7 research outputs found

    Direct electrophysiological evidence for prefrontal control of hippocampal processing during voluntary forgetting

    Get PDF
    Forgetting does not necessarily reflect failure to encode information but can, to some extent, also be voluntarily controlled. Previous studies have suggested that voluntary forgetting relies on active inhibition of encoding processes in the hippocampus by the dorsolateral prefrontal cortex (DLPFC) [1, 2, 3, 4]. During attentional and sensorimotor processing, enhanced DLPFC theta power alongside increased alpha/beta oscillations are a neural signature of an inhibitory top-down mechanism, with theta oscillations reflecting prefrontal control and alpha/beta oscillations occurring in areas targeted by inhibition [5, 6, 7, 8, 9, 10, 11, 12]. Here, we used intracranial EEG recordings in presurgical epilepsy patients implanted in DLPFC (n = 13) and hippocampus (n = 15) during an item-method directed forgetting paradigm. We found that voluntary forgetting is associated with increased neural oscillations in the low theta band (3–5 Hz) in DLPFC and in a broad theta/alpha/beta (6–18 Hz) frequency range in hippocampus. Combining time-lagged correlation analysis, phase synchronization, and Granger causality in 6 patients with electrodes in both DLPFC and hippocampus, we obtained converging evidence for a top-down control of hippocampal activity by the DLPFC. Together, our results provide strong support for a model in which voluntary forgetting relies on enhanced inhibition of the hippocampus by the DLPFC

    Quantifying the effect of demixing approaches on directed connectivity estimated between reconstructed EEG sources

    Get PDF
    Electrical activity recorded on the scalp using electroencephalography (EEG) results from the mixing of signals originating from different regions of the brain as well as from artifactual sources. In order to investigate the role of distinct brain areas in a given experiment, the signal recorded on the sensors is typically projected back into the brain (source reconstruction) using algorithms that address the so-called EEG inverse problem. Once the activity of sources located inside of the brain has been reconstructed, it is often desirable to study the statistical dependencies among them, in particular to quantify directional dynamical interactions between brain areas. Unfortunately, even when performing source reconstruction, the superposition of signals that is due to the propagation of activity from sources to sensors cannot be completely undone, resulting in potentially biased estimates of directional functional connectivity. Here we perform a set of simulations involving interacting sources to quantify source connectivity estimation performance as a function of the location of the sources, their distance to each other, the noise level, the source reconstruction algorithm, and the connectivity estimator. The generated source activity was projected onto the scalp and projected back to the cortical level using two source reconstruction algorithms, linearly constrained minimum variance beamforming and Exact' low-resolution tomography (eLORETA). In source space, directed connectivity was estimated using multi-variate Granger causality and time-reversed Granger causality, and compared with the imposed ground truth. Our results demonstrate that all considered factors significantly affect the connectivity estimation performance

    Effects of EEG-neurofeedback training on brain functional connectivity

    Get PDF
    Tese de Mestrado Integrado, Engenharia Biomédica e Biofísica, 2022, Universidade de Lisboa, Faculdade de CiênciasO neurofeedback (NF) consiste em medir a atividade cerebral, usando técnicas como a eletroencefalografia (EEG) ou a imagem por ressonância magnética funcional (fMRI), e apresentar ao participante, em tempo real, uma representação de um padrão de atividade de interesse, enquanto lhe é pedido para manipular essa mesma representação através da autorregulação da atividade cerebral (Sitaram et al., 2017). As bases neurofisiológicas desta técnica ainda não são conhecidas na sua totalidade, apesar de vários estudos terem demonstrado que o treino através de NF tende a reorganizar as redes cerebrais. Posto isto, existem poucos estudos que tentam comparar a influência da utilização de diferentes modalidades sensoriais de apresentação do “feedback” nos resultados do treino por NF em EEG, e os poucos estudos existentes não investigam possíveis efeitos nas métricas de conectividade funcional do cérebro. Neste projeto, pretendemos avaliar o efeito da utilização de diferentes modalidades de “feedback” no treino de NF através EEG (EEG-NF) para o incremento da amplitude relativa da banda alfa superior no canal Cz, e investigar se existe um efeito significativo nos padrões de conectividade funcional do cérebro. Para esse fim, será efetuada a análise de dados previamente recolhidos em 20 participantes saudáveis que realizaram quatro sessões de treino por EEG-NF, que visava incrementar a densidade espectral na banda alfa superior, e que utilizaram diferentes modalidades de feedback (visual, realidade virtual (VR), e auditiva). Os dados de EEG foram pré-processados, com remoção de artefactos através de análise de componentes independentes. Adicionalmente, duas técnicas de re-referenciação do sinal EEG foram utilizadas para comparação posterior, sendo estas a re-referenciação para a média de todos os canais EEG, e a re-referenciação através da aplicação de um Laplaciano de Superfície com parâmetro de rigidez de valores 4 e 3, respetivamente. A avaliação dos resultados foi efetuada a diversos níveis, com a análise: i) das variações intra-sessão da amplitude relativa da banda alfa superior no canal Cz, ii) da distribuição topológica da banda alfa superior no decorrer do treino, iii) das variações intrasessão dos padrões de conectividade funcional da banda alfa superior, utilizando a parte imaginária da coerência como métrica de conectividade, e iv) por fim, em termos de uma análise de redes, que visava avaliar a importância de nodos de rede, verificada através das métricas como betweeness centrality e força, da atividade segregada, verificada através da métrica de transitividade, e da atividade integrada, verificada através de métricas como caminho característico e eficiência global da rede cerebral. Relativamente aos resultados para a análise espectral e topológica, encontram-se correlações estatisticamente significativas entre o valor da amplitude relativa da banda alfa superior e o número de set, em todos os grupos, principalmente nas duas primeiras sessões, sendo cada set composto por 6 trials com duração de 30 segundos Posto isto, não são registadas diferenças estatisticamente significativas intra-sessão, isto é, do set 1 para o set 5 de cada sessão. Para a análise topológica, não se realizaram testes de significância, mas é possível visualizar uma acentuação da amplitude relativa da banda alfa superior em zonas parietais/occipitais, e é também possível verificar que o treino realizado, não afetou somente a banda de interesse mas também a banda theta, cuja atividade não focal diminui, a banda alfa inferior, cuja amplitude relativa parece incrementar. Relativamente aos resultados da análise de conetividade, os mesmos sugerem que o treino de EEG-NF para o incremento da banda alfa superior resulta num incremento mais pronunciado nas fases iniciais do treino, isto é, nas duas primeiras sessões de treino. Este incremento é representado pelo do número de canais que apresentam conectividade funcional com a zona parietal central, com canais como o Pz, e com a zona parietal direita, CP6, P4, entre outros, independentemente da modalidade de feedback, ou seja, para a generalidade dos "Learners”. De facto, os próprios canais parietais direitos, P4, P8, CP6, TP10 aumentam de forma estatisticamente significativa a conectividade entre eles. Isto parece indiciar a criação de um complexo focado na zona parietal direita. Em todas as modalidades, à exceção da VR, verifica-se ainda um aumento significativo intra-sessão da transitividade e eficiência global enquanto uma diminuição estatisticamente significativa intra-sessão é observada para a métrica caminho característico. Posto isto, a metodologia de neurofeedback no contexto experimental que foi implementado, parece promover a atividade cerebral segregada, isto é, a atividade que resulta de uma atividade cerebral mais localizada, e também integrada, isto é, que resulta da integração da atividade de áreas cerebrais dispersas. A não existência de variações significativas na modalidade VR não parece estar relacionada com a modalidade em si, mas sim devido a uma menor amostra do respetivo grupo. Assim, futuramente será necessário aumentar a amostra, pelo menos para este grupo, por forma a poderem ser extraídos resultados significativos da análise do mesmo. Interessantemente, e independentemente do método de rereferenciação utilizado, enquanto para o grupo do treino NF para a modalidade visual se observa a partir da terceira sessão de treino a estabilização do número de conexões funcionais entre os diferentes elétrodos, ou seja deixa de haver um crescimento acentuado da transitividade e da eficiência global com diminuição simultânea do caminho característico, para o grupo do treino NF com a modalidade auditiva a generalidade dos incrementos verificados, estão presentes em todas as sessões, incluindo a última sessão. No referente ao estudo sobre o método de re-referenciação dos dados EEG, com interesse específico na utilização de um Laplaciano de superfície comparativamente à simples utilização da média dos sinais EEG, a análise topológica das diferentes bandas cerebrais confirma que a utilização do Laplaciano de superfície contribuiu para aumento da resolução espacial dos dados de EEG, uma vez que atenuou para as diferentes bandas a amplitude relativa da atividade periférica, ou seja não focal, que estará relacionada com frequências espaciais mais baixas. Relativamente à análise da conectividade funcional intra-sessão, verifica-se que a aplicação do Laplaciano se reflete na mudança das configurações de variações de conexões funcionais no cérebro, nomeadamente eliminando determinados aumentos estatisticamente significativos, por exemplo para a sessão 1 dos “Learners”, após a aplicação do Laplaciano de superfície, o incremento da conectividade funcional entre Pz e O2 deixa de ser estatisticamente significativo. Possivelmente, isto poderá estar relacionado com uma eliminação de conexões espúrias. Também na análise de redes, a aplicação do Laplaciano afeta a configuração dos dados e outputs embora não se consiga precisar uma relação causa efeito. Posto isto, a variação da própria configuração do Laplaciano, no que se refere à rigidez do mesmo, de parâmetro m=4 para m=3, não se traduz em resultados tão diferentes, pese embora algumas alterações notadas na análise de redes. De facto, para análise de conectividade funcional, os heatmaps resultantes da aplicação de Laplaciano de superfície com m=4, são exatamente iguais aos heatmaps resultantes da aplicação de Laplaciano de superfície com m=3. Quanto à análise de redes, nomeadamente nas métricas de transitividade, caminho característico e eficiência global, se verificarmos os gráficos e tabelas apresentadas, apesar de serem notados ligeiros desvios quer nas curvas quer em valores de correlação ou variação intra-sessão, o nível de significância é quase sempre atingido, independentemente da rigidez do Laplaciano aplicado, para a mesma sessão. Posto isto, não é possível reportar claramente uma relação causa-efeito vantajosa decorrente da aplicação do Laplaciano de superfície nos dados aqui tratados. De facto, reitera-se que, pela análise topológica se confirma que este possa estar associado a um filtro espacial, mas nas restantes análises não se consegue confirmar se este “melhorou ou não” os nossos dados.Neurofeedback (NF) consists in measuring brain activity and presenting a real-time representation of a brain activity pattern of interest to an individual, while instructing him to manipulate the feedback representation through self-regulation. The neurophysiological basis for NF remains to be fully elucidated, whereas several studies support that NF training tends to reorganize the brain networks. Only a handful of studies compare how different feedback sensory modalities affect the outcomes of EEG-based NF training, and none of them analyzes such effect on the functional connectivity or network metrics. In this project, we evaluate how using different feedback modalities on the EEG-based NFtraining will affect the brain’s functional connectivity, by analyzing previously collected data from a total of 20 healthy subjects, who underwent four sessions of upper-alpha (UA) band EEG-based NF training, with different feedback modalities (visual, auditory, or virtual reality (VR)). The EEG data was preprocessed and re-referenced with three different methods for posterior comparison, the common average reference (avgREF), and spline lines Surface Laplacian with stiffness parameters equals 4 and 3. The data were evaluated in terms of: i) the within-sessions’ variations of the relative amplitude of the UA at the Cz channel, ii) relative band amplitude topological distribution across sets and sessions, iii) the within-sessions’ variations of the UA functional connectivity patterns, computed with the imaginary part of coherency, and iv) an UA band network analysis of the metrics betweenness centrality, strength, transitivity, charpath and global efficiency. Our results suggest that the UA EEG-based NF-training is associated with an early increment of functional connections with channels over parietal areas (e.g. Pz), independently of the feedback sensory modality. All the modalities, except the VR, which had a reduced sample, verify statistically significant intra-session increases in the transitivity and global efficiency, while showing statistically significant intra-session decreases of the charpath, suggesting that this protocol promotes both clustered and integrated brain activity. While for the visual NF-training group the third session seems to be a breakthrough point, where the number of functional connections stabilize, for the auditory NF-training group longer lasting “variations” are reported. Through the topological analysis we confirm that the application of Laplacian leads to higher spatial resolutions on the EEG data. Regarding the connectivity analysis and network analysis, we note that the application of the Surface Laplacian creates different values when compared to the avgREF data, yet no advantageous outcome can be reported

    Statistical causality in the EEG for the study of cognitive functions in healthy and pathological brains

    Get PDF
    Understanding brain functions requires not only information about the spatial localization of neural activity, but also about the dynamic functional links between the involved groups of neurons, which do not work in an isolated way, but rather interact together through ingoing and outgoing connections. The work carried on during the three years of PhD course returns a methodological framework for the estimation of the causal brain connectivity and its validation on simulated and real datasets (EEG and pseudo-EEG) at scalp and source level. Important open issues like the selection of the best algorithms for the source reconstruction and for time-varying estimates were addressed. Moreover, after the application of such approaches on real datasets recorded from healthy subjects and post-stroke patients, we extracted neurophysiological indices describing in a stable and reliable way the properties of the brain circuits underlying different cognitive states in humans (attention, memory). More in detail: I defined and implemented a toolbox (SEED-G toolbox) able to provide a useful validation instrument addressed to researchers who conduct their activity in the field of brain connectivity estimation. It may have strong implication, especially in methodological advancements. It allows to test the ability of different estimators in increasingly less ideal conditions: low number of available samples and trials, high inter-trial variability (very realistic situations when patients are involved in protocols) or, again, time varying connectivity patterns to be estimate (where stationary hypothesis in wide sense failed). A first simulation study demonstrated the robustness and the accuracy of the PDC with respect to the inter-trials variability under a large range of conditions usually encountered in practice. The simulations carried on the time-varying algorithms allowed to highlight the performance of the existing methodologies in different conditions of signals amount and number of available trials. Moreover, the adaptation of the Kalman based algorithm (GLKF) I implemented, with the introduction of the preliminary estimation of the initial conditions for the algorithm, lead to significantly better performance. Another simulation study allowed to identify a tool combining source localization approaches and brain connectivity estimation able to provide accurate and reliable estimates as less as possible affected to the presence of spurious links due to the head volume conduction. The developed and tested methodologies were successfully applied on three real datasets. The first one was recorded from a group of healthy subjects performing an attention task that allowed to describe the brain circuit at scalp and source level related with three important attention functions: alerting, orienting and executive control. The second EEG dataset come from a group of healthy subjects performing a memory task. Also in this case, the approaches under investigation allowed to identify synthetic connectivity-based descriptors able to characterize the three main memory phases (encoding, storage and retrieval). For the last analysis I recorded EEG data from a group of stroke patients performing the same memory task before and after one month of cognitive rehabilitation. The promising results of this preliminary study showed the possibility to follow the changes observed at behavioural level by means of the introduced neurophysiological indices
    corecore