174,335 research outputs found

    Constraining the Number of Positive Responses in Adaptive, Non-Adaptive, and Two-Stage Group Testing

    Full text link
    Group testing is a well known search problem that consists in detecting the defective members of a set of objects O by performing tests on properly chosen subsets (pools) of the given set O. In classical group testing the goal is to find all defectives by using as few tests as possible. We consider a variant of classical group testing in which one is concerned not only with minimizing the total number of tests but aims also at reducing the number of tests involving defective elements. The rationale behind this search model is that in many practical applications the devices used for the tests are subject to deterioration due to exposure to or interaction with the defective elements. In this paper we consider adaptive, non-adaptive and two-stage group testing. For all three considered scenarios, we derive upper and lower bounds on the number of "yes" responses that must be admitted by any strategy performing at most a certain number t of tests. In particular, for the adaptive case we provide an algorithm that uses a number of "yes" responses that exceeds the given lower bound by a small constant. Interestingly, this bound can be asymptotically attained also by our two-stage algorithm, which is a phenomenon analogous to the one occurring in classical group testing. For the non-adaptive scenario we give almost matching upper and lower bounds on the number of "yes" responses. In particular, we give two constructions both achieving the same asymptotic bound. An interesting feature of one of these constructions is that it is an explicit construction. The bounds for the non-adaptive and the two-stage cases follow from the bounds on the optimal sizes of new variants of d-cover free families and (p,d)-cover free families introduced in this paper, which we believe may be of interest also in other contexts

    Linear time Constructions of some dd-Restriction Problems

    Full text link
    We give new linear time globally explicit constructions for perfect hash families, cover-free families and separating hash functions

    Uniform hypergraphs containing no grids

    Get PDF
    A hypergraph is called an r×r grid if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e.,a family of sets {A1, ..., Ar, B1, ..., Br} such that Ai∩Aj=Bi∩Bj=φ for 1≤i<j≤r and {pipe}Ai∩Bj{pipe}=1 for 1≤i, j≤r. Three sets C1, C2, C3 form a triangle if they pairwise intersect in three distinct singletons, {pipe}C1∩C2{pipe}={pipe}C2∩C3{pipe}={pipe}C3∩C1{pipe}=1, C1∩C2≠C1∩C3. A hypergraph is linear, if {pipe}E∩F{pipe}≤1 holds for every pair of edges E≠F.In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For r≥. 4 our constructions are almost optimal. These investigations are motivated by coding theory: we get new bounds for optimal superimposed codes and designs. © 2013 Elsevier Ltd

    Simple PTAS's for families of graphs excluding a minor

    Full text link
    We show that very simple algorithms based on local search are polynomial-time approximation schemes for Maximum Independent Set, Minimum Vertex Cover and Minimum Dominating Set, when the input graphs have a fixed forbidden minor.Comment: To appear in Discrete Applied Mathematic
    • …
    corecore