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Abstract 

Electrical activity recorded on the scalp using electroencephalography (EEG) results from the mixing of 

signals originating from different regions of the brain as well as from artifactual sources.  In order to 

investigate the role of distinct brain areas in a given experiment, the signal recorded on the sensors is 

typically projected back into the brain (source reconstruction) using algorithms that address the so-

called EEG “inverse problem”. Once the activity of sources located inside of the brain has been 

reconstructed, it is often desirable to study the statistical dependencies among them, in particular to 

quantify directional dynamical interactions between brain areas. Unfortunately, even when performing 

source reconstruction, the superposition of signals that is due to the propagation of activity from 

sources to sensors cannot be completely undone, resulting in potentially biased estimates of directional 

functional connectivity.  Here we perform a set of simulations involving interacting sources to quantify 

source connectivity estimation performance as a function of the location of the sources, their distance 

to each other, the noise level, the source reconstruction algorithm, and the connectivity estimator. The 

generated source activity was projected onto the scalp and projected back to the cortical level using two 

source reconstruction algorithms, Linearly Constrained Minimum Variance (LCMV) beamforming and 

‘Exact’ Low-resolution Tomography (eLORETA). In source space, directed connectivity was estimated 

using Multi-Variate Granger Causality (MVGC) and Time-Reversed Granger Causality (TRGC), and 

compared with the imposed ground truth. Our results demonstrate that all considered factors 

significantly affect the connectivity estimation performance. 

Keywords: Brain Connectivity; Source Reconstruction; Granger Causality; Modelling 

1. Introduction 

Understanding how the joint dynamics of separate brain regions gives rise to functions is a fascinating 

and challenging issue. Several techniques are continuously being developed to investigate these 

dynamics. EEG signals, due to their high temporal resolution and non-invasiveness, are often employed 

to investigate how brain activity is modulated in different tasks or conditions [1]–[5]. One of the main 

downsides of scalp EEG is the low spatial resolution resulting from head volume conduction [6], [7]. It 

is well known that the electrical activity measured at the sensors level is a mixture of the activity coming 

from all of the sources in the brain (in addition to contributions coming from outside of it). In other 

words, the geometry of the head and the presence of several tissues with different electrical properties 

between the cortex and the scalp distort the electric field generated by active neurons. Therefore, the 

electrodes cannot be seen as a proxy for brain regions. The high correlation between signals recorded 

from neighbouring electrodes at scalp level leads the majority of connectivity estimation algorithms to 

estimate inaccurate patterns including spurious links, and to taint results with poor interpretability. 

Therefore, making inferences on connectivity from the EEG signal is still not straightforward [8], [9]. In 

order to overcome or attenuate the volume conduction problem, several strategies and algorithms have 

been proposed to estimate source activities from multi-channel EEG recordings [10]. For example, 

simple spatial filters as the Laplacian can reduce the correlations among scalp-recorded channels 

induced by source mixing [6]. Another possibility is to apply Blind Source Separation (BSS) techniques 

that allow the separation of the data into underlying components representing the activity of potentially 

extended networks at the source level. Two algorithms specifically developed for Granger-causal 
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interactions assume that these components follow a multivariate autoregressive (MVAR) model with 

independent innovation noise [11], [12]. While such approaches allow one to reduce the volume 

conduction effect, the problem of the interpretability of the results is not completely addressed since 

directed dynamical influences are estimated between components and not on the cortical brain activity.  

Another important choice concerns the connectivity estimator. There are different kind of algorithms, 

which can be categorized based on whether they estimate directed [9], [13], [14] or undirected [6], [15]–

[17] interactions, whether they assess bivariate [6], [15]–[17] or general multivariate [18], [19] 

relationships, and whether they are robust to artifacts of volume conduction [9], [16], [20], [21] or not 

[6], [15]. Since the behavior of undirected and bivariate metrics under volume conduction has already 

been extensively studied [14], [17], here we focus on the more challenging case of directed connectivity 

estimation within a low-dimensional multivariate system. Among the connectivity estimators that are 

applicable in this setting, worth noting is the class of multivariate estimators based on the concept of 

Wiener-Granger Causality (GC) [13]. These data-driven approaches are computationally simple and 

require no a priori assumption on the presence or absence of interactions between specific pairs of 

variables. For this reason we decided to focus on the classical time-domain measure Multi-Variate 

Granger Causality (MVGC) [18] and its Time-Reversed version (TRGC) that uses time-reversed data as 

surrogates for statistical testing to achieve a reduced sensitivity to artifacts of volume conduction [9], 

[19]. One of the possible solutions to achieve interpretable results is the reconstruction of brain sources 

prior to conducting connectivity estimation. To solve the ill-posed (as the number of sources is higher 

than the number of sensors) EEG inverse problem, several parametric and non-parametric methods 

were developed. Most of the available techniques (including minimum norm estimates and their 

generalizations, LORETA, VARETA, S-MAP, ST-MAP, Backus-Gilbert, LAURA, Shrinking LORETA, FOCUSS 

(SLF), SSLOFO and ALF for non-parametric methods and beamforming techniques, BESA, subspace 

techniques for parametric methods) are very well described in [22]. Other previous studies on real EEG 

data have already compared different inverse solutions [23], [24]. Hedrich et al. used the resolution 

matrix to compare source reconstruction techniques (MNE, dSPM, sLORETA, and cMEM) in terms of 

spatial resolution, demonstrating that MEG and hdEEG signals allow very accurate localization [24]. 

Among them, we decided to focus on two of the most commonly used: the ‘exact’ Low Resolution 

Tomography (eLORETA) [25], and the Linearly Constrained Minimum Variance (LCMV) Beamformer 

[26].  They are efficiently computable on long time series and make minimal assumptions. For these 

reasons they are most widely adopted/implemented in the currently available toolboxes. Moreover, 

they allowed the investigation of two different types of methods: beamformers and distributed inverses. 

Inverse approaches for extracting cortical waveforms and Granger-based estimators for connectivity 

measures can be combined to extract and investigate the human brain circuits, but an evaluation of the 

combined approach under different conditions is still necessary.  In fact, differences between algorithms 

for the inverse problem solution and between connectivity estimators could result in differences in 

terms of the spurious connections they bring about. In this context the main objective of this study is to 

quantify the amount of spurious estimated links at source level in different conditions. Recently some 

solutions for reducing the wrong connections were proposed: orthogonalization methods as “leakage 

correction” [27] [28], [29], adaptive parcellation [31] [32], and inverse solution estimation in the 

frequency domain (BC-VARETA) [33]. In particular, although the reliability of the leakage correction 

was investigated in different works, other evidence demonstrated that such correction applied to 

inverse solution signals could produce false human connectomes [30] because it is unable to remove the 
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spurious secondary correlations (auto-correlation of the time series and the non-linear relationships 

such as power correlations).  

The goal of the present study is to propose a basic yet comprehensive framework to quantify the effect 

of mixing and to further validate the performance of the different approaches such as those mentioned 

above, and more to come. We investigated the ability of source localization approaches and methods for 

brain connectivity estimation to provide accurate and reliable estimates as insensitive as possible to the 

spurious effects induced by the residual mixing of the signals at source level, and thereby allow one to 

interpret the obtained results in neurophysiological terms. In particular, the present study: 

● Demonstrates the possibility of significantly reducing negative effects of volume conduction on 

connectivity estimates by employing TRGC as opposed to GC without time-reversal. 

● Provides guidelines on how to correctly interpret results obtained from using the specific 

combination of methods tested in similar experimental scenarios (at different depth and relative 

position); 

● Compares the effect of two of the most used source reconstruction algorithms, eLORETA and 

LCMV, on the accuracy of the source connectivity patterns. 

We thus generated simulated data, mimicking brain source signals with an imposed connectivity 

pattern. The influence of volume conduction on connectivity estimates was investigated by assigning 

these simulated source signals to different anatomical location in the brain. The choice of the forward 

model used to describe the mapping from activations inside the brain to scalp potentials is the ‘New 

York Head’ [34]. The results of these simulations allow us to identify the best-performing combination 

of algorithms for the estimation of the brain activity and connectivity in different experimental 

conditions.  

2. Methods 

Over the past few decades, different techniques of source localization applied to EEG data were 

developed to provide a non-invasive yet localized estimate of brain activity [22]. Such techniques 

employ voltage measurements at various locations on the scalp to estimate the current sources inside 

the brain which best fit these data. Source localization techniques are based on the following generative 

model of EEG data: 

𝛷(𝑡) = 𝑳𝐽(𝑡) + 𝜀(𝑡) (1) 

where 𝛷(𝑡) ∈ 𝑅𝑀 is the EEG signal measured from M scalp locations at time t, 𝐽(𝑡) ∈ 𝑅3𝑁 is the 

macroscopic primary current density to which we will refer to in terms of “activity” of N sources (with 

a 3D orientation in the space), 𝑳 ∈ 𝑅𝑀𝑥3𝑁 is the leadfield matrix summarizing the propagation of the N 

active sources j to the EEG sensors, and 𝜀(𝑡) ∈ 𝑅𝑀 is the measurement noise. The lead-field matrix L 

contains information about the geometry and the conductivity of the majority of the tissues in the head 

(between the sensors and the sources) and can be obtained by forward modeling. The estimation of the 

sources 𝐽(𝑡) from the measures 𝛷(𝑡) constitutes the source reconstruction and is also known as inverse 

modeling. The two modeling approaches will be described in detail below. 

2.1 Forward Problem 

The estimation of the scalp potentials resulting from the current distribution inside of the head 

(modelled by hypothetical dipoles) is called forward problem [22]. The model to solve it consists in a 
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set of assumptions and computational approximations of the geometry and electrical properties of the 

different tissues in the head. This model and Maxwell's equations are then used as a method to find the 

relationship between these magnitudes. The result is the scalp activity as a function of the current 

density (produced by neuronal generators) and describes how the electrical field spreads through the 

different layers of the head. The New York Head is an accurate finite element electrical model of the 

average adult human head [34]. It is based on a highly detailed nonlinear average of T1-weighted 

structural MR image of 152 adults provided by the International Consortium for Brain Mapping (ICBM) 

[35]. A detailed segmentation of this average image into six tissue types (scalp, skull, CSF, grey matter, 

white matter, air cavities) was performed at the native MRI resolution of 0.5 mm3. The suitability of this 

volume conductor model to serve as an approximation for individual heads was tested by comparison 

with additional BEMs and FEMs constructed for four subjects [34]. The model was evaluated for 231 

electrode positions and for 75000 nodes of a mesh of the cortical surface. In the present work we used 

a lead field matrix L extracted from the original one, on a subset of 108 sensors. 

2.2 Inverse Problem 

The EEG inverse problem is defined as the estimation of brain sources from potentials measured on the 

scalp. It is an ill-posed problem because for all admissible output voltages, the solution is non-unique 

(since the number of active dipoles exceeds the number of sensors) and unstable because the solution 

is highly sensitive to small changes in the noisy data [22].  The accuracy of the source reconstruction is 

affected by a high number of factors including the head model errors, the source-modelling errors, and 

EEG noise (instrumental or biological) [36]. Several methods were developed that provide a solution to 

solve the inverse problem. In the present study, we focused on two methods: i) the Linearly Constrained 

Minimum Variance Beamformer (LCMV) and ii) the ‘Exact’ Low Resolution Tomography (eLORETA). 

Linearly Constrained Minimum Variance (LCMV) 

Linearly Constrained Minimum Variance filtering (LCMV) [26], [36] is a spatial filtering method that lets 

brain activity coming from a specific location pass (i.e. leave unaltered), while attenuating activity 

originating at other locations. The output of the filter is an estimate of the activity generated by neural 

populations within a restricted area of the brain. A map of the brain activity as a function of location is 

obtained by designing multiple spatial filters, each with a different pass location, and depicting the 

variance of the estimated neural activity over time as a function of pass location. This spatial filtering 

approach falls within the general category of beamforming. The source signal at each location in the 

brain consists of the three dipole moments, so that three spatial filters for each location are required. 

The N x 3 matrix W(q0) represents the transfer function of the filter for the narrowband volume element 

Q0 centered in q0. The output of the filter J is the inner product of W(q0) and the potentials due to the N 

active dipoles 𝜱.  

𝑱 = 𝑾𝑇(𝒒0)𝜱 (2) 

Under ideal conditions, the transfer function of the filter has to satisfy two conditions: 

𝑾𝑇(𝒒0)𝑳(𝒒0) = 𝑰 (3) 

𝑾𝑇(𝒒0)𝑳(𝒒𝑠) = 0 (4) 
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where 𝒒𝑠 is any position other than 𝒒0within the volume of the brain. As this cannot be achieved under 

general conditions, eq. 4 is replaced by the condition that the variance of the filter output is minimal. 

The optimal filter that achieves this is given by: 

𝑾(𝒒0) =  [𝑳𝑇(𝒒0)𝑪𝛷
−1𝑳(𝒒0)]−1 𝑳𝑇(𝒒0)𝑪𝛷

−1 (5) 

where  

𝑪𝛷 = 𝐸[𝜱𝜱𝑇]. (6) 

is an estimate of the sensor-space covariance. Hence, after some algebra, the estimated variance 

becomes: 

𝑣𝑎𝑟̂(𝒒0) = 𝑡𝑟 {[𝑳𝑇(𝒒0)𝑪𝛷
−1𝑳(𝒒0)]−1} (7) 

To localize the electrical activity of the brain sources, the variance of the LCMV filter output is evaluated 

as a function of location within the volume of the brain, normalized by the output of the same LCMV 

filter on reference (noise) data. As the simulated signal in the present study was supposed to represent 

the brain’s general background (resting-state) activity, the only possible noise source was measurement 

noise, which was modelled as spatially uncorrelated sensor noise with identity covariance matrix. 

Regions of large relative variance are presumably active, while regions with small relative variance can 

be considered inactive. Nevertheless, in the present study we only considered the estimated source time 

series (filter output) to assess connectivity patterns between them. Factors that may influence the 

accuracy of the LCMV are: 

● The pass-band of the filter, indicating the spatial resolution. The spatial extent of the pass-band 

depends on the transfer matrices L(q), which in turn depend on the number of electrodes, their 

distribution, and source location. 

● The SNR, because of the variance minimization procedure used to determine the spatial filters.   

‘Exact’ Low Resolution Tomography (eLORETA) 

‘Exact’ Low Resolution Electromagnetic Tomography (eLORETA) [37] is a linear inverse method 

characterized by spatially smooth current density. In the most general case, linear solutions to the EEG 

inverse problem are of the following form [38]: 

𝑱̃(𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛𝐽(‖𝑳𝑱 − 𝜱‖2
2 + 𝜆𝑱𝑇𝑺𝑱) (8) 

 
where λ represents the Tikhonov regularization parameter which can be estimated through the general 

cross validation approach [39], and where S is a symmetric positive definite weight matrix. The idea of 

eLORETA is to find an appropriate S matrix in eq. 8 such that the solution has zero localization error for 

all single point sources in the brain [37]. These weights are obtained from the following expression: 

𝑺𝑖 = [𝑳𝑖
𝑇(𝑳𝑺−1𝑳𝑇 + 𝜆𝑰𝑀)+𝑳𝑖]1/2 , (9) 

where 𝑺𝑖 for 𝑖 = 1, … , 𝑁 (number of voxels) are the diagonal elements of the weight matrix S, 𝑳𝑖 ∈ 𝑅𝑀𝑥1 

represents the i-th column of lead field matrix L, and the symbol + refers to Moore-Penrose 

pseudoinverse. The solution to (eq. 9) can be found by iterating four steps. First, we have to initialize 

the diagonal matrix S with 𝑆𝑖 = 1, for 𝑖 = 1, … , 𝑁 and then compute: 
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𝑪 = (𝑳𝑺−1𝑳𝑇 + 𝜆𝑰𝑀)+ . (10) 

Holding C fixed, we compute new weights for all the dipoles 𝑖 = 1, … , 𝑁: 

𝑺𝑖 = [𝑳𝑖
𝑇𝑪𝑳𝑖]1/2 (11) 

and then we return to eq. 10 until convergence. Once the 𝑺𝑖 have been estimated, the eLORETA solution 

is given by the following expression: 

[𝑱]𝑖 = 𝑺𝑖
−1𝑳𝑖

𝑇(𝑳𝑺−1𝑳𝑇 + 𝜆𝑰𝑀)+𝜱 . (12) 

It has been suggested that eLORETA solution achieves exact localization to single test point sources 

under ideal (no-noise) conditions. Even if this theoretical property does not hold anymore in the 

presence of two or more sources (thus, in any setting involving source interaction), the studies that have 

evaluated this method in realistic scenarios, have found that it outperforms other linear solutions [25].  

2.3 Multivariate Directed Connectivity Estimation 

Multivariate Granger Causality (MVGC) 

The concept of Granger causality [13], [40] is based on the predictability of time series. Namely, if a time 

series Y2 contains information that improves the predictability of future values of another time series 

Y1 above and beyond what can be predicted on the basis of Y1 alone, then Y2 is said to Granger-cause Y1. 

In other words, if the prediction error decreases by adding the past values of Y2 to a regression model 

for predicting Y1, we can say that Y2 Granger-causes Y1. In the BIVAR (bi-variate vector-autoregressive) 

formulation, this notion is described as follows: 

𝒀𝟏,𝑡

𝒀𝟐,𝑡
=  ∑ ( 

𝐴11,𝑘 𝐴12,𝑘

𝐴21,𝑘 𝐴22,𝑘
) (

𝒀𝟏,𝑡−𝑘

𝒀𝟐,𝑡−𝑘
) +   (

𝑒1,𝑡

𝑒2,𝑡
)

𝑝

𝑘=1

                           (13) 

𝜮 ≡ 𝑐𝑜𝑣 (
𝑒1,𝑡

𝑒2,𝑡
) =  (

𝛴11 𝛴12

𝛴21 𝛴22
)  

  (14) 

where p is the optimal order of the model and A is the matrix of autoregressive coefficients. At this point, 

one can perform a full regression (eq. 15), using both time series, and a reduced regression (eq. 16), using 

only the target time series: 

𝒀𝟏,𝑡 =  ∑ 𝐴11,𝑘𝒀𝟏,𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝐴12,𝑘𝒀𝟐,𝑡−𝑘

𝑝

𝑘=1

+  𝑒1,𝑡 (15) 

𝒀𝟏,𝑡 =  ∑ 𝐴′11,𝑘𝒀𝟏,𝑡−𝑘

𝑝

𝑘=1

+  𝑒′1,𝑡  (16) 

In the full regression, the dependence of Y1,t on the past of Y2, in addition to its own past, is encapsulated 

in the coefficients A12,k. There is no dependence between Y1 and Y2 if the coefficients are null for all lags 

k, A12,1  = A12,2  = … = A12,p = 0. Prediction error estimation is based on full and reduced regression residuals. 

In particular Σ’11 ≡ var(e’1,n) is the residual variance in the case of reduced regression and Σ11 ≡ var(e1,n) 

is the residual variance in the case of full regression.  Pairwise time-domain Granger Causality (PGC) is 

defined as 
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𝑓𝒀𝟐⟶𝒀𝟏 = 𝑙𝑜𝑔
𝜮′11

𝜮11
 (17) 

If a dynamical influence from Y2 to Y1 exists, the value of 𝑓𝒀𝟐⟶𝒀𝟏 is greater than zero. However, if there 

are joint dependencies between Y1 and Y2 and a third time series, e.g. Y3 then spurious Granger-causal 

influences may be reported using PCG. This issue can emerge, for example, when there is no direct 

influence Y2 → Y1 but there are (possibly lagged) dependencies of Y1 and Y2 on Y3. To overcome this 

problem, Barnett and Seth propose a different way to compute GC, introducing the so called Pairwise 

Conditional Granger Causality (PWCGC), which conditions out common dependencies between variables 

before estimating pairwise GC scores, provided such dependencies are present in the data [18]. The 

MVAR model is a generalization of BIVAR to three or more time series. In the case of three variables, the 

corresponding full regression (eq. 18) and reduced regressions (eq. 19) take the following forms: 

𝒀𝟏,𝑡 =  ∑ 𝐴11,𝑘𝒀𝟏,𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝐴12,𝑘𝒀𝟐,𝑡−𝑘

𝑝

𝑘=1

+ ∑ 𝐴13,𝑘𝒀𝟑,𝑡−𝑘

𝑝

𝑘=1

 + 𝑒1,𝑡 (18) 

𝒀𝟏,𝑡 =  ∑ 𝐴′11,𝑘𝒀𝟏,𝑡−𝑘

𝑝

𝑘=1

 + ∑ 𝐴′13,𝑘𝒀𝟑,𝑡−𝑘

𝑝

𝑘=1

 + 𝑒′1,𝑡 

 

(19) 

𝑓𝒀𝟐⟶𝒀𝟏|𝒀𝟑 = 𝑙𝑜𝑔
𝜮′11

𝜮11
 (20) 

Here, fY2→Y1|Y3 may be read as “the degree to which the past of Y2 helps to predict Y1, over and above the 

degree to which Y1 is already predicted by its own past and the past of Y3”. In our simulation study, we 

are going to use this variant of MVGC. Additionally, it is worth noting that we use the state-space 

formulation of Granger causality, which eliminates the bias due to the fact that the reduced model is 

VARMA (Vector Auto Regressive Moving Average) and not VAR [41]. This state-space formulation can 

also prove convenient when trying to solve the source reconstruction and the connectivity between 

sources at the same time [42]. 

Time Reversed Granger Causality (TRGC) 

Granger-causal estimators are prone to detect spurious influences not only in the presence of hidden 

common drivers but also in the presence of additive correlated noise [9], [14], [17], [19], [43]. Correlated 

noise is ubiquitous in EEG data, which are by their very nature linear mixtures of contributions from 

different sources. Since this mixing process cannot be fully undone using source imaging techniques, it 

poses a serious problem for EEG-based brain connectivity analysis using GC. To overcome the problem 

of spurious connectivity, Haufe et al. proposed time-reversal [9], [19]. The intuitive idea behind this 

approach is that, if connectivity is defined based on temporal delays, directed influence should be 

reduced (if not reversed) if the temporal order is reversed. This is often contrasted by the observation 

that two signals that are correlated but non-interacting often appear spuriously Granger-causal 

interacting no matter if GC is applied on the original or time-reversed data. If, however, GC estimates 

obtained on original and time-reversed data are contrasted with each other, the instantaneous influence 

of volume conduction can be removed, and the false detection of connectivity can be avoided. Here we 

define TRGC based on the Granger-scores defined in eq. (17) [14]. The residual covariance matrix of the 

time-reversed AR process (defined on time-reversed data 𝒀𝟏(𝑡),̃  𝒀𝟐(𝑡)̃) is denoted by: 
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𝜮̃ =  [
𝛴̃11 𝛴̃12

𝛴̃21 𝛴̃22

] (21) 

for the full model, and by 

𝜮′̃ =  [
𝛴′̃11 𝛴′̃12

𝛴̃′21 𝛴′̃22

] (22) 

for the reduced model. Consequently, the Granger score on time-reversed data is defined as 

𝑓𝒀𝟐̃⟶𝒀𝟏̃ = 𝑙𝑜𝑔 (
 𝜮̃′11

 𝜮̃11

) (23) 

Finally, it is recommended [19] to transform the original GC scores in eq. (17) and eq. (23) into net GC 

scores 

𝑓𝒀𝟐→𝒀𝟏
𝑛𝑒𝑡 = 𝑓𝒀𝟐→𝒀𝟏 − 𝑓𝒀𝟏→𝒀𝟐 (24) 

and 

𝑓𝒀𝟐̃⟶𝒀𝟏̃
𝑛𝑒𝑡 = 𝑓𝒀𝟐̃⟶𝒀𝟏̃ − 𝑓𝒀𝟏̃⟶𝒀𝟐̃ (25) 

One way to test whether a Granger-causal influence can be explained by a trivial linear mixture of 

independent sources is to check whether the directionality of GC flips when time-reversing the signals. 

This approach is called conjunction-based time-reversed GC [19]. A connection can be regarded as 

significant (not caused by source mixing) according to conjunction-based TRGC if the GC scores for 

original and reversed data have opposing directions and are both significant:  

𝑓𝒀𝟐→𝒀𝟏 > 0  ∧   𝑓𝒀𝟏̃⟶𝒀𝟐̃ > 0 (26) 

This is the definition adopted in the present paper. When net GC scores are used, the sign of the net GC 

score is required to flip for time-reversed data in comparison to the original data, and the conjunction-

based TRGC criterion becomes 𝑓𝒀𝟐→𝒀𝟏
𝑛𝑒𝑡 > 0 ∧ 𝑓𝒀𝟐̃⟶𝒀𝟏̃

𝑛𝑒𝑡 < 0.  Simulations have shown that TRGC leads to a 

reduced number of false connections, compared to original GC and its variants. Theoretical work 

presented in [19] has moreover shown that : 

● The application of time reversal to any connectivity measures that is based on second order 

statistics - which, besides GC and pairwise-conditional GC also includes its direct extension to 

frequency domain (spectral GC) and the popular frequency-domain measures partial directed 

coherence (PDC) and directed transfer function (DTF), among others - prevents the spurious 

detection of connectivity on mixtures of independent sources that would otherwise be highly 

likely. 

● The application of time reversal to Granger causality (that is, the use of TRGC) is guaranteed to 

always yield the correct direction of interaction for systems that do not contain causal loops and 

are noise-free. 
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2.4 Statistical assessment of significant connections 

The standard way to assess the statistical significance of Granger scores is a likelihood ratio test, which 

can be derived from large-sample theory [44]. If dim(X1) = nx1, dim(X2) = nx2 and dim(X3) = nx3 (with nx1 

+ nx2 + nx3 = n) then the difference in the number of parameters between the full model and the nested 

reduced model (see eq. 19) is just d ≡ p nx1 nx2. Thus, under the null hypothesis of zero Granger-causal 

influence, the GC estimator scaled by sample size, (m − p) FX2→X1|X3(u), has an asymptotic χ2 distribution 

(where m is the order of integration and p the order of the model). Under the alternative hypothesis, the 

scaled estimator has an asymptotic noncentral - χ2 (d; ν) distribution, with non-centrality parameter ν 

= (m − p) FX2→X1|X3(u) equal to the scaled actual influence. Note that this standard statistical test, when 

applied to the conventional GC score, is capable to distinguish actually present GC from results obtained 

due to random signal fluctuations in the absence of GC. It is not capable of distinguishing actual GC effects 

that are due to genuine time delayed interaction from actual GC effects that are solely due to source 

mixing (or, more generally, additive mixed noise) in the absence of genuine time-delayed interaction. 

To test for the latter, time-reversed GC needs to be assessed. This is done here by evaluating the 

significance of the GC scores obtained on time-reversed data using the same statistical approach, and by 

evaluating the conjunction based TRGC criterion (26). In this work, we used an alpha level of 0.05, FDR 

corrected [45], and the corresponding p value is taken as a threshold to binarize the connectivity graph. 

 

2.5  Simulation Framework 

The simulation study developed for investigating the effects of the volume conduction on connectivity 

estimation accuracy and reliability is composed by the following main steps: 

- Generation of brain signals with an imposed connectivity pattern 

- Forward modeling 

- Inverse modeling 

- Connectivity estimation 

- Performance evaluation 

 

An overview of the simulation framework, with all of the considered factors, is shown in fig.1.  
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Figure 1 – Block diagram illustrating the main steps of the simulation framework. 

 

 

2.5.1 Simulated time series generation 

Pseudo-EEG data were generated employing the toolbox developed by Haufe and Ewald, described in 

detail in [46]. We simulated three time series of 1000 samples and one connection. In particular, the 

source dynamic was generated by using the following multivariate autoregressive (MVAR) model with 

order 2: 

[

𝑦𝑠(𝑡)
𝑦𝑟(𝑡)
𝑦𝑛(𝑡)

] = ∑ [

𝑎11(𝑝) 0 0
𝑎21(𝑝) 𝑎22(𝑝) 0

0 0 𝑎33(𝑝)
]

𝑃

𝑝=1

[

𝑦𝑠(𝑡 − 𝑝)
𝑦𝑟(𝑡 − 𝑝)
𝑦𝑛(𝑡 − 𝑝)

] +  [

𝑒1(𝑡)
𝑒2(𝑡)
𝑒3(𝑡)

] (27) 

where 𝑦𝑠(t), 𝑦𝑟(t) and 𝑦𝑛(t) are the Sender, Receiver, and Non-Interacting dipole, to respectively indicate 

the driving dipole, the receiving dipole, and the independent dipole. Each of them represents an active 

source contributing to the simulated EEG scalp potentials; 𝑎𝑖𝑗(𝑝) with i, j ϵ {1, 2, 3} and 𝑝 ϵ {1, …, P} are 

the autoregressive coefficients; 𝑎21 is the coupling strength imposed from the Sender to the Receiver. 

Both the autoregressive components and the off-diagonal element were randomly chosen within the 

range [0.3 1]. 𝑒𝑖(𝑡) with i ϵ {1, 2, 3} represents uncorrelated standard normal distributed realizations of 

an innovation process. We also generated 500 mutually statistically independent sources of pink “brain 

noise”, generated by scaling the amplitude spectrum of random white Gaussian noise with the factor 1/f 

using the Fourier transform and its inverse. These 500 signals are meant to represent the brain 
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background activity. The selected 1000 time points followed a discarded transient of previous 1000 

points to ensure stability and independence from the initial conditions.   

2.5.2 Simulated time series location 

Brain activity was modelled with 1006 electric equivalent dipoles, equally distributed within the brain. 

Using the New York Head model, we obtained the dipole positions by subsampling the 75000 MNI 

coordinates available in the ICBM152 model. In panel a of fig. 2 we showed all of the 1006 possible dipole 

locations.  

 
Figure 2 - Panel a) shows the 1006 locations uniformly distributed in the brain in which the activity was modelled. 
Green circles represent the 500 “deep” dipoles; the remaining red ones represents “superficial” dipoles. Panel b) 
presents the four conditions for the two fixed active dipoles, which are the red (Sender) and the purple (Receiver) 
one. The black circle represents the Non-Interacting dipole (noise). 

For each simulation, we fixed the position of the Sender and Receiver on four possible configurations 

(represented in fig.2b) defined from the combination of the following factors: 

● Depth of the dipoles: “superficial” (distance from the origin >6.5 cm) or “deep” (distance from 

the origin <6cm);  

● Distance between the dipoles: “far” (relative distance >8cm) or “close” (relative distance <5cm). 

According with [34], the origin was located at the anterior commissure. The third dipole, the Non-

Interactive one, that we will call moving dipole, changes its location at each iteration on the remaining 

1004 positions. Two different cases were analysed by changing the moving dipole. In the first case, it is 

the Non-Interacting dipole, thus the connection is fixed. In the second case, the moving dipole is the 

Receiver; thus, the relative locations of Sender and Receiver varies across repetitions. The 500 

additional noisy elements were randomly distributed within the brain. With regard to the sources 

direction, we assumed that dipoles are oriented perpendicularly to the cortical surface following the 

simulation framework proposed by Haufe and Ewald [46]. 
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2.5.3 Pseudo-EEG signal generation.  

After the signals generation, the time series representing both the source activity and the noise were 

projected onto 108 EEG electrodes defined by the New York Head model described in section 2.1 

(forward problem). Then, they were summed according to following equation: 

𝒙𝑏𝑟𝑎𝑖𝑛(𝑡) = 𝛾 ∗
𝒙𝑎𝑐𝑡𝑠(𝑡)

||𝒙𝑎𝑐𝑡𝑠(𝑡)||𝐹
+ (1 − 𝛾) ∗

𝒙𝑛𝑜𝑖𝑠𝑒_𝑠(𝑡)

||𝒙𝑛𝑜𝑖𝑠𝑒_𝑠(𝑡)||𝐹
   (28) 

The signal-to-noise (SNR) parameter γ is drawn from the interval [0.1, 0.9]. In particular, in the present 

simulation study we selected γ equal to 0.5, 0.7 and 0.9 to simulate low, medium, and high SNR 

respectively. All of the variables in the formula refer to the signals at the scalp sensors level. In particular, 

𝑥𝑎𝑐𝑡_𝑠 and 𝑥𝑛𝑜𝑖𝑠𝑒_𝑠 are the projections of the active sources signals and of the brain noise sources activity 

respectively, thus their dimensions are [108 (number of sensors) x 1000 (signal length)]. ||𝑥(𝑡)||𝐹 is the 

Frobenius norm of the multivariate time series x(t) (the square-root of the sum of the squared activity 

across time and space). The specific SNR definition used for this study represents the brain noise level 

and allows deep sources to have the same strength as shallow sources. It would make the discovery of 

deep sources more difficult but, on the other hand, as SNR is computed not per-source, but for all three 

sources together, this imbalance is mitigated. Other SNR definitions would allow for a fairer view of the 

difference in discovery between superficial and deep sources, but other biases would remain: as we only 

use a fixed set of 4 locations, the results would also depend on the correlation of the scalp patterns of 

these four particular sources. For the purpose of this study and given the fact that the separation 

between noise and signal in the context of EEG source reconstruction is not perfectly defined, we prefer 

to use this recipe. Finally, in order to simulate the measurement noise, spatially and temporally 

uncorrelated signals are added to 𝑥𝑏𝑟𝑎𝑖𝑛(𝑡) with an imposed γ equal to 0.9. The overall pseudo-EEG data 

is defined from the following equation: 

𝒙(𝑡) = 0.9 ∗
𝒙𝑏𝑟𝑎𝑖𝑛(𝑡)

||𝒙𝑏𝑟𝑎𝑖𝑛(𝑡)||𝐹
+ 0.1 ∗

𝒙𝑛𝑜𝑖𝑠𝑒(𝑡)

||𝒙𝑛𝑜𝑖𝑠𝑒(𝑡)||𝐹
  (29) 

where 𝑥𝑛𝑜𝑖𝑠𝑒 is the white uncorrelated noise.  

2.5.4 Source reconstruction and directed connectivity estimation 

The simulated pseudo-EEG signal was projected onto the cortical surface using two different inverse 

solutions: LCMV and eLORETA. The regularization parameter to be set in the eLORETA algorithm was 

chosen by means of a cross-validation approach equal to 0.01. In cortical source space, directed 

connectivity was estimated with MVGC and TRGC at the location of the three simulated active dipoles, 

and the statistical significance of the estimated connections was assessed.  

2.5.5 Performance parameters 

The quantitative evaluation of the connectivity estimation was performed by means of three 

parameters: the False Positive Rate (FPR), the False Negative Rate (FNR), and the Area Under ROC Curve 

(AUC). Such parameters were computed by comparing the estimated connectivity pattern with the 

imposed ground-truth. A false positive (FP) is an estimated (statistically significant) connection that is 

not present in the simulated data, while a true negative (TN) is an absent simulated connection that is 
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correctly estimated as being absent. The FPR (see eq. 30) is the number of false positives normalized by 

the number of absent connections. The FPR is thus defined as in the follows: 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
 .    (30)                                                                                   

The FNR quantifies the percentage of missed (not statistically significant) connections (referred to as 

false negatives, FN) that are present in the simulated data relative to the total number of actually present 

simulated connections. The latter number is given as the sum of false negatives and true positives (TP, 

referring to actually present connections that are also estimated to be present). The FNR is thus defined 

as follows: 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
  (31) 

In this study, the total number of possible connections is six (2 possible directions for three distinct 

pairs of variables). As only one interaction was modelled, FN+TP equals one, while the number of absent 

connections (FP + TN) is equal to five. 

The AUC is a measure of binary classification accuracy, which is applied here to the problem of 

distinguishing between interacting and Non-Interacting signals. It takes into account both the FPR and 

FNR across the entire range of all possible thresholds for the connectivity measure; therefore, it is 

independent of a specific significance threshold. The AUC was derived from the Wilcoxon-Mann-

Whitney statistic test (also known as the Wilcoxon rank-sum test statistic) [47]. 

2.6 Statistical Analysis 

In order to statistically evaluate the accuracy of the employed algorithms in reconstructing the sources 

activity and estimating brain networks, a four-way ANalysis Of VAriance (ANOVA) was computed. The 

main within factors were: 

● the fixed dipoles position (DIP_POS) with 4 levels: Close Deep, Close Superficial, Far Deep, Far 

Superficial; 

● the adopted inverse methods (L_INV_METH) with 2 levels: eLORETA, LCMV; 

● the connectivity estimator (EST_TYPE) with 2 levels: MVGC, TRGC; 

● the signal-to-noise ratio (SNR) defined by 3 levels of γ: 0.5, 0.7, 0.9 which in the next sections 

will be identified as “low”, “medium” and “high” value of SNR. 

The dependent variables were the three introduced performance parameters (FPR, FNR and AUC) 

averaged on the 1,004 possible location of the moving dipole. The simulation was repeated 100 times 

for each experimental condition. Additionally, a post hoc analysis was performed in order to highlight 

the significant comparisons between the various level of the included factors and their interaction, using 

Tukey's range test. 

2.7 Topographical visualization of the results 

As described in the previous paragraph, the ANOVA investigates the performance parameters averaged 

for more than one thousand possible locations of the moving dipole. In order to obtain a detailed 

overview on the variations of the accuracy of the estimation as a function of the position of the moving 

dipole, we averaged the performance parameters across the 100 repetitions and reported the obtained 

https://de.wikipedia.org/wiki/Wilcoxon-Mann-Whitney-Test
https://de.wikipedia.org/wiki/Wilcoxon-Mann-Whitney-Test
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results in 3D brain maps. The color of each one of the 1004 dipoles codes for the value of the FPR. We 

do not report the maps obtained for the false negatives because their amount is always very low (less 

than 5%). With the aim to summarize the complex information contained in the brain maps, we also 

calculated the FPR as function of the Euclidean distance between Sender and Receiver as well as 

between Sender and Non-Interacting dipole for each SNR level, inverse approach, and connectivity 

estimator. Each point in the figure (for each SNR level and linear inverse method) is the average of the 

FPR computed when the moving dipole is placed in a specific range of distance from the Sender (i.e. all 

the moving dipole positions 2 to 3 cm far from the Sender). The position of the fixed dipole (either 

Receiver or Non-Interacting dipole) in these analyses were far and superficial to explore the fluctuations 

of the performance parameters also in the best experimental condition. 

3. RESULTS 

3.1 Statistical assessment of recovery of simulated connections 

The results of the four-way ANOVA computed separately for the three performance parameters are 

reported in Table I. A four-way ANOVA consists of fifteen separate multiple tests (four main effects, six 

two-way interactions, four three-way interactions, and one four-way interaction). Therefore, a 

correction for multiple comparisons (Bonferroni-Holm) was performed and the post-hoc tests are 

available for consultation at https://zenodo.org/record/1157196#.WmZ1K6jiY2w (open-access 

repository). 

Factors FPR FNR AUC 

L_INV METH (1,99) 85.69 p=1*10-5 70.04 p=1*10-5 39.66 p=1*10-5 

EST_TYPE (1,99) 1694.6 p=1*10-5 5.04 p=0.027 1616.6 p=1*10-5 

SNR (2,198) 303.87 p=1*10-5 67.94 p=1*10-5 502.81 p=1*10-5 

DIP_POS (3,297) 881.5 p=1*10-5 60.97 p=1*10-5 1213.41 p=1*10-5 

L_INV METH x EST_TYPE (1,99) 16.93 p=0.8*10-4 7.83 p=0.006 13.64 p=0.3*10-4 

L_INV METH x SNR (2,198) 30.31 p=1*10-5 104.005 p=1*10-5 1.41 p=0.25 

EST_TYPE x SNR (2,198) 88.09 p=1*10-5 2.91 p=0.056 84.52 p=1*10-5 

DIP_POS x L_INV METH (3,297) 77.42 p=1*10-5 88.14 p=1*10-5 12.99 p=1*10-5 

EST_TYPE x DIP_POS (3,297) 270.61 p=1*10-5 2.79 p=0.04 228.33 p=1*10-5 

DIP_POS x SNR (6,594) 80.26 p=1*10-5 92.6 p=1*10-5 57.88 p=1*10-5 

L_INV METH*EST_TYPE*SNR (2,198) 42.52 p=1*10-5 6.35 p=0.002 26.63 p=1*10-5 

L_INV METH*EST_TYPE*DIP_POS (3,297) 37.22 p=1*10-5 3.14 p=0.025 37.07 p=1*10-5 

L_INV METH*SNR*DIP_POS (6,594) 13.42 p=1*10-5 78.3 p=1*10-5 47.3 p=1*10-5 

EST_TYPE*SNR*DIP_POS (6,594) 2.83 p=0.01 0.38 p=0.89 2.48 p=0.022 

L_INV METH x EST_TYPE x SNR x DIP_POS (6,594) 67.86 p=1*10-5 5.38 p=0.2*10-4 73.68 p=1*10-5 

 Table I - Results of the four-way ANOVA (F values and p values) computed considering as dependent variables 
FPR, FNR, and AUC and as within main factors the type of inverse algorithm (L_INV METH), the connectivity 
estimator (EST_TYPE), the SNR, and the position of the fixed dipoles (DIP_POS). In the column “Factors”, the 
degrees of freedom are also reported.  

https://zenodo.org/record/1157196#.WmZ1K6jiY2w
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All individual factors have a significant effect on the FPR, FNR, and AUC (while this is not the case for all 

the interactions). In the following, we show a graphical depiction of the means of the four-way 

interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) for each investigated performance 

measure. 

False Positive Rate 

Figure 3 shows means obtained for the FPR for different levels of SNR (γ) and dipole positions when 

specific algorithms for the inverse solution and connectivity estimation are employed.   

 
Figure 3 - Means associated with the four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) of 
the ANOVA performed on the FPR. Each panel corresponds to a specific value of the SNR parameter γ: 0.5 (panel 
a), 0.7 (panel b), 0.9 (panel c). For each panel, there are two graphs associated with the two different inverse 
solutions: eLORETA on the left and LCMV on the right. X-axes report the four levels of the factor DIP_POS: 
far/superficial (FS), Close/Superficial (CS), Far/Deep (FD) and Close/Deep (CD). Colours code for the different 
connectivity estimators and whiskers represent 95% confidence intervals.  
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These graphs show how the two different inverse methods and the location of the fixed dipoles influence 

the amount of false positive connections when the estimation is performed with different connectivity 

estimation algorithms for different levels of SNR. 

Connectivity Estimator: As expected, we found that the amount of false positive decreases when the 

connectivity pattern is extracted by means of TRGC. FPR associated with the TRGC is significantly lower 

(Tukey test) with respect to the other method independently of the dipoles position, the SNR level, and 

to the inverse algorithm (see all of the subplots).  

Inverse Algorithm: For each panel, we can compare the performance associated with the different 

inverse solutions comparing the two subplots. Regardless of the SNR, the LCMV algorithm (on the right) 

for source reconstruction has globally better performance than eLORETA (on the left) for all of the three 

SNR values. The post hoc analysis reveals a significant increase of the FPR for eLORETA, compared to 

LCMV, in all of the considered conditions of SNR, dipoles position, and connectivity estimator. Only in 

the most advantageous configuration, when γ is equal to 0.9, indicating high SNR, and the linked dipoles 

are in the Far/Superficial configuration, such difference is not significant. In the worst case, 

corresponding to the Close/Deep configuration, the FPR is considerably high, especially for the eLORETA 

reconstruction, where it exceeds 70%, and the difference between the performances of the two inverse 

methods appears to be emphasized.  

Fixed dipoles position: It is worth to note how performance critically depends on the position of the 

fixed dipoles. Independently of the employed inverse algorithm and connectivity estimator, the ANOVA 

suggested that when they are located deep in the brain the number of false positives significantly 

increases. When the fixed dipoles are superficial and γ is equal 0.7, the relative distance (close/far) does 

not have a significant influence on the FPR. For the highest SNR levels, the ANOVA highlighted a 

significant increase of the FPR comparing the “superficial” conditions with the “deep” conditions and, in 

particular for eLORETA, suggesting that the optimal configuration for the source reconstruction is given 

by far and superficial dipoles. For the very low SNR value of 0.5, for all the L_INV METH and EST_TYPE 

levels, the statistical test revealed a significant decrease of FPR in the Close/Superficial case relative to 

the Far/Superficial case. 

SNR: In all considered conditions, the test indicates a significant improvement of performance when the 

simulated SNR is higher. In more in detail, when the SNR level is 0.9, the amount of false positives is less 

than 30% in all cases except for the Deep/Close condition. The analysis of FPR suggests that the best 

combination of factors is given, for all of the considered SNR levels, by: i) dipoles located superficial in 

the brain and not too close; ii) LCMV as algorithm for the inverse problem solution, and iii) TRGC as 

connectivity estimator.  Only in this case the percentage of false positives reached low values (around 

10% for SNR equal to 0.9). 

False Negative Rate 

The graphs in Figure 4 depict the means of the four-way interaction factor (L_INV METH x EST_TYPE x 

SNR x DIP_POS) obtained for the FNR index.  
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Figure 4 - Means associated with the four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) of 
the ANOVA performed on the FNR. Each panel corresponds to a specific γ level: 0.5 (panel a), 0.7 (panel b), 0.9 
(panel c). For each panel, there are two graphs associated with the two different inverse solutions: eLORETA on the 
left and LCMV on the right. X-axes always show the four levels of the factor DIP_POS: far/superficial (FS), 
Close/Superficial (CS), Far/Deep (FD) and Close/Deep (CD). Colours code for the different connectivity estimators 
and whiskers represent 95% confidence intervals.  

The percentage of false negatives is less than 5% in all simulated cases, except for the lowest SNR level 

(γ equal to 0.5) when LCMV is employed. In the easier condition with a higher signal to noise ratio and 

interacting dipoles that are not deep and close at the same time, the FNR is around 1% regardless of the 

chosen connectivity estimator.  

Connectivity Estimator: The factor EST_TYPE does not have a significant effect on the FNR index 

independently of all the other factors (SNR value, type of algorithm chosen for the source reconstruction, 

and connectivity estimation): the difference between the connectivity estimators never exceeds 1%. 
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Also, the slight increase of false negatives (see eLORETA) associated with the TRGC is not statistically 

significant in this case. 

Inverse Algorithm: The percentage of FN obtained with the two inverse methods is strictly linked to 

the dipoles’ position. Results reported in panel a) show that for γ equal to 0.5, FNR significantly increases 

for LCMV only when the dipoles are located deep in the brain (accounting for an increase of 20% in the 

Close/Deep condition). Panel b) shows a similar but attenuated trend for γ equal to 0.7 (increase of less 

than 5% in the Close/Deep condition). As shown in panel c), there are no significant differences between 

LCMV and eLORETA for the highest SNR value.  

Fixed dipoles position: The factor DIP_POS is significant for low and medium SNR values and L_INV 

METH corresponding to LCMV. In such conditions, for deep dipoles, the FNR is significantly higher, 

regardless the connectivity estimator. Moreover, focusing on the deep locations, there is a significant 

increase of the false negatives when the dipoles are close compared to when they are further away.  

SNR: The signal-to-noise ratio associated with the three levels of the factor SNR significantly influences 

the presence of false negatives only when the inverse problem is solved by the LCMV algorithm. This is 

particularly the case for the condition Close/Deep, in which the FNR decreases from 20% when γ is equal 

to 0.5 (panel a) to 4% when γ is equal to 0.7 (panel b), and to 1% for the highest SNR level (panel c).  

This suggests that the amount of false negatives is independent of the algorithm employed for solving 

the inverse problem and for the connectivity estimation when the dipoles are located superficially in 

the brain. In case of poor signal quality (low SNR), the FNR is considerable when the sources to be 

reconstructed are located deep in the brain. Algorithms that are more prone to missing connections are 

LCMV for source reconstruction and TRGC as connectivity estimation. 

AUC 

The graphs in Figure 5 depict the means of the four-way interaction factor (L_INV METH x EST_TYPE x 

SNR x DIP_POS) obtained for the AUC parameter. The AUC index hereby summarizes the effect of the 

four considered factors on the accuracy of the estimation in terms of false positives and false negatives, 

providing a unifying measure of the discriminability of actually present and non-existent connections. 

Connectivity Estimator: As expected from the previous results concerning the FPR trend, the accuracy 

of the estimation considerably increases when performed by means of TRGC. The increase of the 

performances associated with TRGC is statistically significant and amounts to about 10%.  

Inverse Algorithm: On average, the difference between LCMV and eLORETA is not significant, but there 

are combinations of the factors for which either of the two performed better. The main discrimination 

is given by the linked dipoles position. When the sources are located deep in the brain (especially if they 

are also close), the accuracy of the connectivity estimation appears significantly higher when LCMV is 

employed to reconstruct the brain activity. Once again, the only exception is the low SNR setting, in 

which this relationship is reversed because LCMV is more sensitive to the SNR level compared to the 

eLORETA algorithm, which shows more stable performance (for example, in the close/deep condition, 

the range of variability is less than 0.1 for eLORETA and more than 0.2 for LCMV).   

Fixed dipoles position: Independent of the employed inverse algorithm and connectivity estimator, 

the accuracy of the estimation significantly decreases when the linked dipoles are located deep in the 

brain. For higher SNR levels, the ANOVA highlights a performance degradation in terms of the AUC 

dropping from 90% (Far/Superficial) to 70% (Close/Deep).  
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SNR: As expected, the performance significantly improves in all considered conditions when the 

simulated SNR is high. More specifically, when the SNR level is 0.9, the accuracy is higher than 85% for 

eLORETA and higher than 90% for LCMV in all the cases except for the Deep/Close condition.  

 

 
Figure 5 - Means associated with the four-way interaction factor (L_INV METH x EST_TYPE x SNR x DIP_POS) of 
the ANOVA performed on the AUC. Each panel corresponds to a specific γ level: 0.5 (panel a), 0.7 (panel b), 0.9 
(panel c). In each panel, there are two graphs associated with the two different inverse solution: LCMV on the left 
and eLORETA on the right. X-axes report the four levels of the factor DIP_POS: far/superficial (FS), Close/Superficial 
(CS), Far/Deep (FD) and Close/Deep (CD). Colours code for the different connectivity estimators and whiskers 
represent 95% confidence intervals.  
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3.2 Brain maps 

Non-Interacting dipole position 

As mentioned before, in each simulated condition, the moving dipole changes its position over 1004 

locations equally distributed in the brain. In order to map the performance of the two connectivity 

estimators for each investigated source reconstruction algorithm and each position of the fixed dipoles, 

MVGC and TRGC were computed considering all 1004 possible configurations of the network. Since each 

simulation was iterated 100 times, we were able to obtain an average performance value. Only the maps 

depicting the FPR are reported because of the greater sensitivity of this indicator to the factors 

considered in the analysis. Is it also possible to consult the same brain maps obtained for the AUC in the 

supplementary material; they show the same behaviour of the FPR but in a smaller range of variability. 

For each choice of fixed dipoles position and inverse method we report transparent axial views of the 

head and the value assumed by the performance parameter (coded by its color) in the position of the 

moving dipole associated with that measure. Figure 6 reports the results obtained for the lowest SNR 

level, when γ is equal to 0.5.   
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Figure 6 – Spatial distribution of the FPR in the Moving Non-Interacting Dipole condition for low SNR (γ = 0.5). 
The Sender (red circle) and Receiver (purple circle) of the interaction are represented in the Far-Superficial (a), 
Close Superficial (b), Far-Deep (c), and Close-Deep (d) conditions. The other points represent the mean value of the 
FPR across 100 iterations (coded by the colour bar on the right side) when the third active dipole (the Non-
Interacting one) is moved across the brain. The first two columns refer to the classical GC (MVGC algorithm); the 
last two to the TRGC. For each column, results obtained with eLORETA and LCMV are reported next to each other. 

The percentage of false positives depends on the distance of the Non-Interacting dipole from the two 

fixed ones. The most relevant result is that when the fixed dipoles are located deep in the brain and close 

to each other (panel d), high FPR values are spread across the whole brain, and reach 100% in the 

vicinity of the Sender and Receiver. Only TRGC combined with the LCMV algorithm mitigates this effect, 

which is then limited to the configurations in which the Non-Interacting dipole is close to the other two. 

Panels a), b), and c) clearly show a strong increase of the FPR when the Non-Interacting dipole is located 

in the areas close to the Receiver or to the Sender. Similar maps displaying the results obtained for γ 
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equal to 0.7 and 0.9 are reported in the supplementary material. These results confirm the trends 

commented for the previous maps but with globally better performances. The FPR considerably 

increases around the fixed dipoles. This phenomenon is focal when LCMV is employed and more spread-

out if eLORETA is combined with the MVGC estimator. Again, when the fixed dipoles are located deep in 

the brain and close to each other, high FPR values are spread across the whole brain and reach 100% in 

the vicinity of Receiver and Sender. Maps associated with all the other fixed dipoles positions show that 

when the sources included in the model are far one from the other, the best performance is obtained 

with eLORETA. In more detail, figure 7 shows the value of the FPR as function of the distance of the 

moving dipole from the Sender for all SNR values, inverse algorithms, and connectivity estimators in the 

case of far and superficial interactive sources. 

 

Figure 7 - FPR as function of the distance (in cm) of the Non-Interacting Moving Dipole from the Sender of the 
interaction for the two inverse reconstruction algorithms, eLORETA and LCMV. The different SNR levels are drawn 
in red (high), light blue (medium) and dark blue (low). The circle marker codes for MVGC and the cross for the 
TRGC.  

The results suggest that TRGC performs better than MVGC regardless of the distance of the moving 

dipole from the Sender. LCMV source reconstruction is less sensitive to the distance between dipoles. 
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For example, in panel a), an increase of the FPR 14 cm away from the Sender is noticeable. This second 

peak is related to the presence of the second interacting dipole (Receiver). When the LCMV algorithm is 

employed such increase is much less evident. The trends are similar for all γ levels, although higher FPRs 

are observed for lower SNRs. For high SNR, the best performance is achieved with eLORETA when the 

moving dipole is far from the other two.    

Interactive dipole position 

The last analysis was performed using a fixed location for the Non-Interacting and Sender dipoles, 

placing the Receiver dipole at different positions. The results are in line with the previous ones. Figure 

8 depicts topographical maps for the low SNR level (in the supplementary material for medium and high 

SNR levels), while figure 9 depicts FPR as a function of the distance between Receiver and Sender. 
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Figure 8 - Spatial distribution of the FPR in the Moving Receiver Dipole condition for low SNR (γ = 0.5). The Sender 
(red circle) and Non-Interacting dipole (black circle) are represented in the Far-Superficial (a), Close Superficial 
(b), Far-Deep (c), and Close-Deep (d) conditions. The other points represent the mean value of the FPR across 100 
iterations (coded by the colour bar on the right side) when the third active dipole (the Receiver) is moved 
throughout the brain. The first two columns refer to the classical GC (MVGC algorithm); the last two to the TRGC. 
For each column, results obtained with eLORETA and LCMV are reported next to each other. 

When the fixed dipoles are close (panels b and d), a high percentage of false positives appear throughout 

the brain, in particular for low and medium level of SNR. All other results are in line with the results 

reported above: 

● the increase of the γ value corresponds to a decrease in the number of false positives 

independently of all other factors; 

● on average, LCMV performed better than eLORETA. This advantage is predominantly due to an 

increased robustness w.r.t. the position of the nodes; 
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● TRGC provided more accurate connectivity estimates than MVGC;  

● when the involved dipoles are far away from another, eLORETA leads to more accurate 

connectivity estimation, and the difference between the classical MVGC and TRGC is less 

pronounced than in the other conditions; 

● with the dipoles in the Far/Superficial configuration, and γ equal to 0.9, the percentage of false 

positives is less than 10% for all the inverse solutions and connectivity algorithms; 

● with the dipoles in the Close/Deep configuration, the percentage of false positives reaches 100% 

regardless of the SNR value. 

 

Fig. 9 shows the FPR as function of the distance between Sender and Receiver for all SNR values, inverse 

algorithms, and connectivity estimators, when the fixed dipoles are in the Far/Superficial configuration. 

 

 

Figure 9. FPR as function of the distance (in cm) of the moving Receiver from the Sender for the two inverse 
reconstruction algorithms, eLORETA and LCMV. The different SNR levels are drawn in red (high), light blue 
(medium), and dark blue (low). The circle marker codes for MVGC and the cross for the TRGC. 
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The first result is that the mean value of the FPR is lower than for the Non-Interacting moving dipole 

condition. Also, in this case, TRGC performed better than MVGC regardless of the distance of the moving 

Receiver dipole from the Sender. In panel a) it is possible to notice an increase of the FPR when the 

Receiver dipole is 14cm away from the Sender dipole (this being the position of the Non-Interacting 

dipole). Trends are similar for all the γ levels, where, generally, decreases in SNR are associated with 

increases in FPR. For high SNR, the best performance is achieved using eLORETA when the moving 

dipole is far away from the other two (FPR around 5%).    

 

4. Discussion and Conclusion  

It is well established that neuroelectrical measures recorded on the scalp need to be projected back into 

the brain in order to be able to infer where these signals have been generated. Unfortunately, even with 

state-of-the-art localization of the brain sources underlying the measured signals, directed dynamical 

influences between these reconstructed sources do not always reflect the ground truth. This issue has 

been anticipated [8]–[10], thoroughly analysed [48] and mitigation strategies were proposed [32], [49]. 

In the present simulation study, we focused on directional connectivity measures and quantified the 

extent to which the estimation of influences between reconstructed sources is possible. We employed 

an analysis framework combining source localization approaches and brain connectivity estimators 

with the goal of identifying those analysis pipelines that are least affected by the presence of head 

volume conduction and, therefore, provide the most accurate and reliable connectivity estimates. 

Several settings were simulated corresponding to both advantageous and disadvantageous conditions 

for the following brain connectivity estimation. To this end, we modulated the depth of the sources, the 

reciprocal distance between sources, and the SNR (brain noise level). Conscious of the fact that more 

than three sources are likely involved in a more realistic simulation of brain activity, making the issue 

even thornier, here we wanted to present a minimal set of situations allowing for a first glimpse of the 

possible modulations of the bias in connectivity estimates, and the extent to which some proposed 

solutions allow their mitigation. Importantly, it should be noted that we evaluate sources at known 

locations and show that even in this case a bias can be present. Estimating the source locations is more 

realistic but also makes the objective performance evaluation much more difficult. In other words, this 

study does not help in selecting the sources or the ROIs for the subsequent connectivity estimation 

(which is another critical issue) but helps in the definition of some criteria to be taken into account 

during this choice: the depth of the ROIs and their reciprocal distance.  Not surprisingly, a convenient 

condition we identified is the presence of far and superficial dipoles in combination with a high SNR; in 

contrast, a disadvantageous condition is given by the presence of close and deep sources with a low SNR 

level. Our simulations suggest that all considered factors show a significant influence on the estimation 

quality and, consequently, their combination has a considerable impact on the connectivity estimation 

performance. LCMV source reconstruction appears to be more sensitive to the SNR value, while 

eLORETA achieves similar performance regardless of the SNR. In general, LCMV showed better 

performance than eLORETA but, when the simulated sources were assigned to distant locations, the 

eLORETA performance is similar to or better than the performance of LCMV. In other words, there are 

combinations of the factors for which either of the two performed better.   
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In agreement with the theoretical hypothesis, we demonstrated that the TRGC algorithm provides a 

better estimation of the directed statistical dependencies between sources than classical MVGC. Indeed, 

the percentage of spurious connections decreased significantly, and the overall detection of connectivity 

as measured by the AUC increased significantly in all considered experimental conditions when TRGC 

was used instead of MVGC. At the same time, the percentage of missed connections as measured by the 

FNR increased slightly, but still remained close to zero. As expected, we found that closer and deeper 

active sources decreased the obtained performance. Thus, a dependence between the dipoles position 

and the accuracy of the estimates was found and mapped. This is a clear effect of the volume conduction, 

since, when two sources are close to each other, they generate a highly mixed signal on the scalp, which 

compromises the correct estimation even after inverse source reconstruction. On the other hand, when 

the sources are far away from each other, they are less affected by volume conduction, leading to a better 

quality of the connectivity estimation. Summarizing, the analysis of the FPR and AUC indices suggests 

that the optimal combination of factors is given by: i) dipoles located superficial in the brain and not too 

close; ii) LCMV and eLORETA algorithms show similar performance when the active sources are far and 

superficial but LCMV is more accurate when the sources are located deep in the brain (when SNR is not 

too low); iii) TRGC as connectivity estimator. Without providing an indication of the specific ROIs to 

choose, this study can still provide some guidance on certain issues, such as the minimum distance for 

which it makes sense to include two distinct sources in the model as well as the selection of source 

reconstruction and connectivity estimation algorithms that promise to provide the most reliable and 

physiologically interpretable description of brain networks based on EEG data.  In the future, it would 

be interesting to test other important factors that could influence the quality of the source 

reconstruction and, thus, the estimation accuracy such as the number of interactive dipoles, their 

orientation, the dependency from the coupling strength and the inclusion of a differently defined SNR 

allowing deep source to have a different strength with respect to the superficial ones.  

We agree with [30], [48],  advocating for the application of measures for which promises and pitfalls are 

known, and which integrated knowledge of how neural activity in the whole brain as well as external 

(physiological or artifactual) activity contribute to the signals that we record on the scalp. In this regard, 

it should be noted that connectivity estimates can only at most be as focal as the reconstructed source 

current densities they are derived from, and we know that common inverse methods lead to very blurry 

results. To distinguish correctly-identified connections from connections that are observed in the 

vicinity of the true interacting sources due to blurry inverse solutions, a data-driven clustering in the 

space of brain-wide pairwise connectivities, as recently proposed in [49], may be a viable option, which 

may be preferable to a reduction of the source space to the level of static ROIs. Many other solutions for 

reducing the spurious links detection have been proposed and are currently being studied, as the 

leakage correction procedures [27]–[30], [32] and the adaptive parcellation [31], [33]. Unfortunately, 

the perfect solution to address the spurious links problem still does not exist, since a transformation 

(e.g. parametrized by a linear demixing matrix) designed to remove a single type of dependency does 

not (in general) automatically remove all other possible dependencies (e.g. non-linear or lagged). For 

these reasons we decided to investigate, apart from the classical GC, an approach (the TRGC) for which 

theoretical guarantees exist, and we demonstrate that these theoretical results lead to improvements in 

practice not only when estimating connectivity on sensors [9] but also in source space. The proposed 

framework will hopefully be useful for further validation of existing unmixing tools and upcoming ones 

combined with the causal connectivity estimates.  
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However, it must be kept in mind that – although of importance – the main problem in EEG-based brain 

connectivity analysis is not the spatial blur of correctly identified connections but the emergence of 

spurious connectivity as a result of observing mixtures of signals even at the level of reconstructed 

sources. This problem can only be addressed by using appropriate and validated connectivity measures 

that are robust to volume conduction effects by construction.  

 

 

Code and data availability 

The code necessary to reproduce these simulations is available at: 

https://github.com/paolop21/simulation_source_connectivity. 

Simulations were run in parallel on the HPC platform of the University of Ghent, with a running time 

depending on the available nodes on the network. An iteration of the simulation on a Dell Inspiron 5567, 

intel i7, 16 GB RAM takes 2,4 seconds. The computational resources (Stevin Supercomputer 

Infrastructure) and services used in this work were provided by the VSC (Flemish Super- computer 

Center), funded by Ghent University, FWO and the Flemish Government – department EWI. 

The results of the simulations and the structures necessary to run the code are available at: 

https://zenodo.org/record/1157196#.WmZ1K6jiY2w  
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