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Abstract

As the mobile network subscriber base exponentially increases due to some attractive offerings

such as anytime anywhere accessibility, seamless roaming, inexpensive handsets with sophisticated

applications, and Internet connectivity, the mobile telecommunications network has now become

the primary source of communication for not only business and pleasure, but also for the many life

and mission critical services. This mass popularisation of telecommunications services has resulted

in a heavily loaded Signaling System number 7 (SS7) signaling network which is used in Second

and Third Generations (2G and 3G) mobile networks and is needed for call control and services

such as caller identity, roaming, and for sending short message servirces. SS7 signaling has enjoyed

remarkable popularity for providing acceptable voice quality with negligible connection delays, pos-

sibly due to its circuit-switched heritage. However, the traditional SS7 networks are expensive to

lease and to expand, hence to cater for the growing signaling demand and to provide the seamless

interconnectivity between the SS7 and IP networks a new suite of protocols known as Signaling

Transport (SIGTRAN) has been designed to carry SS7 signaling messages over IP.

Due to the intersignaling between the circuit-switched and the packet-switched networks, the mo-

bile networks have now left the “walled garden”, which is a privileged, closed and isolated ecosystem

under the full control of mobile carriers, using proprietary protocols and has minimal security risks

due to restricted user access. Potentially, intersignaling can be exploited from the IP side to disrupt

the services provided on the circuit-switched side.

This study demonstrates the vulnerabilities of SS7 messages to cyber-attacks while being trans-

ported over IP networks and proposes some solutions based on securing both the IP transport and

SCTP layers of the SIGTRAN protocol stack.
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Chapter 1

Introduction

The traditional Signaling System number 7 (SS7) networks have existed for a long time and have

gone through a lot of improvements over the years to meet the high performance demands (low loss

and low delay) of a phone call. Despite the high acceptance levels, SS7 networks are not as scalable

as IP networks as a result they are expensive to expand. The telecommunications industry has

witnessed a tremendous growth in the demand for SS7 signaling networks due to the exponential

growth of the number of mobile phone users which has resulted from the mass popularity of com-

munication services. Also the increase in demand for services such as Media over IP (MoIP) has

led the telecommunication operators to start planning for future networks that better support the

resulting datagram traffic. In this regard IP has been considered the most promising network pro-

tocol, since it can offer improved resource utilisation while reducing the operational, maintenance,

and network infrastructure costs.

The traditional SS7 networks are being migrated to the much anticipated Next Generation Net-

works (NGN) with a goal of achieving an all – IP network. However, this transition from traditional

telecom networks to all - IP networks will not happen overnight and the co-existence is expected to

last for a long period of time, perhaps even for decades. The challenge today is to integrate these

two types of existing networks (IP and SS7).
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It is becoming more and more important to combine classical SS7-based networks with IP-based

networks using the latter to transport SS7 signaling messages. Deploying such a combined archi-

tecture enables operators to make use of the advantages of IP-based equipment in an SS7 based

environment, avoiding some of the problems increasingly appearing in the rapidly growing SS7 net-

works, such as link set capacity and load sharing [3]. For this reason, the Signaling Transportation

(SIGTRAN) working group of the Internet Engineering Task force (IETF) [22] has developed a

new signaling protocol suite that will make it possible to carry SS7 signaling messages over IP.

SS7 is built for reliability and performance by providing a heavily redundant signaling network

which reduces signaling network downtimes by carrying signaling traffic in redundant signaling

links in case of a link failure. In order for packet based voice services to find acceptance in the

marketplace it is paramount that the reliability, security and privacy of communication, as per-

ceived by the end user of such services, is as good or better than the one experienced in present

day circuit switched networks.

In order for the IP networks to achieve the same level of reliability as the SS7 networks, the

Internet Engineering Task Force (IETF) has designed a signaling interface commonly referred to as

Signaling Transport (SIGTRAN) which is a protocol suite that specifies a method of transporting

SS7 signaling information over IP-based packet networks. The multi-homing and multi-streaming

features of the SCTP protocol of the SIGTRAN protocol stack provide the necessary redundancy

and reliability features similar to those of the traditional SS7 networks.

The introduction of Internet connectivity and many more IP based services to 3G networks through

network interconnections imports not only the high speed capabilities of the Internet but also very

high risks of cyber-attacks which may be launched from the IP side of the network. Cyber–attacks

may be launched from the packet switched networks while targeting a particular SIGTRAN sig-

naling node of the circuit switched network. These kinds of attacks are referred to as the Cross

infrastructure cyber-attacks [1].
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The transition of mobile SS7 networks to IP brings some additional security threats, such as Denial

of Service (DoS) and Distributed Denial of Service (DDoS) attacks, ping floods, SYN floods, replay

attacks, DNS hijacking, IP port scanning [40] and many others, which may result in the inter-

ception of both network and subscriber data, limit subscriber access (causing congestion), and/or

compromise the overall network security of the network, as some of the core network elements’

functionality may be lost.

Typically SS7 networks are very secure in that they are proprietary and the equipment is kept

in highly lock secured areas with limited physical access by employees. Transporting the once

secure TDM–based SS7 signaling messages over public IP networks as payload packets opens the

messages to cyber threats which can easily be launched from the IP side of the interconnected

networks.

The SIGTRAN protocol suite through the introduction of the Stream Control Connection Part

(SCTP) above the traditional IP layer only addressed the intersignaling issues between the legacy

SS7 and the IP systems such as reliability and performance, however little effort was directed to-

wards the SIGTRAN security issues.

While there are a number of other important aspects of convergence, such as addressing [2] that

require further research, this study therefore focuses on the security of the SS7 messages in a

converging environment. The study aims at demonstrating the vulnerabilities of IP networks to

cyber-attacks which would subsequently render the SS7 messages exposed to attacks in an inter-

connected network infrastructure. So the above reasons have motivated the Key Research Question

that this study aims to investiage and reads: “There is much emphasis these days on the security

of communications, and there are some solutions available in the market place for voice and data.

However it is anticipated that 2G and 3G communications technologies will be with us for a lot

longer than we think, and thus SS7 will also be a driving force to communication. What are the

vulnerabilities of Signaling System Number 7 to cyber-attacks and how can we mitigate against these

vulnerabilities?”
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1.1 Summary of the Research Report

The research paper is structured as follows:

Chapter One: Introduction

This Chapter gives an overview of the critical issues which have been discussed in this introduction

regarding the subject matter. The chapter introduces the driving forces behind the convergence and

interworking between the circuit based signaling and the packet based signaling networks and the

problems intersignaling has brought about to the once “walled garden” of SS7 signaling network.

The chapter clearly highlights the key research question and the objectives which necessitated the

study of SS7 vulnerabilities to cyber-attacks.

Chapter Two: Literature Survey

This Chapter starts by introducing the SS7 signaling system together with all its reliability and

performance characteristics. In this regard the SS7 network architecture is identified as being de-

signed to provide redundancy. The different protocol stacks of SS7 signaling system are looked

at and compared against the Open Systems Interconnection (OSI) levels. SS7 signaling protocol

binaries which are unique only to mobile networks in providing mobility of subscribers like BSSAP

and MAP are introduced. The limitations of SS7 system that have resulted into mobile opera-

tors migrating to IP services are also discussed in this chapter. The chapter further introduces

SIGTRAN, the interfacing signaling technology between SS7 and IP systems. All the SIGTRAN

protocols including the SCTP which offers performance and reliability features similar to SS7 sig-

naling are looked at in details. This chapter further revisits some publications on similar work

regarding the subject matter previously done by other researchers highlighting the research efforts

that have already been put into the investigation of SIGTRAN technology security and reliability.

Chapter Three: Key Research Question

This chapter focuses on the SIGTRAN transport technology as a whole and validates the need for

the investigation in this study by providing an overview of the problem statement and the objectives

behind this study.
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Chapter Four: Methodology

This chapter discusses in detail the approach adopted in the simulation experimentation that tested

the problem and outlines the goals the tests aimed to achieve in determining whether through net-

work interconnections, IP networks are a security risk to SS7 networks. Details about the simulation

SIGTRAN implementation, test equipment setup and test software used for the experimentation

are discussed in this chapter.

Chapter Five: Experimentation

This chapter explains the different experimentation tests which were conducted in trying to establish

whether IP networks render SS7 signaling messages vulnerable to cyber-attacks or not. The testing

tools and procedures are outlined clearly in this chapter. The test results are tabulated and the

key findings, observations and conclusions of all the tests explained.

Chapter Six: Mitigating Factors against SIGTRAN Cyber-Attacks

The most common attack scenarios and their counter cyber measures are outlined in this chapter.

Chapter Seven: Conclusions and Recommendations

This chapter provides a summary of the report by revisiting every aspect of the research and

ensuring that all objectives and the key research question have been responded to satisfactorily.

Recommendations and potential future research areas in SIGTRAN networks security conclude this

report.
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Chapter 2

Literature Survey

2.1 Common Channel Signaling System Number 7 (SS7)

In a lay man’s language, signaling in telecommunications network systems can be looked at as a

set of messages which are used for setting up, supervising and tearing down of a call. However

the ITU-T defines signaling as ”The exchange of information (other than by speech) specifically

concerned with the establishment, release and other control of calls, and network management, in

automatic telecommunications operation [4].

In telecommunications, different network components indicate (signal) to each other certain in-

formation to coordinate themselves for providing services to network users. A signaling network

is as important to telecommunications network as the nervous system is to the human body. It

breathes life into the infrastructure. Richard Manterfield, author of Telecommunications Signal-

ing poetically stated that: “Without signaling, networks would be inert and passive aggregates

of components. Signaling is the bond that provides dynamism and animation, transforming inert

components into a living, cohesive and powerful medium” [5].

2.1.1 Evolution of Signaling in Telecommunications Networks

Notable telecommunication systems signaling inventions date back to 1876 in the United States of

America when Alexander Graham Bell invented the telephone. Signaling in this telephony system

involved manual telephone connection between the caller and the called party via most preferably

a female telephone operator.
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Amon Strowger in 1892 developed the dial telephone system with an automatic Central Office (Ex-

change/Switch) which helped to get rid of the manual telephone operators. To date, many different

inventions and innovations in the telecommunications signaling networks have been implemented

but all of them are meant to only satisfy the initial objective of helping in setting up, supervising

and tearing down of a call.

Harmonisation of Signaling Systems

Depending on many different factors, a variety of signaling systems have been developed in telecom-

munications networks with different signaling standards in different parts of the world. This then

created problems between the calls originating from one network with one type of signaling imple-

mentation terminating into another network with a different type of signaling system. Some sort

of adaptation had to be made.

The then telecommunications governing body, Consultative Committee for International Telephony

and Telegraphy (CCITT) later changed to the International Telecommunications Union (ITU) was

tasked to find the common standard through which all the different signaling systems would work

together. The Channel Associated Signaling (CAS) System was then recommended as the common

standard. As the name suggests, CAS is a signaling system in which control signaling messages for

synchronisation and frame alignment are carried in the same channels as traffic (voice and data).

When using CAS system, signaling messages are only sent whenever traffic is being transmitted.

This creates bottlenecks in telecommunication networks and also wastes bandwidth. As a result

this type of signaling is better suited for networks with low traffic capacities.

In around the early 1980’s a more robust and highly redundant and fault tolerant signaling system

was developed. This out-of-band signaling system was defined by the ITU as a Common Channel

Signaling System Number 7 commonly known as Signaling System Number 7 and herein referred

to as SS7. In out-of-band signaling, the call control information travels on separate and dedicated

56 or 64 kbps channels rather than within the same bearer (traffic) channels [46].

Figures 2.1 and 2.2 on page 8 illustrate the differences between CAS and SS7 signaling systems.
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Figure 2.1: Channel Associated Signaling
[46] Figure 2.2: Common Channel Signaling [46]

2.1.2 SS7 Network Architecture

The SS7 architecture comprises of three main nodes known as the Signaling Points (SPs) depending

on their functionalities. These include the Service Switching Point (SSP), Signaling Transfer Point

(STP) and the Service Control Point (SCP).

Each SP on the network is identified by a unique 14-bit integer known as Signaling Point Code

(SPC). SPs are interconnected by signaling links whose bandwidths are normally 56 or 64 kbps

[41]. To cater for higher bandwidths and redundancy on the signaling network, a set of up to 16

links can be used between any two SPs. The combination of all the links between any two SPs is

called a linkset.

In practice SSPs are the telephone exchanges (central offices) and are the entry and exit points of

an SS7 signaling network. STPs relay SS7 messages between signaling end points (such as the SCP

and SSP) and other STPs. For redundancy purposes, STPs are deployed in mated pairs. SCPs

provide application access. SCPs act as an interface to applications such as network databases.

Figure 2.3 shows the general structure of a digital telephone network with SS7 signaling.
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Figure 2.3: SS7 Network Architecture [41]

With reference to Figure 2.3 above, the signaling links connecting the different SP are known by

different names. A-Links (Access links) are the signaling links that connect the signaling end points

(SSP and SCP) to the STP. The A-links carry messages only destined for the signaling end points.

One mated pair of STPs from one network is connected to other mated STP pairs in other networks

using the B-Links (Bridge links). Lastly, the C-Links (Cross Links) interconnect the paired STPs.

C links are used only when an STP has no other route available to a destination signaling point

due to link failure(s). Note that SCPs may also be deployed in pairs to improve reliability; unlike

STPs, however, mated SCPs are not interconnected by signaling links [41].

The signaling information (messages) that are transmitted through an SS7 network are carried

in a data packet called Signal Unit (SU). There are three main types of signaling units. These

include the Fill In Signal Units (FISU), Link Status Signal Units (LSSU) and Message Signal Units

(MSU).
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Fill In Signal Units are sent when the signaling link is idle. This is recommended so that link-

error information is available even in the absence of high-level information being sent. In this way,

problems will be recognised quickly and corrective actions can be implemented with minimal loss

of service.

Link Status Signal Units are used by the signaling link level to bring the link into alignment.

Like FISUs, LSSUs are sent continuously end to end between SP.

Message Signal Units carries the actual upper-level information that contains control flags that

indicate the protocol that is being transmitted e.g. ISDN User Part (ISUP), originating and des-

tination point codes along with the variable length information (message content) field.

2.1.3 SS7 Protocol Stack

A stack is a set of data storage locations that are accessed in a fixed sequence. The hardware and

software functions of the SS7 protocol stack are divided into layers which are compared against the

Open Systems Interconnection (OSI) model for communication between different systems made by

different vendors. Figure 2.4 shows different components that make up the SS7 protocol stack.

Figure 2.4: PSTN Based SS7 Protocol Stack [47]
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While the OSI reference model consists of seven layers, the SS7 model is looked at as having four

levels. The functionalities of the upper layers (4-7) of the OSI model are compressed to only one

level (level 4) in SS7 protocol stack.

The Message Transfer Part (MTP)

MTP provides the rest of the levels with node-to-node transmission, including physical network

nodes connections, basic error detection and correction schemes and message sequencing. It provides

routing, message discrimination and distribution functions within a node. The MTP is comprised of

three different logical parts known as levels and the different functions of the MTP are distributed

within these levels [47].

Message Transfer Part Level 1 (MTP1)

MTP 1 defines the physical, electrical and functional characteristics of the digital signaling link.

Some of the physical interfaces defined include E-1(2048 kb/s; 32 64 kb/s channels), DS-1 (1544

kbps; 24 64 kbps channels), V.35 (64 kbps), DS-0 (64 kbps) and DS-0A (56 kbps).

Message Transfer Part Level 2 (MTP2)

MTP2 is equivalent to the Data Link layer of the OSI model. It ensures accurate end-to-end

transmission of a message across a signaling link. Level 2 implements flow control, message sequence

validation and error checking using cyclic redundancy check (CRC). When an error occurs on a

signaling link, the message/set of messages is/are retransmitted. MTP Level 2 uses length indicators

to determine what type of signal unit it is being received and how it must be processed.

Message Transfer Part Level 3 (MTP3)

The MTP 3 is analogous to the Network layer of the OSI model and depends on the services of

Level 2 to provide routing, message discrimination and message distribution functions. MTP Level

3 reroutes traffic away from failed links and signaling points and controls traffic when congestion

occurs.

The level 4 layers of the SS7 protocol stack which includes the protocols, user parts and appli-

cation parts together with their functionalities are discussed in the following subsections:
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Signaling Connection Control Part (SCCP)

Signaling Connection Control Part (SCCP) is a higher level protocol than MTP that provides

end-to-end routing of signaling messages. SCCP is required for routing Transaction Capabilities

Application Part (TCAP) messages to their proper databases. SCCP provides connectionless and

connection-oriented network services and Global Title Translation (GTT) capabilities above MTP

Level 3. SCCP is used as the transport layer for TCAP-based services [47].

Telephone User Part (TUP)

Telephone User Part (TUP) is an old protocol for analog telephone systems. It was/is used to

perform basic telephone call setup and tear-down. TUP handles analog circuits only. It has been

replaced by ISDN User Part (ISUP), but is still used in some parts of the world like China and

Brazil [47].

ISDN User Part (ISUP)

The ISDN User Part (ISUP) defines the protocol used to set-up, manage and release trunk circuits

that carry voice and data between terminating line exchanges. As previously explained, ISUP was

derived from TUP. ISUP supports ISDN and intelligent networking functions. However, calls that

originate and terminate at the same switch do not use ISUP signaling [47].

2.1.4 SS7 Signaling Performance Requirements

SS7 signaling network being the heartbeat of the whole telecommunications networks was primar-

ily designed for performance and reliability. The design of the SS7 provides for error detection,

correction and sequential transfer of signal units.

The SS7 signaling performance and reliability requirements directly or indirectly translate into

the MTP requirements (which then also fulfill the requirements of the MTP users) [6] and [7]. The

ITU-T through recommendations, Q.706 [8] and Q.709 [9] recommends a number of reliability and

performance requirements the SS7 signaling network must meet:

1. Not more than one in 1010 of all message signal units must contain an error that is undetected

by the MTP.

2. Not more than one in 107 messages will be lost due to failure in the MTP.
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3. The availability of any signaling relation (i.e. communication path between two communicat-

ing SEPs) has to be at least 0.99998 corresponding to a downtime of at most 10 minutes/year.

4. Not more than one in 1010 messages will be delivered out-of-sequence to the User Parts due

to failure in the MTP. This value also includes duplication of messages.

5. In addition there are requirements on message transfer times in STPs, which under normal

conditions are supposed to be less than 100 msec, and implicit requirements on limits for the

outgoing queuing delays which must not become a dominating factor of the transfer times.

Requirement 1 is a function of the quality of the underlying physical transport, the CRC function

of the MTP2, and the likelihood of system internal errors of implementations.

In order to fulfill requirement 2 with unreliable hardware the MTP deploys redundant signaling

links and the so called change-over procedure which allows the loss-free switching of traffic from a

failed link to other links, provided the signaling link terminations on both nodes involved are still

functioning and can communicate with each other via alternative links/paths.

In order to enable the design of signaling networks fulfilling requirement 3 the MTP provides

several procedures supporting redundancy in the network. On 64 kbit/s links link failures are dis-

covered within 128 msec by the error rate monitor of MTP2. If an alternative link or path exists,

MTP3 initiates the changeover procedure.

To enable the fulfillment of requirement 4, MTP3 performs explicit or timer based sequence control

procedures wherever possible when rerouting traffic via alternate links or routes or when reverting

traffic back to the original routes.

While STP transfer times are an implementation and not a protocol issue the MTP provides

several mechanisms to limit outgoing queues (requirement 5) and thus overall signaling transfer

times. The error rate monitor of MTP2 not only rapidly discovers failed links but will also take a

link out of service when the signal unit error rate approaches 4×103. If outgoing congestion occurs

on links, MTP management takes action and informs traffic sources to reduce traffic. If congestion

is of a lasting nature (e. g. caused by too many link failures) a conditional rerouting procedure

(transfer restricted procedure) can optionally be deployed [3].
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2.1.5 Signaling in 2G and 3G Mobile Networks

In 3G mobile networks SS7 signaling is used between the core network elements. These include the

Base Station Controller (BSC), Home Location Register (HLR), Mobile Switching Centre (MSC)

and also between the MSC and the other mobile networks and the Public Switched Telephone

Network (PSTN) through the Gateway Mobile Switching Centre (GMSC).

Other signaling protocols used in 3G networks apart from the SS7 include the Link Access Proto-

col for the ISDN “D” channel (LAP-D) which is used between the BSC and the Base Transceiver

Station (BTS) [44]. LAP-D message structure is similar to SS7 only that it does not support net-

working capabilities as a result it is only used for point to point connections. Another protocol

also used in 3G networks is Link Access Protocol for ISDN “D” channel modified (LAP-Dm) and

is used for signaling between the mobile station and the BTS.

The SS7 protocol stark layers explained in subsection 2.1.3 on page 10 mostly relate to the PSTN.

In 2G and 3G cellular networks the signaling is complex. Unlike the PSTN, 2G and 3G mobile

networks demand for extra signaling requirements due to differences in network architecture that

requires a large amount of non-call-related signaling.

The subscriber in PSTN is static as opposed to the mobile subscriber in the 2G and 3G net-

works. The subscriber mobility in the later networks requires a continuous tracking of the mobile

station which results in location update procedure. The tracking of a mobile station by the network

to update its current location is an example of a non-call-related signaling because the signaling

takes place in the absence of a call. This requires additional sets of standard signaling messages to

manage this requirement in 2G and 3G mobile networks.

In 2G and 3G systems, the additional signaling message protocol layers are:
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Transaction Capabilities Application Part (TCAP)

Transaction Capabilities Application Part (TCAP) supports the exchange of non-circuit related

data between applications across the SS7 network using the SCCP connectionless service. It facili-

tates connection to an external database. Queries and responses sent between SSPs and SCPs are

carried in TCAP messages. Some of the application entities that use TCAP include Operations,

Maintenance and Administrative Part (OMAP) which uses services for communication and control

functions through the network via a remote terminal. Also in GSM mobile networks, Mobile Appli-

cation Part (MAP) uses TCAP to share cellular subscriber information among different networks

to support user authentication, equipment identification and roaming [44].

Mobile Application Part (MAP)

MAP is the SS7 application-layer protocol used in GSM network systems to access the Home Lo-

cation Register, Visitor Location Register, Mobile Switching Centre, Equipment Identity Register,

Authentication Centre, Short Message Service Centre and Serving GPRS Support Node to provide

services, such as roaming capability, text messaging (SMS), and subscriber authentication. MAP

is transported and encapsulated with the SS7 protocols MTP, SCCP, and TCAP.

Base Station Subsystem Application Part (BSSAP)

The BSSAP is used for signaling communication between the MSC and the BSC and also between

the MSC and the mobile station. It carries call control requests for initial connection establishment,

and changes in connection attributes between BSC and MSC. It also handles handovers between

relay MSC and BSC.

Figure 2.5 shows a complete SS7 protocol stack for the GSM Network System.
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Figure 2.5: SS7 Protocol Stack for the GSM Network System [44]

2.1.6 Protocol Layers in 3G Network elements

The SS7 requirements for individual 3G network elements are different. Not all network elements

have all the protocols in the SS7 stack.

The Mobile Switching Centre (MSC)

The MSC is a 3G network element that is responsible for call control therefore TUP and ISUP

protocols are required for that function. Also the MSC in conjunction with the VLR are responsible

for location updates and communicating with the BSC and HLR. To be able to perform these tasks

BSSAP and MAP are required. BSSAP sits on top of SCCP while TCAP provides service to MAP.

MTP is the foundation on which SS7 is built and therefore it must be found in every network

element, including the MSC, which is capable of processing SS7 signaling. Therefore it can be seen

that the MSC has all the SS7 protocol stacks.
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The Base Station Controller (BSC)

When using SS7 signaling messages, BSC only communicates with the MSC to manage all call

activities such as connection establishment and handovers and therefore requires BSSAP protocol

to perform such functions. BSSAP sits on top of SCCP which in turn rests on the MTP layers.

The Home Location Register (HLR)

As opposed to the MSC which requires TUP/ISUP for call control on the mobile station and the

BSc, HLR only deals with database queries regarding the status of the network users for authenti-

cation purposes. For this purpose it uses MAP protocol. MAP sits on TCAP which gets serviced

by SCCP which rest on MTP layers.

Figure 2.6 shows SS7 protocol stacks in various network elements and the signaling communication

linkage between those different network elements.

Figure 2.6: SS7 Protocols in Different Network Elements [44]
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2.1.7 Limitations of SS7 Signaling System

Advances in technology more especially on the mobile platforms have meant that SS7 networks

supporting wireless traffic are bursting at the seams. Due to backward compatibility and coordina-

tion considerations, moving forward with SS7 will be difficult as deploying dedicated SS7 signaling

networks to support high speed multi- media streaming will prove to be commercially unviable and

technically nearly, impossible.

The main drawbacks of SS7 signaling system to optimally support the recent boom in multi-media

services include:

Scalability and Bandwidth

The standard link speed with SS7 is 64 kbps. This was designed to fit nicely within T1 trunks

(which contain 24 circuits, each with a 56-64 kbps capacity) or E1 trunks (32 circuits running at

64 kbps). Dedicated links reduce flexibility and increase cost significantly when creating sufficient

bandwidth for new service applications. In a TDM network, entire transmission segments must be

reserved for each call, even if the TDM connection is idle.

In order to increase the capacity 16 SS7 links at a single SP can be implemented but still this

is way far below the necessary capacity of signaling to handle multi-media streaming. It can be

argued off course that capacity can be further expanded by implementing 1.5 Mbps links (i.e. an

entire T1). Well, in theory this can be seen as true but in practice it is not so easy.

Despite the increased capacity due to the deployment of a maximum of 16 links at any SP, the SS7

protocol further recommends that links and linksets should be configured to no more than 40%

of their maximum capacity, so that the alternate path can carry the full load of messages during

failover [10].
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Message Size, Addressing and International Routing

Application messages on an SS7 network are limited to between 200 and 250 bytes depending on

the size of the message headers. Some recent versions of SS7 can support larger messages through

message segmentation on any link but this is not easy to implement. Even if it is known that the

destination signaling point supports this capability, segments may be lost if they encounter an STP

that does not support it. And, with the number of routing options in SS7, determining the list of

potential intermediate STPs is very difficult.

The fundamental address in SS7 is the point code system, which a unique number is assigned

to a signaling point. Point codes are assigned separately by each network, and vary significantly

in size, from 14 bits to 24 bits. Consequently, point code routing can only be used within a single

national network and this limitation makes signaling more complex to all other countries.

The second address type in SS7 is known as the ‘global title’. The global title may be trans-

lated into either an intermediate or destination point. In the case of international signaling the

global title will first be translated into the point code of an international gateway which will per-

form protocol translation, and then translate the global title into a point code in the destination

national network, or use global title routing to forward the message to an STP to perform this

function.

Although International routing using SS7 is accomplished with global titles, it does not mean

that the global titles are fully compatible between countries. The encoding of global titles is a

national issue and this makes international gateways specialized and complex devices.

The major problem with global titles is the management burden they impose on STPs. Every

STP has to have a set of routing tables for each type of global title, these must be customized for

the position of an STP in the network and they have to be frequently updated. Errors in the global

title tables could cause the loss of messages or even network failure.
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2.2 Internet Protocol, Technology for the Future

2.2.1 Introduction

Despite the high reliability of the SS7 signaling networks due to dedicated signaling routes and

high network elements redundancy which reduces the network failure rate and network service

downtimes to as low as zero, however, there are still some shortfalls to the SS7 networks. These

SS7 limitations can only be overcome through the use of Internet Protocol (IP) network service

capabilities in the transportation of the SS7 messages.

The primary reason for the use of IP in transporting SS7 messages is to off-load the heavily loaded

SS7 networks and make them scalable for the increasing amount of telephone and mobile users. The

IP solution will also be used to connect isolated islands of SS7 networks, which otherwise would

have required the deployment of a dedicated and expensive SS7 infrastructure.

In recent times the IP has changed the whole landscape and dynamics of the telecommunications

infrastructure. Most of the traditionally Time Division Multiplexing (TDM) based telecommunica-

tions networks operators are making use of the IP offerings such as scalability, bandwidth, network

availability and fast network growth and opportunities to realise better returns on their invest-

ment. Service providers cut costs when using SS7 over Internet Protocol (SS7oIP) by offloading

data traffic from SS7 networks onto IP networks. SS7 over IP enables wireless service providers

to rapidly deploy emerging IP-based services for the mobile Internet that freely interact with the

legacy mobile infrastructure.

At present SS7 networks form the bulk of all telecommunications’ core networks. According to

the latest figures (Q2/2013) from the Global mobile Suppliers Association (GSA), “Of the 6.57 bil-

lion global mobile subscriptions only 126.1 million subscribers were LTE” [12]. This just reaffirms

the fact that there will always be an interworking between the TDM-based and IP-based networks

through the use of a composite signaling protocol type known as Signaling Transport (SIGTRAN).
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Using the SIGTRAN protocols is the first step to merge SS7 networks with IP networks. Today’s

telecom companies are moving towards an all-IP network also known as the Next Generation Net-

work (NGN), where IP will replace traditional telecom networks, but such a transition will not

happen overnight, perhaps never, and the main task now is to enable these systems to co-exist and

to enhance the services they provide.

In SIGTRAN technology, also known as SS7 over Internet Protocol (SS7oIP), the different nodes

of the traditional TDM-based SS7 Network are signaled by SS7 protocol messages, which are pig-

gybacked on the Internet Protocol for transportation purposes between distant Signaling Switching

Points (SSP) or between an SSP and a Softswitch for the Voice over IP (VoIP) bound traffic.

2.2.2 SS7 over Internet Protocol

Long distance routing of telephone calls over an IP network is more cost effective than comparable

routing over more conventional methods such as TMD-based circuit switching.

IP access standards are emerging that offer great flexibility. However, nowhere amongst the new

generation of IP protocols had emerged one that offers all of the signaling capabilities of SS7. There

was a need therefore to leverage the capabilities of SS7 in the IP world and to find a role for SS7 in

soft switch architectures. A working group known as the Signaling Transport Group of the Internet

Engineering Task Force (IETF)[22] was established to work on the requirements of transporting

SS7 signaling messages over IP based networks without compromising on the SS7’s capabilities and

reliability. The IETF group came up with the Signaling Transport (SIGTRAN) standards.

The SIGTRAN standards, as they are known, describe a way of presenting SS7 signaling infor-

mation over an IP transport in such a way that all of the benefits of SS7 are maintained. The

standards allow next generation IP-based networks to interface with existing SS7 networks and

to exchange information with no loss of service capability. SIGTRAN decomposes the SS7 stack

and allows different layers to communicate using an IP transport layer. Instead of using MTP

as a transport protocol, SIGTRAN separates this from the user parts and simply transports the

information that would be passed to each layer of an IP infrastructure.
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For message delivery over IP on the Internet two transportation protocols have been defined. These

are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP), but for real-time

signaling they exhibit certain limitations which make them unsuitable for the task.

The User Datagram Protocol (UDP) was developed purposely to provide a datagram mode of

packet-switched computer communication in the environment of an interconnected set of computer

networks. This protocol presumes that the Internet Protocol (IP) is offered as the underlying

protocol. It makes provision for application programs in transporting messages to other programs

with a minimum of protocol mechanism. The protocol is transaction oriented, and delivery and

duplicate protection are not guaranteed. The UDP is a connectionless transport protocol and does

not intrinsically employ acknowledgement (ACK) messages to guarantee reliable and ordered trans-

portation. The UDP is mostly helpful in situations where high transmission rates are required, but

does not necessarily fulfill the other performance conditions of SS7 signaling messages [13].

TCP is a byte oriented transport protocol which offers a stream of bytes and guaranteeing their

ordered delivery. This is necessary particularly during transmission of huge volumes of data as

applicable in emails application and file transfers, but the strictly in-order-delivery is responsible

for its unsuitability for signaling messages. TCP is highly sensitive to delay variance arisen from

the packet loss and therefore leads to retransmissions. While waiting for lost packet for acknowl-

edgement, the remaining packets will be delayed, known as head-of-line blocking. This usually

lead to unnecessary delays for the remaining packets; and as such TCP is unsuitable for real-time

applications, such as Voice over IP (VoIP). In establishing a TCP connection, Host 1 sends a SYN

message to Host 2 which is replied with a SYN-ACK. Then Host 2 will hold on for the correspond-

ing ACK from Host 1, the last step in the three-way handshake in the TCP connection setting.

However, this procedure may be susceptible to some type Denial of service (DoS) attack known as

SYN attack, originated from the numerous SYN messages that are sent to Host 2 of which they

utilized some memory resources and may subsequently end up to collapse Host 2 and legitimate

users will be denied of obtaining the available service. This scenario is not tolerated in SS7 network

of which telephone services are expected to be always readily available [14].
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The key desired characteristics of network signaling transportation are: Ordered and reliable mes-

sage transfer, redundancy in case of link a failure, low loss and delay and security against denial of

service (DoS) attack. UDP and TCP cannot support all these requirements, hence a new transport

protocol was designed by SIGTRAN, the Stream Control Transmission Protocol (SCTP) that im-

proves upon previous TCP and UDP to ensure reliable transfer of information in a way that meets

the requirements of SS7 systems.

2.2.3 SIGTRAN Protocol Stack

As discussed in subsection 2.2.2 on page 21, SS7 signaling messages have very stringent loss and

delay requirements. TCP falls short of those requirements and is not a suitable choice, because

the delays are too long while UDP does not provide sufficient reliability. The SIGTRAN protocol

suite was therefore developed to bridge the reliability and performance gaps between the two con-

ventional IP transportation methods.

The SIGTRAN protocol suite includes the transport protocol SCTP, along with several user adap-

tation (UA) layer protocols that are necessary for the transportation of SS7 messages over IP, See

Figure 2.7.

Figure 2.7: SIGTRAN Interface Protocol Stack [48]
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The SIGTRAN architecture consists of two main layers:

• Common signaling transport - supports the error-free, in-sequence delivery of application

messages. It includes the underlying IP network layer and the SCTP.

• User Adaptation layers - supports specific primitives required by a particular signaling appli-

cation (e.g. M2PA, M2UA, M3UA, and SUA)

Stream Control Transmission Protocol (SCTP)

The Stream Control Transmission Protocol (SCTP) was primarily developed to transport tele-

phony SS7 messages over IP networks with the objectives to duplicate reliability and performance

features of SS7. SCTP is an application level datagram transfer protocol that operates on top of

an unreliable datagram solution like UDP or TCP.

The SCTP protocol is equivalent to TCP since it offers both flow and congestion control mecha-

nisms, however it has two major features that enhance its reliability and performance thus making

it more suitable for SS7 signaling transportation. These features are multi-homing and multi-

streaming [15].

Multi-Homing

Like SS7 signaling, multi-homing features provides redundancy in IP transmission of signaling mes-

sages using SIGTRAN. Multi homing feature of the SCTP allows each network node to have several

IP-addresses, where each IP-address pair between two nodes is called a path.

Each path between the two physically connected network nodes is associated with heartbeat mes-

sages which indicate an active or inactive mode. Each node chooses a primary path and if a failure

occurs on this path, retransmissions are sent via an alternative path (if available). After a specific

number of retransmissions, a path is considered inactive and a new path is chosen, and if it is

active, then it becomes the new primary path.

In Figure 2.8, node A has three paths (associations) to node B and node B has four paths (associ-

ations) to node A.
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Figure 2.8: SCTP Multi-Homing Feature [15]

This multi-homing feature enables a network to reroute data to other IP addresses, thus the network

is more tolerant of physical link failures. In a classical SS7 network there are always at least two

physically different paths over which to transmit data. Since SIGTRAN should provide an IP

solution with all the qualities of the SS7 network, the multi-homing feature can be used to provide

the same level of redundancy as in SS7 signaling networks.

Multi-Streaming

The multi-streaming feature of the SCTP helps to reduce delays in call establishment and also

reduces network congestion when using SIGTRAN transport protocol suite in transporting SS7

signaling messages. SCTP multi-streaming is the sending of data packets in multiple, simultaneous

and independent streams so that if there is a data loss in one stream, delivery will not be affected

for the other streams. These multi-streams are possible without opening separately multiple con-

nections between the two nodes. Multi-streaming is used to avoid head-of-line blocking, which is a

common phenomenon in normal TCP, as shown in Figure 2.9 .
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Figure 2.9: SCTP Multi-Streaming Feature [15]

In normal TCP streaming of data, when a signaling packet for a call is lost the whole connection

is blocked while waiting for a retransmission, resulting in head-of-line blocking. The delay for

recovering the lost data can be several milliseconds or even seconds. This signaling delay is not

acceptable while making a phone call using SS7 signaling. In SCTP streaming with reference to

figure 2.9 above, an association between two nodes can have several streams, each one assigned to

a particular resource or application. Loss of message relating to call 2 affects only that stream of

data. Calls 1 and 3 are serviced as normal.

Creating several streams with TCP is also possible, but requires opening multiple TCP-connections

where each one acts as a stream. Every connection introduces a Transport Control Block (TCB)

at the server side, which contains all the important information about a connection. These TCBs

consume memory, and their numbers could be significant for a busy signaling point with various

clients, hence multiple TCP connections are not a desirable alternative [16]. Also using only one

SCTP association with streams instead of several TCP connections helps to reduce unnecessary

call setup times.

SIGTRAN is therefore a preferred protocol to transport SS7 messages over IP due to the multi-

homing, multi-streaming and many other enhancement features of the SCTP transport layer.
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Table 2.1 highlights the main differences between several features of the three known IP trans-

portation protocols namely TCP, UDP and SCTP.

Feature UDP TCP SCTP

Congestion control x X X
Connection-oriented x X X
Unordered data delivery X x X
Full duplex X X X
Multi-streaming x x X
Preserve message boundaries X x X
Ordered data delivery x X X
Multi-homing x x X
Allow half-closed connections N/A X x

Reachability check x X X
Protect against SYN flooding attacks N/A x X
Flow control x X X
Selective acknowledgements x Optional X
Reliable data transfer x X X

Table 2.1: Feature Comparison Between UDP, TCP and SCTP [45]

User Adaptation Layer Protocols

The User Adaptation layer protocols support specific primitives required by a particular signaling

application. The main user adaptation layer protocols which are commonly used in SIGTRAN

are the MTP2 Peer-to-Peer Adaptation Layer (M2PA) protocol, MTP2 User Adaptation Layer

(M2UA) protocol and MTP3 User Adaptation Layer (M3UA) protocol [17]. The user adaptation

layers are named according to the service they replace other than the user of that service. For

example M2UA adapts SCTP to provide services of MTP2 rather that providing service to MTP2.

These SIGTRAN adaptation layers serve a number of purposes which include [17]:

• To carry upper layer signaling protocols over a reliable IP-based transport.

• To provide the same level of class of service offered at the interface of the SS7 network.

• To be transparent. The User of the service should be unaware that the adaptation layer has

replaced the original protocol.

• To remove as much need for the lower SS7 layers as possible.

27



MTP2 Peer-to-Peer Adaptation Layer (M2PA) protocol

M2PA provides a peer to peer mode of operation in backhauling SS7 signaling messages over an IP

network. It replaces an MTP2 link beneath MTP3. The user of M2PA is MTP3 on both ends of

the connection.

M2PA provides a means for peer MTP3 layers in SGs to communicate directly. This protocol

is used for SG to SG connection and is best suitable for bridging two SS7 network islands.

M2PA is mainly responsible for link activation/deactivation in response to requests from MTP3,

maintaining link status information, maintaining sequence numbers and retransmit buffers for re-

trieval by MTP3 and maintaining local and remote processor outage status.

MTP2 User Adaptation Layer (M2UA) protocol

M2UA is a protocol for the backhauling of SS7 MTP3 messages over an IP network and is used be-

tween a Signaling Gateway (SG) and a Media Gateway Controller (MGC) in VoIP networks. M2UA

provides an interface between MTP3 and SCTP that enables MTP3 applications to transparently

operate over an underlying transport service of SCTP and IP instead of MTP2. This interface pro-

vides transparent connectivity between traditional circuit-switched SS7 signaling points and Next

Generation, IP-enabled signaling elements, such as a Softswitch or Media Gateway Controller.

M2UA protocol is used where network devices are connected in a client–server mode, i.e. MGC as

a client and SG a server. M2UA backhauls provide a method of communication for an MTP3 layer

on an SS7 device to reach Media Gateway Controllers, as well as database applications and other

applications with peer MTP3 layers that run on IP-enabled devices.

MTP3 User Adaptation Layer (M3UA) protocol

MTP3 User Adaptation (M3UA) protocol was developed by the IETF for the transport of any SS7

MTP3 User signaling (e.g. ISUP, SCCP and MAP) over IP, using the Stream Control Transport

Protocol (SCTP). M3UA can also work in diverse architectures, such as a Signaling Gateway to

IP Signaling Endpoint architecture as well as a peer-to-peer IP Signaling Endpoint architecture [18].
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M3UA provides the service of MTP3 between SG and application server. M3UA supports MTP3

users ISUP and SCCP. M3UA replaces SS7 signaling link, signaling link set, combined link set

and signaling routes. M3UA is designed to allow legacy SS7 TDM nodes to communicate with

SIGTRAN IP-capable nodes.

2.2.4 SIGTRAN Integrated Network Architecture

As mobile communications evolve, mobile end-users are offered wideband multi-media capabilities.

The associated multi-media streams require that the networks should be more flexible at providing

bandwidth on demand than present-day networks which are based on TDM. The networks trans-

port technology must thus evolve toward cell and packet based technologies.

Though regarded as a legacy signaling system, SS7 signaling based network components which

include the MSCs, SSPs STPs, HLRs and the Signaling Gateways (SGs) continue to claim a lion’s

share of the telecommunications market. A number of factors have energised this SS7 signaling

growth beyond simple “call control” to provision enhanced services for TDM and IP domains. These

factors include new subscriber growth rates in emerging markets, steady growth in SMS messaging,

VoIP-enhanced services, and interoperability between the legacy SS7 based TDM networks and

next-generation networks.

The driving force behind the interoperability between the TDM based SS7 networks and the emerg-

ing IP-based IP Multimedia subsystem (IMS) networks using the SIGTRAN protocol translation

technology is the Signaling Gateways (SGs).

SGs transport application signaling between the SS7 network and the IP network, serving to bridge

legacy TDM based networks with the packet-switched, next-generation networks. SGs implement

SS7 protocol stack and related SS7-over-IP SIGTRAN subcomponents and handles mobility proto-

cols for interworking with wireless networks. When used in conjunction with soft switches, media

gateways, application servers, and media servers, SGs provide the call control functionality and

service processing capabilities of traditional PSTN switches [36].

Figure 2.10 shows the signaling network interoperability between the Cellular Network, PSTN

and the IP network using the SG.
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Figure 2.10: Internetwork Signaling Connection Using Signaling Gateway [36]

From the network interoperability shown in Figure 2.10 above, only logical signaling interconnection

is represented as the physical network elements locations and positioning can be totally different.

2.2.5 SIGTRAN Simulation Implementations

SIGTRAN is getting adopted quite fast because it is the only integrating catalyst between the two

merging technological systems, SS7 and IP.

There are many commercial implementations of SIGTRAN stack. Many of the big players partici-

pate in the European Telecommunications Standards Institute (ETSI) Plugtest Service. The ETSI

Plugtest Service is a professional unit of the European Telecommunications Standards Institute

(ETSI) that specializes in arranging interoperability test events for companies, organizations, and

standardization bodies (ETSI, Internet Engineering Task Force (IETF), International Telecommu-

nication Union (ITU), etc.) [53]. These tests are in the area of telecommunications, Internet,

broadcasting, and multimedia. Some of the main players include, just to name a few; Adax, Cisco
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Systems, Ericsson, Hewlett-Packard, Siemens, Intellinet, Performance technologies and Ulticom.

Additionally, there are plenty of free Proprietary and Open Source SIGTRAN implementations

available via the Internet [25], and the purpose of these is to be able to test an “SS7 over IP”

solution. Most of these only implement the SCTP protocol, while the user adaptation layers are

only available in a few of them. The following subsubsections explain in brief some of the popular

freely available SIGTRAN implementations:

Siemens/University of Essen Implementation

This implementation [26] was designed by Siemens, the University of Essen, and the University of

Applied Sciences, Germany. It is only an implementation of SCTP. It runs on Linux 2.4, and 2.6,

FreeBSD 4.8, Solaris 8, Mac OS 10, and Windows (with some limitations). Moreover, it supports

both IPv4 and IPv6 and includes a SCTP test tool. With the test tool you can verify that your

installation is correct and try the test cases.

Berkeley Software Distribution (BSD) with KAME Project Implementation

The KAME project [27] is a joint effort between six Japanese companies to create a single solid

software set, especially targeting IPv6/IPsec. It works on FreeBSD 4.0, OpenBSD 2.7, NetBSD

1.5, BSD/OS 4.2, and newer versions of these. The project was aimed at providing free reference

implementations of IPv6 and IPsec (for both IPv4 and IPv6) stack for BSD variants and provides

advanced internetworking such as advanced packet queuing, mobility, etc.

Linux Kernel SCTP (LKSCTP) Implementation

The LKSCTP project [28] was started by one of the inventors of SCTP – Randall Stewart – in

cooperation with Motorola. This implementation supports SCTP, and also provides test tools with

numerous test cases. It can be run on both IPv4 and IPv6. To install the package, a Linux-2.5.36

or later kernel version is necessary, and it has to be configured with the network options “SCTP

Configuration” support enabled.

Sun SCTP Implementation

Sun Microsystems’ SCTP is another pure SCTP implementation which runs on Solaris 9, update

6 [29].
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Open SS7 Implementation

The OpenSS7 [30] project started in 1996 but was initially only an SS7 stack. The SIGTRAN

features were introduced in 2001 and include the SCTP protocol and the M2PA user adaptation

protocol. The other UA (user adaptation) protocols exist (M2UA, M3UA and SUA), but are still

at a testing stage and have not yet been released. There is also a TCP implementation available

for comparisons between the two transport protocols (SCTP vs. TCP).

OpenSS7 project is still in production release for many of its components; some code is still being

worked on and is not really suitable for public release. Only the source code is available for those

that are interested in following the development.

There is an interest in widening the OpenSS7 SIGTRAN stack to also include mobile commu-

nication parts, such as a home location register (HLR) with GPRS capabilities. This project is still

in the design stage and is currently on hold.

OpenSS7 was developed for the Linux kernel. It currently requires the 2.4.10+ kernel and a C

compiler (gcc) capable of compiling the Linux kernel.

Dialogic SS7/SIGTRAN Implementation

Dialogic SS7/SIGTRAN Implementation is a proprietary SS7 development kit of Dialogic Corpora-

tion which is a worldwide telecom equipment supplier, serving both enterprise and service provider

markets. Dialogic’s broad product range incorporates media gateways, media servers, signaling

gateways and media boards, and embraces both traditional TDM technology and VoIP/SIP [31].

This simulation implementation has been used for testing the experiments in this study and has

been discussed in detail in Chapter 4.
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2.3 Review of Previous Work

In the recent past a lot of effort has been put into researching the interoperability between the

TDM-based SS7 signaling system and the Internet Protocol. The areas of study range from the so-

cial and economic benefits (to both the subscribers and the network operators) of migrating services

from SS7 to all IP, through the performance analysis of the IP network in transporting SS7 with-

out compromising the quality of service to the problems that have resulted from the interoperability.

This literature review encompasses online research into journal articles, conference papers, the-

sis studies and library studies into relevant text books covering topics similar to the subject matter.

According to Klaus D. Gradischnig and Michael Tuxen in their publication “Signaling transport

over IP-based networks using IETF standards” [22] reliability features of SS7 are compared to

those of the SIGTRAN. The paper identifies parameters which have to be adjusted and restric-

tions to available addressing options which have to be made in order for the SIGTRAN protocol

stack to achieve the reliability and performance of SS7. The authors identify SCTP as a modified

IP transportation layer for achieving the performance and fault detection capabilities needed for

signaling applications. Also assigning IP based elements like MGCs their own point codes allows

seamless network management in an SS7 network crossing the MTP/IP boundary. In combination

this results in a converged signaling network architecture which can deliver the reliability and per-

formance end users of the SS7 signaling driven network have become accustomed to.

The redundancy and reliability characteristics of IP based signaling networks were investigated

in a thesis by Mia Immonen “Signaling over IP — a step closer to an all-IP network” [16]. In this

study the performance of the two features of the underlying SCTP layer of the IP protocol stack

namely multi-homing and multi-streaming were measured against the known performance features

of SS7 signaling. The multi-homing experiments carried out in this paper, suggest that SCTP does

meet the performance requirements for signaling even though the message transfer times in the

case of a link failure were achieved with a large margin of error observing that the time it takes to

detect a failure strongly depends on the number of maximal path retransmissions. Being liberated

from the extremely complex TCP retransmission behaviour, the SCTP protocol can be used for

a reliable transportation of Media over IP (MoIP). When providing a multimedia transfer with
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related but yet independent data streams, e.g. voice and video, the SCTP multi-streaming feature

is suitable, so that head-of-line blocking and multiple TCP connections are avoided.

With the widespread of mobile internet in the recent years, Dong W. Kang, Joo H. Oh, Chae

T. Im, Wan S. Yi and Yoo J. Won in their paper “A Practical Attack on Mobile Data Network

Using IP Spoofing” of July 2013 [23] highlight the security threats which have been posed due to

the abnormal traffic of mobile networks which results from IP spoofing. As IP Spoofing is not taken

seriously in the mobile environment, the resulting security threats were not taken into consideration

in a big way, but IP Spoofing in the mobile environment can lead to overbilling and power con-

sumption for certain UE, occupy the wireless resources of the mobile network, and induce abnormal

traffic into components in the mobile network.

With the growing acceptance of the SIGTRAN protocol suite for transporting SS7 signals across

IP networks, there is a need to secure both SS7 and IP networks. Still, most of the focus is on

securing the public IP network, leaving SS7 network vulnerable and the signaling gateway virtually

untouched. One reason for this disequilibrium may be the folklore that the SS7 network is secured

enough and, consequently there are no threats. Hemant Sengar and Ram Dantu in their publica-

tion [24] argue the opposite, by showing some example exploits of fabricated messages or malicious

(hijacked) signaling nodes. Even misconfigured SGs, STPs, SSPs, and MGCs can generate spurious

messages and consequently affect other signaling nodes by shutting them down or by functioning

erratically.

Cross Network Services are a new breed of services that have spawned from the merger of the

Internet and the previously isolated wireless telecommunication network. These services act as a

launching pad for a new type of security threat - the Cross Infrastructure Cyber Attack. The paper

“A Taxonomy of Cyber Attacks on 3G Networks” [1] proposed attack taxonomy for 3G networks.

The uniqueness of this taxonomy is the inclusion of Cross Infrastructure Cyber Attacks in addition

to the standard Single Infrastructure attacks. This paper also proposed an abstract model of the

3G network entities. This abstract model has been a vehicle in the development of the attack

taxonomy, detection of vulnerable points in the network and validating 3G network vulnerability

assessment tools. The paper also examined the threats and vulnerabilities in a 3G network with

special examination of the security threats and vulnerabilities introduced by the merger of the 3G
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and the Internet.

As VOIP and PSTN coexist despite their technical differences, the internetworking of these net-

works presents a significant challenge because VoIP and PSTN use widely varying infrastructures

and protocols. Interoperability issues arise because of differences in protocols, vendor implementa-

tions, the carrier used, and the services provided. Internetworking makes the infrastructure more

vulnerable to attacks therefore interoperability issues need to be addressed at every interconnec-

tion point of the network components. Ram Dantu, Sonia Fahmy, Henning Schulzrinne and Joao

Cangussu identify compromised Signalling nodes and Spoofing as the two examples of attacks on

a SIGTRAN network [55]. Internetworking increases the possibility of signaling nodes’ being com-

promised in the signaling system (SS7) or IP networks. The compromised node can then exploit

the signaling messages to disrupt telephone services. Spoofing can be used to compromise data

integrity and thus prevent the use of the technology in critical domains. When VoIP and PSTN

interwork together, the traffic passing through the gateways must be screened. SS7 network’s gate-

way screening, the only widely deployed security solution available today, does not check the actual

content and structure of the VoIP signaling messages. The inability to interpret or properly parse

messages with inappropriate content may cause a serious problem at the signaling node and thereby

affect telephone services.

Today’s telecom networks are a combination of the traditional circuit switched (TDM) and packet

switched (Internet Protocol (IP) based switches) networks. IP based interconnect allows different

sectors/services such as telecom, data, radio and television, to be merged together to provide huge

bandwidth, consolidate terminating traffic and reduce long-distance charges. Now all new networks

being deployed by the operators are using IP based systems because of the inherent advantages of

using common backbone infrastructure for different type of services. However this transition has

a lot of challenges. U.C. Meena, R. Saji Kumar and J.M. Suri in their publication “Interconnect

Issues in IP Networks” [56], points out that the IP network including the interconnect interfaces

use open protocols which are universally accessible, so the networks are susceptible to denial of

service attacks, exposure to remote attacks and data theft. Hence the challenge is in protecting

the gateways and control systems from intruders.
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As the telecommunications industry migrates to the packet-based network paradigm, it now faces

fresh challenges in securing its networks, as end-users have access to networks like never before. As

such, new approaches to security are critical. Today, logical and physical security elements of the

network must be designed in (from the beginning) and not retrofitted. Operators seek to ensure

there is no malicious action between the customer and the system, or between the operations force

and the system, or even between the system elements in the case of an indirect attack. With 80-85%

of the communications critical infrastructure residing in the private sector, responsibility for ensur-

ing network integrity falls on private industry. According to the Alliance for Telecommunications

Industry Solutions (ATIS) [57], a collective effort between different industry role players is key in

securing the telecommunications networks. The standards bodies are challenged to address carrier

class security issues and architecture, the vendors need to produce equipment and software that

meet security needs, and the customers and carriers need to work together to mitigate security

threats.

Due to the exponential growth of mobile data traffic, mobile network operators are adapting and

deploying key data offloading technologies such as femtocells not only to boost their network ca-

pacity but also to increase indoor cellular coverage. However, the consequences of such integration

of two architectures over the Internet together with an array of security threats that originate

through a rogue femtocell have not been fully analysed. Ravishankar Bhaskarrao Borgaonkar in

his thesis “Security Analysis of Femtocell-Enabled Cellular Network Architecture” [58] investigates

security architecture of femtocell-enabled cellular network that facilitates integration of these two

architectures by evaluating impact of compromised femtocells on the fundamental security aspects

of cellular systems - integrity, confidentiality, authenticity, and availability.

The Stream Control Transmission Protocol (SCTP) does not retain state information at the server

side to avoid the traditional denial of service attacks. Unfortunately, SCTP is not secure against

verification-tag guessing-attack which leads to association-hijacking and forces that victim clients

to starve out of services. A secure SCTP mechanism called SCTP-Sec that includes Cookie mech-

anism as base to make the server a stateless, while it uses cryptographic hash operation to resist

against the verification tag and hijacking attacks was proposed by Rahul Choudhari and Somanath

Tripathy [59] in their publication called SCTP-Sec: A secure Transmission Control Protocol.
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From the reviews of previous work done regarding SIGTRAN transport protocol, a vast amount

of research effort has been put into investigating the reliability and performance characteristics of

SCTP layer of the SIGTRAN transportation technology. Since intersignaling phenomenon is new

to most mobile network operators who were very much used to managing the closed SS7 networks.

This study therefore aims at validating the need for more research focus and further investigations

into the security aspects of the SIGTRAN technology as the interworking between SS7 and IP

networks become more relevant now than ever before.

2.4 Conclusion

The merging of SS7 based signaling system with the IP based signaling has brought about tremen-

dous benefits to both the Mobile network operators and the subscribers. The demand for data-

centric services such as Short Message Service (SMS) and Unified Messaging has created an oppor-

tunity for 3G carriers to capitalize on new revenue generating opportunities. Carriers significantly

reduce SS7 transport costs by replacing expensive long-haul dedicated signaling links with very

competitively priced IP connectivity between network elements. Service providers cut costs with

SS7 over IP by offloading data traffic from SS7 networks onto IP networks.

The performance characteristics of SS7 signaling networks are incomparable to any other signaling

transport system. The high redundancy rate in SS7 system makes the network performance fast

and reduces considerably the network downtimes to as low as zero. This is why the IP transport

systems such as the TCP and UDP in SIGTRAN had to be reinforced with an extra protocol layer,

the SCTP, above the IP layer to provide similar performance and reliability characteristics as the

SS7 networks.

Despite the revolutionary talk of all IP next generation networks, such are the capabilities of SS7

that it will become an integral part of the telecommunications infrastructure. More importantly,

however, there is a tremendous investment in the conventional network that has not stopped. SS7

requirements continue to grow and access to SS7 signaling remains as essential as ever. For most

operators SS7 is the preferred means of network connectivity and is not a matter of choice. New

standards that built on its proven capabilities are emerging, such as Wireless Intelligent Network
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(WIN) and Customised Application for Mobile Enhanced Logic (CAMEL) [54], and it is destined

to play a huge role in 3G Mobile networks. In the network core it is likely to remain unchallenged

for some considerable time and with the advent of new IP-based SS7 networks; it is likely to play

a key role in the next generation networks. However the security challenges that might arise due

to the interworking between the traditional SS7 and the IP networks have led to the Key Research

Question this study aims to address.
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Chapter 3

Key Research Question

3.1 Introduction

In this chapter the key research topic is explained.

In a typical 3G mobile network set-up, a subscriber (mobile station) gets services from the network

via the access network and the access protocols such as LAP-Dm are used for signaling, while SS7

signaling is only used in the core network. SS7 networks are often physically inaccessible to end-

users, so they are considered to be protected from attacks, since the network equipment is behind

locked doors.

However, Voice over IP (VoIP) telephony is emerging as an alternative to public telephones, due to

its convenience, cost effectiveness, and the ease of designing new services. Consequently, there has

been a need to interoperate signaling and media between these two competing services. Also IP

networks due to their ease of deployment, flexibility in offering new services and cost effectiveness

are being considered as the best possible option in transporting signaling messages between two

distant TDM-based SS7 networks which would otherwise be costly to deploy an own dedicated SS7

signaling network.

The signaling interoperation, made possible by using the signaling transport (SIGTRAN) protocol

suite proposed by the Internet Engineering Task Force (IETF), allows any subscriber in either

network to transparently call another subscriber in either network.
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3.1.1 Review of the Problem

As the demand for multimedia-based traffic started to exponentially increase with users demanding

for more freedom of mobility without any service disruptions while not compromising on the quality

of service, it became clear that the SS7 driven 2G/3G legacy mobile telecommunication systems

which were optimally designed for voice performance, were soon going to get saturated.

The high demand for these services then led to the design of the Next Generation Network (NGN)

systems that would be data optimised to provide more capacity and high data rates while at the

same time efficiently utilising the licensed radio spectrum. A system was required that would be

capable of satisfying the ever increasing appetite for data traffic and enhance performance in the

long run. Long Term Evolution (LTE) technology was identified as the way forward and the future

of high speed Cellular services.

Despite the high hype of LTE offerings, realising a full migration from 3G to LTE in any foresee-

able future is merely a dream. A number of issues ranging from regulation, through high network

deployment costs to fewer LTE ready mobile equipment need to be addressed first before a full

transition to LTE from 3G networks can be realised. Most operators will roll out LTE first in small

portions of their networks, which is why Informa Telecoms and Media forecasts North America will

achieve 56% penetration by 2017, with the world’s second largest LTE region, Asia Pacific expected

to reach just 11% penetration by 2017 [52].

Switching from 3G network systems to LTE does not require network infrastructure upgrades

but rather calls for a complete infrastructure replacement which makes it economically not easy for

network operators to deploy the LTE networks, operators are therefore rolling out LTE networks

in phases. Lack of regulation in allocating the required spectrum for LTE by National regulators

coupled with high spectrum auctioning prices has forced the mobile network operators to resort to

using spectrum re-farming. Lastly the network operators are faced with a dilemma of what to do

with the billions of subscriber mobile equipment in circulation using 2G/3G which are not LTE

ready.
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Signaling in pre-4G/LTE networks (2G/3G) is based on SS7. Commercial 2G and 3G networks

worldwide make extensive use of SS7 signaling both within their own network and between net-

works. It is estimated that 2G will represent half of all the mobile network connections through

2017[1]. 2G and especially 3G networks will continue to co-exist with the LTE until all the networks

have fully migrated to 4G/LTE a feat which is likely not going to happen in any foreseeable future.

The arguments above just re-affirm the fact that although LTE is a future technology for mo-

bile/cellular networks, the legacy 2G and 3G networks will still play a key role for a long time to

come and there will always be an interworking between these two technologies and all the other IP

related services.

Most mobile operators are making use of IP networks to transport signaling messages between

two distant TDM-based SS7 networks using the Signaling Transport (SIGTRAN) protocol suite

[19]. This is done in order to take advantage of the IP offerings such as scalability, bandwidth, net-

work availability and fast network growth and opportunities. SIGTRAN technology is also used to

offload IP bound traffic such as VoIP by interconnecting SS7 core networks and the IP’s Softswitch.

The introduction of Internet connectivity and many more IP based services to 3G networks through

network interconnections imports not only the high speed capabilities of the Internet but also very

high risks of cyber-attacks which may be launched from the IP side of the network.

Understanding that 2G and 3G networks will be with us for a very long time, and owing to

the fact that more and more networks are being migrated to the next generation’s all IP networks,

this research was aimed at identifying if IP networks, through network infrastructure interconnec-

tions, are vulnerable to security threats as compared to the once isolated and secure SS7 signaling

networks. Once the vulnerabilities, if any, have been identified some mitigating factors would be

proposed. The key research question for this proposed thesis reads as follows:

“There is much emphasis these days on the security of communications, and there are some solu-

tions available in the market place for voice and data. However it is anticipated that 2G and 3G

communications technologies will be with us for a lot longer than we think, and thus SS7 will also

be a driving force to communication. What are the vulnerabilities of Signaling System Number 7 to

cyber-attacks and how can we mitigate against these vulnerabilities?”
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3.1.2 Objective of the Investigation

Through the findings of this research, we aimed to establish if an IP network can pose as a source

of potential cyber threats to a 3G TDM-based SS7 network through the interconnection between

these two technologies. Also the motives behind the cyber-attacks would be briefly highlighted and

some solutions in trying to avert the cyber-attacks would be proposed.

An SS7 network was originally designed as a closed network and thus more secure to external

attacks. As the telecommunications networks started to open up, coming into one global network

due to interconnection of different networks each using its own preferred choice of technology and

also the need by the service operators to utilise the cheaper IP connectivity offerings, the cyber

threats to the once closed SS7 network also increased. The cyber-attacks targeting a particular SS7

network node can easily be launched from the IP network interconnected to it using SIGTRAN

transport protocol suite.

An SS7 network through SIGTRAN transportation can be targeted by cyber attackers for so

many reasons such as but not limited to: theft of service i.e. interception of calling cards numbers

and compromising of general communication privacy for subscribers. Hackers may also introduce

harmful packets into the national and global SS7 networks so as to get control of call processing

and accounting reports and obtain credit card numbers, non-listed numbers etc. Hackers may also

read, alter, inject or delete messages SS7 signaling messages. Hacking can also result into denial of

service to all network users, disrupting free and emergency calls. Capturing of gateways through

hacking can cause re-routing of call traffic [20].

Telecommunication deregulation of 1996 [21] and liberalized economies have introduced many new

players, known as Competitive Local Exchange Carriers (CLECs), thus increasing the number of

interfaced access points to SS7, and thereby exposing new points for attacks. Also the interconnec-

tion of SS7 backbone networks to IP based networks can introduce some new threats to the SS7

signaling networks. As it will be show herein, one such interface to both networks, SIGTRAN, can

be exploited as well unless care is taken.
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Because of the interconnection between the SS7 network and the IP network, the investigation

in this research was aimed at:

a) Identifying the vulnerabilities of an SS7 network which could come about due to its interconnec-

tivity with an IP based network service using a SIGTRAN Media Gateway as a protocol converter.

b) Suggesting the mitigating factors to the identified vulnerabilities of the SS7 networks which

could come about from the SS7/IP interconnectivity.

3.2 Conclusion

This chapter serves as a basic introduction to the subject of the vulnerabilities of SS7 signaling

messages to cyber-attacks when transported over IP in the technologically merging environment

and validates the need for this investigation by providing an overview of the problem statement,

the objectives of the research.

SS7 and related technologies will be around for many years, if not decades; it will remain a vi-

tal part of mobile networks. For these reasons, SS7 must be supported and enhanced so that

service providers keep pace with demands for more connectivity, capacity, complex applications,

and security.

To successfully consolidate networks for economies of scale and to improve performance for end

users, end-to-end signaling across 2G, 3G and 4G networks is needed [52]. For this reason it was

worthwhile investigating, through experimentation, the cyber security threats that might arise due

to the intersignaling between these technologically different networks.
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Chapter 4

Methodology

4.1 Introduction

The research was performed using the experimentation approach which has been explained in de-

tails in the later sections of this research report. However, this chapter gives an overview of the

approach used. With reference to the subject of study of the vulnerabilities of SS7 to cyber-attacks,

special attention was placed on Signaling Transport (SIGTRAN) Technology, also known as SS7

over Internet Protocol (SS7oIP).

In SS7oIP arrangement, different nodes of the Mobile Wireless Network are signaled by SS7 proto-

col messages, which are piggybacked on the Internet Protocol for transportation purposes between

distant Signaling Switching Points (SSPs) or between an SSP and a Softswitch for the Voice over

IP (VoIP) bound traffic. The layout can be seen in Figure 4.1.

Note that the main focus area for the experimentation was the Packet Network.
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Figure 4.1: SS7 over IP (SIGTRAN) Experimentation Setup

With reference to Figure 4.1, the SS7 Signaling messages from distant SSPs are converted into

SIGTRAN IP traffic at a SG. In this particular case, all SS7 messages are handled as payload data,

and placed in the data octets after the first twenty bytes of the IP packet. IP reassembles packet

datagrams back into the segments on the receiving side and each datagram is assigned the IP ad-

dress of the source and destination node. Each router within the IP network (the layer 3 device)

that receives a datagram makes routing decisions based on the packet’s destination IP address.

The resulting packetised SS7 traffic is then transported over an IP network to its destination be it

another distant SSP or a Soft switch.

Now an attacker, using any network enabled computer connected in a promiscuous mode “(an

IP network interface mode in which the network interface card reports every packet that it sees)” to

the same IP network transporting the packetised SS7 messages, will be able to sniff the network and

capture all the packetised SS7 traffic of interest. This computer will be equipped with Wire shark

which is IP packet sniffing software and will be able to capture any packets passing through the

network including the information about the source and destination IP addresses. Once this critical

information has been uncovered, an attacker using network and packet manipulation software will

destabilise or kill the network connections completely between the target IP nodes.
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During the design of the research project, it was anticipated that access permission to a live SIG-

TRAN network to conduct the necessary security vulnerability tests would be secured. According

to the initial design the testing would just demand plugging the probe straight into the network

and monitoring the network activities between the different network nodes. However during the

course of the study it was discovered that securing the permission was getting more difficult than

was initially thought due to several concerns such as fears of interfering with the network operations

if something goes wrong during experimentation and testing.

Considering the time constraints it was thought as wise to proceed with a simulation of the SIG-

TRAN network using one of the freely available SIGTRAN Implementation tools from the internet,

an alternative way which would achieve similar results like testing in a live environment.

4.1.1 Dialogic SS7/SIGTRAN Network Simulation Implementation

The experimentation and testing done in this study to establish the vulnerabilities of SS7 signaling

messages to cyber-attacks have been based on Dialogic SS7/SIGTRAN Simulation Implementation.

Dialogic SS7/SIGTRAN Implementation is a proprietary SS7 development kit of Dialogic Cor-

poration which is a worldwide telecom equipment supplier, serving both enterprise and service

provider markets. Dialogic’s broad product range incorporates media gateways, media servers, sig-

naling gateways and media boards, and embraces both traditional TDM technology and VoIP/SIP

[31].

Dialogic SS7 development kit’s software versions run on both Linux and Windows and is mostly

used by SS7/SIGTRAN developers, experts and professionals to test different applications and also

in online technical forums to brainstorm ideas, share best practices and tips or just chat about the

latest emerging technologies making noise in the field of telecommunications signaling.

For development and testing purposes, the Dialogic SS7 development package has free software

licences for simulation tests unless if implemented into a live environment after successful tests.

46



4.1.2 Devices and Software Used

To obtain a better understanding and analysis of the cyber threats to SS7 signaling messages while

being transported over an IP network, critical evaluations were based on several systematic IP

network security tests using Dialogic SS7 development package which is a propriatary but freely

available internet software.

Key Assumption

With reference to subsection 2.2.3 on page 23, the assumption made in this study was that the

SIGTRAN network under study was connecting two distant TDM-based SS7 networks. As a result

the association (communication between SIGTRAN nodes) relationship between the two distant

SG nodes was that of peers, therefore M2PA would be used instead of M2UA which works in a

client – server relationship mode.

In order to perform these tests, the required equipment was as follows:

Two distant nodes (Win XP/ 7 Operating System based PCs)

One hacking device (Linux Operating System based PC)

A network Hub

Ethernet straight network cables

Dialogic SS7 Development Package

Dialogic User Part Development Package

Dialogic M2PA, MTP3, SCCP and TCAP, MAP host binaries, for SIGTRAN configuration

Wireshark network sniffing software

Ettercap packet manipulating software

47



4.1.3 Simulation Network Setup and Configuration

Figure 4.2 below shows network connectivity between the different network components used in the

study. The role of each component is briefly explained in the later subsections.

Figure 4.2: SIGTRAN Simulation Experimental Setup

Originating Node (A)

An HP Intel Duo Core 3.16, 3.17 GHz CPU computer running Windows 7 Enterprise 32bit config-

ured to run as the Originating Signaling Gateway even though during the association the sending

and receiving roles were reciprocatively reversed. In terms of the Dialogic terminology this partic-

ular node was referred to as the Mobile Application Part (MAP) Test Utility (MTU).

The application software running on this node included: Dialogic SS7 Development Package, Di-

alogic User Part Development Package and Dialogic M2PA, MTP3, SCCP and TCAP, MAP host

binaries, for SIGTRAN configuration.

In this experiment, the static network configurations for this node were:

IP Address : 192.168.0.1

Subnet mask : 255.255.255.0
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Default Gateway : 192.168.0.10

The system configuration file used was mtu.exe and this initiated a connection to the receiving

node by constantly sending heartbeat signaling messages to the receiving node.

Destination Node (B)

The computer specifications for this node were similar to those of the originating node A. This

computer was configured to run as Destination Signaling gateway so that it could respond to the

heartbeat messages from the MTU. Similarly, this node was referred to as the Mobile Application

Part (MAP) Test Responder (MTR) as per the Dialogic terminology.

Likewise application software running on this node included: Dialogic SS7 Development Package,

Dialogic User Part Development Package and Dialogic M2PA, MTP3, SCCP and TCAP, MAP

host binaries, for SIGTRAN configuration and mtr.exe is configured under system configuration.

In this study, the static network configurations for this node were:

IP Address : 192.168.0.2

Subnet mask : 255.255.255.0

Default Gateway : 192.168.0.10

Hacking Node

Two testing application software packages were installed on this node. These were Wireshark soft-

ware and Ettercap.

As will be explained in the subsequent sections, Wireshark is a free and open-source packet anal-

yser which captures packets in real time and displays them in human-readable format, and also

Ettercap is a free and open source network security tool for man-in-the-middle attacks on a Local

Area Network (LAN). Ettercap is able to perform attacks against the ARP protocol by positioning

itself as ”man in the middle” and, once positioned as this, it is able to infect, replace, delete data

in a connection kill a network connection etc.
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This machine had no static IP address configured as it was a hacker’s node and at the start of

the experimentation did not readily have information regarding the network IP configurations of

the target network nodes. The network interface for this machine was set in promiscuous mode

“(an IP network interface mode in which the network interface card reports every packet that it

sees)”.

Network Hub

A network hub is a physical connection and joins multiple computers or other network devices

together to form a single network segment where all devices connected can communicate with each

other. Unlike a network switch or router, a hub has no routing tables or intelligence on where to

send information, as such the hub just broadcasts all network data across each connection.

The network hub used for this experiment was an AdvanceStack hp J2600A 10 Base-T Hub-12.

Wireshark software

Wireshark is a free and open-source multi-platform packet sniffing and analysing tool used for net-

work troubleshooting, software and communications protocol development and education. It allows

data examination from a live network or from a capture file on disk [32].

As a packet sniffer, Wireshark is itself passive as it only observes messages being sent and re-

ceived by applications and protocols running on a network computer, but never sends packets

itself. Similarly, received packets are never explicitly addressed to the packet sniffer. Instead, a

packet sniffer receives a copy of packets that are sent/received from/by application and protocols

executing on a computer.

The second component of Wireshark is the packet analysing ability, which displays the contents of

all fields within a protocol message. In order to do so, Wireshark understands the structure of all

messages exchanged by protocols.

In this study, Wireshark was used as a network sniffing software to expose some confidential network

configuration information.
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Ettercap Software

Ettercap is a multipurpose sniffer/interceptor/logger for switched LANs [33]. It is a versatile net-

work manipulation tool. It uses its ability to easily perform man-in-the-middle (MITM) attacks in

a switched LAN environment as the launch pad for many of its other functions.

Once Ettercap has inserted itself in the middle of a switched connection, it can capture and examine

all communication between the two victim hosts, and subsequently take advantage of the network

elements by performing some attacks such as character injection, packet filtering, automatic pass-

word collection for many common network protocols and killing of any connection.

In this experimentation, Ettercap was used to perform the Man-In-The-Middle attack on the target

host nodes.

4.1.4 Testing Parameters

In order to accomplish the goal for this study, the investigation had to accurately evaluate the

security vulnerabilities of a SIGTRAN network to adversities which would render the once closed

SS7 signaling network open for attacks.

This study was based on a hacker having already obtained access into the internal packet-switched

network of an operator which was made possible through so many ways like being assisted by

disgruntled employees as well as remote attacks through compromised network elements such as

IP-SS7 SGs.

However, it must be noted that the tests in this simulation were done under ideal and controlled

laboratory environment as a result the results obtained may slightly differ to the ones that can be

obtained from a live network environment.

The tests which were performed on the simulated SIGTRAN system to ascertain the vulnerabilities

of IP networks to cyber-attacks were done in the following order:

51



Network IP Sniffing Test

Network sniffing is a passive security threat in which a machine separate from the intended desti-

nation reads data on a network. Passive security attacks are those that do not alter the normal

flow of data on a communication link or inject data into the link. Sniffing threats target the lower

layers of the networking infrastructure [34].

In this test, using Wireshark as sniffer software, the experiment aimed at uncovering some vi-

tal network information such as the IP addresses of remote network interfaces of the MTU and

MTR, IP routing information and sequence numbers assigned to bytes on a TCP connection. Any

knowledge of this information can be used by the malicious intruder in attacking the security of

the network elements.

This experiment would assist in proving that the security of the SIGTRAN signaling network com-

ponents is compromised through the IP network hence rendering SS7 signaling messages vulnerable

to cyber-attacks.

Network Packet Capturing and Analysis Test

The aim of this test was to capture and analyse all the data packets that pass through the SIG-

TRAN network between the two distant target SIGTRAN network nodes. The test software for

this experiment was also Wireshark.

The information of interest in this experiment will include the heart beat signaling messages be-

tween the MTU and the MTR, The type of protocol used between the two signaling nodes and the

actual message content (MSU) sent between the two nodes.

This experiment would prove that both the security and privacy of the network users is com-

promised as a third party whose messages are not intended for is able to display and read them.
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Man-In-The-Middle (MITM) Attack Test

This test was performed using Ettercap packet manipulation software and was aimed at demon-

strating how an attacker can destabilise a network connection and perform a Denial of service (DoS)

attack on the users between any two network’s target nodes.

This test followed the Network IP sniffing test described above. Once the IP addresses of the

target hosts were known through IP sniffing, the attacking node was configured with a static IP

address of the same range as the target hosts. The attacking node then positioned itself as a router

between the two target hosts of interest.

Using Ettercap, two attack scenarios were performed. One was the Address Resolution Proto-

col (ARP) poisoning and the other one Network Connection Killing.

In ARP poisoning, instead of routing the packets from one target host to the other, the hack-

ing machine acting as a router drops those packets hence causing intermittent network time out.

Sometimes a hostile attacker can decide to terminate a network connection of his victims and this

can also be done using the network killing capabilities of Ettercap.

4.2 Conclusion

This chapter serves as a basic introduction to the subject of the vulnerabilities of SS7 signaling

messages to cyber-attacks when transported over IP in the technologically merging environment

and validates the need for this investigation by providing an overview of the problem statement,

the objectives of the research, the methodology and configuration of the devices used in the exper-

imentation that investigates the problem.

The previous work done on the subject shows that a vast amount of research effort has been put

into the investigation of SIGTRAN transportation technology, however much of this focused on the

performance and reliability characteristics of SIGTRAN’s underlying transport protocol of SCTP.

This chapter therefore validates the need for more research focus and further investigations into

the security aspect of the SIGTRAN technology as the interworking between SS7 and IP networks

become more relevant now than ever before.
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Chapter 5

Experimentation

5.1 Introduction

An experiment is a test or investigation which is carried out with the goal of verifying, refuting or

establishing the validity of a hypothesis. The experiments carried out in this study were aimed at

providing evidence for or against the fact that IP networks render SS7 signaling messages exposed

and vulnerable to cyber-attacks. These experiments were done by using a Dialogic SIGTRAN net-

work simulation tool. This chapter therefore describes in details the system setup and configuration

for this simulated Dialogic SIGTRAN network.

The experiment simulated an IP (whether private/public) network being used to backhaul traffic

between two island SS7 networks using SIGTRAN protocols. Two peer SIGTRAN servers (nodes)

were therefore deployed on either end of the SS7/IP network interconnection point. Much as the

signaling points are identified by point codes in SS7 networks, the SIGTRAN nodes are identified

by IP addresses. In order to demonstrate the signaling message exchanges between the two nodes,

simple message services (SMSs) were exchanged between the two SIGTRAN nodes as SIGTRAN

networks can be used to offload SMSs from the heavily overloaded SS7 signaling networks [16].

The IP addresses, signaling protocols and SMS messages being exchanged between the two SIG-

TRAN nodes were targeted and collected by a simulated hacking node connected into the IP

network. Using this information, the attacker was able to launch cyber-attacks to the SS7 signaling

messages and consequently brought down the whole SS7 network.
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For the analysis, different testing conditions as discussed in subsection 4.1.4 on page 51 were

considered.

5.2 Simulation Test Network Setup and Configuration

In setting up the Dialogic SIGTRAN simulation network two end computers configured as end

point SIGTRAN network (servers) nodes A and B and a hacking computer connected to the same

network through a network hub were used, as shown in Figure 4.2, subsection 4.1.3 on page 48. The

two SIGTRAN nodes were running Dialogic SIGTRAN development application software and acted

as the Signaling gateways on either end of the SS7/IP interconnection points and were identified

on the network using the Class C private network addressing system.

5.2.1 Dialogic SIGTRAN Network Setup and Configuration

The dialogic software required to successfully run the simulated experiment was downloaded from:

http://www.dialogic.com/support/helpweb/signaling/software3.htm. and included:

1. Dialogic SS7 Development Package

2. Dialogic M2PA, MTP3, SCCP and TCAP, MAP host binaries, for SIGTRAN configuration

Having installed the SS7 development software and copying all the required SIGTRAN protocol

binaries such as the M2PA, M3UA MAP, TCAP, SCCP, etc. on the two SIGTRAN end nodes, the

system and configuration files were edited in order to update the IP addresses together with the

local and remote point codes. Node A was configured to initiate the associations and it is known as

the MAP Test Utility (MTU) while node B responds to those association requests and is referred

to as the MAP Test Responder (MTR).

Once the connection between the two SIGTRAN nodes was established, the MTU at constant

intervals sent handshake (HEARTBEAT) signaling messages through to the MTR and the mes-

sages were always acknowledged back whith HEARTBEAT ACK indicating that the connection

between the two nodes was healthy.

The Dialogic SIGTRAN protocols using MTU and MTR applications were used to demonstrate

the sending of MAP services in a GSM network.
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5.2.2 Network Connectivity

A class C Addressing of the TCP/IP network configuration was used to connect the network devices

together.

5.2.3 Sending Dialogue Messages between SIGTRAN Nodes

There was always an exchange of signaling handshake messages and other SIGTRAN protocols

between the MTU and the MTR once the Dialogic application software was activated on both sides

of the SIGTRAN end nodes.

Besides analysing only the HEARTBEAT and signaling protocol messages between the MTU and

the MTR terminals during the experimentation, Short Message Service (SMS) messages were ex-

changed between the two signaling nodes. SMS messages are part of the MAP services in 3G

networks and were transported over the IP network using SIGTRAN technology.

In using MTU to send SMS dialogue messages to MTR and vice versa, certain minimum mandatory

criteria must first be met for the messages to successfully reach their intended destination and these

are [35]:

• MTU mode operation - service being offered and is indicated by the letter “d” followed by

any numeric symbol between 0 and 3.

• Remote point code - destination point code indicated by letter “a”

• Local point code - originating point code indicated by letter “g”

• International Mobile Subscriber Identity (IMSI) - indicated by letter “i”

• Short message - the text to be sent as short message indicated by letter “s”

With reference to subsection 2.1.5, the SS7/SIGTRAN protocol binaries used to complete the

message transfering action above between the two peer signaling nodes are MAP, TCAP, SCCP,

M2PA and SCTP.
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5.3 TCP/IP Network Activity Sniffing Test

This test assessment was aimed at highlighting the security deficiencies of IP networks in transport

SS7 signaling messages through the exposure of some private and confidential network information

which is supposed to be known only to a few top network administrators and managers of Mobile

Network Operators (MNOs). Through network sniffing the experiment aimed to demonstrate that

critical network information can easily be in public domain by using the freely available network

sniffing software tools from the internet such as Wireshark.

The confidential network information that was targeted in this test was the IP addresses of all

the host nodes.

The results of this test would go a long way in providing evidence on whether IP networks are

secure enough to transport SS7 signaling messages or IP networks render SS7 signaling messages

vulnerable to cyber-attacks by exposing the critical network configuration information of the SIG-

TRAN nodes, the information of which can be used to launch further attacks against SS7 networks.

The experimental equipment setup for this test is shown in Figure 5.1.
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Figure 5.1: Network Sniffing Experiment Setup

Test Procedure

• The two SIGTRAN nodes A and B were configured with IP addresses 192.168.0.1 and

192.168.0.2 respectively.

• Node C represented a hacker who found access and connected in promiscuous mode to the

same TCP/IP network pool as the two SIGTRAN nodes A and B which were transporting

SS7 signaling messages over an IP network.

• Using Wireshark network sniffing software installed on his computer, the attacker sniffed the

network to monitor the network activity between different network components and obtained

critical network information such as the IP addresses of the different network host nodes.

• A Wireshark live capture of the network activity was taken and analysed.
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5.3.1 Results Obtained

The results of this experiment which were extracted from a Wireshark screenshot (Appendix A)

are shown in Table 5.1 below.

No. Time Source Destination Protocol Length Info

513 121.209087 192.168.0.1 192.168.0.2 SCTP 86 HEARTBEAT

514 121.209329 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT ACK

515 121.303826 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT

516 121.304158 192.168.0.1 192.168.0.2 SCTP 86 HEARTBEAT ACK

517 122.425905 192.168.0.1 192.168.0.2 SCTP 86 HEARTBEAT

518 122.426152 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT ACK

519 122.489419 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT

520 122.489754 192.168.0.1 192.168.0.2 SCTP 86 HEARTBEAT ACK

Table 5.1: Extracted Results of Wireshark TCP/IP Network Activity Sniffing Test

The results in Table 5.1 clearly display the following information:

1. Any data packet sent between the source node and the destination node was identified by the

following fields:

Frame number - number of packet transmitted since the beginning of the capture

Time - time ”in seconds” a packet was sent since the beginning of capture

Source - IP address of the originating node for the packet

Destination - IP address of the destination node for the packet

Protocol - digital rule for data exchange between two devices

Length - the frame length of the packet in bytes

Information - the type of information sent

2. There were only two host IP addresses associating (communicating) that were constantly

exchanging roles of source and destination and vice versa. One host IP was 192.168.0.1 and

the other host IP was 192.168.0.2.

3. The kind of information that was reciprocally exchanged between the two IP hosts was the

handshake “HEARTBEAT” and “HEARTBEAT ACK” signaling messages.

4. The signaling protocol that was used for message exchanges between the two hosts was Stream

Control Transport Protocol (SCTP) which is an underlying reliable transport protocol binary

for SIGTRAN networks above the IP layer.
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The IP addresses obtained in the test results for this experiment compared favourably to the ac-

tual IP network configuration information obtained from the two SIGTRAN hosts’ administrator

command prompt window by running the command “ipconfig”, shown in Appendices B and C.

From the IP address information captured in the Wireshark screenshot from the test results and

having compared the information to the actual network configuration data for the two SIGTRAN

host nodes; this experiment successfully demonstrated that SS7 is really vulnerable to cyber-attacks

as confidential network configuration information such as IP addresses could easily be exposed

through sniffing the IP network.
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5.4 Network Packet Capturing and Analysis Test

Using the network sniffing and data capturing capabilities of Wireshark software, this experiment

was aimed at capturing, displaying and analysing any MAP based services exchanged between the

two end SIGTRAN nodes over the IP network.

This experiment involved exchanging of SMS dialogue messages (since SMS is part of MAP services)

between the two SIGTRAN end nodes, subsection 5.2.3 on page 56. Two filter options, SCTP and

SMS GSM, of the Wireshark were used in order to display only the text messages. The contents

of these dialogue messages were then analysed.

This experiment assessment was aimed at testing both the security and privacy issues of IP net-

works in transporting SS7 signaling messages and the test results of the experiment would assist in

providing evidence, on whether the security and privacy of information of the SS7 network users

can easily be compromised when SS7 networks interconnect with IP networks.

Figure 5.1 on page 58 shows the experiment setup for this test.

Test Procedure

• During this experiment, there were exchanges of SMS text messages between node A and

node B using the procedure described in subsection 5.2.3. In total eight SMS conversations

were exchanged between the nodes during the duration of the experiment with each node

sending four of the messages to the other node.

• A simulated network hacker using node C was connected to the same TCP/IP network as the

two SIGTRAN nodes A and B which were exchanging SS7 signaling and SMS text messages

over IP.

• Using Wireshark network sniffing software installed on the intruder’s computer, the attacker

sniffed the network and captured all network activities which were taking place between the

two SIGTRAN nodes. The attacker then displayed and analysed the information.

• Having identified some MAP based protocols in the captures during the analysis, the attacker

filtered the MAP based protocols by setting up two filter options of SCTP and GSM SMS in
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the Wireshark filter option window.

• The filtered MAP messages were dissected further to get to the content of the information

which was being exchanged between the end signaling nodes.

• The Wireshark live captures of the filtered and analysed GSM Message exchanges between

the two end nodes were presented.

5.4.1 Results obtained

The test results for this experiment extracted from the Wireshark screenshot captures in Appendices

D, E, F, G, H, I, J, K and L are shown in Tables 5.2, 5.3 and 5.4.

SCTP Capture Filter Option Results

No. Time Source Destination Protocol Length Info

1856 391.318295 192.168.0.1 192.168.0.2 SCTP 86 HEARTBEAT

1857 391.318542 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT ACK

1858 391.510624 2 1 GSM SMS 254 invoke forwardSM

1859 391.511255 192.168.0.1 192.168.0.2 SCTP 62 SACK

1860 391.521655 192.168.0.1 192.168.0.2 M2PA 78 User Data

1861 391.521903 192.168.0.2 192.168.0.1 SCTP 62 SACK

1862 391.529858 1 2 GSM MAP 154 returnResultLast

1863 391.530106 192.168.0.2 192.168.0.1 SCTP 62 SACK

1864 391.586059 192.168.0.2 192.168.0.1 M2PA 78 User Data

1865 391.586406 192.168.0.1 192.168.0.2 SCTP 62 SACK

1867 392.722392 192.168.0.1 192.168.0.2 SCTP 86 HEARTBEAT

1868 392.722640 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT ACK

1869 392.802503 192.168.0.2 192.168.0.1 SCTP 86 HEARTBEAT

Table 5.2: Extracted Results of Wireshark SCTP Capture Filter Option

The information in Table 5.2 is an extract from a Wireshark capture screenshot in Appendix D,

having set SCTP as a Capture Option in the capture filter of the Wireshark and displays the

following:

1. There were two Hosts associating on the network with IPs 192.168.0.1 and 192.168.0.2.

2. There were different protocol types sending different information between the two nodes:

• SCTP – Used for handshake signaling information (HEARTBEAT and HEARTBEAT ACK).
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• M2PA- Used for sending user datagrams in a peer-to-peer Host configuration of the

SIGTRAN nodes.

• GSM MAP-GSM based Application used for sending the MAP services.

• GSM SMS-The Actual MAP service sent between the two Hosts (GSM SMS Text mes-

sage).

3. The Selective Acknowledgement (SACK) feature of the SCTP, which is a congestion control

mechanism, was activated due to the varying lengths of the datagrams received and the

different protocols being exchanged between the two Hosts.

Through the use of SCTP capture filter the test was able to capture all the MAP related protocols

involved in the sending of SMS Text messages starting from the handshake signaling messages

between the two nodes, the M2PA user adaptation protocol used which shows that the nodes are

connected in a peer-to-peer configuration and also the kind of MAP service (GSM SMS) being

exchanged between the two nodes.

GSM SMS Capture Filter Option Results

No. Time Source Destination Protocol Length Info

280 58.591333 1 2 GSM SMS 250 invoke forwardSM

397 82.402164 2 1 GSM SMS 218 invoke forwardSM

741 159.858250 1 2 GSM SMS 254 invoke forwardSM

1069 230.307168 2 1 GSM SMS 246 invoke forwardSM

1450 308.037542 1 2 GSM SMS 230 invoke forwardSM

1547 330.815084 2 1 GSM SMS 242 invoke forwardSM

1730 369.367199 1 2 GSM SMS 258 invoke forwardSM

1858 391.510624 2 1 GSM SMS 254 invoke forwardSM

Table 5.3: Extracted Results of Wireshark GSM SMS Capture Filter Option

The information in Table 5.3 is an extract from a Wireshark capture screenshot in Appendix E

of the first captured GSM SMS Text message, having set GSM SMS as a Capture Option in the

capture filter of the Wireshark and displays the following:

1. Only GSM SMS were filtered and displayed.

2. There were eight SMSs conversations which were exchanged between Host 1 and Host 2.
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3. Whenever a particular message was selected, the content of that particular message was

displayed in the second Wireshark window under User Data option.

Table 5.4 below displays the contents of all the eight Text messages exchanged between the two

Hosts as captured by Wireshark in appendices E, F, G, H, I, J, K and L.

Frame No. Source Destination SMS Text Content

280 1 2 ## WHY STUDY VULNERABILITIES OF SS7
SIGNALING MESSAGES TO CYBER ATTACKS?
##

397 2 1 ###### IT IT BECAUSE SS7 IS HERE TO STAY

741 1 2 ########## SS7IS HERE TO STAY? WHT
THIS HYPE ABOUT NEXT GENERATION NET-
WORKS?

1069 2 1 ###### THOUGH CONSIDERED A LEGACY
SYSTEM, SS7 WILL INTERWORK WITH THE IP

1450 1 2 ########## SO HOW ARE THESE TWO
TECHNOLOGIES MERGING?

1547 2 1 ###### BY USING SIGTRAN, WHERE SS7
MESSAGES ARE TRANSPORTED OVER IP

1730 1 2 ########## AND YOU THINK THE IP NET-
WORKS POSE SECURITY RISKS OF CYBER AT-
TACKS TO SS7?

1858 2 1 ###### A BIGGER CYBER THREAT OFF
COURSE, UNLESS THE IP NETWORKS ARE SE-
CURE ENOUGH

Table 5.4: Content of Captured Messages

The number and content of the Wireshark captured Text messages displayed in this experiment are

seen to be exactly the same as the messages which exchanged between the two SIGTRAN nodes

as seen from the MTR print screenshots of each node in Appendix M and Appendix N. Appendix

M shows four received SMS Text messages on Host 2 which were sent from Host 1 and Appendix

N shows received SMS Text messages on Host 1 which were sent from Host 2.

From the results of this experiment, it can be deduced that; unless proper security measures are de-

ployed throughout a SIGTRAN network, the privacy of both the SS7 signaling network information

and subscriber data is compromised in an interconnected network infrastructure setup.
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5.5 Man-In-The-Middle (MITM) Attack Test

This experiment was a follow up to the two previous experiments and aimed at demonstrating

how a malicious attacker can use the vital network information obtained through network sniffing

to his advantage and launch a series of attacks aimed at destabilising the operations of the network.

In this experiment Ettercap network packet manipulating software was used to perform the denial

of service (DoS) attack on the IP network transporting SS7 signaling messages using SIGTRAN

protocols.

The results of this experiment would assist in demonstrating that IP networks are susceptible

to cyber-attacks. This experiment provided more evidence to argue that IP networks in their en-

tirety are not secure enough to transport SS7 signaling messages.

Shown in Figure 5.2 is the setup for the experiment.

Figure 5.2: Man in the Middle Experiment Setup
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Note:

In an IP network setup any configurable network device is identified on the network by two ad-

dresses:

• Internet Protocol (IP) address - which is associated with networking software and is normally

assigned to a particular network device by the network administrator or automatically using

the Dynamic Host Configuration protocol (DHCP) server.

• Media Access Control (MAC) address – physical or hardware address which is typically tied

to a device’s network interface adapter. Each network device has a unique MAC address

which is hard wired to the device’s network interface card.

The IP address is translated into the MAC address using the Address Resolution Protocol (ARP).

With reference to Figure 5.2, the MAC addresses for the three network computers (obtained by

running a command “getmac” in the command prompt window on each computer) were as follows:

SIGTRAN Node A: MAC Address - 00:25:b3:d0:47:df (Hewlett d0:47:df)

SIGTRAN Node B: MAC Address - 00:25:b3:d0:4f:b1 (Hewlett d0:4f:b1)

Attacker Node C: MAC Address - 00:23:7d:c9:ed:94 (Hewlett c9:ed:94)

Test Procedure

• Using the network IP addressing information obtained through sniffing with Wireshark, the

attacker’s computer was configured with a static IP of the same range as the target nodes.

The intruder’s computer was assigned an IP address 192.168.0.3.

• While equipped with Ettercap application software for network packet manipulation, the

attacker was ready to launch attacks on his target nodes.

• The attacker, using Ettercap, scanned the whole network to try and identify the network

hosts so that from the list of hosts, two hosts would be targeted for the Man In The Middle

attack. Two hosts were identified and the host IP addresses were displayed.

• Once the targets were identified, the intruder’s computer was positioned between the two

target hosts.
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• Finally the malicious intruder launched an attack on the victims through ARP poisoning.

• The communication between the two victim host SIGTRAN nodes during the ARP poisoning

test was observed and captured on Wireshark.

5.5.1 Results Obtained

The test results for this experiment extracted from the Wireshark screenshot capture in Appendix

M are shown in Table 5.5 on page 68.

The information in Table 5.5 is an extract from a Wireshark capture screenshot in Appendix O

of the SIGTRAN network association activity between Host 1 and Host 2 immediately after the

attacker had launched the ARP Poisoning MITM attack and shows that:

1. Frames number 9035, 9036 and 9037 showed a healthy SCTP handshake communication

between Host 1(192.168.0.1) and Host 2(192.168.0.2) exchanging HEARTBEAT signaling

messages.

2. In frame 9038 Host 2 sent a ping request to Host 1 using the Internet Control Message

Protocol (ICMP) and likewise Host 1 to Host 2 in frame 9039.

3. In frame 9040 the two-way ARP poisoning had been launched. The Attacker Node C (MAC

Address 00:23:7d:c9:ed:94), using ARP, sent a false broadcasting message to Host 1 (MAC

address 00:25:b3:d0:47:df) advising that Host 2 (IP address 192.168.0.2) was now at a new

MAC address 00:23:7d:c9:ed:94 while in essence the new MAC address was the attacker’s own

address.

4. Similarly, the attacker in frame 9041 sent a false broadcasting message to Host 2 (MAC

address 00:25:b3:d0:4f:b1) advising that Host 1 (IP address 192.168.0.1) was now at a new

MAC address 00:23:7d:c9:ed:94 which in fact was the attacker’s own MAC address.

5. The attacker then was established as the Man-In-The-middle (MITM) between the two host

nodes A and B where all the data packets between the nodes had to pass through the attacker.

6. With the new IP and MAC address reconfigurations, Host 1 and Host 2 continued exchanging

information without knowing that the information was being directed to the MITM.
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7. The MITM , instead of forwarding to the intended destination, discarded all the data packets

received from either host as a result the data packets from one host could not reach the

other host therefore an error message “Destination unavailable (Protocol unreachable)” was

reported using ICMP.

8. After several attempts to re-establish the SCTP association between the two hosts, the Dia-

logic application finally ABORTED.

After the association had aborted, Host node 192.168.0.1 (MTU) continuously tried to initiate the

association with Host node 192.168.0.2 (MTR) back through repeated “CLOSED” and “CON-

NECTING” and this carried on until the ARP poisoning attack was stopped as shown in a print

screen of the Dialogic SIGTRAN application terminal shown in Appendix P.

This experiment has demonstrated that a hacker with basic hacking skills and using simple and

available hacking software from the internet can destabilise the operations of a SIGTRAN network.

5.6 Conclusion

The experimental tests carried out in this study exposed serious security concerns of the IP networks

that support SS7. These IP network security weaknesses raise even more dilemma to thousands of

telecommunications network operators who still have many legacy TDM-based SS7 systems as the

IP networks are used to transport the once highly secured SS7 signaling messages using SIGTRAN

protocols in a converging world.

Through the use of freely available sniffing and packet manipulating software packages from the

Internet, the experiments have demonstrated that a malicious cyber-attacker, once found access

into either a private or public IP network transporting SS7 signaling messages, can bring down

the whole SS7 signaling network. The test results obtained in this study highlight the need for

tighter security measures for SIGTRAN network nodes and the IP network as a whole if SS7 over

IP transportation is to be successful. Some of the security measures are discussed in section 6.3.
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It must be stated however that the SIGTRAN network deployment in a live environment comes

about with many network security measures and solutions from the system suppliers, IT network

security companies or off-the-shelf solutions to try and secure the SIGTRAN networks. Conse-

quently professional hackers are constantly adjusting their tactics to try and breach any network

security solutions a network operator might have deployed.
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Chapter 6

Mitigating Factors against SIGTRAN

Cyber-Attacks

6.1 Introduction

Presently, many Mobile Network Operators are interconnected through IP infrastructures, as they

are cheaper and more efficient than traditional SS7 links, by means of new protocols based on

IP layer like SIGTRAN. This new context exposes the mobile networks’ SS7 signaling networks

to new security threats. The results obtained from the experimentation tests carried out in this

study confirm the IP networks’ security vulnerabilities to cyber-attacks. It is therefore imperative

that proper IP network security programs are implemented before any SIGTRAN deployments are

effected by the network operators.

The implementation of network firewalls does not always block or analyse SCTP traffic and tra-

ditional Intrusion Detection Systems (IDSs) do not monitor SCTP traffic. Consequently, even

simple attacks like scanning can go undetected. Implementation of appropriate security measures

is mandatory to prevent malicious attacks to SIGTRAN networks.

Despite the mandatory SIGTRAN implementation security measures of secure tunnels based on

either IP security (IPSEC) or Transport Layer Security (TLS) which are recommended to be es-

tablished between SIGTRAN nodes in order to provide the equivalent of an isolated link such as

used in a traditional SS7 network, the major difficulties to the implementation rest on the fact that
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all the involved systems should implement security correctly.

This chapter gives a brief description of the vulnerabilities and the possible attacks against SIG-

TRAN stack layers and preventative measures to such kinds of attacks are proposed.

6.2 SIGTRAN Targeted Attacks

The most common kinds of cyber-attacks to SIGTRAN based networks target the two lower trans-

port levels of the SIGTRAN protocol stack, the IP and the SCTP. This is so because the upper

layer protocols can only offer their services through the lower transport layers to the other end

Signaling node.

The network IP sniffing and spoofing, packets capturing and man in the middle attacks demon-

strated in Chapter 5 above are all examples of both the passive and active attacks that can target

the SIGTRAN networks in order to disrupt services to network users.

Some of the attacks that affect SIGTRAN networks include but are not limited to:

Flooding Attack

Flooding is an example of DoS attacks where the attacker intentionally floods a particular node

with unnecessary packets aimed at monopolising the resources of the victim host server to deprive

the legitimate users of those resources. Hosts in SIGTRAN are unable to stop packets addressed

to them. Once the host’s network link becomes congested, the IP router responds to the overload

by arbitrarily dropping packets.

A known example of flooding attack is the SYN Flooding. Normally in any TCP IP associa-

tion, there is a three-way handshake (exchange of signaling messages) between the client and the

server [42]. A client requesting services sends a Synchronise (SYN) message to the server and the

server acknowledges with a SYN-ACK (Synchronisation Acknowledgement) message and lastly the

client acknowledges back to the server with ACK message.
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In SYN flooding attack, the client does not respond with ACK message back to the server once

it receives the acknowledgement from the server. As a result the server will hold on for a longer

period waiting for the client’s acknowledgement hence tying the resources which could have been

used by legitimate users.

Address Camping Attack

Also known as address stealing or squatting attack, this is a type of DoS attack based on the sharing

of an IP address between two endpoints in an SCTP multi-homing scenario. In this kind of attack,

the attacker knows in advance the IP address and the port used by the victim through IP sniffing

and spoofing of the network but the port, if not already known, is guessed through brute forcing

over 216 possible values.

Figure 6.1: Address Camping Attack [43]

As seen from figure 6.1 above, Attacker A prevents a legitimate Client C from setting up an

association with the Server B declaring the victim IP address (Address C) as a secondary IP

address in the INIT message and the same port used by Client C. When Client C tries to create

an association with the Server B, there will be an address conflict between the two associations

(A-B and C-B) and the Server B will reject the INIT from Client C and respond with an ABORT

message [43].

73



Bombing or Amplification Attack

This is a form of a Distributed Denial of Service (DDoS) based on a mechanism that causes an

arbitrary SCTP endpoint to amplify (in number and/or size) packets sent to a victim. SCTP can

suffer from several types of this attack.

In this kind of attack, the attacker sends packets containing the victim’s address as the source

address and an INIT chunk to a large number of SCTP endpoints. Each endpoint then replies with

a packet containing an INIT-ACK chunk to the victim, which is most likely larger than the packet

containing the INIT which will bombard the victim from many SCTP endpoints [37].

Association Redirection Attack

This attack allows an attacker to wrongly set up an association to a different endpoint [49]. This

is an unexpected feature of the SCTP multi-homing and invoking this feature does not constitute

an attack in itself but if not well understood by application designers, it could be exploited as a

building block in application-level attacks.

6.3 Preventative Measures to SIGTRAN Targeted Attacks

There are many ways that can be suggested as the counter measures against the cyber-attacks

targeting the SIGTRAN networks. However, this study concentrated on the solutions to the cyber-

attacks highlighted in section 6.2. It must be stated though that some of the counter measures

are generic and can apply to so many scenarios of attacks while others are specific to particular

problems of intrusion.

The threat of sniffing comes from someone installing sniffing software on a machine normally on

the network, as someone taking a sniffer into a room and plugging it into the network connections

available there, or even installing an unauthorized network connection to sniff. To counter these

options, the security of the operating system itself must be reliable to prevent the execution of

unauthorized sniffing. Also the personnel who have access to the rooms in which network compo-

nents are located must have high integrity and be trustworthy as well as deploying physical security

to prevent untrustworthy and unauthorised people from gaining access to the network and server

rooms.
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As an improvement to the traditional TCP/IP, the SCTP layer of the SIGTRAN protocol provides

natively some security features such as resistance against blind denial of service attacks (flooding,

masquerading and improper monopolization of services) using two new features, state Cookies and

the verification tag [38].

State Cookies are used to minimize the risks of resource exhaustion, guard against source ad-

dress spoofing, and prevent connection hijacking and Distributed Denial of Service (DDoS) attacks

[50]. State cookies are a four-way hand shake procedure implemented in SCTP. This new feature

prevents attackers from establishing connections without using them and in that way hindering

legitimate users from establishing a connection.

A verification tag is an SCTP packet header containing a random 32-bit value that indicates

whether a packet belongs to a certain association. If it does not, it is dropped. A new Verification

Tag value must be used each time the endpoint tears down and then re-establishes an association

to the same peer. This parameter has been introduced to prevent replay and man-in-the-middle

attacks and to reduce the risk of off-path spoofing attack. Despite these new features, several other

attacks could still be carried out against SCTP layer of the SIGTRAN Protocol stack [38].

Network spoofing and tampering together with some passive and active attacks can be prevented

by using IPSEC tunnels at IP layer [51]. It must be noted however that the usage of IPSEC could

raise some issues when SCTP multi-homing is implemented where an SCTP endpoint could handle

more than one IP address and consequently more than one IPSEC tunnels should be set-up.

To avoid the bombing or amplification attack, an SCTP endpoint should not send multiple packets

in response to a single packet. The chunks not fitting in this packet should be dropped [38].

Some other attack prevention counter measures relate to the overall IP network configuration

and security features such as deploying network firewalls, network segmentation and partitioning

using network routers, bridges and switches.
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6.4 Conclusion

SIGTRAN networks have now become very popular with many mobile network operators because

of the many operational and social benefits that they offer. This being the case though, there are

so many cyber risks that come along through the use of the SIGTRAN transport protocol suite

that if not properly managed can lead to devastating effects to both the network operators and the

service users.
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Chapter 7

Conclusions and Recommendations

7.1 Introduction

The purpose of this study was to provide an answer to the key research question: “Are SS7 signaling

messages vulnerable to cyber–attacks due to interconnection with IP networks?” In order to achieve

this several experimental tests were conducted on a simulated SIGTRAN network to establish if

the security and confidentiality of SS7 signaling messages was compromised as they get transported

over IP networks.

7.2 Key Findings and Conclusions

After a thorough analysis of the results which were obtained from all the three tests carried out

in this study it can be argued with certainty that “YES”, IP networks pose greater risks of cyber-

attacks to SS7 signaling networks in SIGTRAN interfaced interconnected network environment.

Vulnerabilities in SS7 based mobile networks allow an intruder with basic skills to perform danger-

ous attacks that may lead to direct subscriber financial loss, confidential data leakage or disruption

of communication services.

The tests in this study revealed the following:

• Confidential SIGTRAN network configuration information such as node IP addresses can

easily be exposed by a passive cyber attacker using network sniffing software like Wireshark.

• SIGTRAN network activities and protocols being exchanged between nodes can easily be
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monitored using the network sniffing tools.

• It is possible to capture, display and analyse the SS7 signaling messages being exchanged

between SIGTRAN network nodes.

• The information obtained from passive cyber-attacks such as IP addressing can be used by

an intruder with malicious intentions to launch a DoS attack to a SIGTRAN node on the

network.

The results from the different tests carried out in this study highlighted the risks of exposure to

adversaries of the highly confidential SS7 network information as the SS7 signaling messages are

being transported between island SS7 networks over IP networks using SIGTRAN. Although con-

sidered as being a passive kind of cyber-attack, the information collected through network sniffing

such as the source and destination IP addresses of the associating nodes can be used to plan and

launch subsequent attacks to the SIGTRAN nodes.

The magnitude of the cyber risks as demonstrated in this study cannot be underestimated. Know-

ing that the test tools used in the experiments for this study are freely available on the internet,

it is scary to imagine what hacking software professional network hackers have at their disposal to

successfully accomplish their missions.

It must be noted that there is no “One size fits all” kind of solution when it comes to secur-

ing the SIGTRAN networks against different kinds of cyber-attacks. Even though it is mandatory

for all SIGTRAN nodes to support IPSEC in the IP transport layer as addressed in the Internet

Draft “Security Considerations for SIGTRAN Protocols” [39], this becomes a problem in the nodes

which are configured in a multi-homing mode. Therefore the network administrators must always

remain vigilant against any potential sources and forms of attacks.
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7.3 Recommendations and Future Work

The results show that there are many security risks in migrating SS7 based services to IP. As

with any other network security program, there is no silver bullet that can eliminate all potential

cyber threats to the SS7 network which might arise as a result of the interconnection with the IP

network. A full-blown attack on mobile network’s SS7 network infrastructure has the potential

for catastrophic results that can affect multiple audiences and in today’s hyper connected world it

could be viewed as a national infrastructure attack.

There is no turning back in as far as network convergence is concerned. In view of this, this

study recommends the following:

• Mobile service operators in conjunction with the IP network providers have to invest in

security at the same rate as capacity.

• Mobile service providers who were used to isolated and secure SS7 networks must adapt to

changes in the threat landscape, and be prepared to ensure network availability.

• Since new threats may have potential for catastrophe, the mobile network providers should

adapt security programs and procedures to withstand those threats, while assuring the same

level of service and preventing any major service outages.

• Vetting of personnel members who are entrusted with taking care of critical network infras-

tructure to avoid sabotage.
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Appendix A

Network IP Capture Screenshot

Figure A.1: Screenshot of Wireshark Network IP Capture
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Appendix B

MTU Server Network Configuration

Screenshot

Figure B.1: MTU Server Network Configuration Screenshot
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Appendix C

MTR IP Network Configuration

Screenshot

Figure C.1: MTR IP Network Configuration Screenshot
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Appendix D

SCTP Capture Filter Screenshot

Figure D.1: Screenshot of the Wireshark SCTP Capture Filter
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Appendix E

GSM SMS Text Message 1 Screenshot

Figure E.1: GSM SMS Text Message 1 Wireshark Screenshot
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Appendix F

GSM SMS Text Message 2 Screenshot

Figure F.1: GSM SMS Text Message 2 Wireshark screenshot
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Appendix G

GSM SMS Text Message 3 Screenshot

Figure G.1: GSM SMS Text Message 3 Wireshark Screenshot
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Appendix H

GSM SMS Text Message 4 Screenshot

Figure H.1: GSM SMS Text Message 4 Wireshark screenshot
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Appendix I

GSM SMS Text Message 5 Screenshot

Figure I.1: GSM SMS Text Message 5 Wireshark screenshot
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Appendix J

GSM SMS Text Message 6 Screenshot

Figure J.1: GSM SMS Text Message 6 Wireshark screenshot
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Appendix K

GSM SMS Text Message 7 Screenshot

Figure K.1: GSM SMS Text Message 7 Wireshark screenshot
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Appendix L

GSM SMS Text Message 8 Screenshot

Figure L.1: GSM SMS Text Message 8 Wireshark screenshot
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Appendix M

MTR Received Messages Screenshot

Figure M.1: Screenshot of MTR Received Messages
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Appendix N

MTU Received Messages Screenshot

Figure N.1: Screenshot of MTU Received Messages
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Appendix O

Ettercap ARP Poisoning Screenshot

Figure O.1: Wireshark Screenshot of Ettercap ARP Poisoning
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Appendix P

MTU ARP Poisoning Screenshot

Figure P.1: MTU Dialogic Application Screenshot after ARP Poisoning
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