494 research outputs found

    NC Algorithms for Weighted Planar Perfect Matching and Related Problems

    Get PDF
    Consider a planar graph G=(V,E) with polynomially bounded edge weight function w:E -> [0, poly(n)]. The main results of this paper are NC algorithms for finding minimum weight perfect matching in G. In order to solve this problems we develop a new relatively simple but versatile framework that is combinatorial in spirit. It handles the combinatorial structure of matchings directly and needs to only know weights of appropriately defined matchings from algebraic subroutines. Moreover, using novel planarity preserving reductions, we show how to find: maximum weight matching in G when G is bipartite; maximum multiple-source multiple-sink flow in G where c:E -> [1, poly(n)] is a polynomially bounded edge capacity function; minimum weight f-factor in G where f:V -> [1, poly(n)]; min-cost flow in G where c:E -> [1, poly(n)] is a polynomially bounded edge capacity function and b:V -> [1, poly(n)] is a polynomially bounded vertex demand function. There have been no known NC algorithms for these problems previously

    Re-parameterization reduces irreducible geometric constraint systems

    No full text
    International audienceYou recklessly told your boss that solving a non-linear system of size n (n unknowns and n equations) requires a time proportional to n, as you were not very attentive during algorithmic complexity lectures. So now, you have only one night to solve a problem of big size (e.g., 1000 equations/unknowns), otherwise you will be fired in the next morning. The system is well-constrained and structurally irreducible: it does not contain any strictly smaller well-constrained subsystems. Its size is big, so the Newton–Raphson method is too slow and impractical. The most frustrating thing is that if you knew the values of a small number k<<n of key unknowns, then the system would be reducible to small square subsystems and easily solved. You wonder if it would be possible to exploit this reducibility, even without knowing the values of these few key unknowns. This article shows that it is indeed possible. This is done at the lowest level, at the linear algebra routines level, so that numerous solvers (Newton–Raphson, homotopy, and also p-adic methods relying on Hensel lifting) widely involved in geometric constraint solving and CAD applications can benefit from this decomposition with minor modifications. For instance, with k<<n key unknowns, the cost of a Newton iteration becomes O(kn^2) instead of O(n^3). Several experiments showing a significant performance gain of our re-parameterization technique are reported in this paper to consolidate our theoretical findings and to motivate its practical usage for bigger systems
    • …
    corecore