Figure 7.1. Data is 

generated and encoded using the full sequence of CRC, Sector, CIRC and 

EFM encoding. The error normally in the form of a burst is imposed on the 

modulated data. The decoding is applied, with the associated error 

syndromes being generated for each of the steps. In this way the correction 

of the burst error, as well as its residual disposition across the Sector can be 

traced and output at each level of the decoding, from EFM to the final CRC.

At present the use of this model is the only method in which to 

investigate the effect of varying sizes of burst at varying positions along a 

Sector. No other method is thought to exist in Academia or in Industry.

By this method the main error types, both random and burst may be 

incorporated. The effect of these errors upon the code and the subsequent 

dispersal and correction may be investigated.
Due to the complexity of the decoding process it was decided that the 

software should identify the errors remaining after each stage of the process.
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Figure 7.1 : Error Incorporation Into The Channel Data

7.2 The Effect Of A Burst Error On The Channel Data
The following examples illustrate situations where : CIRC corrects the burst 
errors, Sector correction corrects the errors, and where the error control 
strategy fails.

7.2.1 Burst Length Of 2900 Bits
As an example a burst error of length 2,900 bits is used, this is equivalent 
approximately 1.8 mm scratch upon the medium Vries[33,pp 8]. The effect 
upon the modulated bits is shown in Figure 7.2. This burst begins at bit 580 
of Frame 10. The Figure displays all 98 Frames of the Sector by rows with the 
darker shading indicating the bits in error. With 588 modulated bits in each 
Frame, the burst extends almost to the end of Frame 15.
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In Figure 7.3 the effect of synchronisation loss is illustrated. Since the 
synchronisation bits of Frame 15 are lost, no part of this Frame can be read 
and all its bits are held to be in error. Thus there are six Frames in error at 
this stage.

Deinterleave Strategy III disperses bytes between adjacent Frames, 
each of 32 bytes, as shown in Figure 7.4. There are now seven Frames 
containing errors. The Cl decoding can resolve a maximum of two byte 
errors per Frame. Since all seven corrupted Frames have multiple errors no 
correction is possible, as shown in Figure 7.5. Note that the four Cl parity 
bytes have been removed giving 28 bytes per Frame.

Deinterleave Strategy II spreads the error bytes over most of the 98 
Frames, as shown in Figure 7.6. By referring to the Cl error flags the C2 
decoding can correct up to four suspect bytes per Frame, and in Figure 7.7 
it is shown that there is complete error correction. Again the C2 parity bytes 
have been removed giving 24 bytes per Frame.

Since all errors have been resolved by CIRC, further the error 
correction and dispersal schemes are discussed and illustrated with a larger 
burst. The CD audio error correction codes were able to resolve the bytes in 
error, the extra CDROM schemes were not utilised. In this case the errors 
would be corrected by either the CD or the CDROM.

7.2.2 Burst Length Of 3000 Bits
Here, a burst initiating at the same position but of larger magnitude is 
applied. The progression of the errors may be followed in the same manner 
as discussed for the 2,900 bit burst. A burst of 3000 bits is equivalent to a 

approximately 1.9 mm scratch upon the medium.
In Figure 7.8 the effect of the error upon the medium is illustrated. 

Here, the increase in magnitude of 100 bits is shown to cause overlap into 
Frame 16. The effect of the subsequent synchronisation loss is illustrated in 
Figure 7.9. Here, error propagation occurs, to the end of Frame 16. Thus the
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3000 Bit Burst

Figure 7.8 Figure 7.9 Figure 7.10 
Upon The Channel Synchronisation Loss Deinterleave Strategy III
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Figure 7.11 Figure 7.12 Figure 7.13 
Cl Decoding Deinterleave Strategy II C2 Decoding
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burst is perceived as approximately 3,500 bits. Figures 7.10, 7.11 and 7.12 

shown the effect of Deinterleave Strategy III, Cl Decoding and Deinterleave 

Strategy II, respectively.

In the 2900 bit case, the effect of C2 Decoding resolved all the errors. 

In this case errors persist. Figure 7.13 illustrates the errors remaining after C2 

Decoding. Here eight Frames are affected.

Deinterleave Strategy I now spreads the bytes over adjacent Frames as 

shown in Figure 7.14. This completes those deinterleaving and decoding 

procedures which are common with the Compact Disc.

Figure 7.15 shows the position of the errors after successive bytes of 

each Frame have been interchanged. Figure 7.16 illustrates the position of the 

errors within the two matrices, as explained in Chapter Five, to enable 

product decoding by a pair of orthogonal Reed Solomon codes.

In Q decoding, where reference is made to the C2 flags, a maximum 

of two bytes in each of the 26 rows can be corrected. The results are shown 

in Figure 7.17, where only two errors remain. In P decoding, in association 

with Q flags, up to two bytes may be corrected in each of the 43 columns. As 

can be seen in Figure 7.18, no errors now remain and the integrity of the 

Sector data has been restored.

In this case CIRC has been unable to resolve the burst. The CD has no 

further error correction schemes, although interpolation is used. However in 

the CDROM the two extra levels of error correction have corrected the 

remaining errors.

7.2.3 Burst Length Of 3600 Bits

By applying bursts of greater magnitude at the same position it is possible 

to ascertain the size at which error correction fails. The progression of the 

errors arising from a 3600 bits can be observed in Figures 7.19 - 7.29. A burst 

of 3600 bits is equivalent to approximately 2.3 mm scratch upon the medium. 

In this example, the CDROM error correction scheme cannot cope with the 

quantity of errors. Errors persist after P correction. These are detected by the 

EDC which signals that the data is in error.
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Figure 7.17 Figure 7.18 
Q Decoding P Decoding On Raw Data
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3600 Bit Burst
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Effect Upon The Channel synchronisation Loss Deinterleave Strategy III
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Figure 7.22 Figure 7.23 Figure 7.24 
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Figure 7.25 Figure 7.26 Figure 7.27
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Figure 7.28 Figure 7.29
Q Decoding P Decoding On Raw Data
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7.3 The Effect Of Random Errors On The Channel Data
The CDROM was not designed to resolve high proportions of random errors 
it is nevertheless appropriate to investigate the effect of such errors on the 
correction scheme. A random error is defined as an error affecting a single 
bit of the channel code regardless of the mechanism behind that error. If a bit 
error has no correlation with other bit errors it may be called a random error 
Doi[42,pp 148]. In the CDROM an asperity must be of size 0.8 mm so as to 
obstruct channel data from the lens, this is due the refractive index of the 
plastic. From this it is evident that any asperity affecting channel data will 
always cause a burst error. Surface debris small enough to cause a random 
error would not obstruct the read lens sufficiently to cause an error.

Random errors will only exist in low quantities, much less than those 
investigated here. Examples of both successful and unsuccessful error 
correction are given

7.3.1 Probability 0.0018 Error Rate
In a physical sector of data there are 98 Frames, each composed of 588 
channel bits,i.e. 57624 bits. The expected number of bits in error per Sector 
will therefore be 104 with a standard deviation of 10.

In Figure 7.30 the effect of the random errors upon the channel data 
is illustrated. Of considerable significance are Frames 18,21,54 and 74 where 
the synchronisation bits are effected. This can be seen to have striking effects 
upon the related Frames in Figure 7.31. Here, synchronisation errors have led 
to Frame errors, where all 588 bits are considered lost. In addition all random 
bit errors will cause a symbol or byte error. It is clear from this that occurring 
random errors will give rise to a mixture of symbol and burst (or Frame)

errors.
Deinterleave Strategy III is illustrated in Figure 7.32, here again the 

errors are dispersed between adjacent Frames. This has little or no 
consequence for the symbol errors, however as usual the bursts are 
successfully dispersed. The effect of the Cl Decoding scheme is shown in
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Figure 7.30 Figure 7.31 Figure 7.32 
Effect Upon the Channel Synchronisation Loss Deinterleave Strategy III
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Figure 7.33. Here, the majority of the symbol errors have been corrected, 

although the burst effected Frames remain. After correction fifteen Frames 
remain in error.

The dispersal of the remaining errors by Deinterleave Strategy II is 

shown in Figure 7.34. Upon C2 error correction being applied to this data, 

one Frame remains in error. This is depicted in Figure 7.35. In Figure 7.36 the 

remaining errors before Q correction scheme are shown. Figure 7.37 

illustrates that Q correction has corrected these errors.

7.3.2 Probability 0.0019 Error Rate
The expected number of bits in error per Sector is 110 with a standard 

deviation of 11. In Figure 7.38 the effect of the random errors upon the 

channel data is illustrated. Frames 18,21, 54, 74 and 81 have synchronisation 

bits which are effected. This can be seen to have the typical effect upon the 

related Frames in Figure 7.39. Deinterleave Strategy III is illustrated in Figure 

7.40.
The result of the Cl Decoding scheme is shown in Figure 7.41. After 

correction seventeen Frames remain in error. The dispersal of the remaining 

errors by Deinterleave Strategy II is shown in Figure 7.42. When C2 error 

correction is applied to the data, thirteen Frames remain in error. This is 

depicted in Figure 7.43.
In Figure 7.44 the distribution of errors in the product matrices is 

depicted. In Figure 7.45 the effect of Q correction upon these matrices is 

shown, here nine of the matrix rows remain effected by errors. After P 

correction, Figure 7.46 illustrates that only one matrix column remains 

effected by error, however this is enough to fail the data integrity check.
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Figure 7.38 Figure 7.39 Figure 7.40
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Figure 7.41 
Cl Decoding Figure 7.42 

Deinterleave Strategy II
Figure 7.43 
C2 Decoding
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7.4 Conclusion
In the case of both random and burst errors it is shown how synchronisation 
loss can be of considerable significance. With burst errors, synchronisation 
loss leads to burst propagation to the end of that Frame. This can be of 
profound importance in situations where the error correction is at its limit. 

When random bit errors are applied to channel data and 
synchronisation is lost the result is to produce both symbol and burst errors. 
This occurrence complicates the issue and lowers the tolerance of the system 
to random errors. Synchronisation loss is further discussed in Chapter Eight, 

where its effect upon the maximum error correction performance is 
illustrated.
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CHAPTER EIGHT
Performance Measurement and Inferencing 

Using The Simulation Model

8.1 Outline
One of the objectives of this research was to identify the sources of errors 
effecting the CDROM and to assess their effects. For any Mass Storage 
Device, such as the CDROM, it is possible to obtain error counts at each stage 
of the decoding process. For the CDROM this will be after the Cl and C2 
Decoding of the CIRC and the decoding of the Sector. Also the status of the 
final CRC check will be reported.

The model described in Chapter Seven can easily generate the 
equivalent statistics for simulated errors. The examples in Chapter Seven 
show that varying the position and length of a burst error will affect the error 
counts. A systematic programme of such simulations will generate a large set 
of such error counts. One can then use this information to infer the position 
and length of an error from empirical error counts. Error statistics for a DDS 
drive have been produced Odaka[12], Woolley[81] & Woolley[82].

8.1.1 Data Production
To obtain a comprehensive set of error counts the simulation model was used 
for burst errors of length 100 bits to 10,000 bits (in steps of 100) and starting 
positions at 100 bit intervals in each Frame. Each simulation took 
approximately 1.5 minutes due principally to the file handling involved. 
Consequently the model was run on ten PC's using a supporting platform, 
so enabling execution. This still takes one week to complete. Here each PC 
is responsible for running bursts between specified sizes. There are 6 
positions per Frame, 80 Frames to which each burst is applied and 100 bursts 
(10,000/100). There is therfore (6*80*100) 48,000 jobs to carry out each taking 

1.5 minutes.
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8.2 Burst Correction Performance Analysis of the CDROM
Recall that the statistics produced for each simulation run were: Cl 

and C2 error counts, the P and Q error counts and the status of the final CRC 
check. The Cl and C2 counts (which derive from Sector Frames) will lie in 
the range 0-98, whereas the P and Q counts which come from the product 

codes of the sector encoding have maximum values of 86 and 52 respectively. 

Each error count points to the number of Frames (codewords), which remain 

in error after one of the four decoders has been applied to the data. It has 

been found that the Cl count increases with burst length whereas the C2 

count reflects the position of the burst within the Sector. The CRC status is 

simply PASS/FAIL.

Figure 8.1 shows the response of the CD-ROM to bursts of varying 

length with a common starting point within the Sector. It shows the effect of 

bursts of 100 - 8000 bits all beginning at bit one of Frame 40 and gives the 

Cl, C2, P and Q counts and the CRC status in each case. As expected, the Cl 

count rises steadily with burst length and reflects the adjacent Frame 

deinterleaving strategy of Deinterleave III. As observed in Chapter Seven a 

burst affecting a number of Frames will be spread marginally between 

adjacent Frames. The burst length is therefore related to the number of 

Frames in error at Cl Decoding. The C2 count is largely static at zero, 

reflecting the fixed burst position. However, there is a threshold at a burst 

length of approximately 6,500 when the C2 count rises suddenly to 52. This 

reflects the Deinterleave II strategy which spreads the error bytes evenly 
across most of the Frames of the Sector. The C2 decoding fails (and the C2 

count is augmented) at all 52 Frames on or near to the threshold value of the 

burst length. The P and Q counts follow the behaviour of C2. Both are zero 

below the threshold burst length: thereafter P rises sharply to 20 and Q to 55.

By contrast Figure 8.2 shows the effect of a fixed burst length with 

different starting positions within the Sector. In this case the Figure shows 

the Cl and C2 counts and the CRC status for a burst of length 4000 bits. The 

results confirm that a burst of this size is readily correctable when it occurs 

near the middle of a Sector: ie between Frames 18 and 74. The results of
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Figure 8.2 confirm that Cl counts reflect burst length and C2 counts show 
burst position within a Sector. In this case the Cl count is approximately 
constant at 10 as the burst moves across the Sector. Note that the C2 count 
changes in an approximately symmetric fashion across the Sector. Initially the 
C2 count rises. This is because Deinterleave II has spread the burst over a 
larger number of Frames. However the C2 decoding remains unable to cope 
and the number of error Frames increases appropriately. As the starting point 
of the burst progresses across the Sector the burst error bits are dispersed 
over still more Frames. The number of error bytes within each Frame falls 
and C2 error correction is successful in each of them. The C2 count drops to 
zero and the CRC status moves from FAIL to PASS. The reverse process 
occurs towards the end of the Sector. Near the transition at Frames 12 and 
78, where correction is marginal, the CRC status fluctuates between PASS 
and FAIL due to synchronization loss.

If the burst contaminates the first 24 bits of a Frame, synchronisation 
is lost and the entire Frame is treated as being in error. This increases the 
effective burst length with a corresponding reduction in the error correction. 
Figure 8.2 also shows an example of CIRC miscorrection. In Frame 21 
aliasing has occurred which has allowed the C2 decoding to apply ostensibly 
successful correction to the bytes of this Frame and to produce a valid 
element of the C2 data set. Hence no C2 count is recorded for the Frame. 
However the incorrect element has been generated and this has been 
identified at the CRC check.

Figure 8.3 shows the results for a burst error of 7000 bits duration and 
shows similar correction characteristics. In this case the burst length is close 
to the limit of CD-ROM error correction capacity. Successful correction is 
confined to bursts near the centre of the Sector, starting in Frames 33 to 54. 
In this case, near to the limits of correction performance, the effects of 
synchronisation loss are still more marked. Limiting performance is again 
considered in Figure 8.4 which shows the maximum correctible burst length 
as the burst moves across the Sector derived from the CRC PASS/FAIL 
status. Again Deinterleave Strategy III is shown to be the most effective
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dispersal scheme near the centre of the Sector.

These results suggest that the maximum correctable burst is 7,100 bits 
long. Also, as expected when operating near its limit the CDROM 
performance is critically affected by synchronisation loss.

8.3 Inferencing Burst Errors
Simple inferencing may be done by observing trends in the data which occur 
with bursts of specific sizes. This is discussed in Section 8.3.1. For maximum 

likelihood decision making it is necessary to use a dedicated software 
package.

8.3.1 Inferencing By Observation
In Section 8.3.2 the Inferencing Package will be discussed in full and some 
results reviewed. However it is possible to make some conclusions about a 

burst from the error statistics without reverting to the software package. By 
observing the magnitude of the Cl statistic it is possible to determine the 

probable burst sizes affecting the data channel. The Cl error statistic is a 
reflection of the number of Frames which are in error after De-interleave III 
and Cl error correction have been carried out. De-interleave III is a mild byte 
disperser. The bytes in error will only be spread between adjacent Frames. 

Due to synchronisation loss, burst results only occur in certain ranges. 
The Cl count attributed to a burst can also vary. For example a burst of 4000 
may result in a Cl count between 7 and 10. This is dependent upon its 

position in both the Frame and the Sector.
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8.3.2 Inferencing The Burst
A software package has been produced which carries out the required 
inferencing. The Cl and C2 values are input into the package. Using these 
variables the data sets searched and all the possible bursts logged in a linked 
list. Figure 8.5 summarises the functions of the package. Since the P and Q 
values follow the C2 and CRC, they have been excluded

On the search concluding the user may interrogate the package about 
the bursts which fit the specified values.

Figure 8.5 : Inferencing Package

onions

(1) DISPLAY BURSTS AND ASSOCIATED PROBABILITIES

(2) DISPLAY BURSTS AND ASSOCIATED DATA (FRAflE/BIT/CBC)

(3) DISPLAY SPECIFIC BUBST AND ASSOCIATED DATA

(4) DISPLAY AREAS AND ASSOCIATED PROBABILITIES

Quit

WPUT OPTION : .

Consider Cl and C2 counts of eight and 36, respectively. From these 
variables it is possible to obtain the bursts which generate such outcomes.
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8.3.3 Example

The output from these stipulated tests is as follows:

(i) Associated Bursts

The bursts and crc status associated with cl=8 and c2=36:

burst frame bit crc burst frame bit crc

3400

3500

3500

3600

3600

3600

3700

3700

3700

3800

3800

3800

3900

3900

3900

4000

4000

4000

4100

4100

4100

4200

4200

4200

4300

4300

4400

6

6

10

6

6

10

5

6

10

5

6

9

5

5

9

5

5

9

5

5

9

5

5

9

5

9

5

201

101

101

1

201

101

501

101

1

401

1

501

301

501

401

301

501

401

301

501

401

301

501

401

301

301

301

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

3400

3500

3500

3600

3600

3600

3700

3700

3700

3800

3800

3800

3900

3900

3900

4000

4000

4000

4100

4100

4100

4200

4200

4200

4300

4300

4400

10

6

10

6

10

10

6

9

10

5

9

10

5

9

9

5

9

9

5

9

9

5

9

9

5

9

9

201

201

201

101

1

201

1

501

101

501

401

1

401

301

501

401

301

501

401

301

501

401

301

501

401

401

301

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f
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(ii) Bursts and Associated Probabilities

The bursts associated with cl=8 and c2=36 and their probabilities are:

burst

3400

3500

3600

3700

3800

3900

4000

4100

4200

4300

4400

probability

0.04

0.07

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.07

0.04

From these results it can be seen that the most likely burst size ranges from 3600 to 4200.

(iii) Most Likely Areas

The burst occurring with the designated error statistics occur in specific areas. There 
may be a number of different area, each has an associated probability. In this example there 
is only one area of interest, however in other cases there will be multiple areas. The areas 
of bursts associated with cl=8 and c2=36 and their associated probabilities are:

area_______probability 

3400-4400 1.00
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CHAPTER NINE

Obtaining A Measure For

CDROM Performance

9.1 The Need To Measure Performance
It has been shown how errors are dispersed and corrected by the CDROM 

error correction scheme. However, if the final CRC fails then a reseek (or 

retry) is attempted. Here a second attempt to find and decode the Sector is 

undertaken. In this case the full error correction scheme is reapplied.

The burst errors considered in Chapters Seven and Eight may be 

regarded as permanent errors (for example a scratch). Here reseeking will 

encounter exactly the same error Woolley[82]. In contrast, if the errors are 

transient (electrical interference or a vibration) or semi-permanent (a 

moveable hair, dust fragment) then a reseek may well result in the data may 

be corrected at the second attempt Watkinsonfll, pp 202].

Clearly the presence of reseeks will affect the access times for a given 

block1 , of data. An access time is composed of rotational latency, data transfer 

time and seek times Barbosa[25,pp 195]. Whilst the times to access multiple 

blocks can be measured. Here attention is concentrated on the time to access 

a single specified block of data. The time taken to access several blocks, some 

of which require reseeks, can be measured. This only indicates that the 

reseeks have taken place. It will not show which blocks required retries. To 

allow a more direct analysis of the performance, attention has been restricted 

to inter-block access times: i.e. the time to access a single block.

In Chapter Ten it will be seen how both access times and the number 

of retries can be used to measure the performance of a CDROM system, 

whilst subject to vibration. The remainder of this Chapter explains how these 

two measures of performance are obtained from a drive unit.

In order to obtain information regarding access times and reseeks,

1 In order to avoid confusion a sector is referred to as a homogeneous data block.
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dedicated software has been written to facilitate the communication between 

the CDROM drive unit and the host PC. The role of the SCSI (Small 

Computer System Interface) card is described here together with ASPI (the 

Advanced SCSI Programming Interface), the protocol on which the 

communication is based. The communication commands, both device specific 

and non-device specific commands. These commands are incorporated into 

a piece of dedicated software. This facilitates controlled communication 

between the host (PC) and the target (CDROM).

9.2 The Hardware and Software Requirements

The list of the hardware used is as follows:

• 486 Personal Computer.

• SCSI card which is ASPI programable.

• CDR-1950S CDROM drive.

• Interconnecting cable.

These devices are connected as shown in Figure 9.1. The software is 

written in both 'C and Assembly language.

/ \
/ /)

//
\s

A A

// /
/ /

/////
/

I\

/
/

1 1 n

A
T 
PC INTERNAL

SCSI
CARD

CABLE CDROM

Figure 9.1 : Hardware Set-up
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9.2.1 The SCSI

The successive introduction of new computer peripherals has led to a widely 
recognised need for a common interface between host computers and these 
peripheral devices NCR[83]. The SCSI was introduced to fulfil this need. The 
SCSI bus has a standard interface with the computer and each new 
peripheral is viewed as another device connected to the SCSI bus. There is 
no longer any need for specialised hardware to accommodate each new 
device to the computer itself.

SCSI specifies two communication protocols between the target and 
host. These are asynchronous and synchronous. Asynchronous 
communication requires handshaking for each byte transferred, whereas 
synchronous communication transfers a series of bytes before further 
handshaking is necessary. Here only the synchronous mode is used. An 
example of the communication is given in Figure 9.2. The initiator decides on 
an operation. It sends a command code specifying that operation to the 
target. The target then executes the specified operation.

PC : INITIATOR CDROM : TARGET

SEND COMMAND ^——————————————— \s 
^SEND ACKNOWLEDGMENT^j ———————————————

EXECUTING 
COMMAND —

. COMMAND FINISHED
^ RETURNED DATA

Figure 9.2 : Simplistic Communications

The figure provides a simplified view of SCSI communication. In practice 
data transfer is more involved than simply sending a control code. A 
command is sent in the form of a control contained within a data block called
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a SCSI Request Block (SRB). The command code and additional information 
necessary to execute the operation are known collectively the Command Data 
Block (CDB). This forms part of the SRB. These data structures are crucial 
to the use of ASPI.

9.2.2 Using ASPI To Communicate With A CDROM Drive

EXECUTE
COMMAND 

A

HOST
COMMAND 
CODE

ENCAPSULATE!
\

ASSOCIATED f^ p. r^ 
DATA U U C

u
TARGET

[ COMMAND 
CODE

ASSOCIATED 
DATA

A
7

DATA CDB SRB

I1
STRIP

DATA CDBt
Figure 9.3 : Relationship Between SRB and CDB

Figure 9.3 illustrates the relationship between the SRB and the CDB and how 

the data is used. To enable full communication ASPI must :
• obtain the address of the target device must be resolved in 

order to locate the point to which data shall be sent;
• establish a communications route between the two devices, so 

that data can be sent and received with relative ease;

• establish a procedure for obtaining the information specified in 

Section 9.1 (access times and retry counts).

A dedicated piece of software has been built so that these functions are 

transparent to the user. This is discussed in Appendix B.
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9.3 The Low Level Communications Objectives Of ASPI

The ASPI Manager manages the PC and provides the hardware independent 

ASPI for SCSI applications. This manages the communications channel and 

provides the SCSI commands. It is implemented transparently using MS- 

DOS. This SCSI card is manufactured by the ADAPTEC company who 

originally produced the ASPI protocols. User information on ASPI has not yet 

appeared as yet in the public domain. It is believed that this is the first 

academic application of this protocol.

Furthermore the documentation that does exist appears only to exist 

in synoptic form and outlines assembly code which may be used Adaptec[84]. 

For the present work C was used. A High Level Language was considered 

easier to manipulate and update. Assembly language is used in order to carry 

out the low level requirements. These are incorporated as functions which are 

called by the C main program.

9.3.1 Getting The ASPI Entry Point

The ASPI entry point is the address from which the ASPI protocol is called 

prior to communication via the SCSI bus. It must be obtained from the ASPI 

manager. Details are given in Appendix B.

9.3.2 Sending and Receiving Data

The main program accesses two assembly modules. Both modules contain 

low level functions which may be called from the C program.

The first module contains the function responsible for obtaining the 

ASPI entry point. Once this address is obtained communication can be 

started. The second assembly module contains the function which facilitates 

communication. This module is continually called in order to send the SRB 

to the target. This may be considered as the send/receive module.

The main program is also responsible for file handling, message 

interpretation and message handling. Full listings are given in Appendix B.
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ASSEMBLY
FUNCTION 2

<

C

1_J-

MAIN 'C 1 PROGRAM

CALL FUNCTION 1

FILL SRB
= SEND SRB 
^RECEIVE SRB

EXAMINE DATA

ASSEMBLY
FUNCTION 1

=£> GET ASPI 
ENTRY 

^ — POINT

1N

Figure 9.4 : Program Structure

Figure 9.4 illustrates how the C program initially calls the first assembly 

function and so obtains the ASPI entry point. The SRB, including the CDB is 

now filled with command data by the main C program.

The contents of the SRB are sent to the CDROM device. The C 

program waits until the target sends an updated SRB to the host. Its contents 

are examined. It can then be reset so that another command can be sent to 

the target device for execution.

9.3 Transferring Data Using The SCSI Bus
Establishing a communication channel is non-device specific. However 

obtaining information from the CDROM is device specific and requires device 

specific commands. The two significant elements of each SRB are the 

command code and the status field.

The command code specifies the non-device specific command which 

is to be performed. For example, one command is Get Device Type. This
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indicates the type of devices which are installed on the SCSI bus. However, 

the most important command code is the Execute SCSI Input/Output 

command. This facilitates data transfer.

The status field refers to the progress of a command: whether or not 

it has been completed and if errors have arisen. The status values and their 

descriptions are as follows:

Status value Description
OOh2 SCSI request in progress.

Olh SCSI request completed without error.

02h SCSI request aborted by host.

04h SCSI request completed with error.

80h Invalid SCSI request.

81h Invalid Host Adapter Number.

82h SCSI Device Not Installed.

A zero status is reported when a SRB has been sent but not returned. 

Since the software must pause at this point, until the SRB is returned, the 

status field is constantly polled for a non-zero value.

A command request has a number of associated fields. Important 

fields are : the Data Allocation Area Length and Address, the Sense 

Allocation Area Length and Address, the CDB Length and Address, the Host 

Status and the Target Status.

The CDB defines the area in which the device dependant commands 

will be placed Hitachi[85]. These commands describe the I/O function to be 

performed. The address of the data area and its length are placed in the SRB.

Similarly for the Sense and Data Allocation Area. The Sense Allocation 

Area is filled with data when an error status is returned from a command. 

This sense data may be used to deduce where and why an error occurred. It 

will be shown in Section 9.3.2 that this is significant when diagnosing errors.

The Data Allocation Area may be filled with data by either target or 

host as specified in the CDB. For example, if a Read operation is specified

2 All values are in hexadecimal
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then data will be read from the medium and placed in the Data Allocation 

Area.

The SRB may be considered as a packet of data which may be accessed 

by both the host and the target via the SCSI bus. This is done by passing the 

address of the SRB structure to the Send Data Module.

9.3.1 Error Status Flagging Of Host and Target Devices

Initially the length and contents of the CDB are set to zero, so that no device 

operation is selected. This enables the communication channel to be tested 

in isolation.

The initial aim is to test whether the Send Assembly module was 

correctly transmitting the contents of the SRB to the drive unit. Problems 

which could arise include: incorrect addressing, the difficulties associated 

with imbedding assembly language in C, and sharing variables between 

languages.

The Send Data Module uses the SRB pointer to send the address of 

the SRB to the CDROM hardware. The SCSI bus is used to access the SRB 

dynamic stack. The status field of the SRB is initialised to a value which 

would not be produced by a SCSI request. The SRB is now sent.

There are a number of possible responses. If information is not sent 

correctly the status field is not altered. The Send module must then be 

examined for erroneous communication. If an error status is returned the 

communication channel is functioning correctly. However one of the devices 

is causing an error. Two further status fields are examined to determine 

which device is at fault.

Host States Adaptec[84]:

OOh Host Adapter did not detect any error.

llh Selection Timeout.

12h Data overrun

13h Unexpected Bus Free

14h Target bus phase sequence failure
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Target States :

OOh No Target Status

02h Check status (i.e.Sense Data in Sense Allocation Area)

08h Specified Target/LUN busy

18h reservation conflict

The most likely error attributed to the host is a timeout, in this 

instance the Target device has taken too long to respond to the SRB. This 

may be due to either incorrect addressing or a busy device. The following 

example illustrates the three status fields associated with sending an SRB:

SRB Status : 04h

Host Status : llh

Target Status : Oh

The SRB Status:04h states that the SCSI request was completed with 

error and the host status reports a timeout. The target status reports no 

problem. This occurs when no target devices is installed on the SCSI bus. 

If an error status is reported then data is stored in the Sense Allocation Area.

9.3.2 The Sense Allocation Area

The Sense Allocation Area (S.A.A) may be regarded as an array, it is a data 

area within the SRB. In this example the SRB status indicates that an error 

has occurred. The Target status reports that sense data is in the Sense 

Allocation Area and that the Host status did not detect any error. In the 

following example, the sense data is the information which aids error

diagnosis.
Sense Allocation Area For Absent Medium

SRB status: 4 70 00 02 00 

Host Adapter Status : 0 00 00 00 06 

Target Status : 2 00 00 00 00

3a 00 00 00
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A diagnosis of the error is possible by cross referencing this 

information with the error reports in the CDROM device specifications 

Hitachi[85]. The three important items are the Sense Key, the Additional 

Sense Code and the Additional Sense Length, all of which lie within the 

Sense Allocation Area. Important codes for each of these are:

Sense Key codes (lower 4 bits of byte 2) :

02h Logical unit not ready.

04h Hardware error.

05h Illegal Request (illegal parameter in CDB)

Additional Sense codes (byte 12) :

04h Logical unit not ready, 

llh Unrecovered read error. 

24h illegal field in CDB. 

3ah Medium not present.

Error code (byte 0):

70h Current errors.

Additional Sense Length (byte 7):

Onh There are n additional bytes of data following.

Whenever data is placed in the S.A.A the error code of 70h will be 

present in byte zero. In the above example the sense and additional sense 

are 02h and 3ah respectively.

The Sense Key indicates that the device is Not Ready. The logical unit 

addressed cannot be accessed. The additional sense key, reports that the 

medium is not present, i.e the compact disc was absent.

This is a simple example. The two sense keys enable more complex 

situations to be diagnosed. Use of the S.A.A and sense key descriptions allow 

diagnosis of problems.
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With successful transmission of the SRB, the contents of the CDB are 
filled and the device specific commands may now be used.

9.3.3 Specifying Operations Using The CDB
In the same way that the SRB is used to facilitate SCSI commands, the CDB 
is used to perform specified input/output operations. In the example above 
no data has been sent in the CDB. This was to simplify SCSI communication 
and limit the factors which cause error. The CDB is a small packet of 
information which is contained in the SRB. As well as specifying the 
required operations the CDB also contains data associated with that 
operation. A good example is the Read command. Here the starting address 
and number of blocks to read must also be given. In the example below 
failure to insert correct information in both position and value has led to a 
status check, implying failure.

Status Values S.A.A For An Incorrect CDB
SRB Status : 04h 70 00 05 00 
Host Status : OOh 00 00 00 06 
Target Status : 02h 00 00 00 00

24 00 00 00

The Sense Key indicates that an illegal request has been made and 
furthermore the Additional Sense Key indicates that an illegal field is present 

in the CDB.

9.3.4 Obtaining and Sending CDB Data
Some CDB commands require data to be sent back to the host. This can be 
either the contents of a data Sector, or details of the performance statistics, 
e.g. the retries. To keep the SRB at a manageable size, only the address of the 

Data Area is stored in the SRB.
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The device specific commands are used to obtain a block of data from 

the medium. Commands were designed using the Hitachi product manual 

Hitachi[85]. With devices from other manufacturers their product manuals 

must be used Sony[86] & Philips[87]. The Verify command is used to check 

the integrity of a block on the CDROM medium using CIRC and the CRC. 

This command was used in preference to the Seek or Read command. The 

Seek command seeks a block of data without verifying it. The Read 

command does verify the data, but it also returns the decoded raw data to 

the host. Since this is unnecessary and requires a large data area to be 

considerably large (2048 bytes), Verify is the preferred command.

When data is read from the CDROM, log statistics are updated within 

the drive unit. These statistics include the number of retries. Here the total 

number of retries, the number per command and the address of the last retry 

is given. There is also a field which identifies the cause, however this is not 

defined in the current release of information from Hitachi. These statistics are 

obtained by the PC, using the LogSense and the LogSelect CDB commands.

LogSelect is used to specify which statistics are to be recorded. After 

each block is accessed, LogSense obtains the error statistics. In addition, 

ModeSense and ModSelect may be used together in order to change the 

CDROM mode. For example, the maximum number of retries may be altered. 

A default maximum of ten retries was used throughout.

9.4 The Access Times and Retry Counts From The Drive
The communications link has been established and the device specific CDBs 

have been constructed. These are used to obtain performance measures for 

the transient and semi-permanent errors.

As discussed in Section 9.1, the inter-block access time is recorded, i.e. 

the time taken to read an individual block of data, including retries. The 

access time is taken to be the interval between Time A and Time B.

Time A is taken before a block is requested by and SRB being sent. It 

is recorded immediately before the Send assembly module is accessed.
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Time B is the time recorded upon the SRB being returned successfully. 

This is recorded when a successful status is reported from the Send Module.

This interval includes the access time plus an additional command 

overhead, which is constant for each access.
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CHAPTER TEN
Measured Performance Of The

CD-ROM Against Transient Errors

10.1 Introduction
In this Chapter the data generated by the methods outlined in Chapter Nine 
is presented and analysed. The performance measures are obtained both in 
a standard working environment and when the CDROM drive is subject to 
vibrations. The results are outlined in Section 10.3 and presented in Section 
10.4. The results for the vibrated system were obtained using dedicated 
equipment at the British Gas Engineering Research Station in Killingworth. 

Blocks are read from the CDROM disc in sequential logical order. This 
is not necessarily the order in which they are physically recorded, which is 
dependant upon both the manufacturer and the mastering software. In the 
results below blocks are presented in two ways. Either individual blocks or 
a number of sequential blocks are used. A number of sequential blocks used 
are referred to as a block sample. The experiments are carried out by 
verifying one thousand logically sequential blocks in each case.

10.2 Test Disc Details
Two discs are used in the following investigations. Disc A is as clean as 
possible, having being stored and handled with care. Consequently it 
contains no errors. Disc B has been partially covered by a piece of non- 
transparent adhesive tape, as illustrated in Figure 10.1. The effect of the tape 
will be similar to that of a scratch or obstruction in that the underlying data 
cannot be read by the optical hardware.
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Figure 10.1 : CDROM With Error

\

Note that the adhesive tape cannot be positioned to cover given blocks 
of data since the disc does not contain a common reference point from which 
to measure any angular displacement. So, in contrast to Chapter Seven a 
burst error of known length and position cannot be investigated.

Measurements were taken for Disc A both near the centre of the disc 
and near the rim. The inner blocks area were read from block zero to 1000. 
Block zero is the first block of the data area. For the outer area the same 
number of blocks are read, however access begins from block 200,000. The 
error statistics for the first block access (0 and 200,000) are discarded for 
reasons which will become apparent later in this chapter. The access times 
will increase for blocks further from the centre of the disc and it is also 
possible that the physical faults, such as disc wobble, will affect the results.

For each run of the software the inter-block access time and the 
number of reseeks are recorded. The access times are recorded to the nearest
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hundredth of a second. After ten reseeks a block is deemed to contain 

permanent errors that cannot be corrected and is abandoned. In such a case 

the access time does not represent the time taken to access a block, but the 

time taken to carry out the ten reseeks, use both CIRC and the CRC.

10.2.1 Typical Error statistics

Figure 10.2 illustrates typical error statistics associated with a run of six 

blocks. To limit the quantity of data the retries are only recorded when non­ 

zero.

Figure 10.2 : Output From Performance Software

Inter Block Access Times Read Retry Count 
1 22 

17
22

15
46 5:2

17

In the instance of a retry occurring for a given block, the access time 

of that block should increase markedly from the normal range. This can be 
observed in the figure where block five has two associated retries, this is 

referred to as a soft retry. A hard retry is described as a block where the 
maximum number (ten) of retries have been applied, without success. Here 
the access time is also seen to rise. Despite this apparent relationship between 
these two statistics it will be shown later that this is not always the case. For 

this reason it is important to use both statistics.
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10.3 Outline Of Experiment
All experiments were carried out in both standard and hostile environments. 
The standard environment is defined as the normal working conditions of the 
CDROM drive and medium.

Unlike humidity and temperature there is no vibration specification in 
ECMA and other standards. For this reason vibration was chosen 
ECMA[18,pp 4]f BSI[19,pp 6] & Hitachi[88,pp 1193]. This is applied in three 
forms: a shock test; fixed frequency vibration; and swept sine vibrations.

Note that it is not possible to run repeated runs of the software for 
swept frequency and sudden shock tests, for this reason the results rely on 
a single run. In most results an average is taken over a number of blocks.

10.3.1 Standard Environment With Disc A
In this environment the performance of this disc in the drive unit 

should be at an optimum level, i.e. low access times and zero retry counts 
should prevail. For both data areas the block access times will vary. These 
variations should be small in comparison to those generated by reading 
problems.

It also likely that the average access time observed in each areas will 
differ. This is due to increased latency Barbosa[25,pp 31] and the Constant 
Linear Velocity. For this reason it is necessary to only compare like areas of 

a disc.

10.3.2 Standard Environment With Disc B
Information is accessed from the area of Disc B near the centre. This is the 
area affected by the incorporated error. It is expected that the existence of 
errors will be highlighted by the presence of both high access times and non­ 
zero retry counts. These retries are likely to be hard errors, i.e. the block in 

question is affected by a permanent error.
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10.3.3 Hostile Environment With Disc A 

(i) Shock Test

Only the inner data area of Disc A is used for this test since these results are 
almost identical. The drive is affected by an impulse which is unmeasured. 
This is

in contrast to (ii) and (iii) where the applied vibration is measured. The 
physical displacement of the laser will prevent access of the current block. Its 
subsequent performance is of significance.

(ii) Constant Fixed Vibration
The frequencies used in these tests range from 10 to 100 Hz, in steps of 10 

Hz. In addition the maximum acceleration levels applied range from 0.5 to 
2 g, in steps of 0.5 g.

In order to establish the effect of a given frequency and acceleration 
level, the drive is exposed to each combination in turn. For example, the first 

experiment is lOHz at 0.5g, the second is 20Hz at 0.5g, and so on.

(iii) Swept Sine Vibration

Identical ranges of frequency and acceleration to those in (ii), apply to these 

experiments. In contrast to the previous experiments the frequency increases 
from 10 to lOOHz as the experiment progresses. To maintain a constant 

maximum acceleration the amplitude decreases as shown below.

The equation of motion of the vibration is:

x" + yv*x(t) = 0 (10.1)
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with solution:

x(t) = ACos(wt + 4>)

The acceleration is:

x" = -Avf2Cos ( wf + <|>) (10.3)

with peak value: Aw2 .

Hence for constant peak acceleration:

A « -L (10.4) w2

10.3.4 Hostile Environment With Disc B
The hostile environment discussed in Section 10.3.3 are identical to those 
applied to Disc B. However, in this case two error mechanisms will affect 
performance: both surface errors and vibration. By comparison of the data 
produced in both standard and hostile environments the effect of the latter 
may be established.
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10.4 Experimental Results

The experiments follow the order outlined in Section 10.3. The relevant graphs are 

illustrated for each experiment.

10.4.1 Standard Environment With Disc A

(i) Inner Area

Graph 10.1 depicts the typical access times associated with the inner data area.
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10

8

Access Time

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Block Number

^H Access Time 

Graph 10.1 : Access Times For Inner Data Area

The access times are not constant. They vary between 6 Hsec (Hundreths of 

a second) and 11 Hsec. As would be expected for a clean disc no retries were 

observed.
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(ii) Outer Area

In Graph 10.2 typical access times for this area are illustrated.
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Graph 10.2 : Access Times For The Outer Data Area

Excluding the first, these vary between 11 Hsec and 18 Hsec. The access 

times are larger than those shown in Graph 10.1. This difference is due to the 

increased latency experienced by the laser as it accesses data nearer the rim. Again 

no retries are observed.

The access time for the first block is atypical. This is due to the system being 

at rest when the block access was requested. If a drive is unused for a period of time 

the unit enters a waiting state. Upon a data block being requested the read laser must 

move from rest and find that block's position on the disc by reading the Table of 

Contents. The Table Of Contents is positioned at the centre of the disc. A large 

initial access time always occurs when a block is accessed from an inactive drive. 

Hence the initial block of data is always discounted.
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10.4.2 Standard Environment With Disc B

Graph 10.3 illustrates the statistics associated with Disc B.
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Graph 10.3 : Error Statistics Generated By Disc B

Here blocks 3 and 12 are observed to be affected by the surface error, 

with access times of 132 and 137 Hsec respectively. The blocks in error 

experience maximum retries, due to the permanent error upon the disc 

medium. Here the access time represents the time taken to reseek the block 

ten times and attempt decoding.
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10.4.3 Hostile Environment With Disc A

(i) Shock Test

Graph 10.4 illustrates the affect of a shock test on the drive. This test can be seen

to affect block eleven significantly. Here the block access time can be seen to rise

to 153 Hsec. Of further significance is the lack of any retries.
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Graph 10.4 : A Shock Test On The Inner Data Area Of Disc A

The applied force affects the read laser such that it cannot find the next 

sequential block, in this case block eleven. However since the block was not found, 

the data is not read. For this reason no retries are present, since the block is retrieved 

successfully upon the block being found. Further tests did cause retries to occur. The 

effect of a shock is therefore dependant upon the reading stage, whether finding 

(seeking to) or reading (accessing) the block.

118



(ii) Constant Vibration 

Inner Data Area

Graphs 10.5 to 10.8 depict the average access times and retry counts for the 
inner data area which are plotted against frequency for acceleration levels 0.5, 
1, 1.5 and 2g respectively.

Here the adverse frequency regions for each acceleration level can be 
identified by the rise in both statistics. As the acceleration level increases the 
region of 'none functioning' broadens. At some frequency values the system 
is unable to retry or access due to the inability to find the specified block. In 
this case the system is observed to crash without completing the specified 
block accesses. This is denoted on each graph by a box, within this the 
system crashes.

80
Average Access Time Average Number Of Retries

10 20 30 40 50 60 70 80 90 100

IH Access Times V/A Retry Count 

Graph 10.5: Error Statistics Arising From Fixed Frequency With 0.5g Tests
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Graph 10.6 : Error Statistics Arising From Fixed Frequencies With Ig Tests
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Graph 10.7 : Error Statistics Arising From Fixed Frequency Tests With 1.5g
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Graph 10.8 : Error Statistics Arising From Fixed Frequency With 2g Tests

Figures 10.3 to 10.6 depict the area of vibration for each acceleration level and 

the effect upon the performance of the drive with the inner data area. In each 

figure the white area depicts the region where the drive behaves normally. 

These and all such figures are produced by the same data used to produce 

the associated graphs.
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[j^S area of retries 

^3 high access times

rive unable to function 
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Figure 10.3 : Illustration Of The Effects Of Frequency On Drive At 0.5g
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Figure 10.4 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.5 : Illustration Of The Effects Of Frequency On Drive At 1.5g

10hz 50hz 100hz

Figure 10.6 : Illustration Of The Effects Of Frequency On Drive At 2g
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Outer Data Area

Graphs 10.9 to 10.12 depict the average access times and retry counts for the 
outer data area.

Average Access Tim* Average Number Of Retries
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Graph 10.9: Error Statistics Arising From Fixed Frequency With 0.5g Tests
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Graph 10.10 : Error Statistics Arising From Fixed Frequency With Ig Tests
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Graph 10.11: Error Statistics Arising From Fixed Frequency With 1.5g Tests
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Graph 10.12 : Error Statistics Arising From Fixed Frequency With 2g Tests

Figures 10.7 to 10.10 illustrate the effect of each area of vibration for 
each acceleration level upon the drives operation at the outer data area. The 

same key applies as used in the inner area.
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Figure 10.7 : Illustration Of The Effects Of Frequency On Drive At 0.5g
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Figure 10.8 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.9 : Illustration Of The Effects Of Frequency On Drive At 1.5g
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Figure 10.10 : Illustration Of The Effects Of Frequency On Drive At 2g
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In the 0.5g test, Graph 10.5 shows that the drive is adversly affected 

over the frequency range of 30 to 50 Hz. By comparison Graph 10.9 shows 

difficulties occur only between 40 and 50 Hz. At 0.5g the outer area is 

observed to perform marginally better than the inner.

At the Ig acceleration level both areas experience serious problems 

which lead to a system crash. However again the outer area can be seen to 

be marginally more resilient than the inner. In Graph 10.6 the inner area is 

observed to fail between the frequencies of 40 and 70 Hz. In Graph 10,10 this 

range only occurs between 50 and 70 Hz.

In comparison, the inner area can be seen to perform better at 1.5g. 

Here the inner areas problem frequencies range from 40 to 80 Hz, whereas 

the outer area frequencies range from 30 to 90 Hz. At 2g both areas react in 

a similar manner. Both experience problems in the frequencies ranging from 

20 to 90 Hz.
It is apparent from the results that some difference exists between the 

two areas. However these differences are only marginal. The range of 

frequencies which are seriously effecting the drive must be attributed to an 

area of resonance of one or more of the drive components.
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(iii) Swept Sine Vibration

The frequency of vibration is constantly increasing, even at the period of 

seeking. It is therefore not possible to determine the exact frequency of each 

block. In the event of a crash, the present frequency may be recorded. 

However this may not be the frequency at which access problems began. An 

overall picture can be produced for the various maximum acceleration levels. 

These are illustrated in Figures 10.11 to 10.14. Due to the similarity between 

the inner and outer data area, the latter is not illustrated.
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gg§| drive unable to function 
(crashes)

10hz 50hz 100hz

Figure 10.11 : Illustration Of The Effects Of Frequency On Drive At 0.5g

10hz 50hz 100hz

Figure 10.12 : Illustration Of The Effects Of Frequency On Drive At Ig

10hz 50hz 100hz

Figure 10.13 : Illustration Of The Effects Of Frequency On Drive At 1.5g
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10hz 50hz 100hz

Figure 10.14 : Illustration Of The Effects Of Frequency On Drive At 2g

These ranges of frequencies which cause the CDROM system to crash 

can be compared with those produced by those at the fixed frequency.

In all cases it is apparent that the CDROM system functions far worse 

under this type of vibration than that of fixed frequency. This is probably 

due to the greater susceptability to resonsance. Whilst some frequencies only 

cause accessing problems others cause the system to crash. Those frequencies 

which only cause access problems will effect sequential blocks increasing 

those blocks access times. If during the period that a block is being accessed 

the frequency changes from an 'access problem' frequency to a 'system crash' 

frequency then that block will not be accessed and lost. However the 

frequency will be perceived as causing the block loss. It is this effect which 

causes the apparent widening of the hostile frequency range.
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10.4.4 Hostile Environment With Disc B 
(i) Constant Vibration

Graphs 10.13 to 10.16 depict the average access times and retry counts which 
are plotted against frequency for acceleration levels 0.5, 1, 1.5 and 2g 
respectively.
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Graph 10.13: Error Statistics Arising From Fixed Frequency Tests With 0.5g
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Graph 10.14 : Error Statistics Arising From Fixed Frequency Tests With Ig
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Graph 10.15: Error Statistics Arising From Fixed Frequency Tests With 1.5g
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Graph 10.16 : Error Statistics Arising From Fixed Frequency Tests With 2g
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The region of non-functioning is depicted in the following figures. 
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Figure 10.15 : Illustration Of The Effects Of Frequency On Drive At 0.5g
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Figure 10.16 : Illustration Of The Effects Of Frequency On Drive At Ig
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Figure 10.17 : Illustration Of The Effects Of Frequency On Drive At 1.5g
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Figure 10.18 : Illustration Of The Effects Of Frequency On Drive At 2g
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Here both retries and high access times are far more numerous in 
comparison to the inner and outer areas of Disk A. Without vibration a low 

level of retries are expected, due to the surface errors.
The results are similar to those illustrated in Figures 10.3 to 10.6 and 

Figures 10.7 to 10.10, for the inner and outer area of Disk A. The statistics 
due to the surface errors are compounded by those caused by the adverse 
vibrations. The retries and high access times cause the drive system to 

completely crash within certain frequencies.
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(ii) Swept Sine Vibration
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Figure 10.19 : Illustration Of The Effects Of Frequency On Drive At 0.5g
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Figure 10.20 : Illustration Of The Effects Of Frequency On Drive At Ig
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Figure 10.21 : Illustration Of The Effects Of Frequency On Drive At 1.5g

10hz 50hz 100hz

Figure 10.22 : Illustration Of The Effects Of Frequency On Drive At 2g
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The Effect of the Swept Sine Frequency on Disc B is illustrated in 
Figures 10.19-10.22. A comparison with Figures 10.11-10.14 illustrates the 

differences between the effects on Disc A and B. The results again show how 
the operational frequency of the drive works decreases in the presence of 
vibration.
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CHAPTER ELEVEN 
Conclusions

and 
Future Work

11.1 Conclusions
The CDROM has been discussed and its error control strategies reviewed. 
Each stage of the encoding/decoding schemes detailed in the Standards 
(ECMA, BSI, etc) has been investigated. This was necessary to fully develop 
the simulation model produced at the University of Glamorgan. Chapter Five 
discussed the encoding and Chapter Six the decoding. The simulation was 
described in Chapter Seven, an account of which is given in Appendix A. 

Each stage of the decoding is simulated to enable error control to be traced 
from start to finish.

Note that within existing technology it is impossible to place an error 
in a fixed prescribed position on the media. This could be achieved only if 
the error were introduced by the write laser itself, which is clearly 

impractical. It was shown that the maximum correctable burst size is 
dependant on the burst position in a Sector. When the burst is at the middle 

of the Sector, the burst correction limit is approximately 7000. This figure 
decreases towards the ends. At the limits of performance the synchronisation 

of a channel Frame is critical.
The simulation model is therefore believed to be the only means by 

which error on CDROM media may be incorporated and investigated. It is 
further believed that this novel solution to the problem is of both academic 

and commercial importance.
In Chapter Nine novel software is described which obtained the access 

times and retries for a given Sector of data. These values are important when 

determining the performance of the CDROM to adverse environments caused 

by vibration.
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In Chapter Ten the software is used to identify the ranges of hostile 
vibrations within which the CDROM fails. It was established that both error 
statistics were necessary to describe the systems response to its environment. 

The ranges of frequency which cause the CDROM to malfunction were 
established for a given range of maximum acceleration values. At 

accelerations of 2g there was almost complete system failure, i.e. 2g is the 
maximum force which the CDROM can sustain. It was established that 
surface blemishes make the discs less resilient to vibration. It was also shown 

that the CDROM was not particularly resistant to impulse shock, which 
displaces the reading laser.

The error control strategy is designed to combat both permanent and 
transient error mechanisms. The work addresses these two classes of error in 

complimentary styles. Permanent error mechanisms will produce 
deterministic errors. It is therefore best investigated by a detailed 

deterministic simulation of every stage of the decoding. Practical data is not 
feasible since true error (e.g. a scratch) may not be attributed to any 

particular Sector.
By their very nature transient error mechanisms are non-deterministic 

and must be investigated experimentally. Hence the user code software was 
written to monitor and access retry data of individual blocks. Together the 
two methods provide a comprehensive analysis of the error performance of 

the CDROM.

11.2 Future Work
11.2.1 The Simulation Model

(i) Extending The Existing Model
The simulation model has been used to model the effect of errors on the 
CDROM. However model results were restricted to an independent sector of 

data. This was due to the run time and computing requirements which 

would be made by a more general model. Future work could include 

extending the model to incorporate burst errors across adjacent sectors.
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(ii) Multiple Error Application

To date only single burst errors within a Sector have been investigated. It is 

reasonable to suppose that multiple errors within a Sector will occur. It is of 

interest to investigate the effect of these errors on the decoding scheme. 
Preliminary work suggests that a systematic investigate into multiple bursts 

would be very long and complicated, and would require very extensive 

computing support. To produce a guide for multiple bursts input would 

include length and position of all the bursts. This would be a huge database, 

several times more complex than the single burst database discussed in 

Chapter Eight.

(iii) Compressed Areal Densities

Derivatives of the CDROM will have higher areal densities and greater disc- 

read head speeds Nadeau[89], Fox[90]. It may be presumed that the error 

correction strategies will largely follow those of the CDROM. A variant of the 

model may be used to investigate the tighter specifications likely to be 

encountered.

11.2.2 Future Uses Of Performance Measures

(i) Additional Hostile Environments

In Chapter Ten, the performance measures were used in order to investigate

the effects of vibrations on the CDROM. This software may also be used for

testing the drive with other hostile conditions, such as temperature and

humidity. It could be used to measure drive operations near the boundaries

of the values outlined in the standards ECMA[18].
The platform vibration is monitored independent of retries and access 

time data. More information could be obtained if the vibration information 

was integrated with the access time and retry data. In this way the ambient 

conditions for each block can be associated precisely for the performance 

data.
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(ii) Conformance To Standards

It was shown in Chapter Ten that disc blemishes reduce the robustness 

against vibration. Although discs are manufactured to a standard, the 

conformance to these standards may vary from manufacturer to 

manufacturer. At the margins of the conformity one may suppose that the 

error correction is degraded. It would be most useful to explore and quantify 

the relationship between the error correction capability and conformance with 

standards.

11.2.3 Using The ASPI Program

The ASPI template used for the CDROM may be adapted for RDAT-DDS. 

Equally it could be applied to the CDROM derivatives.
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Appendix A 
Using The Simulation Model

The Simulation model is composed of both the encoding and decoding 
strategies of the CDROM. Both schemes are composed of a number of 
program modules. Each program Module uses the output of the previous 
module as its input, manipulates the data in a predefined manner and 
outputs the information to another data file.

The complexity of each process and storage constraints creates a need 
for individual program modules rather than one large complete program. 
This proves to be more useful when illustrating the progression of errors at 
decoding.
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Appendix A.I ; Encoding Programs

The programs

synch.pas
crc.pas
intermed.pas
ecc_p.pas

ecc_q.pas
scramble.pas
switch.pas

delayl.pas
rsc_q.pas

delay2.pas

rsc_p.pas

delay3.pas

control.pas

mod2.pas

associated with encoding are:

Add twelve byte synchronisation.

Calculate CRC and add to data.

Add intermediatory redundant bytes.

Calculate and add P parity.

Calculate and add Q parity.
Scrambles the data.

Reorder Consecutive bytes.

First stage interleave of CIRC.

C2 RSC(28,24) Encoding.

Second stage interleave of CIRC.

Cl RSC(32,28) Encoding.

Third stage interleave of CIRC.

Add control data.

Modulate Data. EFM conversion and DSV

minimisation using merge bits.

Each programs is independant, however an inter-relationship is governed 

by the data file produced by each. These programs must therefore be 

executed in sequence. The software suite may be run transparently using 

the batch file encode.bat. Here it is only necessary to construct the desired 

raw data file, all encoding runs automatically. The raw data to be encoded 

is placed is tdata.txt, this consists of 2048 bytes.

The result of the whole encoding scheme is the channel data 

produced in output2.txt. Again an example file is included.

Data files are necessary to enable correct performance of the Reed 

Solomon parity calculations used in the four encoders.
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Associated Files 

P-Parity Equation Files:

P_1.DAT P_2.DAT

Q-Parity Equation Files:
Q_2.DAT Q_1.DAT

Cl-Parity Equation Files:
PI.DAT P2.DAT P3.DAT P4.DAT

C2-Parity Equation Files:

Ql.DAT Q2.DAT Q3.DAT Q4.DAT

additional files required :
codes.dat (EFM conversion table) 
table.dat (Galois Field Elements)

input file : TDATA.TXT
output file : OUTPUT2.TXT

execution file : ENCODE.BAT
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Appendix A.2 ; Decoding Programs

The following files are associated with the decoding simulation:

demodulate.pas decontro.pas undel_3.pas p_decode.pas

undel_2.pas q_decode.pas undeM.pas switch.pas

descram.pas q^dec.pas p_dec.pas rem_inte.pas
crc_check.pas rem_synch.pas

These files must also be used in sequence and may be run transparently 

using decode.bat. Error incorporation occur before decoding and will 

affect the data placed in output2.txt. This is discussed in Appendix A.3. 

The error affected data is placed in output4.txt and this is decoded.

Decoding is constrained as the inverse of the encoding process. The 

data is manipulated in order to reverse those schemes used in the 

encoding scheme. The result of the decoding scheme is the data file 

xdata.dat. The integrity of this data is checked using the CRC present in 

the code. For our purposes this data may be compared with the raw data 

used for encoding.

additional files required :
codes.dat (EFM conversion table) 

table.dat (Galois Field Elements) 

(identical to those used with the encoding files)

input file : OUTPUT4.TXT

output file : XDATA.TXT

execution file : DECODE.BAT
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Appendix A.3 ; Error Incorporation Programs

The following files are associated with the production of errors upon the 

channel:

burst_er.pas bur_err2.pas b2_errf.pas 

b2_err.pas rand_err.pas

Each of these incorporates errors into the channel data in 

output2.txt, producing a hybrid data file output4.txt. The former four files 

are all associated with the incorpation of a burst into the data. The latter 

simulates random errors.

A number of burst program modules are necessary in order to 

simulate bursts which are both fixed and random and those causing Frame 

errors. A Frame error is caused by synchronisation loss due to one or 

more bits of the twelve bit channel synchronisation field. Here the burst 

propagates as illustrated in Chapter Seven to the end of that Frame.

Burst_er.pas simulates a randomly positioned burst of a specified 

magnitude in bits. Here a seed must be input to ensure the randomness of 

the burst position. The module does not cause Frame loss when 

synchronisation is lost. Frame overlap does not cause the discussed burst 

propagation.
Bur_err2.pas again does not simulate synchronisation loss. The 

module is not random, here the Frame and bit position are required as 

input in addition to burst size. Frame position can vary between 1 and 98, 

however it is recommended that care is taken not to overlap bursts with 

the enc of the Sector. A burst of uncorrectable size would be perceived as 

correctable if it were to affect Frame 98 since it would be addressed as a 

one Frame error. Bit position within a Frame can vary between 1 and 588

bits.
B2_errf.pas simulates Frame loss by bursts overlapping the 

synchronisation bits. Burst position and length are required as an input.

B2_err.pas simulates Frame loss by bursts overlapping 

synchronisation. The burst size and random location seed are required as
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input.

Rand_err.pas simulates random errors in the data channel. Here a 
probability of error is required plus a seed to ensure varying random bit 
patterns. Frame loss is produced by synchronisation bit loss.

The program modules used for the results in this thesis were 
b2_errf.pas and rand_err.pas.

input file : OUTPUT2.TXT
output file : OUTPUT4.TXT
execution file : BURST.BAT

In addition to this an interactive menu driven program has been 
produced. This facilitates fully trasparent incorpration of burst and 
random errors into the channel data and runs the decoding simulation.

MENU : error incorporation programs
F_BUR1.PAS R_BUR1.PAS R_BUR2.PAS 
RAND2_ER.PAS

F_BUR1.PAS produces a fixed burst at a fixed position. 
R_BUR1.PAS produces a random burst at a random position. 
R_BUR2.PAS produces a random burst at a random position. 
However this is associated with the incorporation with multiple 

burst incorporation. 
RAND2_ER.PAS produces a random error.

associated programs
COPY6 4.PAS COPYINIT.PAS
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COPY4_2.PAS FIX_SYNC.PAS 
all decoding program modules

COPY6_4.PAS and COPY4_2.PAS are associated with multiple 
error incorporation. These copy the error file output4.txt to 

output2.txt so that further errors can be incorporated. 
COPYINIT.PAS initialises output2.txt to original data after multiple 

errors have been utilised.
FIX_SYNCPAS causes Frame errors when synhronisation bits have 

been lost. All error incorporation programs exhibited here do not 

examine synchronisation loss.
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Appendix A.4 ; Illustration Programs

It is possible to check the integrity of final data produced by the decoding 
simulation with the original raw data. By this method it is possbible to 
identify errors within the data. Since both the Decoding and Encoding 
simulations produce interrnediatory data files the same approach may be 
used to follow the progression and corection of errors though each 
decoding stage.

There are three types of schemes used in order to illustrate these 
errors. All programs locate errors by inconsistencies between 
corresponding encoding and decoding files. For example, the data file 
produced prior to Cl encoding and that produced after Cl decoding.

Since this software is dependant upon data file discrepancies both 
the encoding and decoding simulations must be run and the 
interrnediatory files produced.

A.4.1 Illustration Scheme 1
This illustratory software locates an error due to data inconsistencies and 
outputs the Frame and byte position. This allows close scruteny of errors 
present in the data block. The performance of the error correcting codes 
can be demonstrated by the removal of errors within a Frame. 
The programs are :

COMPMOD2.PAS COMPCON.PAS COMPD3DA.PAS 
COMPC1.PAS COMPDEL2.PAS COMPD2DA.PAS 
COMPD1.PAS COMPSCR.PAS COMPSW.PAS 
COMPP_DE.PAS COMPINTE.PAS

associated data : all encode/decode data files 

execution file : test.bat
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A.4.2 TUustrafipn Scheme 2

By the use of a bi-level grey scale it is possible to illustrate the 

actual position of persisting errors within the code block. The first scheme 
found errors and output the Frame and byte positition of that error. This 
scheme illustrates the changing codeblock and maps the progressing 

errors. An ASCI text output is produced for each decoding stage. All 

output is all piped into a text file using a batch file. This system was used 
to produce the illustrations used in Chapter Seven. 
The programs are :

CMOD3.PAS
CC1.PAS
GDI .PAS

CQ_DECPAS
CINTE.PAS

C1NTE.PAS
CD3DA.PAS
CD2DA.PAS

CSCR.PAS
CAQ2_DEC.PAS

CPCON.PAS 
CDEL2.PAS 
CSW.PAS 
CAQ_DEC.PAS

associated data : 
execution file : 
output file :

all encode/decode dat files
ill.bat

testtxt

A.4.3 Illustration Scheme 3
The progression of errors are followed in the same manner as Scheme 2. 
However a graphical programme is used to illustrate this progession upon 
the PC screen. The screen shots can be seen in the following pages.

associated data : all encode/decode files 
execution file : illustra.exe
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A.5 Inferencing Software and Database

The database was produced with a number of associated programs which 

run the decoding and burst incorporation software for a range of bursts at 

varying positions. An example of the type of platform used is platl.pas.

A number of these programmes were run on a group of PC's over a 

number of weeks to provide the database dataf.dat. Data has been 

incorporated in a readable form for ease of use.

The database is used in conjunction with infer.pas which is used to 

inference bursts as shown in Chapter Eight.
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Appendix B 
Drive Communications Issues

In Chapter Nine the CDROM was used in order to obtain statistics which 
reflect the performance of a drive with a given disk in a specificied 
environment. This was demonstrated to be of significant use in Chapter Ten. 
Here the drive is used with both hostile vibration environments and a disc 
with a surface error.

In this Appendix, complete listings are given of the main program and 
associated assembly modules used in order to facilitate communciations. Each 
program module is fully commented. More information on DOS interrupts 
may be founf in most related texts, e.g. Waites MSDOS Bible (bibliography).

B.I Assembly Module 1 : OPEN.ASM

; Filename: open.asm (version 6.c)
; (version 6.c replaces 6.b and 6.a which were beta test versions)

; Description: Initialises ASPI
; open aspi;
; gets SCSI manager address
; closes aspi
; places SCSI manager address in globally uable

variable

; Date: Final version : 25 September 1992
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•MODEL small

Specifies the archetechture model small, medium or large

This allows specification of the size of segmentation model 
to be used for program

.DATA

,************************************^

; sets up data area segment

EXTRN aspi_entry_point:DWORD

Declare aspi_entry_point as an external variable 

external variables are defined outside a module 
i.e aspi_entry_point is specified in the main C program.

Aspi_entry_point which is a double word i.e. 16 bits.;

public scsimgr
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scsimgr is a public variable

this is a variable which may be used by other modules

scsimgr db 'SCSIMGR$',0 

error dw ?

db "Working!", 13, 10, "$"

; scsimgr is a byte of characters 'SCSIMGR$' this string will be 

; looked for in dos memory to find the entry point

/

; error is a word of data which will be returned by this program module

/

; error = 1 is an error caused by no 'SCS1MGR$' string being found in

memory
; error = 0 is no error caused by the 'SCSIMGR$' string being found in

memory

init_message db 13,10;initialising',13,10

no_aspi_message db 'ASPI device driver not loaded',13,10,13,10,0

aspi_message db 'ASPI device driver was loaded',13,10,13,10,0
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; messages to be used if aspijnessage found

*****************************************************************

-CODE

********************************************************************

; start of code segment

. >f ************************************************* **************

PUBLIC _open_aspi

; open aspi FUNCTION

; since it is defined as public this function
; can be used by other programs or modules

/

; function call used by main program 

; opens the aspi manager

.****************************************************************
/

_open_aspi proc near

push bp
push si

push di

push dx
push ex

push bx

B-4



;^,^^^^

; push current register values onto stacks

mov ax,03dOOh 

; place open file command in ax for interrupt call

mov dx,OFFSET scsimgr 

int 21h

; call interrupt with vriable settings 

jnc open_ok

; look for SCSI string

; if found jump to open_ok

; else continue

/

,*********************************^^ 
/

mov ax,0

mov bx,OFFSET no_aspi_message

; no ASPI found message

call display_string 

mov error,!
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; message not found

jmp open_exit

; jump to open exit if no message found 

; leave assembler module

open_ok:

mov bx,OFFSET aspi_message

; load aspi found message

mov error,0

call display_string

; display string

; since aspi found continue along program path

mov bx,ax

mov ax,4402h

lea dx/aspi_entry_point

mov cx,4

int 21h

; find aspi entry point and place in variable

mov ax,l
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open^exit:

mov ax,error 
; place error value into variable

pop bx

pop ex

pop dx

pop di

pop si

pop bp

; pop current register values off stacks

/

.*****************************************#********************** 
/

ret 

_open_aspi endp

; end of function

display_string proc near

; display_string function

; displays strings : outputs charactres to screen

/

. ****************************************
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push ax 

push bx

; push current register values onto stacks

next_char:

mov al,byte ptr [bx]
cmp al,0

jz string_done 
; if no char left then jump to string^done

push bx
mov ah,0eh

mov bx,0

int lOh

pop bx

inc bx

jmp next_char 

; output string character by character.

string_done: 

pop bx 

pop ax

.****************************************************** /

/
; push current register values off stacks
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ret
display_string endp 
; end of function
END

,*************#*************^^ 
/

/

; end of program module

/ 
.****************************************************************
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B.2 Assembly Module 2 : SEND.DATA.ASM

; Filename : send DATA.asm (version 5.c)

; Description : uses aspi entry point produced in open.asm 

; enables PC <-> SCSI communication

; Date : September 24 1995.

.MODEL small 

; define model type 

.DATA

/

; start of data segment

public aspi_entry_point

public _SRB_ptr

public _data_ptr

/

; aspi_entry_point : aspi entry point received from open.asm via C main 

program
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; SRB_ptr : pointer to the SRB data structure .

this is the predefined data structure used for data transfer
/

; data_ptr : pointer to the data areain the SRB

aspi_entry_point dd 0

_SRB_ptr dw 0
_data_ptr dw 0

; define variables

.CODE

; start of code segment

PUBLIC send data

.******************** ********************************

; send_data program FUNCTION

.*************************************************-***

send_data PROC

B-ll



; push contents of registers on stack
; registers are needed for communication

push ax
push ex
push dx
push bx
push bp
push si
push di
push ds

push es
push ds
mov bx,[_data_ptr]
mov bx,[_SRB_ptr]

; place pointers to data and SRB data structures in bx registrer

/

push bx

; push pointers (contents of bx) onto stack ready for ASPI call 

lea bx/aspi_entry_point

/

; load effective address of ASPI into ax register

call dword ptr[bx]
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; call ASPI : message on SCSI bus

/

add sp,4 

; push contents of registers off stack

pop es

pop ds

pop di

pop si

pop bp

pop bx

pop dx

pop ex

pop ax 

ret

_send_data endp

/

; end of function

/

END
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B.3 Main C Program : COMMUN.C

^include "stdio.h" 

^include "stdlib.h" 

#include <dos.h> 

^include <string.h>

/* include standard libraries V

union REGS Regs; 

struct SREGS SRegs;

/* library defined regisers : ax, bx etc V 

extern void send_data(void);

/^**^*****^**^*****^*^**^^*^^*^^^*^*^^»^^^^yt^^^^»^>t^»^^^^^^^^^^^^^^^^^^^^^^.^^^.^ /

/* send_data is defined as an external function : this is in scsicomm.asm */ 

/* this function does not return any values */

/****************>*********************^^

extern int open_aspi(void);

/************************************************

/* open_aspi function is an external fiunction : (in open. asm) */

/* returns an integer indicating error or success */

x***************************************^

void verifydong no, long ink);

/* verify function used for verifying a sector : menu option */
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void read_toc(void);

/* read table of contents function to read t.o.c of a disc : menu option */

void read6(iong no);

/* read function used to read a sector : not used */

void seek6(long no);

/* seek function used to seek a sector : not used */

void show_sense(void);

/* show_sense function used to show sense data : shows Sense allocation

area */
I* shows data !! : only used at end of program */

void init_SRB(void);

/* function initialises SRB values to default */ 

/* CDB area is filled up later */

void read_capacity(void);

/* function to read capacity of disc : menu option */

int test_data(void);

/* used to constantly poll SCSI bus for status received !*/

void sense_data(char a[]);
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/* as show_sense but no data is shown */

void mode_sense(void);

/* carries out a mode_sense on the drive unit : menu option */

void log_sense(char a[], int answer);

/* carries out a log_sense on the drive unit : menu option */

void read_header(long no);

/* reads the header : menu option */

void log_select(char a[]);

/* carries out a log_select on the drive unit: menu option */

void mode_select(char a[]);

/* carries out a mode_select on the drive unit: menu option */

void menu(void);

/* outputs menu to screen */

char mdl,bdl,code;

/* variables are specified as characters : i.e. bytes V

struct msb

{
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char command_code;

/* SCSI command code - non device specific * I 

char device_status;

/* device status : status value which may be polled for */ 

char host_adapter_number;

/* addressing : the host adapter has an id number */

/* in this case there is only one host - but an id is still needed V

/* since ASPI requires such data */

char scsi_request_flag; 

/* no used */

char reservedl [4]; 

/* not used : nevertheless must be present in data structure */

char target_id; 

/* target id : since >1 target can be present V

char lun;

/* logical unit number : each target is allocated a lun by the resident */ 

/* hardware */

char data_allocation_length[4]; 

/* length of data address pointer in bytes V

char sense_allocation_length; 

/* pointer to sense allocation area*/

char data offset[2];
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/* data area offset address V

char data_segment[2]; 
/* data segment address V

char link_offset[2]; 
/* not used V

char link_segment[2]; 
/* not used */

char cdbjength; 

/* length of CDB : this can vary : 10 bytes in this case V

char host_status; 
/* status of host on response */

char target_status; 

/* status of target on response V

char post_routine_offset[2]; 

/* not used V

char post_routine_segment[2]; 

/* not used V

char reserved2[34]; 

/* not used V

char cdb_data[10]; 
/* CDB area */
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char sense_allocation_area[20]; 

/* sense allocation area : 20 bytes are set in this case */

}SRB;

/* SRB message data structure as specified in ASPI guidelines V 

struct msb far *SRB_ptr;

/* SRB_ptr is defined as a pointer to the SRB data structure V 

mainO

/* LIST OF VARIABLES USED V

FILE *fptr, *fptr2; 

int hourl; 

int Thresh; 
int retry; 

long blocks; 

int val; 

int mini; 

long pres; 

int seel; 

int hi; 

char last; 
int hour2; 

long inc; 

int min2; 

int sec2; 

int h2;

B-19



int extra;

long block;

long start;

int h/s,m,hour;
long errs;

int chrs;

int error;

int ready;
int i;

char filename[15L filename2[15];

char *fl, *f2;

int choice;

char Data[80];

int time[4];

char far *data_ptr;

/* START OF PROGRAM V 

error = open_aspi();

/* call open_aspi function - this is in open.asm */ 

/* if no aspi is present then error = 1 */

SRB_ptr = &SRB;

/* SRB pointer points to the SRB i.e. it is the address of the SRB structure V

data_ptr = &Data[0];

/* data pointer points to the data array i.e. it is the address of the data array

V
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val = 0;

if (error == 0)

/* if aspi is present then enter loop*/

printf ("Requesting Input/Output"); 
init_SRB();

/* function initialises all fields in the SRB ready for use */

send_data();

/* place SRB on the SCSI bus using external assembler function*/

ready = test_data();

/* test_data constantly poll SRB status for successful transfer*/

if (ready == 0 )

/* if successful communication then enter loop */ 

{

for(i=0;i<80;i++)Data[i] = 0x00;

/* initialise data area */

for (i=0;i<20;i++) SRB.sense_allocation_area[i]=0;

/* initialise S.A.A V
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Regs.x.ax = FP_SEG(data_ptr);

/* find the data segment address of the data_ptr*/

SRB.data_segment[l] = Regs.h.ah; 

SRB.data_segment[0] = Regs.h.al;

/* set address of data segment using low and high 

byte*/

Regs.x.ax = FP_OFF(data_ptr);

/* find the data offset address of the data_ptr*/

SRB.data_offset[l] = Regs.h.ah; 

SRB.data_offset[0] = Regs.h.al;

/* set address of data offset using low and high 

byte*/

choice=5;
while (choice!=0)

{ 
menuQ;

/* setup menu */ 

scanf("%d",&choice); 

/* get choice V 

if (choice==0)
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of data */

/* exit program */

printfC" \nENDING PROGRAM\n"); 

} 
if (choice==6)

/* read header from a specified block

for(i=0;i<30;i++)Data[i] = Oxff; 

printf("\ninput block number:"); 

scanf("%d"/&block); 

read_header(block);

/* use function to setup CDB for chosen 

operation*/

send_data();

/* send data to drive unit */

sense_data(Data);

/* poll until sucessful status received */

if (choice==7)

for(i=0;i<30;i++) Data[i] = Oxff;

read_toc();

send_data();

sense_data(Data);

if (choice==8)

for(i=0;i<30;i++)Data[i] - OxOf; 

read_capacity();
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send_data(); 
sense_data(Data);

if (choice==l)

mode_sense();
sense_data(Data);
/* show data area before command */
send_data();
sense_data(Data);
/* show data area after command V

if (choice==2)

mode_select(Data);
send_data();
sense_data(Data);

if (choice==3)

log_select(Data);
send_data();
sense_data(Data);

if (choice==4)

/* report on retries */

retry=0;
for(i=0;i<30;i++)Data[i] = 0x00;

log_sense(Data,retry);

send_data();

ready = test_data();
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sense_data(Data); 

if (Data[0]==0x30)

printf("\nRetries = %d\n",Data[5]); 

}
if (choice==5) 

{
printf("\ninput filename :"); 

scanf("%s",&filename); 

fl = ".ret"; 
£2 = ".act";

strcpy(filename2/filename); 

strcat(filename,fl); 

strcat(filename2,f2); 

fptr2 = fopen(filename2/"wt"); 

fptr = fopen(filename,"wt"); 

/* files to place results in */ 

printf("\nlnput number of blocks:"); 

scanf("%ld",&blocks); 

/* number of blocks to gather V 

printf("\nlnput Starting point:"); 

scanf("%ld",&start); 

block = start; 

/* starting point from which to get N

blocks V
inc=l;

printf("\n increment : ");
scanf("%ld",&inc);

/* increment x blocks at a time V

printf("\n Threshold : ");

scanf("%d",&Thresh);

/* set threshold T for access times */

/* times less than T are not recorded */
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printf("\n retries per block (y/n): ");

last = 0;

errs = 0;

pres = 0;

blocks = blocks+block;

for(block=start;block<blocks;block=block+inc)

{ 
if (block==blocks)

exit(O); 

printf("\nblock %ld\n",block);

verify(block,inc);
/****************************** /

/*** get time l ***/ 
/****************************** /

Regs.h.ah = Ox2c;

intdos(&Regs,&Regs);

hourl = Regs.h.ch;

mini = Regs.h.cl;

seel = Regs.h.dh;

hi = Regs.h.dl;

time[0] = hourl;

time[l] = mini;

time[2] = seel;
time[3] - hi;
/* time 1 is before message

transferred */
send_data();
/****************************** /

/*** get time 2 ***/
/****************************** /

ready = test_data();
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Regs.h.ah = Ox2c;

intdos(&Regs,&Regs);

hour2 = Regs.h.ch;

min2 = Regs.h.cl;

sec2 = Regs.h.dh;

h2 = Regs.h.dl;

/* time 2 obtained when successful

/* status is recorded V

if (time[3]<=h2 ) 

{extra = 0;

sec2 = sec2 - 0;

else {

extra = 100; 

sec2 = sec2 - 1;

h = h2 - time[3] + extra; 

if (time[2]<=sec2 )

extra = 0; 

min2 = min2 - 0;

else {

extra = 60; 

min2 = min2 - 1;

s = sec2 - time[2] + extra; 

if (time[l]<=min2 ) { 

extra = 0; 
hour2 = hour2 - 0;
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HSECS",block,s*100+h);

else {

extra = 60; 

hour2 = hour2 - 1; 

1
m = min2 - time[l] + extra; 
hour = hour2 - time[0]; 

/* calculates time taken V
fprintf(fptr2,"\n%ld : %d

for(i=0;i<30;i++)Data[i] = 0x00;
log_sense(Data /retry);
/* specify retries to be */
/* recorded for block accessed */
send_data();
ready = test_data();
sense_data(Data);
if ((Data[0]==Ox30)&&(Data[7]>0))

%d",block,Data[7],Data[8]);

f p r i n t f ( f p t r , " \ n % 1 d : % d 

pres = pres + Data[7];

for(i=0;i<30;i++)Data[i] = 0x00;
log_sense(Data,retry);
send_data();
ready = test_data();
sense_data(Data);
getcharQ;
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getcharQ;
if (Data[0]==0x30)

{ 
printf("\n\nTotal Retries = %ld\n",pres);

fclose(fptr);

fclose(fptr2);

printf("\nfinished\n"); 

show_sense(); 

} /* end of verify choice*/

if (choice!=0)chrs=getchar(); 

if (choice! =0)chrs=getchar(); 

} /""end of while loop V

}/*end of ready loop Y

else

printf("no aspi manager");

} 
return(O);

void read_capacity(void)

{
char *cdb;
char READ_CAPACITY;

printf("\nREAD_CAPACITY");

cdb = SRB.cdb_data;

READ_CAPACITY = 0x25;
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*cdb++ = READ_CAPACITY;
*cdb++ = 0x00;
*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;

*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;
*cdb++ = 0;

void read_toc(void) 

{
char *cdb; 
char READ_TOC; 
printfC" \nREAD_TOC"); 
cdb = SRB.cdb_data; 
READ_TOC = 0x43;
*cdb++ = READ_TOC; /* 0 V
*cdb++ = 0x00; /* 1 MSF V
*cdb++ = 0; /* 2 res V

*cdb++ = 0; /* 3 res V
*cdb++ = 0; /* 4 res V
*cdb++ - 0; /* 5 res V
*cdb++ = 0; /* 6 starting track V

*cdb++ = 0; /* 7 all V

*cdb++ = 40; /* 8 all V
*cdb++ = 0; /* 9 res V
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void read_header(long no) 

{
int i;
char *cdb;
char READ_HEADER; 

char Log_Block_Addr[4]; 
for (i=Q;i<4;i++) Log_Block_Addr[i] = 0; 

Log_Block_Addr[0] = (char)no; 
no = no»8;

Log_Block_Addr[l] = (char)no; 
no = no»8;

Log_Block_Addr[2] = (char)no; 
no = no»8;

Log_Block_Addr[3] = (char)no; 

printfC" \nREAD_HEADER"); 

cdb = SRB.cdb_data; 
READ_HEADER = 0x44;
*cdb++ = READ_HEADER; /* 0 V

*cdb++ = 0x2; /* 1 MSF V

*cdb++ = Log_Block_Addr[3]; /* 2 LBA V

*cdb++ = Log_Block_Addr[2]; /* 3 LBA V

*cdb++ = Log_Block_Addr[l]; /* 4 LBA V

*cdb++ = Log_Block_Addr[0]; /* 5 LBA V
*cdb++ = 0; /* 6 res V

*cdb++ = 8; /* 7 res V

*cdb++ = 0; /* 8 res V
*cdb++ = 0; /* 9 res V

void log_select(char a[]) 

{ 
char *cdb;
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char LOG_SELECT; 

printf("\nLOG SELECT"); 

cdb = SRB.cdb_data; 

LOG_SELECT = Ox4c;
*cdb++ = LOG^SELECT; /* 0 V

*cdb++ = 0x02; /* 1 lun & res & PCR & SP */

*cdb++ = 0x40; /* 2 PC V

*cdb++ = 0; /* 3 res V

*cdb++ = 0; /* 4 res */

*cdb++ = 0; /* 5 res V

*cdb++ - 0; /* 6 res V

*cdb++ = 0; /* 7 PLL */

*cdb++ = 0x0; /* 8 PLL V

*cdb++ = 0; /* 9 control V

void log_sense(char a[], int answer)

{
char *cdb;

char v2,vl;

char LOG_SENSE;

printf("\nLOG SENSE"); 

cdb = SRB.cdb_data; 

LOG_SENSE = Ox4d; 

vl=0; 

v2=0; 
if (answer==0)

{
printf("\npage code ");

scanf("%x",&vl);
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printf("\n%x\n",vl); 
printf("\nlent "); 
scanf("%x"/&v2);

else

vl=0x30;
v2=20;

}
*cdb++ = LOG_SENSE;

*cdb++ = 0x00; /* lun & res & PPC & SP *l
*cdb-t-+ = vl I 0x40; /* PC & Page code */
*cdb++ = 0; /* res V
*cdb++ = 0; /* res */
*cdb++ = 0; /* PP V
*cdb++ = 0; /* PP */
*cdb++ = 0; /* All lent */
*cdb++ - v2; /* All lent V
*cdb++ = 0; /* control V

void verifydong no, long ink)

{
char *cdb;

int i;
char VER;
char Log_Block_Addr[4];
char length[2];
VER = Ox2f;

for (i=0;i<2;i++) length[i] = 0;
for (i=0;i<4;i++) Log_Block_Addr[i] = 0;
length[0] = (char)ink;
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ink = ink»8; 

length[l] = (char)ink; 

Log_Block_Addr[0] = (char)no; 

no = no»8;

Log_Block_Addr[l] = (char)no; 

no = no»8;

Log_Block_Addr[2] = (char)no; 

no = no»8;

Log_Block_Addr[3] = (char)no; 

cdb = SRB.cdb_data;

*cdb++ = VER;

*cdb++ = 0;

*cdb++ = Log_Block_Addr[3];

*cdb++ = Log_Block_Addr[2];

*cdb++ = Log_Block_Addr[l];

*cdb++ = Log_Block_Addr[0];

*cdb++ = 0x0;
*cdb++ = lengthll];

*cdb++ = length[0];

*cdb++ = 0x0;

void read6(long no)

{
char *cdb;

int i;

char READ;
char Log_Block_Addr[3];

READ = 0x08;
for (i=0;i<3;i—) Log_Block_Addr[i] = 0;

Log_Block_Addr[0] = (char)no;

no = no»8;
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Log_Block_Addr[l] = (char)no; 
no = no»8;

Log_Block_Addr[2] = (char)no; 
cdb = SRB.cdb_data;
*cdb++ = READ;

*cdb++ = Log_Block_Addr[2];
*cdb++ = Log_Block_Addr[l];
*cdb++ = Log_Block_Addr[0];
*cdb++ = Oxl;
*cdb++ = 0;

void seek6(long no) 

{
char *cdb; 
int i;

char SEEK;

char Log_Block_Addr[3]; 

SEEK = OxOb;
for (i=0;i<3;i++) Log_Block_Addr[i] = 0; 
Log_Block_Addr[0] = (char)no; 

no = no»8;
Log_Block_Addr[l] = (char)no; 

no = no»8;
Log_Block_Addr[2] = (char)no; 

cdb - SRB.cdb_data;
*cdb++ = SEEK;
5(-cdb++ = Log_Block_Addr[2];

*cdb++ = Log_Block_Addr[l]; 

"cdb++ = Log_Block_Addr[0];
*cdb++ = 0;

*cdb++ = 0;
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void mode_select(char a[]) 

{
char *cdb;
char MODE_SELECT; 

char val; 

char erp;

printf("\nMODE SELECT"); 

cdb = SRB.cdb_data; 

MODE_SELECT = 0x15; 

printf("\npage:"); 

scanf("%d",&val);

*cdb++ = MODE^SELECT;

*cdb++ = 0x10;

*cdb++ = 0;

*cdb— = 0;

*cdb++ = 20;

*cdb++ = 0;

a[0] = 0;

a[7] = 0;

a[3] = 8;
a[10]= 8;/*9;V
a[ll]= 0;/*0x20; V

if (val==0)

{
a[12]= 00; 

a[13]= 6; 
a [14]= 0x0; 

a[15]= 0; 
a[16]=0; 
a[17]=0;
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a[18]=0; 

a[19]=0;

if (val==l)

printf("\n? (00 = good/ 04 = retry):");

scanf("%x",&erp);

a[12]= 1;

a[13]= 6;

a[14]=erp;

a[15]=0xa;

a[16]=0;

a[17]=0;

a[18]=0;

a[19]=0;

if (val==0x0d)

a[12]= OxOd; 

a[13]= 6; 

a[14]= 0x0;

void mode_sense(void) 

{
char val; 

char *cdb; 

char PC;

char MODE_SENSE; 

char len; 

char page_code;
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printf("\nMODE SENSE"); 
cdb = SRB.cdb_data; 
MODE_SENSE = Oxl a; 
PC = (char)((OxO) « 6); 
page_code = 0x00; 
val = 0;
printf("\npage:"); 
scanf("%d",&val);
/* page to use */ 

page_code = val; 
code = val; 
len = 0x25;
*cdb++ = MODE_SENSE;
*cdb — = 0x00;
*cdb++ = PC I page_code;
*cdb++ = 0;
*cdb++ = len;
*cdb++ - 0;

void sense_data(char a[])

{
int i;
char *cdb; 
int ready;

cdb = SRB.cdb_data;

ready = 1;
printf("\n");
while (SRB.device_status==0)

printfC'waiting for connection to..");

B-38



for (i=l;i<28;i++) printf("\b"); 

}
printf("\n");

if ((SRB.target_status!=0) I I (SRB.host_status!=0)) 

{
printf("\nstatus:%x",SRB.device_status); 

printf("\nh.a.s status:%x",SRB.host_status); 

printf("\nt.s status:%x",SRB.target_status); 

show_sense();

printf("\nDATA"); 
printf("\n===="); 

for (i=0;i<80;i++) {

if ((i % 10) == 0) printf("\n");
printf("%x:",a[i]);

void menu(void) 

{
printf("\n\t MENU"); 
printf("\n\t ==== \n"); 

printf("\n\t (0) EXIT"); 

printf("\n\t (1) MODESENSE"); 

printf("\n\t (2) MODESELECT"); 

printf("\n\t (3) LOGSELECT"); 

printf("\n\t (4) LOGSENSE"); 

printf("\n\t (5) READ N BLOCKS"); 

printf("\n\t (6) READ HEADER"); 

printf("\n\t (7) READ TOC");
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printf("\n\t (8) READ CAPACITYXn"); 
printf("\nEnter option: ");

int test_data(void)

{
int i;
int ready; 
ready = 1; 

printf("\n"); 

while (SRB.device_status==0)

{
printf("waiting for connection to.."); 

for (i=l;i<28;i++) printf("\b"); 

}
printf("\n"); 

if ((SRB.target_status!=0) I I (SRB.host_status!=0))

{
printf("\nstatus:%x"/SRB.device_status); 

printf("\nh.a.s status:%x",SRB.host_status); 

printf("\nt.s status:%x",SRB.target_status); 

show_sense();

}
else {

printf("\nDEVICE ok\n");

ready = 0; 

} 
return(ready);
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void show_sense(void)

{ 
int i;

printf("\n\nMODE SENSE DATA"); 
printf("\n===============");

for (i=0;i<20;i++) {

if ((i % 4) == 0) printf("\n");

printf("%x:",SRB.sense_allocation_area[i]);

void init_SRB(void)

{ 
int i;

SRB.command_code = 2;

SRB.device_status = Oxff;

SRB.host_adapter_number = 0;

SRB.scsi_request_flag = 0;

for (i=0;i<4;i++) SRB.reservedl[i] = 0;

SRB.target_id = 1;

SRB.lun = 0;

for(i=0;i<3;i++) SRB.data_allocation_length[i] = Oxff;

SRB.data_allocation_length[3] = Oxff;

SRB.sense_allocation_length = 20;

SRB.cdbJength = 6;

SRB.host_status = 4;

SRB.target_status = 4;

for(i=0;i<34;i++)SRB.reserved2[i] = 0;

for(i=0;i<6;i++)SRB.cdb_data[i] = 0;

for(i=0;i<20;i++)SRB.sense_allocation_area[i] = 0;
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Appendix C 
The Effect Of Mutiple Burst Errors

Multiple burst errors have not been examined in the course of this thesis due 
to the reasons outlined in Chapter Eleven. However the effect of such errors 
on the coding scheme can be illustrated using the simulation model and 
illustrations.

The effect is clear, when bursts occur in close proximety they effect the 
correction possible at the C2 Decoder. The position of errors before and after 
Deinterleave Strategy II is illustrated in Figure C.I and Figure C.2 
respectively. The dispersal of errors is successful, however due to the 
proximety of the errors, two parallel strips of errors occur along the Sector. 
Error correction is compromised in each Frame where both bursts occur.
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ix C.I : Illustration Of Two Bursts Within A St

Figure Cl
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Figure C.2
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Glossary

Access Time

ASPI

Burst Error

Channel Code

Cl Code

C2 Code

Cl Error Count

C2 Error Count

CIRC

CD

CDROM

CAV 

CLV 

CRC

Data Block 

DDS

Quantity of time taken to access a block of data. This 
includes the time taken to seek to, decode and check a 
given block of data.

Advanced SCSI Protocol Interface. Used to commuciate 
with the CDROM

A number of contiguous bit errors occuring in sequence.

See modulation code.

The first error correction code of CIRC.

The second error correction code of CIRC.

The error statistic used to indicate the perceived number 
of Frames in error after Cl error correction has been 
applied.

The error statistic used to indicate the perceived number 
of Frames in error after C2 error correction has been 
applied.

Cross Interleaved Reed-Solomon Codes. 

Compact Disc.

Compact Disc Read Only Memory. The mass data storage 
application upon the compact disc.

Constant Angular Velocity. 

Constant Linear Velocity. 

Cyclic Redundancy Check. 

A sector of information.

Digital Data Storage. This is the form of RDAT which is 
specific to digital data storage as a pose to anlogue data 
storage. Also referred to as DDS-RDAT.



DDS-RDAT 

DSV

ECMA

EDC

EFM

Flagging

Galois Field 

Inter-Block Access Time

Latency 

Logical Sector

Modulation Codes

Recording Code

RDAT

Reed Solomon Codes

RLL

see DDS.

Digital Sum Variation.

European Computer Manufacturers Association.

Error Detection Code.

Eight Fourteen Modulation code. The modulation code of 
the CDROM and CD.

An error location system used when more than one error 
correction code is used. Symbols are flagged such that 
they can be identified when the next decoding occurs. In 
the Reed Solomon Codes this facilitates greater error 
correction.

Finite field upon which Reed Solomon encoding, decoding 
and correction is based.

The Access Time between successive logical blocks. This 
is used in the course of this thesis.

The period of time it takes for a disc to rotate fully.

The 2352 bytes organisation of data before CIRC is 
applied.

The coding schemes applied to data so that they may be 
recorded upon a communications channel. Also known as 
channel or recording codes.

See modulation code. 

Rotatory Digital Audio Tape.

A family of error codes used for the correction of symbols 
rather than bits. Codes with 2n parity can locate and 
correct n bytes or 2n if there locations are known.

Run Length Limited. Constraints applied to data when 
modulation occurs.

SCSI Small Computer Systems Inteface.



Sector The smallest addressable area upon the CDROM.

Section The physical representation of a sector on the CDROM
disc.

SNR Signal To Noise Ratio.

Symbol A number of associated bits. In the case of the CDROM
eight bit byte symbols are used.

Syndrome This is an indication of error. It can also be used for both
error location and correction in the Reed Solomon codes 
used in the CDROM.

Table Of Contents A data area situated at the centre of a CD/CDROM disc.
The Table Of Contents holds addressing data for tracks 
and data blocks upon the disc. This is written many times 
since it is essential for data capture.

Track A area on the disc where data is held. 

WORM Write One - Read Many.




