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Abstract

A hypergraph is called an r × r grid if it is isomorphic to a pattern of r horizontal and r

vertical lines, i.e., a family of sets {A1, . . . , Ar, B1, . . . , Br} such that Ai ∩ Aj = Bi ∩ Bj = ∅
for 1 ≤ i < j ≤ r and |Ai ∩ Bj | = 1 for 1 ≤ i, j ≤ r. Three sets C1, C2, C3 form a triangle

if they pairwise intersect in three distinct singletons, |C1 ∩ C2| = |C2 ∩ C3| = |C3 ∩ C1| = 1,

C1 ∩ C2 6= C1 ∩ C3. A hypergraph is linear, if |E ∩ F | ≤ 1 holds for every pair of edges.

In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a

similar construction gives large linear r-hypergraphs which contain neither grids nor triangles.

For r ≥ 4 our constructions are almost optimal. These investigations are also motivated by

coding theory: we get new bounds for optimal superimposed codes and designs.
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1 Sparse hypergraphs, designs, and codes

In this section we first present some previous investigations in extremal set theory on the topic

described in the abstract. Then we state our main theorem. This is followed by motivations in

coding theory and corollaries where we improve the previously known bounds for so called optimal

superimposed codes and designs. To prove the main theorem we are using tools from combinatorial

number theory and discrete geometry given in Section 2. In Section 3 we present constructions

proving the stated theorems, followed by remarks on union-free and cover-free graphs and triple

systems.

1.1 Avoiding grids in linear hypergraphs

Speaking about a hypergraph F = (V,F) we frequently identify the vertex set V = V (F) by the set

of first integers [n] := {1, 2, . . . , n}, or points on the plane R2, or elements of a q-element finite field

Fq. To shorten notations we frequently say ’hypergraph F ’ (or set system F) thus identifying F to

its edge set F . F is linear if for all A,B ∈ F , A 6= B we have |A ∩ B| ≤ 1. The degree, degF(x),

of an element x ∈ [n] is the number of hyper-edges in F containing x. F is regular if every element

x ∈ [n] has the same degree. It is uniform if every edge has the same number of elements, r-uniform

means |F | = r for all F ∈ F . An (n, r, 2)-packing is a linear r-uniform hypergraph P on n vertices.

Obviously, |P| ≤
(

n
2

)

/
(

r
2

)

. If here equality holds, then P is called an S(n, r, 2) Steiner system.

Definition 1.1 A set system F contains an a×b grid if there exist two disjoint subfamilies A,B ⊆ F
such that

• |A| = a, |B| = b, |A ∪ B| = a+ b,

• A ∩A′ = B ∩B′ = ∅ for all A,A′ ∈ A, A 6= A′, B,B′ ∈ B, B 6= B′, and

• |A ∩B| = 1 for all A ∈ A, B ∈ B.

Thus an r-uniform r × r grid, Gr×r, is a disjoint pair A,B of the same sizes r such that they cover

exactly the same set of r2 elements.

Theorem 1.2 For r ≥ 4 there exists a real cr > 0 such that there are linear r-uniform hypergraphs

F on n vertices containing no grids and

|F| > n(n− 1)

r(r − 1)
− crn

8/5.

The proof is postponed to Section 3.2.

The Turán number of the r-uniform hypergraph H, denoted by ex(n,H), is the size of the largest

H-free r-graph on n vertices. If we want to emphasize r, then we write exr(n,H). Let I≥2 be (more
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precisely I
r
≥2) the class of hypergraphs of two edges and intersection sizes at least two. This class

consists of r−2 non-isomorphic hypergraphs, Ij, 2 ≤ j < r, Ij := {Aj , Bj} such that |Aj | = |Bj | = r,

|Aj ∩Bj| = j. Using these notations the above Theorem can be restated as follows.

n(n− 1)

r(r − 1)
− crn

8/5 < exr(n, {I≥2,Gr×r}) ≤
n(n− 1)

r(r − 1)
(1)

holds for every n, r ≥ 4. In the case of r = 3 we only have

Ω(n1.8) ≤ ex3(n, {I≥2,G3×3}) ≤
1

6
n(n− 1), (2)

see in Section 1.5. The case of graphs, r = 2, is different, see later in Section 3.5.

Conjecture 1.3 The asymptotic (1) holds for r = 3, too.

— Even more, for any given r ≥ 3 there are infinitely many Steiner systems avoiding Gr×r.

— Probably there exists an n(r) such that, for every admissible n > n(r) (this means that (n−1)/(r−
1) and

(

n
2

)

/
(

r
2

)

are both integers) there exists a grid-free S(n, r, 2).

1.2 Sparse Steiner systems

There are many problems and results concerning subfamilies of block designs, see, e.g., Colbourn

and Rosa [17]. A Steiner triple system STS(n) := S(n, 3, 2) is called e-sparse if it contains no set of e

distinct triples spanning at most e+2 points. Every Steiner triple system is 3-sparse. A longstanding

conjecture of Erdős [22] is that for every e ≥ 4 there exists an n0(e) such that if n > n0(e) and n

is admissible (i.e., n ≡ 1 or 3 (mod 6)), then there exists an e-sparse STS(n). Systems that are

4-sparse are those without a Pasch configuration (4 blocks spanning 6 points, P4, {a, b, c}, {a, d, e},
{b, d, f}, {c, e, f}). Completing the works of Brouwer [10], Murphy [41, 42], Ling and Colbourn [53]

and others, finally Grannell, Griggs and Whitehead [40] proved that 4-sparse STS(n)’s exist for all

admissible n except 7 and 13.

A 5-sparse system is precisely one lacking Pasch, P4, and mitre configurations, M5, the latter

comprising five blocks of the form {a, b, c}, {a, d, e}, {a, f, g}, {b, d, f}, {c, e, g}. In a sequence of

papers (e.g., Colbourn, Mendelsohn, Rosa, and Širáň [16]) culminating in Y. Fujiwara [36] and

Wolfe [69] it was established that systems having no mitres exist for all admissible orders, except for

n = 9.

Concerning the even more difficult problem of constructing 5-sparse systems (see Ling [54])

Wolfe [68, 70] proved that such systems exist for almost all admissible n. More precisely, let A(x) :=

{n : n ≡ 1 or 3 (mod 6), n ≤ x} and S(x) := {n : there exists a 5-sparse STS(n) with n ≤ x}, then
limx→∞(|S(x)|/|A(x)|) = 1.

Forbes, Grannell and Griggs [31, 32] constructed infinite classes of 6-sparse STS(n)’s. As Teir-

linck [66] writes in his 2009 review of [70] “currently no nontrivial example of a 7-sparse Steiner triple

system is known”.
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Our Conjecture 1.3 is related to but not a consequence of Erdős’ problem. Colbourn [15] has

checked (using a computer) all the 80 different STS(15)’s and each contained at least 11 copies of

G3×3. Blokhuis [8] reformulated (a weaker version of) Conjecture 1.3 as follows: Are there latin

squares without the following subconfiguration?








∗ a b

a ∗ c

b c ∗









Although the evidence is scarce one is tempted to generalize. An S(n, r, 2) is e-sparse if the union

of any e blocks exceeds e(r − 2) + 2.

Conjecture 1.4 For every e ≥ 4 there exists an n0(e, r) such that if n > n0(e, r) and n is admissible,

then there exists an e-sparse S(n, r, 2).

1.3 Sparse hypergraphs

Brown, Erdős and Sós [20, 12, 13] introduced the function fr(n, v, e) to denote the maximum number

of edges in an r-uniform hypergraph on n vertices which does not contain e edges spanned by v

vertices. Such hypergraphs are called G(v, e)-free (more precisely Gr(v, e)-free). They showed that

fr(n, e(r− k)+ k, e) = Θ(nk) for every 2 ≤ k < r and e ≥ 2, especially fr(n, e(r− 2)+ 2, e) = Θ(n2).

The upper bound
(n
2

)

/
(r
2

)

is easy, and this was the source of Erdős’ conjecture concerning sparse

Steiner systems. On the other hand, if we forbid e edges spanned by one more vertex this problems

becomes much more difficult. Brown, Erdős and Sós conjectured that

fr(n, e(r − k) + k + 1, e) = o(nk). (3)

One of the most famous results of this type is the (6, 3)-Theorem of Ruzsa and Szemerédi [61], the

case (e, k, r) = (3, 2, 3), saying that if no six points contain three triples then the size of the triple

system is o(n2), on the other hand n2−o(1) < f3(n, 6, 3). This was extended by Erdős, Frankl, and

Rödl [25] for arbitrary fixed r ≥ 3,

n2−o(1) < fr(n, 3(r − 2) + 3, 3) = o(n2). (4)

The case e = 3 was further extended by Alon and Shapira [4]

nk−o(1) < fr(n, 3(r − k) + k + 1, 3) = o(nk).

Even the case k = 2, fr(n, e(r − 2) + 3, e) = o(n2), is still open. Nearly tight upper bounds were

established by Sárközy and Selkow [62, 63]:

fr(n, e(r − k) + k + ⌊log2 e⌋, e) = o(nk) ∀r > k ≥ 2 and e ≥ 3,
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and for the case e = 4, r > k ≥ 3

fr(n, 4(r − k) + k + 1, 4) = o(nk).

1.4 Neither grids nor triangles

Definition 1.5 Three sets C1, C2, C3 form a triangle, T3, if they pairwise intersect in three distinct

singletons, |C1 ∩ C2| = |C2 ∩ C3| = |C3 ∩ C1| = 1, C1 ∩ C2 6= C1 ∩ C3. An r-uniform triangle is

frequently denoted by T
r
3.

A perfect matching is a subfamily M of the set system F such that the members of M cover

every element of V (F) exactly once.

The main result of this paper is a construction.

Theorem 1.6 For r ≥ 4 there exist an n0(r) and βr > 0 such that

ex(n, {I≥2,T3,Gr×r}) > n2e−βr

√
logn (5)

holds for n ≥ n0(r). In other words, there exists a linear r-uniform hypergraph F which contains

neither grids nor triangles and |F| ≥ n2 exp [−βr
√
log n]. In addition, if r divides n, then F can be

decomposed into perfect matchings, especially it is regular.

For the case r = 3 we have the same with a much weaker lower bound

ex(n, {I≥2,T3,G3×3}) > n1.6e−β3

√
logn. (6)

Again, the proof is postponed, to Section 3.3, and the cases r ≤ 3 to Section 3.5.

Note that |F| = o(n2) by (4) so the lower bound (5) is almost optimal. This result slightly

improves the Erdős-Frankl-Rödl (4) construction in two ways. We make the hypergraph regular, and

avoid not only triangles but grids, too.

1.5 A probabilistic lower bound

Almost all of the problems discussed in this paper can be formulated as a forbidden substructure

question, i.e., as a Turán type problem. Here we present the standard probabilistic lower bound

for the Turán number due to Erdős, in a slightly stronger form as usual. An r-uniform hypergraph

(V,F) is called r-partite if there exists an r-partition of V , V = V1 ∪ · · · ∪ Vr, such that |F ∩ Vi| = 1

for all F ∈ F , i ∈ [r].

Lemma 1.7 (Erdős’ lower bound on the Turán number)

Suppose that H is a (finite) family of r-graphs each of them having at least two edges, and let

h := min

{

re− v

e− 1
: H ∈ H is r-partite with e edges and v vertices

}

.
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Then there exists a c := c(H) > 0 such that one can find an n-vertex r-partite r-graph (n ≥ r) of

size at least cnh avoiding each member of H. Hence

ex(n,H) ≥ Ω(nh). (7)

Sketch of the proof: Choose independently each of the (n/r)r edges of the complete r-partite hyper-

graph on n vertices with probability p. Leave out an edge from this random selection of each copy

of H ∈ H. The expected size of the remaining edges is at least

p(n/r)r −
∑

penv.

The rest is an easy calculation. 2

The ratio (re − v)/(e − 1) for I
r
≥2, Gr×r, T3 are 2, r2/(2r − 1), and 3/2, resp., so Lemma 1.7

implies (2), i.e., ex3(I≥2,G3×3) ≥ Ω(n9/5). However, if T3 is among the forbidden substructures

then the probabilistic lower bound fails miserably, it gives only Ω(n3/2) which is very far from the

truth. To prove the slightly better lower bound (6) we are going to use a version of the original

Ruzsa-Szemerédi method.

1.6 Tallying up the Turán type problems

The three forbidden configurations, I
r
≥2, Gr×r, T

r
3, have 7 non-empty combinations. The cases

ex(n, {I≥2,Gr×r}) and ex(n, {I≥2,T3,Gr×r}) were discussed above in Theorems 1.2 and 1.6, respec-

tively. It is easy to see that

exr(n, {Ir≥2,T3}) = fr(n, 3(r − 2) + 3, 3) +O(n),

so the Ruzsa and Szemerédi [61] and the Erdős, Frankl, and Rödl [25] theorems, see (4), determine

the right order of magnitude, O(n2−o(1)).

It was conjectured by Chvátal and Erdős and proved by Frankl et al. [35] that

exr(n,T3) =

(

n− 1

r − 1

)

for r ≥ 3 and n > n0(r). The only extremal r-graph consists of all r-tuples sharing a common

element. This hypergraph has no grid either, so we have

ex(n, {T3,Gr×r}) =
(

n− 1

r − 1

)

for the same range of r and n.

We have exr(n, I
r
≥2) =

(

n
2

)

/
(

r
2

)

if and only if a Steiner system S(n, r, 2) exists, which problem

was solved for n > n0(r) by Wilson [67] and the exact packing number was determined for all large

enough n by Caro and Yuster [14].
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The grid cannot be covered by r − 1 vertices, it has r disjoint edges. So the r-graph having all

edges meeting an (r− 1)-element set is grid free. This gives the lower bound for the last case out of

the seven.

ex(n,Gr×r) ≥
(

n− 1

r − 1

)

+

(

n− 2

r − 1

)

+ · · · +
(

n− r + 1

r − 1

)

. (8)

The classical result concerning the Turán number of the complete r-partite graph on r × r vertices

by Erdős [21] gives only an upper bound O(nr−δ) with δ = r−r+1. The truth should be much closer

to the lower bound.

Problem 1.8 Determine the order of magnitude of ex(n,Gr×r).

1.7 Union-free and cover-free hypergraphs

Union free families were introduced by Kautz and Singleton [50]. They studied binary codes with

the property that the disjunctions (bitwise ORs) of distinct at most r-tuples of codewords are all

different. In information theory usually these codes are called superimposed and they have been

investigated in several papers on multiple access communication (see, e.g., Nguyen Quang A and

Zeisel [1], D’yachkov and Rykov [18], Johnson [47, 48, 49]). Alon and Asodi [2, 3], and De Bonis and

Vaccaro [9] studied this problem in a more general setup. Small values of generalized superimposed

codes and and their relation to designs were considered by Kim, Lebedevin and Oh [51, 52].

The same problem has been posed – in different terms – by Erdős, Frankl and Füredi [23, 24] in

combinatorics, by Sós [64] in combinatorial number theory, and by Hwang and Sós [44, 45] in group

testing. One can find short proofs of the best known upper bounds of these codes in the papers

by the present authors in [37] and [59]. In [38] the connection of these codes to the big distance

ones is shown. A geometric version has been posed by Ericson and Györfi [30] and later investigated

in [39]. For a direct geometry application, notice that a union-free family defines a set of points of

exponential size in Rn such that arbitrary three of them span an acute triangle [26].

A family F ⊆ 2[n] is e-union-free if for arbitrary two distinct subsets A and B of F with 0 <

|A|, |B| ≤ e
⋃

A∈A
A 6=

⋃

A∈B
B.

Let U(n, e) (Ur(n, e)) be the maximum size of an e-union-free n vertex hypergraph (r-uniform hy-

pergraph, resp.). The order of magnitude of Ur(n, 2) was determined by Frankl et al. [33, 34].

A family F ⊆ 2[n] is e-cover-free if for arbitrary distinct members A0, A1, . . . , Ae ∈ F

A0 6⊆
e
⋃

i=1

Ai.

Let C(n, e) (Cr(n, e)) be the maximum size of an e-cover-free n vertex hypergraph (r-uniform hy-

pergraph, resp.).
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An e-cover-free hypergraph is e-union-free and an e-union-free is (e− 1)-cover-free. (Indeed, the

existence of an (e− 1)-cover A0 6⊆ A1 ∪ · · · ∪Ae−1 gives
⋃

0≤i≤e−1 Ai =
⋃

1≤i≤e−1Ai). Therefore,

C(n, e) ≤ U(n, e) ≤ C(n, e− 1) ≤ U(n, e− 1) . . . (9)

and

Cr(n, e) ≤ Ur(n, e) ≤ Cr(n, e− 1) ≤ Ur(n, e− 1) . . . (10)

We have Cr(n, r) = n− r+ 1 (for n ≥ r). Indeed, every member of an r-uniform r-cover-free family

has a vertex of degree one. In this section, based on Theorem 1.6, we determine the next two terms

of the sequence (10). First, observe that

Cr(n, r − 1) ≤ n(n− 1)

r(r − 1)
. (11)

Indeed, an r-uniform, (r − 1)-cover-free family either has a vertex of degree one (and then we use

induction on n), or it is a linear hypergraph.

Corollary 1.9 There exists a β = β(r) > 0 such that for all n ≥ r ≥ 4

n2e−βr

√
logn < Ur(n, r) ≤

n(n− 1)

r(r − 1)
.

In addition, if r divides n, then our n-vertex, r-uniform, r-union-free family yielding the lower bound

can be decomposed into perfect matchings, especially it is regular.

Proof. The upper bound follows from (10) and (11), i.e.,

Ur(n, r) ≤ Cr(n, r − 1) ≤ n(n− 1)

r(r − 1)
.

On the other hand, we claim that

ex(n, {Ir≥2,T3,Gr×r}) ≤ Ur(n, r), (12)

hence the lower bound for Ur(n, r) follows from (5).

We have to show that a linear r-graph without triangle and grid is r-union-free. Suppose, on

the contrary, that A 6= B, |B| ≤ |A| ≤ r, ∪A∈AA = ∪B∈BB and A ∪ B form a linear r-uniform

hypergraph. Then ∃A1 ∈ A \ B. Since |A1 ∩B| ≤ 1, to cover the elements of A1 the family B must

contain r sets, i.e., |B| = |A| = r. Moreover, the sets B1, ..., Br ∈ B meet A1 in distinct elements. If

B consists of disjoint sets only, then |∪B∈BB| = r2, and to cover these r2 elements A must consist of

disjoint sets, too, and A∪B form a grid Gr×r. Otherwise, ∃Bi, Bj ∈ B, such that Bi∩Bj = {x} /∈ A1.

Then A1, Bi, and Bj form a triangle. 2
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Proposition 1.10 In the case r = 3 the probabilistic lower bound (7) implies

Ω(n5/3) ≤ U3(n, 3) (13)

The details are postponed to Section 3.4.

Let Pr be an r uniform hypergraph with edges A, B and C1, . . . , Cr−1 as follows. The r-

sets C1, . . . , Cr−1 are pairwise disjoint, ai, bi ∈ Ci are distinct elements, d /∈ ∪Ci and A :=

{d, a1, a2, . . . , ar−1} and B := {d, b1, . . . , br−1}.

Conjecture 1.11 If F is an n-vertex, r-uniform (r ≥ 3), linear hypergraph not containing Pr, then

its size |F| = o(n2). In other words,

exr(n, {I≥2,Pr}) = o(n2).

This would imply the conjecture of Erdős (3) in the case k = 2, e = r+1. If it is true, then it implies

the following more modest conjecture

Ur(n, r) = o(n2). (14)

Proposition 1.12 Suppose that r ≥ 2, n ≡ r (mod r2 − r), 1 ≤ k ≤ (n− 1)/(r− 1) and n > n0(r).

Then there exists a k-regular, (r − 1)-cover-free r-graph. Thus, in this case (11) gives

Cr(n, r − 1) =
n(n− 1)

r(r − 1)
.

Proof. To obtain the k-regular construction one can apply a classical theorem of Ray-Chaudhuri

and Wilson [57]: For any given r ≥ 2 there exists an n0(r) such that, if n > n0(r) and n ≡ r

(mod r2 − r), then there exists a resolvable, r-uniform, n-vertex Steiner system S. This means that

S can be decomposed into K := (n − 1)/(r − 1) perfect matchings, (also called parallel classes)

S = ∪1≤i≤KSi, where |Si| = n/r and | ∪ Si| = n. Taking k of these parallel classes gives the desired

(r − 1)-cover-free family. 2

1.8 Optimal superimposed codes

D’yachkov and Rykov [19] introduced the concept of optimal superimposed codes and designs. Recall

an easy observation.

Proposition 1.13 (D’yachkov, Rykov [19]) If F ⊆ 2[n] is (r − 1)-cover-free, (r ≥ 2), it has

maximum degree k and |F| = t ≥ n then ⌈nk/r⌉ ≥ t holds.
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By (9) a similar statement holds for r-union-free families, too. Note that, from coding theory point

of view, it is reasonable to assume that t ≥ n since a collection of singletons F is (r − 1)-cover-free

for arbitrary 2 ≤ r ≤ n with |F| = n and usually the goal is to get a code as large as possible.

Proof of 1.13. Let F0 = {A ∈ F : ∃x ∈ A,degF (x) = 1}, |F0| = t0. Clearly, |A| ≥ r for every

A ∈ F \ F0 otherwise the union of some other (r − 1) members of F cover A. We obtain

r(t− t0) + t0 ≤
∑

A∈F
|A| =

∑

x∈[n]
deg(x) ≤ k(n− t0) + t0 . 2

It follows that in case of nk = rt the family F should be k-regular and r-uniform.

Definition 1.14 (see [19]) The n-vertex family F is called an optimal (r − 1)-superimposed code

if it is an (r − 1)-cover-free, r-uniform, k-regular, linear hypergraph. It is called an optimal r-

superimposed design if in addition it is r-union-free, too. In both cases nk = rt holds.

Let k(r−1, n) (k′(r, n)) denote the maximum k that such a k-regular optimal (r−1)-superimposed

code (optimal r-superimposed design) exits. They have showed for every r ≥ 2 and n that

k′(r, n) ≤ k(r − 1, n) ≤ (n− 1)/(r − 1)

log2 n−O(1) ≤ k′(2, n), n/2 ≤ k(1, n) ≤ n− 1

4 ≤ k′(3, n), (n/3) − 1 ≤ k(2, n) ≤ (n− 1)/2.

They and Macula [55] gave a lower bound for every r ≥ 3 for a few special but infinitely many values

of n.
(n

r

)1/(r−1)
≤ k′(r, n). (15)

Our results, Corollary 1.9 and Proposition 1.12, imply that

Corollary 1.15 If r ≥ 4, r|n and n ≥ n0(r), then there exists an optimal k-regular, r-superimposed

design for every 1 ≤ k ≤ ne−βr

√
logn, especially

ne−βr

√
logn ≤ k′(r, n). 2

Proposition 1.16 For the case r = 3 we have the same statement with a weaker lower bound

1

25
n2/3 ≤ k′(3, n). (16)

The details are postponed to Section 3.4.

Corollary 1.17 Suppose that r ≥ 2, n ≡ r (mod r2 − r) and n > n0(r). Then there exists an

optimal (r − 1)-superimposed code for every 1 ≤ k ≤ (n− 1)/(r − 1), especially

k(r − 1, n) = (n− 1)/(r − 1). 2
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2 Tools from combinatorial number theory and discrete geometry

2.1 Three lemmata from combinatorial number theory

Lemma 2.1 (Minkowksi’s theorem of simultaneous approximation [56]) Let q be a prime and

(n1, . . . , nd) ∈ Rd an integer point. Then there exist an integer 0 < α < q and residues ri such

that ri ≡ αni (mod q) and |ri| ≤ q1−1/d for all 1 ≤ i ≤ d.

Sketch of the proof: Consider all vectors of the form an mod q, a = 0, 1, 2, . . . , q − 1. There will be

two of them a1n and a2n ‘close’ to each other. Take α = a1 − a2. 2

Let rk(q) be the maximum number of integers which can be selected from {1, . . . , q} containing

no k-term arithmetic progression. This function has been extensively studied in the last six decades

by leading mathematicians see, e.g., Ruzsa [60]. The major important known bounds (appart from

some recent minor improvements) are due to Behrend [7], Heath-Brown [43] and Szemerédi [65]:

there are positive constants α and β such that

qe−β
√
log q < r3(q) < q(log q)−α and for all k rk(n) = o(n). (17)

Call a set M ⊂ [q] r-sum-free if the equation

c1m1 + c2m2 = (c1 + c2)m3

has no solutions with m1,m2,m3 ∈ M and c1, c2 are positive integers with c1+ c2 ≤ r except the one

with m1 = m2 = m3. We will need the following lower bound used by Erdős, Frankl and Rödl [25],

also see Ruzsa [60]. Its proof requires only a slight modification of Behrend’s [7] argument.

Lemma 2.2 (Generalized Behrend) For arbitrary positive integer r there exists a γr > 0 such that

for any integer q one can find an r-sum-free subset M ⊆ {0, 1, ..., q} such that |M | > qe−γr
√
log q.

The case r = 2 (and c1 = c2 = 1) is the original statement of Behrend [7]. Ruzsa also notes that

an upper bound O(q/(log q)αr ) for the general case can be proved by the methods of [43] and [65].

Call a set of numbers A6-free if it does not contain a subset of the form

{x− a− b, x− b, x− a, x+ a, x+ b, x+ a+ b}

for some a, b > 0, a 6= b. Call it A4-free if it does not contain a fourtuple of the form {x − 2a, x −
a, x+ a, x+ 2a} for some a > 0, and call it APk-free if it contains no k-term arithmetic progression.

Let r(n, P1, P2, . . . ) denote the maximum number of integers which can be selected from {1, . . . , n}
avoiding the patterns P1, P2, . . . . With this notation r3(n) := r(n,AP3).
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Since an A4-free set has no 5-term arithmetic progression we get r(n,A4) ≤ r5(n) = o(n) by

Szemerédi’s [65] theorem (17). A 4-sum-free sequence is A4-free as well (one has, e.g., 1× (x− 2a)+

3× (x+ 2a) = 4× (x+ a)), thus Lemma 2.2 gives a lower bound showing

r(n,A4) = n1−o(1).

Lemma 2.3
2

5
r3(n)

3/5 < r(n,A6, A4, AP3).

Sketch of the proof: Similar to the proof of Lemma 1.7. Take an AP3-free set M ⊂ {1, 2, . . . , n}
of maximum size. Choose independently each element of M with probability p, and leave out an

element from this random selection of each copy of the arising configurations we want to avoid. The

expected size of the remaining elements is at least

p|M | − p6|M |3 − p4|M |2.

Define p as 1
2 |M |−2/5. 2

Starting with M = [n], the same process gives

2

5
n3/5 < r(n,A6, A4) ≤ r(n,A6).

Concerning the upper bounds we only have r(n,A6) ≤ r7(n) = o(n).

The random method notoriously gives a weak lower bound of Sidon type problems (for definitions,

see, e.g., Babai and Sós [5]), e.g., the above argument gives only r(n,Sidon) ≥ Ω(n1/3), although

the truth is Θ(n1/2) (Erdős and Turán [29]) and it gives r3(n,AP3) ≥ Ω(n1/2) although the truth is

n1−o(1). So we believe that there are much better lower bounds.

Conjecture 2.4 There is an ε > 0 such that

n3/5+ε < r(n,A6)

holds for large enough n. Possibly the order of magnitude of this function is n1−o(1).

2.2 Grids of pseudolines

A set of pseudolines is usually a set of (infinite) planer curves pairwise meeting in at most one point

with crossing, no two pseudolines are tangent. The main result of this subsection is in fact deals

with pseudoline arrangements but we formulate it in a simpler way.

Let ℓ1, . . . , ℓr be parallel vertical lines on the plane, ℓj := {(x, y) : x = j}, r ≥ 2. Let Vj be an

r-set of points on the line ℓj, Vj := {Q1,j , . . . , , Qr,j}, Qi,j = (j, yi,j), such that y1,j > y2,j > ... > yr,j
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for every 1 ≤ j ≤ r. The points of Π := ∪Vj can be arranged in a matrix form















Q1,1 Q1,2 . . . Q1,r

Q2,1 Q2,2 . . . Q1,r

...
...

. . .
...

Qr,1 Qr,2 . . . Qr,r















where the elements of the jth column lie on ℓj and are ordered from the top to the bottom. The

vertical distances yi,j − yi+1,j are positive, but can be distinct from each other.

A Π-polygon π consists of r − 1 segments of the form π = ∪j [QjQj+1] (1 ≤ j ≤ r − 1) with

Qj ∈ Vj. There are rr such polygonal arcs. Such a π can be considered as a piecewise linear

continuous function π : [1, r] → R. Two sets of Π-polygons P and R are called crossing if

(C1) |P| = |R| = r,

(C2) P is covering all vertices of Π, i.e., {π ∩ ℓj : π ∈ P} = Vj and the same holds for R,

(C3) P ∪R is almost disjoint, i.e., π, ρ ∈ (P ∪R) (and π 6= ρ) imply that |π ∩ ρ| ≤ 1, and

(C4) P ∪R behaves like pseudolines, i.e., π, ρ ∈ (P ∪R), |π ∩ ρ| = 1 imply that they are truly

crossing, i.e., if π ∩ ρ = (x0, y0) then

either π(x) < ρ(x) for all 1 ≤ x < x0 together with π(x) > ρ(x) for x0 < x ≤ r,

or π(x) > ρ(x) for all 1 ≤ x < x0 together with π(x) < ρ(x) for x0 < x ≤ r.

Note that (C1) and (C2) imply that every member of Π belongs to a unique π ∈ P and also to

a unique ρ ∈ R. Then (C3) yields that each π ∈ P meets each ρ ∈ R at an element of Π, and only

there. The members of P (and R) can be disjoint among themselves.

A very special crossing system is depicted below in (18) using thin and thick lines to indicate the

segments of P and R. Its properties described in (VS1)–(VS7) below.

Q1,1 Q1,2 Q1,3 Q1,4

,
,
,,

l
l

ll

,
,
,,

l
l

ll

,
,
,,

l
l

ll

Q2,1 Q2,2 Q2,3 Q2,4

,
,
,,

l
l

ll

,
,
,,

l
l

ll

,
,
,,

l
l

ll · · ·

Q3,1 Q3,2 Q3,3 Q3,4

,
,
,,

l
l

ll

,
,
,,

l
l

ll

,
,
,,

l
l

ll

Q4,1 Q4,2 Q4,3 Q4,4

...
. . .

(18)
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There are two types of segments defining P ∪R,

(VS1) all edges of the upper and lower envelops [Q1,j , Q1,j+1], [Qr,j, Qr,j+1], 1 ≤ j ≤ r − 1, and

(VS2) all diagonal edges Qi,jQi±1,j+1.

(VS3) The edges on the upper (lower) envelops alternate between P and R.

(VS4) The crossing diagonal edges [Qi,j , Qi+1,j+1] and [Qi+1,j , Qi,j+1] simultaneously belong to ei-

ther P or R.

P ∪R consists of the following three types of polygonal paths:

(VS5) the two diagonals Q1,1, Q2,2, . . . , Qr,r, and Qr,1, Qr−1,2, . . . , Q1,r,

(VS6) for 1 ≤ j ≤ r − 1 a top path consisting of an increasing part (on Figure (18)) Qj,1,

Qj−1,2, . . . , , Q1,j a horizontal edge Q1,j , Q1,j+1 and a decreasing part Q1,j+1, Q2,j+2, . . . , Qr−j,r,

(VS7) for each 2 ≤ j ≤ r a bottom path starting at Qj,1 and consisting of a decreasing part having

vertices Qj+x,1+x (x = 0, 1, 2, . . . , r−j), a horizontal edge [Qr,r−j+1, Qr,r−j+2] and an increasing part

Qr−x,r−j+2+x (x = 0, 1, 2, . . . , j − 2).

Lemma 2.5 Suppose that the two sets of Π-polygons P and R form a crossing Π-polygon system

(i.e., satisfy (C1)–(C4)). Then they have the unique structure described by (VS1)–(VS7).

The proof is postponed to the next subsection. From this Lemma we can read out the intersection

structure. We obtain

1,1 1,3 1,4

2,1 2,3

3,1

4,1

1,2

2,2

3,2

r−1,r−1

r,r−1r,r−2 r,r

r−2,r

r−1,r

(19)

Corollary 2.6 Suppose that the two sets of Π-polygons P := {π1, . . . , πr} and R := {ρ1, . . . , ρr}
form a crossing Π-polygon system with Qi,1 ∈ πi, ρi (1 ≤ i ≤ r) and with [Q1,1, Q1,2] ⊂ π1. Then

— the vertices of π1 are Q1,1, Q1,2, Q2,3, . . . , Qr−1,r,
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— the vertices of π2 are Q2,1, Q3,2, . . . , Qr,r−1, Qr,r,

— the vertices of π3 are Q3,1, Q2,2, Q1,3, Q1,4, . . . , Qr−3,r,

— the vertices of π4 are Q4,1, . . . , Qr,r−3, Qr,r−2, Qr−1,r−1, Qr−2,r,

— the vertices of ρ1 are Q1,1, Q2,2, . . . , Qr−1,r−1, Qr,r,

— the vertices of ρ2 are Q2,1, Q1,2, Q1,3, . . . , Qr−2,r,

— the vertices of ρ3 are Q3,1, . . . , Qr,r−2, Qr,r−1, Qr−1,r,

— the vertices of ρ4 are Q4,1, Q3,2, Q2,3, Q1,4, Q1,5, . . . , Qr−4,r. 2

2.3 The proof of the uniqueness of the crossing structure

Here we prove Lemma 2.5 with a series of propositions. Assume Q1,i = πi ∩ ρi for 1 ≤ i ≤ r.

For 1 ≤ j ≤ r − 1 let GP
j be the bipartite graph (a matching) with parts Vj and Vj+1 and with

edges defined by the corresponding parts of the polygons from P, i.e., [Qi,j, Qk,j+1] ∈ E(GP
j ) if and

only if there is a π ∈ P with π(j) = yi,j and π(j + 1) = yk,j+1. (Thus, to simplify notations, we

identify the graph GP
j with its geometric representation.) GR

j is defined similarly. Finally, GP is the

union of GP
j and the graph G is having all the edges of GP and GR.

Proposition 2.7 Suppose π∩ℓj = Qi,j for some π ∈ P. Then π∩ℓj+1 ∈ {Qi−1,j+1, Qi,j+1, Qi+1,j+1}.
Similarly, ρ ∈ R, 1 ≤ j ≤ r − 1, ρ ∩ ℓj = Qi,j and ρ ∩ ℓj+1 = Qk,j+1 imply |i− k| ≤ 1.

Proof. We prove the second statement. Assume to the contrary that k ≤ i− 2 (the case k ≥ i+ 2

is similar). Consider the i− 1 edges of GP
j with vertices Q1,j , . . . , Qi−1,j . Since there is not enough

room to match these vertices to Qh,j+1 (1 ≤ h ≤ k) there exits a [Qu,j, Qv,j+1] ∈ E(GP
j ) with u < i

and v > k. Then this segment intersects [Qi,j , Qk,j+1] ∈ E(GR
j ) inside the open strip {(x, y) : j <

x < j + 1}. This contradicts to the fact that a π ∈ P and a ρ ∈ R meet only in the points of Π. 2

In the same way we obtain the following.

Proposition 2.8 Suppose that γ ∈ P ∪ R, the first point of γ is Qa,1, the last one is Qb,r. Then

b ∈ {r − a, r − a+ 1, r − a+ 2}.

Proof. Suppose γ = πa. Every ρ1, . . . , ρa−1 starts above πa on ℓ1, they meet πa in a point of Π,

so their endpoints on ℓr lie below or on the endpoint of γ, Qb,r. Hence b ≤ r − (a− 2). Considering

ρa+1, . . . , ρr the same argument gives b ≥ r − a. 2

Now we prove Lemma 2.5 by checking (VS1)–(VS7).

Proof of (VS5). The paths π1 and ρ1 end at either Qr−1,r or at Qr,r by the previous Proposition.

They cannot meet in a second point, so one of them finishes at Qr,r. Then Proposition 2.7 implies
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that this path is the diagonal of the r × r array, Q1,1, Q2,2, Q3,3, . . . , Qr−1,r−1, Qr,r. By symmetry,

the other diagonal Qr,1, Qr−1,2, . . . , Q1,r also belongs to P ∪R. 2

Proof of (VS1). We show that each top edge, [Q1,j, Q1,j+1], belongs to E(G). According to

Proposition 2.7 the neighbor of Q1,j in GP
j (in GR

j ) is either Q1,j+1 or Q2,j+1. The P and R edges

are distinct, so both [Q1,j, Q1,j+1] and [Q1,j, Q2,j+1] must belong to E(G). Similar argument gives

that both [Q1,j, Q1,j+1] and [Q2,j , Q1,j+1] belong to E(G) and we got the edges of the top layer of

(18). 2

Proof of (VS3). We show that the top edges alternate between GP and GR. If two consecutive

of them, [Q1,j , Q1,j+1] and [Q1,j+1, Q1,j+2], both belong to GP then they are part of the same π ∈ P
and the diagonal edges [Q1,j , Q2,j+1] and [Q2,j+1, Q1,j+2] are necessarily GR edges, belonging to the

same ρ ∈ R. Then π and ρ cross twice, violating (C3). 2

Proof of (VS6). Call a path γ ∈ P ∪R a top (bottom) path if it contains a top edge [Q1,j , Q1,j+1]

(bottom edge [Qr,j, Qr,j+1]). The pseudoline structure implies that these paths are all distinct, so

P ∪ R consists of the two diagonals and r − 1 top and r − 1 bottom paths. Again Proposition 2.7

implies that if [Q1,j , Q1,j+1] ⊂ γ and the first point of γ is Qa,1, the last is Qb,r then a ≤ j and

b ≤ r − j so a + b ≤ r. This and Proposition 2.8 give that b = r − a and γ must have the shape as

described in (VS6). By symmetry, we have the same for the bottom paths, property (VS7). 2

Properties (VS6–7) imply that all diagonal edges [Qi,j , Qi±1,j+1] are in E(G), this is property

(VS2). Property (VS4) follows from (VS2) and from the fact that a P and an R edge can meet only

at the vertices of Π. This completes the proof of Lemma 2.5. 2

2.4 Grids of Euclidean lines

Here we apply the results of the previous subsections when the sets of crossing polygons P and R
are actually straight lines. Let y, m, m′ ∈ Rr, y = (y1, . . . , ym) with y1 > y2 > . . . , yr, πi :=

{(1, yi), (2, yi +mi), . . . , (r, yi+(r− 1)mi)}, ρi := {(j, yi+(j− 1)m′
j) : 1 ≤ j ≤ r}, P := {π1, . . . , πr},

R := {ρ1, . . . , ρr} and Vj := {ℓj ∩ πi : i ∈ [r]} = {ℓj ∩ ρi : i ∈ [r]} with Π := ∪Vj , |Π| = r2.

Lemma 2.9 If P and R are forming a crossing pair of straight lines, then r ≤ 3.

Proof. P and R satisfy (C1)–(C4) so Lemma 2.5 can be applied. Consider the first four lines

π1, . . . , π4 ∈ P and also ρ1, . . . , ρ4 ∈ R. According to Corollary 2.6 these lines meet at Q1,1, Q2,1,

Q3,1, and Q4,1 and at 12 further points of Π (see (19)). These 12 points yield 12 equations for

y1, . . . , y4,m1, . . . ,m4,m
′
1, . . . ,m

′
4, e.g., considering Q1,2 we get the equation y1 +m1 = y2 +m′

2. So
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the points Q1,2, Q1,3, Q1,4, Q2,2, Q2,3, Q3,2, and Qr−2,r, Qr−1,r−1, Qr−1,r, Qr,r−2, Qr,r−1, and Qr,r

give the following 12 equations.































































1 −1 0 0 1 0 0 0 0 −1 0 0

0 −1 1 0 0 0 2 0 0 −2 0 0

0 0 1 −1 0 0 3 0 0 0 0 −3

−1 0 1 0 0 0 1 0 −1 0 0 0

1 0 0 −1 2 0 0 0 0 0 0 −2

0 1 0 −1 0 1 0 0 0 0 0 −1

0 −1 0 1 0 0 0 r − 1 0 −r + 1 0 0

−1 0 0 1 0 0 0 r − 2 −r + 2 0 0 0

1 0 −1 0 r − 1 0 0 0 0 0 −r + 1 0

0 0 −1 1 0 0 0 r − 3 0 0 −r + 3 0

0 1 −1 0 0 r − 2 0 0 0 0 −r + 2 0

−1 1 0 0 0 r − 1 0 0 −r + 1 0 0 0























































































































y1

y2

y3

y4

m1

m2

m3

m4

m′
1

m′
2

m′
3

m′
4

























































=

























































0

0

0

0

0

0

0

0

0

0

0

0

























































(20)

The solution set of this homogeneous linear equation system has dimension at least two because

every vector (y,m,m′) generated by (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) is a

solution. We claim that these are all the solutions. This implies y1 = y2 = y3 = y4 and m1 = · · · =
m′

4, contradicting the fact that the lines π1, . . . , π4 are distinct.

Let M(r) be the 12 × 12 coefficient matrix of (20). Let us denote the characteristic polynomial

of M(r) by f(r, λ). We obtain

f(r, λ) := det(M(r)− λI)

= λ12 − 4λ11 + λ10(−r2 + 5r) + λ9(2r2 − 19r + 21) + λ8(−6r2 + 40r − 68)

+λ7(r4 − 3r3 + 15r2 − 61r + 113) + λ6(2r4 − 30r3 + 107r2 − 99r − 94)

+λ5(2r5 − 26r4 + 120r3 − 241r2 + 123r + 132)

+λ4(r5 − 21r4 + 103r3 − 210r2 + 216r − 152)

+λ3(r5 − 19r4 + 143r3 − 418r2 + 412r) + λ2(6r4 − 38r3 + 60r2).

Here the coefficient of λ2 is not 0 for r ≥ 4 (since 6r4 − 38r3 + 60r2 = 2r2(r − 3)(3r − 10)). Thus

the rank of M(r) is 10 and the solution set of (20) has dimension 2, as stated. The calculations have

been verified by both the Maple and the Mathematica programs. 2
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2.5 3× 3 Euclidean grids

When r = 3 there are crossing families of straight lines. Let y, m, m′ ∈ R3, as before with

y1 > y2 > y3, such that πi := {(1, yi), (2, yi + mi), (3, yi + 2mi)}, ρi := {(j, yi + (j − 1)m′
j) :

1 ≤ j ≤ 3}. Then P := {π1, π2, π3}, R := {ρ1, ρ2, ρ3} may form a crossing pair of families, i.e.,

Vj := {ℓj ∩πi : 1 ≤ i ≤ 3} = {ℓj ∩ρi : 1 ≤ i ≤ 3} with Π := ∪Vj, |V1| = |V2| = |V3| = 3. For example,

for any y,m, a, b (with a, b > 0) we have such a system with values

y = (y + 4a+ 2b, y − 2a+ 2b, y − 2a− 4b).

m = (m− 3a,m− 3b,m+ 3a+ 3b), m′ = (m− 3a− 3b,m+ 3a,m+ 3b). (21)

The corresponding crossing systems are

π1 = {y + 4a+ 2b, y +m+ a+ 2b, y + 2m− 2a+ 2b}
π2 = {y − 2a+ 2b, y +m− 2a− b, y + 2m− 2a− 4b}
π3 = {y − 2a− 4b, y +m+ a− b, y + 2m+ 4a+ 2b}

and

ρ1 = {y + 4a+ 2b, y +m+ a− b, y + 2m− 2a− 4b}
ρ2 = {y − 2a+ 2b, y +m+ a+ 2b, y + 2m+ 4a+ 2b}
ρ3 = {y − 2a− 4b, y +m− 2a− b, y + 2m− 2a+ 2b}.

Lemma 2.10 If the set of slopes M := {m1,m2,m3}∪ {m′
1,m

′
2,m

′
3} is A4-free and A6-free, then P

and R cannot be a set of 3× 3 crossing Euclidean lines.

Proof. From Lemma 2.5 we know that a grid for r = 3 has the following intersection pattern:

(1, y1) (2, y12) (3, y13)

,
,
,,

l
l

ll

,
,
,,

l
l

ll

(1, y2) (2, y22) (3, y23)

,
,
,,

l
l

ll

,
,
,,

l
l

ll

(1, y3) (2, y32) (3, y33)
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Considering the intersection points Q1,2, Q1,3, Q2,2, Q2,3, Q3,2, and Q3,3, we derive the following

system of linear equations.

y1 +m1 = y2 +m′
2

y3 +2m3 = y2 +2m′
2

y3 +m3 = y1 +m′
1

y1 +2m1 = y3 +2m′
3

y2 +m2 = y3 +m′
3

y2 +2m2 = y1 +2m′
1

(22)

It is easy to see that all solutions of (22) are of the form of (21). 2

3 Constructions

3.1 Grid-free systems mod q

In this section we prove our main results, Theorems 1.2 and 1.6. Given integers q ≥ r ≥ 2, M ⊂
{0, 1, . . . , q − 1} define the hypergraph FM as follows. Define the vertex set on the Euclidean plane

V := {(j, y) : 1 ≤ j ≤ r, y ∈ Zq}.

Thus |V | = rq, and let Vj = {(j, y) : y ∈ Zq}. For integers 0 ≤ y,m < q define the r-set

A(y,m) = {(1, y), (2, y +m), . . . , (r, y + (r − 1)m)},

where the second coordinates are taken modulo q. For |m| < q/(4r) and q/4 < y < 3q/4 or for

0 ≤ y ≤ y+(r−1)m < q the points of A(y,m) are collinear. For a subset of slopes M ⊆ {0, . . . , q−1}
let

FM := Fr
M,q = {A(y,m) : y ∈ Zq, m ∈ M}. (23)

Obviously, this hypergraph is r-uniform, |M |-regular. Even more, it can be decomposed into |M |
perfect matchings.

Lemma 3.1 Suppose that q ≥ r ≥ 4, and for all slopes m ∈ M we have |m| < q/(4r) (taken modulo

q). Then FM is Gr×r-free.

Proof. Suppose that given a grid P = {A(yi,mi)}ri=1,R = {A(y′i,m′
i)}ri=1 ⊂ F . The hypergraph

FM is shift invariant, so we may assume that ∃π1 ∈ P and ∃ρ1 ∈ R which start in (1, ⌊q/2⌋). In

other words, replace each A(y,m) by A(y + ⌊q/2⌋ − y1,m) (the second coordinates are always taken

modulo q). The shifted system of hypergedges have the same intersection structure as P and R.

So from now on, we may suppose that y1 = ⌊q/2⌋. Since the slopes m1 and m′
1 are small (i.e.,
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|m1|, |m′
1| < q/(4r)) the points of π1 := A(⌊q/2⌋,m1) and ρ1 := A(⌊q/2⌋,m′

1) are forming Euclidean

lines. All other sets of P and R meet either π1 or ρ1, and all other slopes are small (at most q/(4r))

so all other members of P ∪R are forming Euclidean lines, too.

Finally, Lemma 2.9 completes the proof that r should be at most 3. 2

Lemma 3.2 If q is a prime (and q ≥ r), then FM is a linear hypergraph.

Proof. Well-known and easy. |A(y,m) ∩A(y′,m′)| ≥ 2 implies that there exist 1 ≤ i 6= j ≤ r

y + im ≡ y′ + im′ (mod q)

y + jm ≡ y′ + jm′ (mod q),

implying (j − i)(m′ −m) ≡ 0 (mod q), a contradiction. 2

Lemma 3.3 If q is a prime, q > r4r, r ≥ 4, then the whole FM with M = Zq is Gr×r-free.

Proof. Suppose that the families P = {A(yi,mi)}ri=1 and R = {A(y′i,m′
i)}ri=1 ⊂ F form a grid

Gr×r. Apply Minkowksi’s theorem of simultaneous approximation (Lemma 2.1) for the vector n :=

(m1, . . . ,mr,m
′
1. . . . .m

′
r) ∈ R2r. There exists an 0 < α < q such that for all i ∈ [r] we have |αmi|

and |αm′
i| ≤ q1−1/2r < q/(4r) (mod q). The collections A(αyi, αmi) and A(αy′i, αm

′
i), i = 1, . . . , r

have the same intersection pattern, i.e., they form a grid, too. Then Lemma 3.1 implies that r ≤ 3.2

3.2 Grid-free systems for all n, the proof of Theorem 1.2

We use induction on n to show that n(n−1)
r(r−1) − crn

8/5 < ex(n, {I≥2,Gr×r}) holds for r ≥ 4 with

appropriate cr > 0. Let q be the largest prime q ≤ n/r. It is well-known [46] that q > n/r − Cn3/5,

where C is an absolute constant. Let V1, . . . , Vr be disjoint q-sets, and let FM be the grid-free

hypergraph of size q2 given by Lemma 3.3. Consider a grid-free, linear hypergraph H on q vertices.

By induction hypothesis, there is such a hypergraph of size |H| > q(q−1)
r(r−1) − crq

8/5. Put a copy of

H, Hj, into each Vj after randomly permuting their vertices, (1 ≤ j ≤ r). The union of these

hypergraphs, F := FM ∪H1 ∪ . . . ,∪Hr, is obviously linear.

Suppose that P = {A1, . . . , Ar} and R = {B1, . . . , Br} are forming a grid in F . Since FM is

grid-free there should be an edge, say Aj ∈ P such that Aj ∈ Hj . The vertices of Aj are covered by

the edges of R, each meeting Aj in a distinct singleton, so R ⊂ FM ∪Hj. If all Bi ∈ FM then, since

∪P = ∪R, we obtain that Ai := (∪R) ∩ Vi belongs to Hi for each i ∈ [r]. Call such a grid of type 0

and their number is denoted by g0 := g0(F).

Otherwise, there is an edge Bj ∈ R ∩ Hj . We claim that this edge Bj is unique. If Bj and

B′
j ∈ R ∩ Hj, then all Ai meet Vj in at least two vertices, hence all Ai ∈ Hj, hence P and then R
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are subfamilies of Hj, but Hj is grid-free. It follows that P \{Aj} and R\{Bj} are parts of FM and

they are forming an (r − 1) × (r − 1) grid (on V \ Vj). Call this P ∪ R a grid of type j and denote

the number by type j grids by gj := gj(F).

We obtain a grid-free family of size at least |F|−g0−g1−· · ·−gr if we leave out an edge from each

grid in F . Next we estimate the expected size of gj(F) when the vertices of each Hi are permuted

randomly and independently.

Concerning type 0, there are at most
(|F|

r

)

choices of the vertex disjoint B1, . . . , Br ∈ FM . Given

B1, . . . , Br and j the probability that Aj := Vj∩(∪Bi) indeed belongs toHj is exactly |Hj|/
(q
r

)

, which

is at most 1/
(q−2
r−2

)

. These events are independent, and the number of ways to choose B1, . . . , Br is

at most
(

q2

r

)

, so the expected number of type 0 grids

E(g0) ≤
(

q2

r

)(

q − 2

r − 2

)−r

= O(q4r−r2).

Given FM one can count type 1 grids as follows (the cases j > 1 are similar). Choose the edges

A2, A3 ∈ FM . Each of B2, . . . , Br intersect both of them. Let ei, i = 2, . . . , r be the pair joining

a vertex in A2 \ V1 and A3 \ V1 if Bi intersects them in these two vertices. Clearly, the edges ei

form a matching between the vertices A2 \ V1 and A3 \ V1 and they determine B2, . . . , Br. Similarly,

a matching between B2 \ (V1 ∪ A2 ∪ A3) and B3 \ (V1 ∪ A2 ∪ A3) determines A4, . . . , Ar. Finally,

choosing a vertex c ∈ V1 the number of possible choices so far is

(|FM |
2

)

(r − 1)!(r − 3)!× q = O(q5).

The vertices Ai ∩ V1 and Bi ∩ V1 are called ai and bi, resp., 2 ≤ i ≤ r. The probability that

{c, a2, . . . , ar} and {c, b2, . . . , br} both belong to H1 is at most

|H1|
(q
r

) × (q − r)/(r − 1)
(q−r
r−1

) = O(q4−2r),

yielding E(g1) = O(q9−2r). Thus, for r ≥ 4 the expected number of grids in F

E (g0(F) + · · ·+ gr(F)) = O(q).

So there is a choice of permutations to make F grid-free deleting only O(q) edges. This gives

ex(n, {I≥2,Gr×r}) ≥ |F| −O(q) ≥ q2 + r
q(q − 1)

r(r − 1)
− crq

8/5 −O(q).

A short calculation shows that the right hand side is at least n(n−1)
r(r−1) − crn

8/5 with some cr. 2
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3.3 Triangle-free systems, the proof of Theorem 1.6

Since the Turán function is monotone we have to consider only the case when r divides n, n = qr. Let

M ⊂ {0, 1, . . . , ⌊q/(4r)⌋} be an r-sum-free set of size |M | > qe−γr
√
log q/(4r) provided by Lemma 2.2

and let FM be the family defined by (23) in subsection 3.1.

By Lemma 3.1 for r ≥ 4 FM is a linear hypergraph containing no grid. Since the set of slopes

M is an r-sum-free set we cannot have three lines with slopes m1 < m3 < m2 forming a triangle,

either. Otherwise, we get c1m1 + c2m2 = (c1 + c2)m3 for some c1 + c2 ≤ r − 1 (mod q, but it is not

important here since all |mi| < q/(4r)). Finally, FM = q|M | ≥ n2e−βr

√
logn for some βr, as stated.2

Proof of Theorem 1.6 for r = 3. Here we establish the lower bound (6) for ex(n, {I3≥2,T3,G3×3})
when n = 3q, and q is a prime.

First, recall that for r = 3 FM may contain a grid, see (21). Therefore, to avoid grids and

triangles at the same time we need to choose the slopes in M more restrictively. For example, M

could be a set in {0, 1, . . . , ⌊q/12⌋} which is A6-free, A4-free and AP3-free simultaneously. Then

Lemma 2.10 gives that FM is linear and grid-free. Also the AP3-free property implies that FM has

no triangles either. Lemma 2.3 implies

2

5
r3(q/12)

3/5 × q ≤ |M |q = |FM | ≤ ex(n, {I3≥2,T3,G3×3})

and then (17) completes the proof of the lower bound (6). 2

Since FM contains neither grids nor triangles it is 3-union free, too, by (12). This implies

n8/5−o(1) < U3(n, 3). Since FM is regular, (and can be split into matchings), it is an optimal 3-

superimposed design. The bound |FM |/n = Ω(n3/5−o(1)) exceeds the bound (15) for k′(3, n) by

D’yachkov and Rykov [19] for r = 3. Below we further improve both lower bounds with a different

construction.

3.4 Union-free triple systems

Define the hypergraphs G6 and G7 as follows on 6 and 7 vertices.

E(G6) := {123, 156, 426, 453},
E(G7) := {123, 456, 726, 753}.

Note that both are three-partite and the 3-partition of their vertices is unique.

Lemma 3.4 Suppose that F is a three-partite, linear hypergraph. It is 3-union-free if and only if

it avoids G3×3, G6, and G7.

Proof: We start like in the proof of Corollary 1.9. Suppose, that A 6= B, |B| ≤ |A| ≤ 3, ∪A∈AA =

∪B∈BB and G := A∪B form a linear 3-uniform hypergraph. Then ∃A1 ∈ A\B. Since |A1 ∩B| ≤ 1,
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to cover the elements of A1 the family B must contain 3 sets. We obtain |B| = |A| = 3. Moreover,

the sets B1, B2, B3 ∈ B meet A1 in distinct elements.

In the case of A ∩ B = ∅ the latest property implies that every a ∈ ∪A is covered by a unique

B ∈ B, and every b ∈ ∪B is covered by a unique A ∈ A, so G is 2-regular, on 9 vertices, we obtain

the grid G3×3.

In the case of |A ∩ B| = 2, say A2 = B2 and A3 = B3 we have that A1 \ (B2 ∪B3) is a singleton

and it must be the same element as B1 \ (A2 ∪ A3). Taking into the account that G is 3-partite we

obtain that it is isomorphic to G7 when A2 and A3 are disjoint, and it is isomorphic to G6 when A2

and A3 meet.

Finally, in the case |A∩B| = 1, say A3 = B3, the other four sets meet A3 in exactly one element,

so there is a vertex v of A3 of degree at least 3. If v ∈ A1∩A2∩A3 then B1 and B2 covers A1∪A2 \v
and we could not finish because G is 3-partite. Similarly, if v ∈ A2 ∩ B2 ∩ A3 then A2 \ v must be

covered by B1, a contradiction. So if the three configurations are avoided then F is 3-union-free. 2

Proof of Proposition 1.10. The probabilistic lower bound from Lemma 1.7 and the previous

Lemma imply the lower bound (13)

Ω(n5/3) ≤ ex(n, {G3×3,G6,G7}) ≤ U3(n, 3). 2

Proof of Proposition 1.16. Here we prove (16) claiming Ω(n2/3) ≤ k′(3, 3n). The proof is a

refined version of the previous proof.

Let F be the three-partite complete hypergraph with parts V1, V2 and V3 where Vi := {(i, j) :

j ∈ Zn} as before. Split it into n2 perfect matchings

M(α, β) := {{(1, y), (2, y + α), (3, y + β)} : y ∈ Zn}

where the second coordinates are taken modulo n. We also call these parallel classes.

Choose independently each of the n2 matchings with probability p, p will be defined as n−4/3/2.

Call the obtained random hypergraph H. Count the expected number of the arising configurations

I
3
≥2, G6, G7, and G3×3, those we want to avoid. Here we have to be more careful, because although

each edge belongs to H with probability p (so its expected size is pn3) the choices of edges are not

independent. More precisely, the probability that a subhypergraph A appears in H is exactly pi,

where i is the number of different parallel classes in A.

Intersecting triples always belong to different classes, so they are independent, so the expected

number of I≥2’s is p
2 × 3n2

(n
2

)

and the expected number of G6’s is p
4 × 2

(n
2

)3
.

The expected number of grids in H with independent hyperedges is O(p6n9) and the expected

number of G7’s with independent edges is at most O(p4n7).

A configuration G7 might have only one pair of dependent triples, namely the disjoint pair 123,

246. The number of these configurations is at most 3n5 (first we chose the triple corresponding to
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123 in n3 ways, then its parallel edge at most n ways, and finally the 7th vertex at most 3n ways).

So the expected number of these is at most 3p3n5.

Consider, finally, the grids A ∪ B containing parallel triples. Note that the parallel classes of A
and B are distinct, because every A ∈ A meets every B ∈ B. The number of these configurations

is O(n7) (like before, first we chose a triple in n3 ways, then its parallel edge at most n ways, and

finally the three remaining vertices at most n3 ways). So if the number of independent classes i ≥ 4,

then the expected number of these grids is bounded by O(p4n7).

If i ≤ 3, then one of the three edges of the grid, say A, consists of three parallel edges. The

number of these configurations is at most n5, so we have an upper bound O(p3n5) for the expected

number of these whenever i = 3.

Finally, if i = 2, then both A and B consists of parallel edges. The number of those systems is

at most O(n3) so we have an upper bound O(p2n3).

Altogether the total expected number of configurations we want to avoid is bounded by a constant

multiple of

p2n4 + p4n6 + p6n9 + p4n7 + p3n5 + p4n7 + p3n5 + p2n3.

This is less than half of E(|F|) = pn3 with our choice of p. So we still have 1
2pn

3 of the edges if

we leave out an edge from each of the configurations we want to avoid, and thus we make the rest

3-union-free.

Moreover, conveniently, we can erase the unwanted edges together with all its parallels (if A is

in F then all of its shifted copy belongs to F), so there is a random choice of F where the remaining

3-union-free part is still large and union of matchings. 2

3.5 Union free and cover-free graphs

D’yachkov and Rykov [19] showed that there exists an optimal 1-superimposed code (i.e., a regular

graph) with ≤ n2/4 edges. It is easy to see, that there are k-regular n-vertex graphs for all k < n

(for nk even). Indeed, if n is even, and n > k then, e.g., by Baranyai’s Theorem [6] the edge set of

Kn can be decomposed into n − 1 perfect matchings. Take k of them. For odd n (and k even) Kn

can be decomposed into (n− 1)/2 2-factors by a theorem of Tutte. Take k/2 of them.

D’yachkov and Rykov [19] showed that there exist optimal 2-superimposed designs (i.e., a 2-

union-free, k-regular graphs) for k ≤ log(n+ 2)− 2. This can be improved to

k′(2, n) = Θ(n1/2). (24)

Indeed, such an optimal design is just a k-regular, triangle and C4-free graph. Such a graph can be

constructed using (23) by taking a mod q Sidon set M ⊂ Zq. The defined FM is the desired bipartite
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graph. We have an obvious upper bound (n/2)k′(2, n) ≤ ex(n, {C3, C4}). Since

ex(n, {C3, C4}) ≤ ex(n,C4) = (1 + o(1))
1

2
n3/2

by [11, 27] we have an upper bound k′(2, n) ≤ (1 + o(1))
√
n giving the right order of magnitude. To

determine the coefficient of the
√
n seems to be a very difficult question. Erdős and Simonovits [28]

conjecture that

(1 + o(1))
n3/2

2
√
2
= ex(n; {C4, C3}). (?) (25)

They showed ex(n; {C4, C5}) ∼ n3/2/(2
√
2), i.e., forbidding C5 in magnitude is the same as forbidding

all non-bipartite graphs.

4 Conclusion

Our main result is that the widely investigated transversal design FM (see (23)) with M = Zq is

Gr×r-free for r ≥ 4. If M is r-sum-free then in addition FM has no triangles. It is natural to ask

what other small substructures can be avoided this way.
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Bólyai, Infinite and finite sets, Keszthely, Hungary, 1973.

[7] F. A. Behrend, On sets of integers which contain no three terms in arihtmetical progression, Proc. Nat.

Acad. Sci. USA, 32, 331–333.

[8] A. Blokhuis, private communication, June 16, 2009.

[9] A. De Bonis and U. Vaccaro, Optimal algorithms for two group testing problems and new bounds on

generalized superimposed codes, IEEE Transactions on Information Theory, 52 (10), 2006, pp. 4673–

4680.
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