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Resumo 

O neurofeedback (NF) consiste em medir a atividade cerebral, usando técnicas como a 

eletroencefalografia (EEG) ou a imagem por ressonância magnética funcional (fMRI), e apresentar ao 

participante, em tempo real, uma representação de um padrão de atividade de interesse, enquanto lhe é 

pedido para manipular essa mesma representação através da autorregulação da atividade cerebral 

(Sitaram et al., 2017). As bases neurofisiológicas desta técnica ainda não são conhecidas na sua 

totalidade, apesar de vários estudos terem demonstrado que o treino através de NF tende a reorganizar 

as redes cerebrais. Posto isto, existem poucos estudos que tentam comparar a influência da utilização de 

diferentes modalidades sensoriais de apresentação do “feedback” nos resultados do treino por NF em 

EEG, e os poucos estudos existentes não investigam possíveis efeitos nas métricas de conectividade 

funcional do cérebro.  

 Neste projeto, pretendemos avaliar o efeito da utilização de diferentes modalidades de 

“feedback” no treino de NF através EEG (EEG-NF) para o incremento da amplitude relativa da banda 

alfa superior no canal Cz, e investigar se existe um efeito significativo nos padrões de conectividade 

funcional do cérebro. Para esse fim, será efetuada a análise de dados previamente recolhidos em 20 

participantes saudáveis que realizaram quatro sessões de treino por EEG-NF, que visava incrementar a 

densidade espectral na banda alfa superior, e que utilizaram diferentes modalidades de feedback (visual, 

realidade virtual (VR), e auditiva). Os dados de EEG foram pré-processados, com remoção de artefactos 

através de análise de componentes independentes. Adicionalmente, duas técnicas de re-referenciação do 

sinal EEG foram utilizadas para comparação posterior, sendo estas a re-referenciação para a média de 

todos os canais EEG, e a re-referenciação através da aplicação de um Laplaciano de Superfície com 

parâmetro de rigidez de valores 4 e 3, respetivamente. A avaliação dos resultados foi efetuada a diversos 

níveis, com a análise: i) das variações intra-sessão da amplitude relativa da banda alfa superior no canal 

Cz, ii) da distribuição topológica da banda alfa superior no decorrer do treino, iii) das variações intra-

sessão dos padrões de conectividade funcional da banda alfa superior, utilizando a parte imaginária da 

coerência como métrica de conectividade, e iv) por fim, em termos de uma análise de redes, que visava 

avaliar a importância de nodos de rede, verificada através das métricas como betweeness centrality e 

força, da atividade segregada, verificada através da métrica de transitividade, e da atividade integrada, 

verificada através de métricas como caminho característico e eficiência global da rede cerebral. 

 Relativamente aos resultados para a análise espectral e topológica, encontram-se correlações 

estatisticamente significativas entre o valor da amplitude relativa da banda alfa superior e o número de 

set, em todos os grupos, principalmente nas duas primeiras sessões, sendo cada set composto por 6 trials 

com duração de 30 segundos Posto isto, não são registadas diferenças estatisticamente significativas 

intra-sessão, isto é, do set 1 para o set 5 de cada sessão. Para a análise topológica, não se realizaram 

testes de significância, mas é possível visualizar uma acentuação da amplitude relativa da banda alfa 

superior em zonas parietais/occipitais, e é também possível verificar que o treino realizado, não afetou 

somente a banda de interesse mas também a banda theta, cuja atividade não focal diminui, a banda alfa 

inferior, cuja amplitude relativa parece incrementar. Relativamente aos resultados da análise de 

conetividade, os mesmos sugerem que o treino de EEG-NF para o incremento da banda alfa superior 

resulta num incremento mais pronunciado nas fases iniciais do treino, isto é, nas duas primeiras sessões 

de treino. Este incremento é representado pelo do número de canais que apresentam conectividade 

funcional com a zona parietal central, com canais como o Pz,  e com a zona parietal direita, CP6, P4, 

entre outros, independentemente da modalidade de feedback, ou seja, para a generalidade dos 

"Learners”. De facto, os próprios canais parietais direitos, P4, P8, CP6, TP10 aumentam de forma 

estatisticamente significativa a conectividade entre eles. Isto parece indiciar a criação de um complexo 
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focado na zona parietal direita. Em todas as modalidades, à exceção da VR, verifica-se ainda um 

aumento significativo intra-sessão da transitividade e eficiência global enquanto uma diminuição 

estatisticamente significativa intra-sessão é observada para a métrica caminho característico. Posto isto, 

a metodologia de neurofeedback no contexto experimental que foi implementado, parece promover a 

atividade cerebral segregada, isto é, a atividade que resulta de uma atividade cerebral mais localizada, e 

também integrada, isto é, que resulta da integração da atividade de áreas cerebrais dispersas. A não 

existência de variações significativas na modalidade VR não parece estar relacionada com a modalidade 

em si, mas sim devido a uma menor amostra do respetivo grupo. Assim, futuramente será necessário 

aumentar a amostra, pelo menos para este grupo, por forma a poderem ser extraídos resultados 

significativos da análise do mesmo. Interessantemente, e independentemente do método de re-

referenciação utilizado, enquanto para o grupo do treino NF para a modalidade visual se observa a partir 

da terceira sessão de treino a estabilização do número de conexões funcionais entre os diferentes 

elétrodos, ou seja deixa de haver um crescimento acentuado da transitividade e da eficiência global com 

diminuição simultânea do caminho característico, para o grupo do treino NF com a modalidade auditiva 

a generalidade dos incrementos verificados, estão presentes em todas as sessões, incluindo a última 

sessão.  

No referente ao estudo sobre o método de re-referenciação dos dados EEG, com interesse específico na 

utilização de um Laplaciano de superfície comparativamente à simples utilização da média dos sinais 

EEG, a análise topológica das diferentes bandas cerebrais confirma que a utilização do Laplaciano de 

superfície contribuiu para aumento da resolução espacial dos dados de EEG, uma vez que atenuou para 

as diferentes bandas a amplitude relativa da atividade periférica, ou seja não focal, que estará relacionada 

com frequências espaciais mais baixas. Relativamente à análise da conectividade funcional intra-sessão, 

verifica-se que a aplicação do Laplaciano se reflete na mudança das configurações de variações de 

conexões funcionais no cérebro, nomeadamente eliminando determinados aumentos estatisticamente 

significativos, por exemplo para a sessão 1 dos “Learners”, após a aplicação do Laplaciano de superfície, 

o incremento da conectividade funcional entre Pz e O2 deixa de ser estatisticamente significativo. 

Possivelmente, isto poderá estar relacionado com uma eliminação de conexões espúrias. Também na 

análise de redes, a aplicação do Laplaciano afeta a configuração dos dados e outputs embora não se 

consiga precisar uma relação causa efeito. Posto isto, a variação da própria configuração do Laplaciano, 

no que se refere à rigidez do mesmo, de parâmetro m=4 para m=3, não se traduz em resultados tão 

diferentes, pese embora algumas alterações notadas na análise de redes. De facto, para análise de 

conectividade funcional, os heatmaps resultantes da aplicação de Laplaciano de superfície com m=4, 

são exatamente iguais aos heatmaps resultantes da aplicação de Laplaciano de superfície com m=3. 

Quanto à análise de redes, nomeadamente nas métricas de transitividade, caminho característico e 

eficiência global, se verificarmos os gráficos e tabelas apresentadas, apesar de serem notados ligeiros 

desvios quer nas curvas quer em valores de correlação ou variação intra-sessão, o nível de significância 

é quase sempre atingido, independentemente da rigidez do Laplaciano aplicado, para a mesma sessão. 

Posto isto, não é possível reportar claramente uma relação causa-efeito vantajosa decorrente da aplicação 

do Laplaciano de superfície nos dados aqui tratados. De facto, reitera-se que, pela análise topológica se 

confirma que este possa estar associado a um filtro espacial, mas nas restantes análises não se consegue 

confirmar se este “melhorou ou não” os nossos dados.  
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EEG; Neurofeedback; Banda Alfa Superior; Conectividade Funcional; Modalidade de 

Feedback Sensorial; Análise de Redes. 



v 

 

  



vi 

 

Abstract 

Neurofeedback (NF) consists in measuring brain activity and presenting a real-time 

representation of a brain activity pattern of interest to an individual, while instructing him to manipulate 

the feedback representation through self-regulation. The neurophysiological basis for NF remains to be 

fully elucidated, whereas several studies support that NF training tends to reorganize the brain networks. 

Only a handful of studies compare how different feedback sensory modalities affect the outcomes of 

EEG-based NF training, and none of them analyzes such effect on the functional connectivity or network 

metrics.  

In this project, we evaluate how using different feedback modalities on the EEG-based NF-

training will affect the brain’s functional connectivity, by analyzing previously collected data from a 

total of 20 healthy subjects, who underwent four sessions of upper-alpha (UA) band EEG-based NF 

training, with different feedback modalities (visual, auditory, or virtual reality (VR)). The EEG data was 

preprocessed and re-referenced with three different methods for posterior comparison, the common 

average reference (avgREF), and spline lines Surface Laplacian with stiffness parameters equals 4 and 

3. The data were evaluated in terms of: i) the within-sessions’ variations of the relative amplitude of the 

UA at the Cz channel, ii) relative band amplitude topological distribution across sets and sessions, iii) 

the within-sessions’ variations of the UA functional connectivity patterns, computed with the imaginary 

part of coherency, and iv) an UA band network analysis of the metrics betweenness centrality, strength, 

transitivity, charpath and global efficiency. 

Our results suggest that the UA EEG-based NF-training is associated with an early increment 

of functional connections with channels over parietal areas (e.g. Pz), independently of the feedback 

sensory modality. All the modalities, except the VR, which had a reduced sample, verify statistically 

significant intra-session increases in the transitivity and global efficiency, while showing statistically 

significant intra-session decreases of the charpath, suggesting that this protocol promotes both clustered 

and integrated brain activity. While for the visual NF-training group the third session seems to be a 

breakthrough point, where the number of functional connections stabilize, for the auditory NF-training 

group longer lasting “variations” are reported. Through the topological analysis we confirm that the 

application of Laplacian leads to higher spatial resolutions on the EEG data. Regarding the connectivity 

analysis and network analysis, we note that the application of the Surface Laplacian creates different 

values when compared to the avgREF data, yet no advantageous outcome can be reported. 

 

Keywords 

EEG; Neurofeedback; Upper-Alpha Band; Functional Connectivity; Feedback Sensory 
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1 

 

1 Introduction 

This Master Thesis proposes to investigate the effect of sensory feedback modality, in a protocol 

of electroencephalography (EEG) based neurofeedback (NF), on estimated metrics of brain functional 

connectivity. 

In this Section, a theoretical introduction is presented, which not only features the fundamentals 

behind this project, these being the EEG, Functional Connectivity, and Neurofeedback fundamentals, 

with the respective applications, but also features some of the premises, context, and motivations behind 

this work. At the end of the section, we will clearly state the objectives of this Master Thesis project. 

 

1.1 Context and Motivation 

“Neurofeedback is a kind of biofeedback, which teaches self-control of brain functions to subjects by 

measuring brain features and providing a feedback signal. (Marzbani et al., 2016)”.  

The NF technique relies on an almost instantaneous loop that enables the user to perceive his/her 

brain activity, such that, he/she can adapt and reach the desired performance (Hammond, 2007). The 

brain activity can be detected with imaging techniques such as EEG, functional magnetic ressonance 

imaging (fMRI), magnetoencephalography (MEG) and functional near-infrared spectroscopy (fNIRS) 

(Lakshmi et al., 2014), and the feedback can be given to the user through auditory, visual, and virtual-

reality (VR) information, among other modalities (Marzbani et al., 2016). Neurofeedback training relies 

on associative learning, also referred to as operant conditioning or reinforcement learning, that sums up 

the power of the reinforcement and says that a behavior, when rewarded, tends to be promoted and 

maintained, while when punished, tends to be extinguished (Sherlin et al., 2011). In many NF protocols, 

while a subject registers a desired brain pattern, a positive reward reinforcer is displayed as feedback, 

while in case the objective is not attained a positive punisher reinforcer is displayed as feedback. 

Although the neurophysiological basis for the outcomes observed from NF-training remain to be fully 

elucidated, this technique offers a non-pharmacological, non-invasive, non-dependency inducing, and 

with almost no side effects, way of strengthening the brain circuitry and enhancing “brain performance” 

(Hammond, 2007). For instance, positive results have been shown for cognitive enhancement (Loriette 

et al., 2021), physical rehabilitation (T. Wang et al., 2018) and therapy/symptom relieving (Niv, 2013), 

registering high effectiveness in the improvement of clinical outcome in the context of abnormal 

connectivity related conditions, such as stroke patients, neurodegenerative disorder patients, ADHD 

populations, among others. Hence, it has been suggested that NF-training promotes the reorganization 

of brain functional paths.  

There are two major frameworks that try to explain the mapping of the brain function. The first 

perspective posits that each specific area in the brain cortex is specialized in a function. This can be 

referred to as the brain segregation framework since it is based on the functional segregation over key 

cortical areas. The second perspective states that a single function involves several areas of the brain 

cortex. This can be referred to as the brain integration framework, since the brain function is defined 

based on the functional integration of several specific areas (Friston, 2011).  

With the above said, Functional Connectivity (FC) can be defined as the temporal coincidence of 

spatially distant neurophysiological events (Eickhoff & Müller, 2015a), which reflects processes of 

functional integration that can be measured by techniques such as fMRI, EEG and MEG (Eickhoff & 

Müller, 2015a). Over the years, this has been studied and related to several diseases like attention 
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deficit/hyperactivity disorder (ADHD), (Cao et al., 2009a), Schizoprenia (SZ) (Damaraju et al., 2014a), 

among others.  Such a concept has gained momentum and currently there are NF studies that already 

include FC analyzes on their post-hoc processing (Shtark et al., 2018), or even target such concept-

related metrics during the NF training (Bauer et al., 2020). 

Despite the burgeoning interest in NF training, a lack of guidelines for the design of NF protocols 

is evident, and more pronounced in electrophysiology-based studies. Conscious of this limitation, and 

aiming to tackle it, researchers have recently defined a set of guidelines (Enriquez-Geppert, 2017) and 

a subsequent consensus-derived checklist (Ros, 2020). Yet, many other factors remain to be clarified, 

such as the effect on the NF outcome of the different sensory modalities of the feedback. For example, 

in the context of the upper-alpha (UA) EEG-based NF-training, only few studies have tackled the 

influence of sensory modalities, such as comparing both the influence of auditory and visual feedback 

modalities in the outcomes of the NF-training (Bucho et al., 2019).  Furthermore, and as far as we are 

aware of, no studies have yet consistently compared the effect of sensory modality for the EEG-based 

UA NF-training with simultaneous evaluation of related changes in FC. These are major motivational 

factors for the work developed in this project. The aim is to answer the following question, “Is there, for 

EEG-based NF, a specific functional connectivity outcome, and does it depend on the sensory 

modality?”  

Researching this topic may represent a step further in understanding the underlying neural 

mechanisms of NF-training, thus paving the way for optimization of protocols in clinical context, as for 

pathophysiologies associated with abnormal FC patterns (Damaraju et al., 2014a; Hull et al., 2017; 

Zhang et al., 2020). To answer this, we will analyze and evaluate, the changes in FC during an UA EEG-

based NF protocol, with data collected using visual (2-dimensional screen display), auditory, and VR 

(visual) feedback modalities. 

 

1.2 Thesis Outline 

This thesis is composed by 5 sections. The first is the “Introduction”, where all the concepts, 

fundamentals, and literature related to Electroencephalography, Functional Connectivity and 

Neurofeedback are disclosed. Then, in the second section “Methods”, the methodology deployed in this 

thesis is explained in detail, including both the preprocessing and analysis pipelines. In the third section 

“Results”, we expose all the results from the different analyses performed in scope of this project. This 

is followed by the “Discussion” section, where the results are evaluated and compared with the most 

recent scientific findings. This report ends with a “Conclusion”, in which the findings are briefly 

summarized while addressing some of its limitations and prospects. 

 

1.3 Electroencephalography 

According to Olejniczack (Olejniczak, 2006), EEG can be defined as a “graphic representation 

of the difference in voltage between two cerebral locations plotted over time”. In other words, the EEG 

is an electrophysiological technique that records the electrical activity from the human brain. This 

technique is characterized by a high temporal resolution since it provides a real time registration of brain 

electric activity in the order of the millisecond. The electrical activity can be registered invasively and 

non-invasively thanks to volume conduction of the electrical potentials generated by the neurons, even 

at deeper locations. (Olejniczak, 2006; Rutkove, 2007). Equivalently, this means that the recorded signal 
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of the EEG, in particular if captured in a non-invasive scalp measurement, is largely dependent from the 

electrically conductive properties of the pathway tissues. As addressed latter, this volume conduction is 

one of the main limitations of the EEG technique as it results in a low spatial resolution, due to the fact 

that the activity will spread through the surrounding tissues, without any specificity on the direction 

(Nunez et al., 1994).   

 

1.3.1 Neurophysiological Basis 

Concerning the neurophysiological basis of the EEG recordings, for neuronal activity to be 

measured it is necessary to fulfill both a specific duration of activity and amplitude. These conditions 

are met when a large assembly of neurons produce temporally and spatially organized activity (Schomer 

& Lopes da Silva, 2012). This type of activity can not be obtained from pre-synaptic activity, or simply 

action potentials, which results from changes in the neurons membrane potential due to the flux of ions, 

and create a current that sharply decays as long as the distance to the source increases (Hämäläinen et 

al., 1993). Instead, EEG signals are generated at the post-synaptic level, where, through to the binding 

of neurotransmitters released by a large group of pre-synaptic neurons, where both excitatory and 

inhibitory pre-synaptic potentials are summed up temporally, such that the post-synaptic potentials are 

longer in time. So, for the post-synaptic activity, as opposite to the pre-synaptic one, the requirement of 

the duration can be fulfilled (Kirschstein & Köhling, 2009). Yet, EEG temporal summation is not enough 

to ensure detection of neuronal activity using EEG, it is also necessary for the activity to have enough 

strength to be detectable on the scalp surface, a condition that can be fulfilled with spatial summation of 

the underlying neuronal activity. These specific conditions exist when large assemblies of cortical 

pyramidal neurons are activated. These cells have their apical dendrites perpendicularly oriented to the 

cortical surface and parallel to each other’s (Kirschstein & Köhling, 2009), such that during the periods 

of neuronal activity, the longitudinal components of the produced currents, parallel to the neuronal 

membrane, sum up, while the components perpendicular to the membrane cancel each other, thus 

creating a primary current parallel to the neuronal membrane. Additionally, during such activity periods, 

magnetic fields are created around the neuronal membrane (Schomer & Lopes da Silva, 2012)  that will 

sum to the current field potentials that are created. Hence, a great enough amplitude of activity is created 

such that it can be detected in the EEG. To wrap up what was formerly detailed, the EEG technique 

captures mostly post-synaptic potentials, with the measured activity being proportional to the degree of 

temporal and spatial synchronism among the cortical pyramidal neurons (Olejniczak, 2006;  Louis et 

al., 2016).   
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1.3.2 Brain Waves 

Concerning the EEG data, there are specific electrical brain patterns that can be verified. These 

are called brain waves and differ in frequency and amplitude, which in non-invasive EEG scalp 

measurement are up to 200 µV (He & Lin, 2013). These brain waves tend to reflect the state of the 

individual and sometimes can have pathological relevance. One example is the quite controversial 

evaluation of the EEG Theta/Beta Ratio in the context of ADHD (Arns et al., 2013).  

The first pattern, hence with lower frequency content, relates to the delta rhythm, which contains 

frequencies between 0.5 and 4 Hz and is highly associated with deep stages of sleep (Purves et al., 2001). 

Then, from 4 to 8 Hz (Schacter, 1977) there are the theta waves, which are related to sleepy and 

hypnotic states. Also, several reports demonstrate the association of the theta waves with cognition 

(Klimesch, 1999), as for example in memory (Herweg et al., 2020; Klimesch, 1999), with specific 

hippocampal theta waves (Kragel et al., 2020; Zhang & Jacobs, 2015).  

From 8 to 12 Hz, there are the alpha waves. These, in a relaxed condition are mainly seen in the 

parietal/occipital area (Groppe et al., 2013) , and are largely dependent on the eye-open vs eye-closed 

state of the subject (Barry et al., 2007). They are more prominent under an eye-closed state, as it is 

hypothesized that under an eye-open state desynchronization occurs among the occipital generators 

(Gómez-Ramírez et al., 2017).  Usually related to a relaxed or resting state (Abhang et al., 2016), these 

brain waves have also been reported as reflecting cognitive and memory performance (Klimesch, 1999; 

Figure 1.1 - The spatial Scales of current generation, with respective time scales (adapted from (le Van Quyen, 2011) 



5 

 

Klimesch et al., 1993). In fact, the prominence of the alpha waves has been often reported as attention 

dependent. During attentive periods, reduced alpha activity has been reported (Shaw, 1996), whereas 

during inattentive periods higher alpha activity was noted (Groppe et al., 2013) . Concerning these alpha 

waves, Klimesch et al. (1999) defined a “center of gravity” of the band. With the premise that both, the 

power of the band was not linear but instead “subject subjective”, and that there is a subdivision in the 

band concerning the cognitive functions―the author proposed that this center of gravity would be 

defined as the frequency, within the band, with maximum power. This individual alpha frequency (IAF) 

would be the threshold for the subdivision in lower-alpha and upper-alpha, with the lower-alpha band 

being the frequencies below the IAF and the upper-alpha band being the frequencies over the IAF in the 

alpha band (Klimesch, 1999). 

  From 13 to 35 Hz, there are the beta waves, which are low amplitude waves related to a 

wakeful alert, anxiety, attentive state (Abhang et al., 2016). Again, in this band, a subdivision is made 

between lower-beta, from 13 to 20 Hz, and upper-beta, higher than 20 Hz, with the lower-beta being 

affected by mental activity, and the upper-beta band being more related to intense mental activity, 

anxiety, and containing the sensorimotor rhythm (Thakor & Sherman, 2013).  

Frequencies above 35 Hz (Abhang et al.,2016) belong to the gamma band, which is not often 

measured in non-invasive EEG (Groppe et al., 2013). Also, there are reports that such band is involved 

in attention, working memory, and long-term memory processes (Malik & Amin, 2017). 

 

1.3.3 Electrode Placement 

As non-invasive EEG involves the placement of electrodes in the scalp, several positioning 

systems were created. The standard one is the 10/20 System, which describes the head surface locations 

of the electrodes by measuring the relative locations between cranial landmarks (Jurcak et al., 2007). 

Specifically, the four anatomical landmarks used as reference are the nasion, a depression between the 

eyes just above the nasal bridge, the inion, “highest point in the midline of the protuberance of the 

occipital bone” (Mecarelli, 2019) , and two preauricular points, “depressions at the root of the zygoma 

just anterior to the tragus” (Jurcak et al., 2007; Sazgar & Young, 2019). Then, the adjacent electrodes 

are placed in intervals of 10 percent of the total distance of the lines that unite the nasion and inion, and 

in intervals of 20 percent of the total distance of the lines that unite both preauricular points (Mecarelli, 

2019). The purpose of a standard electrode positioning is to allow reproducibility among studies, by 

maintaining the relative position on the scalp, diminishing the bias caused by the subjects different head 

sizes (Jurcak et al., 2007).  In the nomenclature of the electrodes positioning, it is first defined the scalp 

position, frontal with F, fronto-polar with Fp, temporal with T, Central with C, parietal with P, occipital 

with O, and then the side/specific location with a z or a number, that can be odd or even. The odd 

numbers refer to the left hemisphere, even numbers to the right-hemisphere, and finally the letter “z” 

designates midline (Mecarelli, 2019; Sazgar & Young, 2019). In total, in the standard positioning system 

there are 21 electrodes (Jurcak et al., 2007). Other electrode placement systems exist, as, for example, 

10/5 and the 10/10. These will differ regarding the percentage of the intervals that are used to calculate 

the relative position between channels over the lines that unite the preauricular references, respectively 

5% of the total distance and 10% of the total distance (Jurcak et al., 2007).  As referred in the exposed 

definition of the EEG, each electrode signal records the difference between the electric potentials from 

the respective location and a reference electrode. Post re-referencing can be done to re-reference our 

data to a common average, other electrodes, or other solutions, depending on the implemented protocol 

(Lei & Liao, 2017). 
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Figure 1.2- 10/20 Electrode Placement System. Adapted from (Rojas et al., 2018) 

 

1.3.4 EEG Common Artifacts 

When it comes to EEG signals, these are commonly affected by non-electroencephalographic 

interferences known as artifacts (Schomer & Lopes da Silva, 2017). These artifacts tend to “corrupt” 

portions of the data leading to misinterpretations. The origin of the artifacts is quite wide, as some reflect 

physiological functions, whether others are caused by external sources (external to the subject) 

(Chaumon et al., 2015; Tatum et al., 2011) . Some of the most common artifacts include: 

Eye movement artifacts – These are the most common artifacts during conscious EEG 

recordings and are generated by alterations in the corneoretinal dipole. Alterations/rotations of this 

dipole generate a potential difference that can be detected on the EEG. In fact, this dipole is the premise 

for the eye activity measurement through the EOG (Tatum et al., 2011). The signal of eye-related 

movements has different characteristics depending on if it results from eye blinks or saccades, although 

in both cases the artifacts will cause an EEG power spectral topology with more prominent values in the 

frontal electrodes. The blinks will cause interferences, such that in EEG, a high amplitude and low 

duration signal will appear over the different channels and “corrupt” the delta and theta frequency bands. 

The saccades, when the signal is decomposed by ICA generates a component that features abrupt step-

like variations, with an anterior prominent topology and opposite polarity among hemispheres, and low 

frequency content (Chaumon et al., 2015). 

Myogenic artifacts – These are high frequency (>20 Hz) burst-like artifacts caused by muscular 

movement and are related to head, facial and neck muscle movements. Particularly, the most commons 

myogenic artifacts are caused by the temporalis and frontalis muscles, such that sometimes it is 

recommended to ask the subject to “open their mouth” in order to alleviate temporal muscular artifacts 

produced by the masseter muscles (Tatum et al., 2011). These have higher prominence on the edge 

electrodes, and when performing independent component analysis (ICA) the muscular artifacts are 

characterized as being more focal and not event-related (Chaumon et al., 2015). 

Glossokinetic Artifacts – Tongue movements can create EEG artifacts as these produce changes 

in the tongue dipole, with the tip of the tongue being negative relative to the root.  These movements 

can be, for example, speaking or swallowing, and they generate “intermittent bursts of abnormal slowing 

or frontal intermittent rhythmic delta activity on the EEG”. Oropharyngeal motions produce artifacts 

that are diffusely present on frontal and temporal sites (Tatum et al., 2011).  

Cardiac artifacts – Interference caused by the cardiac muscles that may mimic certain parts of an EEG 

signal, with a characteristic frequency and a more distinct amplitude. The presence and prominence of 

these artifacts differ with the kind of EEG montage and referencing, with referential montages often 
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accentuating this kind of artifact. Additionally, single channel artifacts may arise from the mechanical 

force of the heart contraction. The latter also may happen when electrodes are too close to an artery 

(Tatum et al., 2011).  

Other physiological artifacts may be caused by subject’s movements, patients sweat, altered 

skull anatomic, among others (Tatum et al., 2011). 

Equipment-related artifacts – These are artifacts related to all the instrumental apparatus 

necessary to perform the EEG measurement. When these are present, it is necessary to locate the source, 

when possible, and do the necessary modifications. The artifacts can be inductive, electrostatic, and 

capacitive, as caused by the electrical wires of the apparatus, radio frequency interferences, among 

others sources (Tatum et al., 2011) . 

Environmental artifacts – These are non-physiological artifacts caused by external electric 

interference from other devices. The most common form of interference is caused by the alternating 

current present in the power supply of nearby devices. This creates a high frequency noise ( +/- 50 Hz 

in Europe, +/- 60 Hz in the UK)  over several channels.  Other interferences may arise from the magnetic 

fields from neighboring devices. With that said, pacemakers, neuro-stimulators, among others have high 

chances of causing this kind of interferences (Tatum et al., 2011).  

Bad Channels – Bad channels are usually related to a poor electrode-scalp contact, which 

provokes a low frequency and low amplitude activity over a specific electrode. Also, changes in 

impedance due to movement can cause this kind of artifacts (Chaumon et al., 2015; Tatum et al., 2011).  

  



8 

 

1.4 Functional Connectivity 

1.4.1 Concepts and Basis 

Two main frameworks exist that try to explain the mapping of the brain function. The first 

perspective posits that each specific area in the brain cortex, is specialized in a function. This can be 

referred as the brain segregation since it is based on the functional segregation over key cortical areas. 

The second paradigm states that a single function involves several areas of the brain cortex. This can be 

referred to as the brain integration, since the brain functioning is defined based on the functional 

integration of several specific areas (Friston, 2011).  

In the context of the brain integration paradigm, we tend to analyze the correlation between 

different areas regarding their neuronal activity. According to Friston (1994), “functional connectivity 

is defined as the temporal coincidence of spatially distant neurophysiological events”. This is a merely 

correlative concept as it only describes if there is or isn’t a statistical dependency among remote 

neurophysiological events, and doesn’t consider the origin of the effect, if it is one of the parts that exerts 

its effect or vice-versa, or even if it is a third regions which exerts its effect on the remaining. To describe 

in depth the directionality of the effect other concept have been defined, referred to as effective 

connectivity, and described by the same author as “the influence that one neural system exerts over 

another, either at a synaptic or population level” (Friston, 2011). A third concept of structural 

connectivity refers to the hard-wired connections, as for example the fiber tracts, between different brain 

areas; these are the necessary scaffolds for the establishment of a functional connectivity (Eickhoff & 

Müller, 2015b). 

The underlying mechanism of the functional integration is still unclear. One of the most known 

hypotheses was proposed (Fries, 2005) and revisited (Fries, 2015) by Pascal Fries. This hypothesis is 

referred as the “Communication Through Coherence” and proposes that communication between neural 

groups is achieved by a rhythmic synchronization on their neural activity. This rhythmic synchronization 

is accompanied by a modulation of the post-synaptic excitability, with the creation of specific temporal 

windows of high input gains for synchronous activity, in which the pre-synaptic group fit, with high 

inhibition of non-synchronous inputs (Fries, 2015). Interestingly, years prior Varela et al. (2001) 

suggested that “desynchronization reflects a process of active uncoupling of the underlying neural 

ensembles that is necessary to proceed from one cognitive state to another”, serving as clue for the 

hypothesis that synchronization would be involved in neural integration process. 

To measure both effective and functional connectivity, techniques such as fMRI, EEG and MEG 

can be used (Eickhoff & Müller, 2015b). As the structural connectivity is related to the fiber tracts, the 

go-to characterization technique is the diffusion tensor imaging (Yeh et al., 2021). 

 

1.4.2 EEG and Functional Connectivity 

This subsection will present notions on estimation of FC in EEG data. A description of the 

principal definitions, and algorithms implemented to estimate FC, will be followed by the description 

of metrics that can be implemented to perform network analysis over the EEG-derived connectivity 

matrices. Least but not last, considerations about the main obstacles and limitations of EEG-based FC 

will be developed, while its main applications will also be mentioned. 
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1.4.2.1 Algorithms for Functional Connectivity 

 Through the years, several algorithms have been proposed for the measurement of brain FC in 

EEG data. In this subsection we will expose and discuss the main implementations. One thing that shall 

be noticed, is that the focus will be on metrics for scalp chance-based FC estimates, which do not enable 

to infer in terms of source location analysis (van de Steen et al., 2019). For the source location analysis 

although, usually, the measurements are also done through non-invasive EEG, there is an intermediate 

step where an “inverse” transformation is done to detail the source of the activity. When such sources 

are not estimated and only scalp-based signals are used, no conclusions can be made about the location 

of underlying neuronal activity. This occurs because scalp channel locations are not an approximation 

of the anatomical channel sources, because of the volume conduction problem, and spurious 

connectivity profiles would be reported (van de Steen et al., 2019). 

 The algorithms used in the context of EEG-based connectivity, can be distinguished according 

to the approach. The first distinction is between directed and non-directed metrics. While non-directed 

metrics focus their attention on any sort of interdependence between signals, without any information 

about the direction of the influence, directed metrics also capture the latter. Another distinction is 

between model-free/model-based approaches. While model-based approaches make assumptions of 

linearity on the interactions between the signals, model-free approaches don’t make any assumptions 

concerning the kind of interactions between the signals (Bastos & Schoffelen, 2016). In this report, we 

will explore mostly the model-based, non-directed approaches. Also, it shall be noticed that most of the 

FC algorithms are computed in the frequency domain, which usually is represented by AeiΦ , where A 

represents the amplitude of the oscillations, and Φ represents the phase of the oscillations. 

 The first algorithm that we shall refer is the coherence coefficient. This is the frequency 

equivalent to the cross-correlation function, and in terms of the specific frequency, can be interpreted as 

the amount of variance in one of the signals that can be explained by other signals, or vice-versa. This 

is mathematically defined as: 
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(1.5) 

   

where f is the frequency, k is a point of the trial (EEG signal), n is the trial duration in data samples and 

S(f) is a cross spectral correlation operator.  

 From this equation, we notice that the coherence value is bounded between 0 and 1, with higher 

values representing higher correlation and higher FC (Bastos & Schoffelen, 2016). If we discard the 

absolute value operator from the above equation, the computed value is the coherency, Cxy and not the 

coherence. This coherency is a complex value that captures temporal delays in form of phase differences 

in angles. A downside from both the coherence and coherency metrics is that they consider “zero-phase 

differences”, which as we will see in later, is associated with several connectivity measurement 

limitations that are related to the common reference, the volume conduction and the common input 

problem. Also, sample size bias is commonly reported, and as time-stationarity is not ensured the 

analysis over several trials can have some bias (Lachaux et al., 2002).  
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 The next algorithm is a refining of the previous one. This was proposed by Lachaux in 1999 

(Lachaux et al., 1999), with the premise that coherence confounded phase consistency with phase 

synchronization, although with no phase synchrony, high amplitude correlations do not imply higher 

values of coherence, neither low values of amplitude correlation accompanied by high phase synchrony 

mean low coherence values. Also, as previously referred, the coherence algorithm has the assumption 

of time stationarity, which limits the analysis of the dynamic connectivity properties. To clear all these 

limitations, on his algorithm, Lachaux applied the coherence equation to amplitude normalized Fourier 

Signals (Bastos & Schoffelen, 2016). This algorithm is called phase locking value and it has the 

following mathematical equation, after simplifications: 
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This solves the amplitude cofound, as it nullifies its influence on the general calculation, and 

solves the stationarity problem as, at each instant, is performed a calculation of an instantaneous phase 

of each signal, by means of Hilbert transform or even Wavelets (le Van Quyen et al., 2001). Notice that 

the author published two variations of this algorithm, one, here exposed, for the calculation of phase 

differences within trials (Lachaux et al., 2000), and a second algorithm for the calculation of consistent 

phase differences over several trials (Lachaux et al., 1999). Recently, Bruña et al. (2018) optimized the 

implementation of this algorithm in order to ignore zero-phase time lags associated with common 

reference, volume conduction and common input problem, correcting a big disadvantage of the phase 

locking value algorithm (Bruña et al., 2018) . 

 Another algorithm is the Imaginary part of Coherency. As we exposed above, there are several 

limitations concerning the measurement of FC, which have as a consequence spurious zero-phase FC 

values. One example is volume conduction, which under the validity of Maxwell quasi-static 

approximation (Plonsey & Heppner, 1967), creates zero-phase shift correlations, which under the 

coherency and coherence algorithms would translate into spurious non-zero functional connections. 

Nolte et al. (2004) addressed this question when proposing a novel metric for the by only considering 

the Imaginary part of the Coherency (ImC) equation, as it follows: 

 

 
𝐼𝑚𝐶𝑥𝑦(𝑓, 𝑘) = 𝐼𝑚 (𝐶𝑥𝑦(𝑓, 𝑘)) =

𝐼𝑚(𝑆𝑥𝑦(𝑓, 𝑘))

√𝑆𝑥𝑥(𝑓, 𝑘)𝑆𝑦𝑦(𝑓, 𝑘)
, 

(1.7) 

 

where Im corresponds to the “imaginary part” operator.  

 From the equation we notice that this value is bounded between -1 and 1, with the sign 

corresponding to the direction of the phase shift. Higher absolute values of ImC correspond to higher 

FC between the two signals. Also, we clearly see that with such equation, zero-phase lag correlations 

result in a zero ImC value. Interestingly, Nolte et al. (2004), opposite to Lachaux et al. (1999), includes 

the “amplitude component” into its formulation, considering that phase synchrony is not independent of 

this component. 
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 As one of the main limitations of the ImC is the fact that it is biased by the degree of the phase 

difference, values are maximal for 90-degree phase differences, Stam et al. (2007)  proposed a novel 

algorithm called Phased Lag index. This metric evaluates the average phase distribution across 

observations and addresses the consistency of a positive or negative cross-correlation between signals, 

with consistent correlations implying a functional relation (Bastos & Schoffelen, 2016). Here the cross-

spectrum is calculated with the Hilbert transform or wavelets. This translates to the following 

mathematical equation: 
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 At its original formulation, this algorithm is quite sensitive to perturbations, in the intent that 

negative signs can easily turn to positive PLI and vice-versa, even in the presence of small, signed 

correlations (Vinck et al., 2011). So, four years later, Vinck et al. (2011) proposed a new weighted Phase 

Lag Index (wPLI) which would correct the above question, by normalizing the signs of the phase 

differences (-1, in negative case, or 1 in positive case), by the weights of the respective phases.  This 

translates to the following mathematical equation: 
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(1.9) 

  

 With these changes, Vinck et al. (2011) ensured that small perturbations would not have as high 

influence on the overall data, creating a more stable metric and maintaining the premise of the original 

formulation. A brief note to the fact that, in the same article, the authors debate over the sample size 

bias question, specifically, on the fact that both wPLI and PLI are positively biased in the presence of 

small sample sizes. In such cases, the authors proposed an alternative formulation that translates into the 

following mathematical equation: 

 

 

𝑑𝑤𝑃𝐿𝐼𝑥𝑦 =
∑ ∑ 𝐼𝑚 (𝑆𝑥𝑦(𝑓, 𝑗)) 𝐼𝑚 (𝑆𝑥𝑦(𝑓, 𝑘))𝑘≠𝑗

𝑛
𝑗=1

∑ ∑ |𝐼𝑚 (𝑆𝑥𝑦(𝑓, 𝑗)) 𝐼𝑚 (𝑆𝑥𝑦(𝑓, 𝑘)) |𝑘≠𝑗
𝑛
𝑗=1

 

(1.10) 

 

 An interesting conclusion of this formula is that, in case the sample tends to infinite, this 

estimator will be consistent with the wPLI (Vinck et al., 2011). 

 Like referred, all the previously described algorithms are model-based and non-directional 

approaches in the context of the FC measurement. As stated, there are other types of approaches such 

as directional metrics and model-free metrics. The directional metrics are often used in effective 

connectivity evaluations, and examples of such algorithms are the Granger Causality and the Phase 
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Slope Index. The first, follows the premise that if two signal are asymmetric in their ability of predicting 

the other signal, the signal that contains more information about the future of the other signal is said to 

be the driver, while the other is the recipient. This is computed by evaluating the influence of a time-

series, by inclusion of its values, on the error in the prediction, by autoregression, of the future values 

of another time series. If the error is reduced a causal effect between the first and the latter is pointed 

out (Ding et al., 2006) .This metric has quite a lot of problems and the overall performance on real EEG 

data is very poor (Haufe et al., 2012). The latter, Phase Slope Index, was formulated by Nolte et al 

(2008), and is based on the idea that a flow of information will take some time. Together, with the 

assumption that information travels at the same speed, a positive slope regarding the positive relation 

between frequency and phase difference will be generated and studied in this metric. Overall, the signs 

of the resulting values from this study will inform on the directionality of the relation. Regarding model-

free approaches, the main example is the mutual information algorithm, which measures a correlation, 

which is not assumed as linear, between time signals using principles of the information theory (Kraskov 

et al., 2004). 

 

1.4.2.2 Network Analysis: Introduction 

 When the main goal is to analyze FC, and specifically, how certain NF protocols affect the FC 

outcome, a network-based analysis is usually performed. So, in this subsection we will expose some 

fundamentals about networks and then, the most common network analysis metrics.  

 First, we need to introduce some concepts. A network has two main components, the nodes, and 

the links. In the context of EEG channel-based analysis, the channels can be defined as the nodes and 

the functional connections as the links, whilst for source-based analysis anatomical connections and 

even effective connections are represented by the links. These links can be expressed in different forms. 

They can be represented by weights, which in case of functional/effective connectivity will represent 

the magnitude of the correlation, case where the weights can be accompanied by a +/- sign that expresses 

the directionality. Regarding the case of anatomical connectivity, these weights represent the distance 

between the nodes. Alternatively, these links can be expressed in terms of binary values that denote the 

presence or absence of relationship. Commonly, when performing a network analysis, the first step is a 

thresholding of the connectivity values to eliminate spurious/not meaningful connections (Rubinov & 

Sporns, 2010).  

 Next, follows the description of some metrics that are usually assessed in this type of analysis. 

The first is the degree, a metric that evaluates the number of links connected to each node, verifying the 

number of neighbors of that node. This is a metric that tends to reflect the importance of the node on the 

overall network. One limitation of this metric, mostly in case of weighted inputs, is that FC algorithms 

often represent the “no correlations” cases as near-zero values instead of zero values. With this said, this 

near zero correlations are counted in the degree as they still represent a link. So, the degree metric is 

largely dependent on the thresholding of spurious correlations. Other degree-derivative measures are the 

degree distribution and the density (mean network degree). With this said, in case of weighted values, 

there is a more specific metric for the same purpose called Strength that is defined as the sum of all 

weights of neighboring links (Rubinov & Sporns, 2010).   

 Other commonly used metrics in network analysis aim to evaluate the functional segregation of 

the brain activity. These metrics report the presence of clusters and their composition. In the case of FC 

analysis, the presence of clusters supports the existence of specific regions of processing that can be 

associated with segregated neural processing. The clustering coefficient is a metric that measures the 



13 

 

fraction of triangles around a node, hence the fraction of node neighbors that are also neighbors of each 

other. The mean clustering coefficient then reflects the average presence of clustered connectivity in a 

network. One limitation of this metric is that, since it is normalized over the degree metric, there will be 

a bias caused by this normalization, more specifically in case of low degree. Alternatively, there is a 

metric called transitivity which does not suffer from this limitation, despite some similarities with the 

mean clustering coefficient. Other algorithms, like the modularity, not only evaluate these clusters, but 

also return the composition of the different clusters (Rubinov & Sporns, 2010). 

 There are also metrics and algorithms that can be used to analyze the networks in a functional 

integration perspective, thus verifying the brain ability to integrate information from different regions. 

To perform this analysis there is the fundamental concept of paths, which will serve as basis for different 

metrics. Paths are sequences of nodes and links that together form routes of information. In the context 

of anatomical connections, the length of these paths will be indicative of the integration potential, with 

shorter paths indicating stronger integration potential. When studying FC and not anatomical 

connectivity, the interpretation becomes less straightforward (Rubinov & Sporns, 2010). With this said, 

there are several algorithms that can be used to translate the weighted links into distances, which will 

make the calculated paths easier to interpret (Floyd, 1962). For the paths metric, the charpath can be 

measured, which is defined as the average shortest path length between all pairs of channels, and the 

global efficiency (GE), which is the inverse of the charpath, measures the overall efficiency of the paths. 

Reduced charpaths/ increased GE point to a higher integration potential (Rubinov & Sporns, 2010). 

 We previously referred the degree as a metric that can be used to assess the importance of a 

specific node on the network. Yet, there are other algorithms/metrics that can be used to assess this 

property. With the premise that central nodes participate in a big fraction of the short paths of the 

network, working as controls for information flow, there are other two common measures for this 

purpose, the closeness centrality and the betweenness centrality. Closeness centrality is the inverse of 

the average short path length between a specific node and the remaining ones, and the betweenness 

centrality measures the fraction of shortest paths that pass by a specific node.  Also, we can do more 

restrictive measures, as for example, given specific clusters, the metric within-module degree z score 

allows to study the degree restricted to the cluster. To assess inter-cluster connection between different 

nodes we can use the participation coefficient. This will not only give feedback about the importance of 

specific nodes on the network but will also allow to understand the nodes’ roles on segregation or 

integration (Rubinov & Sporns, 2010). 

A brief reference to the small world algorithm, as this metrics captures both functional segregation and 

functional integration (Rubinov & Sporns, 2010).  

 

1.4.2.3 Limitations 

Several obstacles can impair the estimates of FC. The first is related with the usage of a common 

reference channel when performing the EEG measurement. Since each channel’s signal results from a 

difference between the local electric potential and the electric potential at the reference electrode, 

naturally, changes in the potential of the reference electrode will reflect in the EEG signals from the 

remaining ones. This will cause a zero-time lag correlation among the different channels which will 

cause some spurious FC estimates. This can either be solved by using algorithms that ignore zero-time 

lag correlations, by using bipolar derivations or by separately referencing each channel (Bastos & 

Schoffelen, 2016; Cohen & Tsuchiya, 2018).  
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Another concern and limitation of the analysis of FC in EEG-derived data is the previously 

mentioned volume conduction problem. This is based on the fact that between the source and the scalp, 

where the signal is measured, there will be a spatial spread of the electromagnetic fields over the 

surrounding tissues. This will cause the activity generated in a specific source to be detected over 

multiple channels, even being the channels spatially separated. This will induce spurious FC in the form 

of instantaneous correlations with 0 phase degree, or 180 phase degree when the sensors are in opposite 

sides of the dipole (Anzolin et al., 2019; Haufe et al., 2013). This can be solved either by using 

algorithms that discard the phase differences above, by using source reconstruction, by using a bipolar 

derivation, or by estimating the current source density by means of a Surface Laplacian, which we will 

address later (Bastos & Schoffelen, 2016; Tenke & Kayser, 2015).  

 Another common limitation for EEG-based estimates of FC is the “common input problem”. 

This is related with the presence of indirect interactions. Imagine, a pair of signals with a so detected 

FC. This correlation can be due to a direct interaction between both areas or can be caused by the 

influence of a third source in both areas. In this case, there are two scenarios. The first scenario occurs 

if a zero-phase lag correlation is detected, case in which algorithms that discard these contributions will 

be effective. The second one is a worst-case scenario, where a non-zero-phase lag correlation is detected. 

Such case is more problematic, as it is difficult to deal with, and leads to the detection of spurious 

correlations. Also, this will be a bigger obstacle in the measurement of effective connections (Bastos & 

Schoffelen, 2016). 

 In general, all these problems are related to a more general issue, that is, a reduced signal to 

noise ratio. The signal to noise ratio is defined as the proportion of power of signal of interest divided 

by the power of noise in the signal. If, in greater extent, our signal contains a high proportion of noise, 

some spurious correlations can be detected (Bastos & Schoffelen, 2016).  

 The last obstacle is the sample size bias. As stated by Bastos et al. (2016) “measures of 

connectivity are often biased quantities, where under the null hypothesis of no connectivity the estimates 

will deviate from zero”, which greatly depends on sample size. Connectivity measures reflect the 

magnitude of a vector quantity, which has always a different than zero value, contributing to a tendency 

of overestimation. Hence, the bias is dependent on the sample size, being larger in smaller sample sizes. 

This problem can be seen in the very present question “Data Segment length vs. Number of Data 

Segments” when designing an experiment that aims to measure FC. A consequence of this 

overestimation is that, even in the absence of true interactions, non-zero FC measurements may arise 

(Bastos & Schoffelen, 2016). Further in this thesis we will address this limitation.   

 

1.4.2.4 Surface Laplacian 

 The surface Laplacian (SL) is a commonly used technique to perform spatial filtering on EEG 

data. This technique is particularly important for attenuating the influence of the volume conduction, 

which in terms of scalp-based FC estimates could lead to the detection of spurious connections. This 

technique is based on the Ohms Law (C. Carvalhaes & de Barros, 2015), which establishes the local 

relationship between “the SL of scalp potentials and the underlying flow of electric current caused by 

brain activity” and it is mathematically defined as the divergence of the gradient of the electric potential: 
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 𝐿𝑎𝑝(𝑉) ≡ 𝐷𝑖𝑣(𝐺𝑟𝑎𝑑(𝑉)),  (1.1) 

 

which, more precisely, will correspond to the second order derivate: 

   

 
𝐿𝑎𝑝𝑠(𝑉) =

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
 

  (1.2) 

  

 This algorithm generates a reference-free current source density (CSD), accompanied by an 

improvement in the spatial resolution as it filters low spatial frequencies (Nunez et al., 1997), which 

consequentially improves the sensitivity of each electrode to a more local tissue beneath the electrode 

(Bradshaw & Wikswo, 2001; C. Carvalhaes & de Barros, 2015; Srinivasan, 1999). Also, the signal of 

the CSD estimate reflects the direction of the current flow, with positive values representing current 

flow from the brain towards the scalp, and negative values representing current flow from the scalp into 

the brain, yet, it does not provide information about the origin of the neural activity (Kayser & Tenke, 

2015b).  

  In terms of computational implementation of the SL, there are several approaches. One example 

is the finite difference method, where there is a discretization procedure that allows to perform the SL 

differential operations more easily. For example, consider the following grid (Figure 1.3): 

 According to this method, and as done by Hjorth on his approximation (Hjorth, 1975), for 

each position there is a re-referencing of the data over the average of the 4 nearest neighbors of the 

node. This translates to the following equation: 

 𝐿𝑎𝑝𝑠(𝑉)(𝑖,𝑗) ≈
𝑉(𝑖−1,𝑗)+𝑉(𝑖+1,𝑗)+𝑉(𝑖,𝑗−1)+𝑉(𝑖,𝑗+1)−4𝑉(𝑖,𝑗)

ℎ2 , 

 

(1.3) 

where h2 represents a constant that ensures that the result will be in V/cm2. 

Figure 1.3 - Grid example for the finite difference method―adapted from (Hjorth, 1975).  
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 In the same way, the procedure will be done over all the EEG channels. But clearly, we can 

notice a problem, as on the EEG channels on the edges, we don’t have the “fourth channel”. Although, 

Hjorth proposed a re-referencing with only three channels for this edge channels, it result in a less 

accurate re-referencing. This is one of the main limitations of this method, whilst other limitations are 

the strictness in the channels disposition needed for this model to suit, and the fact that, theoretically 

this only serves to planar scalp model. A last note to the fact that higher orders of re-referencing and 

denser electrode placement both contribute to a more accurate approximation (C. Carvalhaes & de 

Barros, 2015).   

 The second method is the smoothing thin plat SL. In this case, the Laplacian differentiation is 

performed analytically on a function that can result from interpolation through the data or fitting through 

the data. This function is a real function in which f(ri)=Vi in the different positions that minimizes the 

Residual Sum of Squares (RSS): 

 

 𝑅𝑆𝑆(𝑓, 𝜆) =  
1

𝑁
∑ (𝑉𝑖 − 𝑓(𝑟𝑖))2 +  𝜆𝐽𝑚[𝑓(𝒓)]𝑖 ,  (1.4) 

  

 Where ri is the position of the channel and r1 ≠ r2 ≠⋯≠ rN,  Jm[f] is a measure of roughness, and 

λ is called the regularization parameter, which regulates the tradeoff between goodness of fit (λ = 0) and 

smoothness (λ > 0). 

 Again, in general, in this method the denser the array the more accurate are the approximations. 

Note that all the distances in this method are based on an Euclidean distancing system (C. Carvalhaes 

& de Barros, 2015). 

 A big limitation of this method is that it can not be used in case of spherical or ellipsoidal 

surfaces, where the coordinates are not linearly independent, because during its resolution, a singular 

matrix raises, and certain parameters do not have a unique solution. To address this, there is another 

method called smoothing spherical spline lines. This method is quite like the previous one, but the 

distancing system, instead of being based on the Euclidean distance, is based on the Geodesic distance 

(C. Carvalhaes & de Barros, 2015). Again, for the smoothing spherical splines, a denser array of 

electrodes proves to be more accurate (Babiloni et al., 1995).  

 The advantages of the application of the SL are highly reported on the literature, mainly as a 

spatial filter (Bradshaw & Wikswo, 2001; Foffani et al., 2004; Kayser & Tenke, 2015b), and 

consequentially, it proves to be a powerful tool in several areas, like brain computer interfaces 

(McFarland, 2015; Syam et al., 2017) and much likely, neurofeedback. Another discussed capability of 

the SL is the removal of muscle artifacts, with Fitzgibbon et al. (2015) describing that the application of 

a SL before performing ICA is an ideal methodological approach for this reason. Removal of muscle 

artifacts is achieved since the SL, due to is derivative nature, seems to highlight these more abrupt 

artifact portions (Fitzgibbon et al., 2015) , which in terms of the ICA will result in an easier separation 

of the muscle artifact component. Interestingly, the application of these methods in the inverse order, 

hence ICA + SL, is described as the ideal technique for the “deblurring” and for filtering out some 

volume conduction contamination (C. G. Carvalhaes et al., 2009; Foffani et al., 2004). Although this 

implementation is quite highlighted as a good practice in EEG preprocessing, with rare studies recalling 

disadvantages or limitations (Biggins et al., 1991), from the in-depth state-of-the-art review performed 

in scope of this thesis, only a minority of articles include this technique in their protocol. In fact, this is 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&size=100&term=Fitzgibbon+SP&cauthor_id=25455426
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one of the main premises of the article “On the benefits of using surface Laplacian (Current Source 

Density) methodology in electrophysiology” by Kayser et al. (2015b). Here the authors discuss potential 

applications, advantages, and address some of the counterarguments used against the implementations 

of the SL. The same author had addressed, a year earlier (Kayser & Tenke, 2015a) one of the biggest 

controversies of the SL, a lower sensitivity of this algorithm to deep generators and preference for 

superficial generators, which could bias the results. Again, Tenke et al. (2015b), refuted this “limitation” 

and concluded that the application of SL is advantageous. 

 

1.4.3 Connectivity Context: Diseases and Related Phenomena 

 To highlight the importance of studying EEG-based FC and more specifically the construction 

of strategies that can improve the estimates of FC, this sub-section addresses potential clinically-related 

applications that can benefit from it. Yet, it is relevant to pin-point that FC is not the sole explanation or 

cause, but that studies do confirm alteration in FC as part of the disease phenotype.  

 Furthermore, FC studies are related to a multitude of phenomena, beyond disease-related 

alterations. For example, FC can be used to detect emotions as demonstrated by Gonuguntla et al. (2016). 

Also, FC studies have been confirming the functional integration hypothesis, as for example in the study 

by Sorti et al. (2016), where they evaluated arm movement task-related changes in brain activity and 

functional connectivity, and found significant event-related desynchronization over the alpha and beta 

bands on the bilateral sensorimotor cortex during the left arm movement, and just in beta band on the 

contralateral hemisphere during the right arm movement. Also, increases in centrality during task were 

found for the motor regions. 

 In the clinical context, which could as well be one of the main future applications for 

neurofeedback, whether directly by selecting a “functional connectivity” as target metric or even 

brainwave specific neurofeedback, the first example of a disease with reported abnormalities in the FC 

that we shall refer is SZ. In a 2014 study, Damaraju et al. (2014b)  used resting state with eyes-closed 

in fMRI of 151 schizophrenia patients, and used both a static and dynamic FC analysis approach, 

showing dysconnectivity profiles in SZ patients when compared with the healthy controls. In the static 

analysis, both hyperconnectivity between thalamus and auditory, motor, and visual networks was 

present, while hypoconnectivity was present between sensory networks. Concerning the dynamic 

analysis, SZ patients showed less spent time in states typified by large scale connectivity. Also, 

putamen/sensory networks hypoconnectivity was reported. Through EEG analysis, more specifically, 

through the network analysis of the theta band connectivity on a P300  ERP task, increased pre-task 

strengths were found for SZ patients, which were correlated to a worse cognition of the schizophrenia 

patients (Cea-Cañas et al., 2020). 

 The Autism Spectrum Disorder has also been associated with altered FC profiles. On their 

review, Hull et al. (2017) summarized the fMRI major findings, with a consensus that both hypo- and 

hyper-connectivity profiles have been consistently identified. The most reported hypoconnectivity 

profile was found in the default-mode network (DMN), with studies linking this hypoconnectivity with 

the symptom severity. Other regions, like the posterior cingulate cortex, lingual/parahippocampal gyrus, 

and postcentral gyrus showed hypoconnectivity. On the other hand, hyperconnectivity profiles were 

found in the striatum, pons and insular cortex, thalamus, basal ganglia, between other areas, with data 

suggesting an association between the degree of hyperconnectivity, both in thalamus and basal ganglia, 

and symptoms severity. Through EEG analysis the above-mentioned findings, were also observed, as 
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reduced DMN, sensorimotor network and dorsal attention network connectivity were reported (Prany et 

al., 2022). 

 Baldassare et al. (2016) on their study with BOLD-fMRI data, correlated post-stroke behavioral 

deficits with the abnormal patterns of resting state FC on both dorsal attention and motor networks. 

Interestingly, in an older study, Guggisberg et al. (2008) tried to understand how focal lesions affected 

the FC between that specific lesioned brain area and the healthy ones, using MEG. The primary 

conclusion was that lesion patients, compared with the healthy controls, had diffuse brain areas with 

low alpha coherence, whilst showing decreased connectivity estimates for the lesion region in 

comparison with the intact contralateral region.   

 In the context of neurodegenerative diseases, abnormal connectivity profiles have been reported. 

Filippi et al. (2019), in their review, summarized several articles’ results concerning this specific topic. 

Concerning Alzheimer’s disease (AD), decreased FC has been shown in the DMN, often accompanied 

by increased connectivity in the fronto-parietal, attentional, and salience networks, as a compensatory 

mechanism. Several FC features have been linked with the presence of cognitive impairment in AD. In 

fact, when using those FC features to feed AI algorithms for the prediction of mild cognitive impairment 

(MCI) in this disease, accuracies of 88% were reached. Concerning Parkinson’s disease, dysconnectivity 

profiles in the DMN, fronto-parietal, salience and associative networks have been linked with the 

development of cognitive impairments. Also, in Lewy Body dementia abnormal connectivity profiles 

were found in the visual, attentional, and executive networks.  

 In a recent study by Choi et al. (2021), using EEG data, the authors compared side by side how 

different psychiatric disorders varied in matter of FC parameters over the DMN. Some of the considered 

diseases were already highlighted before, and they are post-traumatic stress disorders (PTSD), obsessive 

compulsive disorder (OCD), panic disorders, major depressive disorder (MDD), bipolar disorder, SZ, 

MCI and AD. For example, considering the clustering coefficients, SZ and AD patients showed hyper-

clustering in the theta band while OCD, MCI and AD showed hypo-clustering in the low-alpha band. In 

fact, disease-specific clustering patterns were found.   

 Other diseases like epilepsy and dyslexia have also been linked with abnormal FC profiles (Finn 

et al., 2014; Sargolzaei et al., 2015). 

 The last disease that we should refer is the ADHD, which has been often linked with FC 

abnormalities. Cao et al. (2009a) used fMRI data to examine the abnormalities in the FC of medication 

naïve children with ADHD. Compared with controls, ADHD individuals showed decreases in putamen 

FC, with the only exception being the connection with the right globus pallidus/thalamus, with which it 

had increased correlation. Abnormal FC was also reported in the DMN and fronto-striatal circuitry (Cao 

et al., 2009b) and putamen (Konrad et al., 2006; Lan et al., 2021), through the analysis of fMRI data. 

Still analyzing fMRI data, the latter also reported abnormalities in the attentional networks (Rubia et al., 

2019), ADHD related FC abnormalities in the right inferior frontal cortex and in the DMN. These 

abnormalities in the DMN and in the attentional networks were also noticed in another by Zhang et al. 

(2020). Concerning specific connectivity at the level of frequency bands, and using a task-based 

approach, the authors showed that ADHD patients had increased connectivity in the pre-stimulus theta, 

alpha and beta band and increased connectivity in the post-stimulus beta band. Another study identified 

reduced pre-stimulus/post-stimulus change in theta connectivity in ADHD individuals (Michelini et al., 

2019).  
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1.5 Neurofeedback 

1.5.1 Concepts 

 According to Marzbani et al. (2016), NF is a kind of biofeedback, which teaches self-control of 

brain functions to individuals by measuring brain features and providing a feedback signal to them. The 

feedback can be given to the user by an auditory, visual, VR, among other possible stimulus modalities. 

This technique relies on an almost instantaneous loop which enables the user to perceive own brain 

activity, such that, the individual can adapt and reach the desired performance (Hammond, 2007). 

 Such training offers a non-pharmacological, non-invasive, non-dependency inducing, and with 

almost no side effects, way of strengthening the brain circuitry and enhance “brain performance” 

(Hammond, 2007). The application of this technique has been widely studied, with positive results, for 

the matter of cognitive enhancement (Loriette et al., 2021), rehabilitation (T. Wang et al., 2018) and 

even therapy (Niv, 2013). In the next subsection we will refer some of these applications. 

 

1.5.2 Basis 

 Concerning the neurophysiological mechanisms of the NF learning, these remain quite unclear 

despite the fact that several mechanisms have been reported to influence the learning process (Niv, 

2013). A common point and a big premise of this type of NF training is the operant conditioning 

principle which relies on associative learning, that sums up the power of the reinforcement and says that 

a behavior, when rewarded, tends to be promoted and maintained, while when punished, tends to be 

extinguished (Sherlin et al., 2011). For example, many protocols may adopt a design in which while a 

subject registers a desired brain pattern, a positive reward reinforcer is displayed as feedback, and in 

case the objective is not attained a positive punisher reinforcer is displayed as feedback. 

 In Niv’s review “Clinical efficacy and potential mechanisms of neurofeedback” (Niv, 2013), 

some of the potential neurophysiological mechanisms of NF are referred to, as for example, 

neuroplasticity, global connectivity, and reinforcement of the DMN, central executive network, and 

salience network. Neuroplasticity can be understood as the inherent ability the brain has, throughout 

life, to change, modify itself, and adapt in response to the interactions with environments, as well 

discussed byVoss et al.  (2017). With this said, Niv (2013) suggests that NF may induce neuroplasticity-

related changes, more specifically, by enhancing synaptic strength and reorganizing structures by firing 

repetition and task recurrence. In fact, repetition seems to be a big key for the success of the NF training, 

as usually, for significant outcomes in studies, at least 8 to 10 sessions are needed, while for clinical 

applications, it has been consensual that more than 20 sessions are usually required (Gruzelier, 2014; 

Niv, 2013). According to Ros et al.(2014), through such repetition there will be a promotion of a specific 

pattern. In this article, the authors also propose a framework for the NF procedure based on this “synaptic 

strengthening hypothesis” - it states that there is an initial phase where the subjects have an 

unconditioned pattern of the metric of interest, and that, when the defined reward threshold is reached, 

point where the positive reinforcement will be done, “reward-modulated signal for synaptic plasticity” 

is generated. It is suggested this mechanism will promote the integration of and enhancement of such 

specific brain functioning pattern, as the individual will try to reproduce such state in the posterior 

phases.  
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 The second mechanism that Niv (2013) refers to is a global connectivity modulation. This means 

that, overall, NF training increases the effectiveness of the networks in the brain. This is based on the 

fact that, as will be discussed later, NF has an impact on several connectivity-related syndromes. 

 The third mechanism that Niv (2013) refers to is related with global connectivity. The premise 

posits that often the NF protocols target frequencies that are highly related to the DMN, central executive 

and salience networks. Since all of these are largely involved in the correct functioning of the brain and 

NF will contribute to their enhancement, this enhancement will also contribute to a better brain 

functioning (Niv, 2013). 

 

1.5.3 Neurofeedback Loop  

 The NF training can be seen as a succession of loops, each with 4-steps. The first step is the 

data acquisition of the brain activity, the second is the data preprocessing and the third is the feature 

extraction. Depending on the power/value of the metric of interest, more specifically, on how it 

compares to a threshold, in the fourth step a reinforcement strategy is applied through the feedback. 

Also, the outcome of the feedback protocol largely depends on the individuals, as there are individuals 

who are unable to learn self-regulation through this training, the so-called non-learners (Enriquez-

Geppert et al., 2017).  

 In this subsection we will explore in more detail each step of the neurofeedback loop and on the 

duality learners vs non-learners.  

 

1.5.3.1 Data Acquisition  

Figure 1.4 - Neurofeedback data acquisition techniques - adapted from (Thibault et al., 2016) 
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 The first step of the neurofeedback loop is the data acquisition, in which the brain activity is 

captured. For this, several techniques can be used, with the main ones being EEG, MEG, fMRI and 

fNIRS.  EEG is one of the most used techniques in the context of NF, because not only it provides a 

cheaper, low feedback delay, portable, and safe way to assess the brain activity, but also it has an 

inherent high temporal resolution in the order of the millisecond. The main pitfalls of the EEG technique 

are the low spatial resolution and the high susceptibility to artifacts. MEG is also used due to its high 

inherent millisecond temporal resolution and low feedback delay, yet, it has a high cost and and is not 

portable. Concerning fMRI, this technique provides a high spatial resolution way to assess brain activity, 

yet, with relatively high associated costs, high feedback delay, and a lower temporal resolution. A cheap 

and portable alternative way to assess the brain activity is the fNIRS technique, yet it has a high feedback 

delay and a lower temporal resolution (Lakshmi et al., 2014). 

 

1.5.3.2 Data Preprocessing 

 This intermediate step is where the data is prepared for the feature extraction. In the case of 

EEG, the major task in this step is the detection and rejection of artifacts that can pollute all the loop. 

For example, artifacts in a frequency band that corresponds to the frequency of interest would lead to a 

biased and incorrect value for the feature of interest, which would lead to a biased and incorrect 

feedback, resulting in a whole biased feedback loop (Chaumon et al., 2015; Enriquez-Geppert et al., 

2017). For the removal of artifacts, several procedures can be applied, from bandpass filtering the data 

to performing manual and automatic rejection of “artifactful” portions of data, or through detection of 

the artifacts by interpolation methods in accordance with simultaneous EOG and ECG recordings 

(Schomer & Lopes da Silva, 2017), there are in fact several strategies to tackle such problem. In the 

context of manual artifact rejection, several algorithms can be used like ICA method, canonical 

correlation analysis (CCA), and principal component analysis (PCA) (Kaczorowska et al., 2017; Wim 

De Clercq et al., 2006) . All have in common the fact that they perform a signal decomposition solving 

a blind source separation problem. Also, other more elegant approaches have been developed in form 

of automatic rejection, as for example the Adjust pipeline (Mognon et al., 2011) or Prep pipeline 

(Bigdely-Shamlo et al., 2015), which tend to use ICA or another blind source separation techniques, and 

find specific properties profiles, like high or low values of skewness, metrics related to the symmetry of 

the data, kurtosis, which measures the distribution of the data relative to the normal distribution, among 

others. The automatic evaluation of these profiles will generate a decision over the exclusion of portions 

of the data.  

 Unfortunately, during the online procedure, due to the feedback delays that would be generated 

by the previously referred techniques, most of the methods above are very seldom used. These tend to 

be used in the post-hoc analysis, together with data re-referencing, time-to-frequency domains 

transformations, and epoching, for example. 

 

1.5.3.3 Feature Selection and Extraction 

 The stage of feature selection and extraction is where the specific feature is extracted and 

computed from the brain activity. The selected feature tends to represent, or have a direct association 

with the pattern the NF protocols aims to modulate. Usually, the feature is in form of a brainwave 

specific power on a single channel or even on a set of channels (Enriquez-Geppert et al., 2017; Marzbani 

et al., 2016), but other features of interest can be used, like the estimated FC in a specific frequency 
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band (Yamashita et al., 2017), depending on the desired outcome. Also, depending on the intended 

outcome, the location of the metric of interest may change. For example, Marzbani et al. (2016) report 

some functional outcomes for specific target areas, such as frontal lobe NF training for cognitive 

functions like sustained attention and working memory, temporal lobe for improvements in memory, 

learning and facial recognition,  parietal lobe NF training for improvements in problem solving, 

mathematical processing and spatial recognition, occipital lobe for improvements over visual-related 

cognitive tasks, and sensorimotor cortex for improvements in skeletal-movement-related functions. Yet, 

these outcomes depend on the hemisphere.  

After the feature “value” is properly extracted the sensory feedback is prepared.  

 

1.5.3.4 Feedback 

 The feedback will act as a messenger for the NF subject, converting the properties of the feature, 

such as amplitude or duration, to a sensory stimulus that informs the individual about his state, regarding 

the targeted brain process, thus, providing an engaging way to self-regulate brain activity (Enriquez-

Geppert et al., 2017). This reward threshold will ensure that, for example, a positive reward 

reinforcement is only present when the intended pattern of brain activity is registered. The definition of 

the threshold is perse limited, having a subjective dimension, as it should be high enough to challenge 

and engage the subjects, promote the pattern of interest, while low enough to not frustrate and 

demotivate them, with both these extreme cases harming the training outcome. Unfortunately, there is 

no established guideline to define the threshold and several approaches have been studied. Whether it is 

a predefined fixed value, or it is calculated concerning a percentage/average from brain activity at rest, 

there are several options. Furthermore, no guidelines exist to the matter of how the threshold should be 

updated on the course of the sessions (Vernon et al., 2009). Concerning the feedback modalities, usually 

the visual feedback is done via changes on a size, color, and movement over a visual display while the 

audio feedback is done by changes in sounds pitch, volume, rhythm, timbre, and duration (Jensen et al., 

2013).  Also, virtual reality NF displays have been studied, with reported advantages over 2-dimensional 

screen-based visual feedback displays (B.-H. Cho et al., 2004). It is to note that the success of the NF 

protocol also depends on subjects’ states, such as mood (Subramaniam and Vinogradov, 2013) and 

motivation (Pérez-Elvira et al., 2021). Hence, the choice of the feedback stimulus has an additional 

component as, ideally, it should fulfill the subjectivity of the subjects’ preferences, which in turn could 

lead to better outcomes. 

 

1.5.3.5 Learners 

 Although the NF training has proven successful in increasing several features of interest, with 

possible implications on treatment and rehabilitation in the clinical context, about one third of the 

subjects are unable to succeed in the self-regulation task associated with the NF training (Alkoby et al., 

2018), even after repeated training sessions (Wan et al., 2014). These subjects also show no significant 

differences in behavioral outcomes (Hanslmayr et al., 2005a).  These individuals can be described as 

non-learners and, unfortunately, a consensual definition on how to define and distinguish this group on 

the context of EEG NF data analysis remains to be settled (Vernon et al., 2009). 
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1.5.4 Independence of the NF-training 

 Just a brief note to the fact that, although the NF training tends to select a specific feature of 

brain activity for self-regulation, there are cases in which collateral alterations of non-targeted features 

may happen. A primary example of such case is in brain waves band-oriented NF-training. In fact, as 

referred in (Huster et al., 2014) the neighboring bands can be affected, and according to Egner at al. 

(2004), changes on the spectral topology that arise from NF-training are not restricted to the targeted 

bands. With this said, this must be taken into account in our analysis. 

 

1.6 Applications 

 Alpha and UA NF training protocols have a wide range of applications, which will be briefly 

described in this section. Also, a revision is performed on NF studies in the context of FC, including 

those with a more clinical scope. To end this section, the influence of the feedback stimulus modality 

on the outcome of the NF training will be reviewed. 

 

1.6.1 Alpha and Upper-Alpha Neurofeedback 

 Throughout the years, several studies highlighted the role of alpha-band NF in the enhancement 

of cognitive performance. Yeh et al. (2021) performed a meta-analysis over 16 studies that implemented 

alpha NF training and working memory outcome evaluation. The sample would be composed by 427 

subjects, split into a control group of 217 subjects that does not undergo the NF training, and into an 

alpha NF training group with 210 healthy subjects. The objective of this meta-analysis was to explore 

the effects of alpha NF training on working memory, which the authors confirmed as being related to 

an increase on such working memory. Hsueh et al. (2016) also reported that EEG alpha NF training 

contributed to improvements over the episodic memory. Another study by Cho and colleagues (2008), 

still in the context of EEG alpha NF training, reported that since between the NF training sessions it was 

usual to have a bounce back on the alpha activity levels, a higher number of training sessions would 

diminish the extent to which the activity bounces-back between sessions, serving as clue to the 

conclusion that alpha NF training contributes to the maintenance of alpha activity. Concerning the 

specific time course of an EEG alpha NF training, Dekker et al. (2014) investigated the time course of 

both LA and UA over 15 eye-open alpha NF training sessions, on 18 subjects, with each session split 

into 3 periods of 8-min NF training with intercalated cognitive assessment. The authors reported an 

increase of the total alpha power until the tenth session, point at which a plateau was reaches for the LA 

power (8-10 Hz) whereas the UA power (10-12 Hz) started to decrease. Also, the authors noticed that 

in the first two periods of each session the total alpha power increased, but that it decreased in the third 

period as a consequence of UA power reduction. The authors discuss that attention and motivation can 

justify these decreases and suggest different trainability timelines for lower and upper-alpha bands 

(Dekker et al., 2014).  

 Concerning specific EEG-based NF training in the UA band, studies have also reported that 

self-regulation of the UA seems to be related with cognitive outcomes, as for example, increases in the 

performance over a mental rotation task (Hanslmayr et al., 2005b). Escolano et al. (2011) reported an 

increase on children working memory effectiveness, after an EEG-based UA NF training with 18 

sessions. Interestingly, in another study by the same author (Escolano et al., 2014), while 18 sessions 

seemed to be enough to register significant changes on working memory function, a 1-day long training, 
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also registered increases in working memory and mental rotation effectiveness, yet non-significant when 

compared to a control group―these results suggest that to achieve long-lasting changes in 

neurophysiology and brain function, so as to enhance behavioral outcomes, a higher number of training 

sessions seems necessary. Interestingly, for the mental rotation task, significant increases in a NF 

training group that underwent UA up-regulation were found after 5 sessions across 7 days, in a study by 

Zoefel et al. (2011). Moreover, among the possible clinical applications of EEG-based UA NF training, 

one can mention major depressive disorder, as Escolano et al. (2013) on an uncontrolled preliminary 

study reported that such protocol was effective in increasing diversity of cognitive functions such as 

working memory, attention and executive function, in the referred context. In the context of ADHD, the 

same author applied the same training protocol on 20 children diagnosed with ADHD, composed by 18 

sessions, along which the training aimed at an increment in the UA. After the training, the parents rated 

a clinical improvement in the children concerning the inattention and hyperactivity/impulsivity, further 

confirmed by neuropsychological assessments, which reported improvements in the working memory, 

concentration, and impulsivity. These results support the hypothesis that EEG-based UA NF training is 

effective in improving certain domains of cognitive performance in ADHD (Escolano, Navarro-Gil, 

Garcia-Campayo, Congedo, et al., 2014). In the context of stroke survivors, Kober et al. (2017) studied 

two chronic stroke patients with memory deficits, patient A with a bilateral subarachnoid hemorrhage, 

and patient B with an ischemic stroke in the left arteria cerebri media, which were compared with an 

healthy elderly control group composed by 24 subjects that were enrolled in a 10-session length UA 

EEG-based NF training.  Both patients showed improvements in memory functions, and a 

“normalization” over topographical distribution of certain brainwave frequencies, where previously 

abnormal. This result may underline the potential use of NF training as neurological rehabilitation tool, 

yet it needs to be replicated in a bigger group of stroke survivors, and properly controlled for NF training, 

for definite conclusions on the topic.  

 

1.6.2 Neurofeedback and Functional Connectivity 

 Regarding the effects of different NF protocols on the connectivity patterns and brain networks 

of study subjects, the work by Shtark and colleagues (2018), called “Neuroimaging Study of Alpha and 

Beta EEG Biofeedback Effects on Neural Networks”, enrolled 23 healthy men in 20 sessions of Alpha 

upregulation with EEG-based NF training, and 12 healthy men in 20 sessions of Beta upregulation with 

EEG-based NF training, so as to study the differences in NF outcome when training upregulation of 

distinct frequency bands. Additionally, simultaneous EEG-fMRI data acquisition sessions would be 

performed in the beginning, in the middle, and at the end of the 20-sessions long NF training protocol. 

For those subjects that succeeded in the alpha up-regulation task, these showed a weakening of some 

functional connections among cerebellum, visuospatial network, right executive control network and 

cuneus, and the formation the complex containing the precuneus, cuneus, the visuospatial network 

accompanied by a strengthening of the connection between the anterior salience network (ASN) and the 

precuneus. Concerning the beta training group, a weakening of the interactions between the precuneus 

and the DMN, and cuneus with primary visual network were noted. Compared to the beta training, alpha 

training showed a more pronounced interaction between the cerebellum and the precuneus/right execute 

network, and decreased interaction between the primary visual network and high visual network. Such 

trends accentuated over the course of the training sessions (Kober, Schweiger, et al., 2017).  

 Concerning alpha-to-theta ratio NF training, Imperatori et al. (2017) studied the influence of 

this NF protocol on source reconstructed brain networks, using 10 sessions of 27-min length each, and 

comparing the outcomes between a NF training group and a control group, each with 22 subjects; 
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mentalization questionnaires were also applied to assess mentalization. The results showed that, 

compared with control subjects, the NF group had significant increases in the mentalization 

questionnaire scores. Also, several DMN-related brain areas showed increases in FC. Also, a study that 

applied a sensorimotor rhythm (20-30 Hz) enhancing NF protocol, also reported reorganization of the 

sensorimotor connectivity patterns (Terrasa et al., 2019).  

 Finally, and concerning specifically the UA NF protocol, the one that mainly interests us, two 

studies should be pointed, both with researchers from the LaSEEB group, ISR-Lisboa Institute. A Master 

Thesis by Cristiano Berhanu, with the title “Connectivity-based EEG-neurofeedback in VR”, 

implemented 2 protocols of VR EEG-based NF training, with a time design like ours (our experiment 

also contains data from his thesis). In the first protocol, the target for upregulation was the alpha 

weighted-node-degree (WND) ImC at the Cz channel, while in the second protocol, the target for 

upregulation was the relative amplitude of the UA (RAUA) at the Cz. For each of the protocols, an 

increase in the metric of interest was observed, with negligible effects on neighboring frequency bands. 

An interesting observation was the fact that, while the FC NF training group showed almost no changes 

in terms of RAUA, the RAUA training group, showed an increase on the alpha WND-ImC at Cz channel, 

which was higher than the increase caused by the FC training. Yet, the sample size is too small to draw 

robust conclusions, whereas it may serve as clue to the influence of the UA NF protocol on the brain FC 

(Berhanu, 2019). In the second study, Wang et al. (2021) performed a 2-day long protocol, with 5-blocks 

of NF training per day, and 28 healthy subjects, aiming at alpha downregulation at the Oz channel, in a 

EEG-based NF protocol. The authors used the PLV metric to infer on alpha FC changes, whilst network 

analysis included the clustering coefficient, the charpath and the GE algorithms. The protocol was well 

succeeded in terms of reducing the individual alpha band (IAB) power, as a constant decrease was 

verified over the training blocks in both days. Also, during the first day and the first blocks of the second 

day, increases on the overall parietal and occipital channels functional connections were registered. In 

the last 2 block of the second day, decreases on the connectivity of the same regions were seen. The 

authors suggest this could be a clue for a “breakthrough point” in which the subjects NF task-efficiency 

stagnated and even decreased. Interestingly, the network analysis led to similar conclusions, as both 

clustering coefficient and GE, after increasing through all the earlier stages, started to decrease when 

reaching the 8th block, while the charpath had an opposite behavior. The emphasis on this article relates 

to the current work, keeping in mind that we might expect a similar behavior during the analysis of our 

data, despite the differences in protocols. 

 The previously referred articles support what was exposed when discussing the global 

connectivity theory that underlies the NF learning outcome. As in fact, it seems that even in cases in 

which the NF training protocol targets up- or down-regulation of a specific frequency band, the brain 

reorganizes, and changes occur in the associated functional paths. In line with this thought, Li et al. (Li 

et al., 2019) demonstrated the possibility of targeting a FC-related feature in NF training, through self-

regulation of the theta coherence among multiple regions simultaneously, which resulted in behavioral 

changes translated into improvement of working memory outcomes.  

 Now, getting back to the topic of FC-related clinical application through NF training, for 

ADHD, for example, Rubia et al. (2019) demonstrated, using an fMRI-based NF protocol with 11 trials 

of 8.5 min, strengthening of FC within fronto-cingulo-striatal networks and decreases in FC with the 

posterior DMN regions, which was considered by the authors as an improvement in the clinical outcome 

(Rubia et al., 2019). More recently, Wang et al. (2021) using theta-to-beta ratio as target metric, 

performed an EEG-based NF training of 60 sessions on 22 ADHD children. The overall progression of 

the children’s effective connectivity was analyzed and compared with a control group composed by 15 

subjects. Also, topological properties of the networks and flow gain, and the metric for the intensity of 
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information transmission, were analyzed for delta, theta, alpha and beta bands. Before the training, 

ADHD children, compared with the controls, revealed higher clustering coefficient in the delta band as 

well as a lower charpath, and weakened anterior-to-posterior flow gain, while for the alpha band a 

strengthened posterior-to-anterior flow gain was observed, and the beta band revealed a strengthened 

anterior-to-posterior flow gain. Interestingly, after the training the topological properties and flow gain 

of ADHD children were close to those of healthy controls, and, according to the parents, with significant 

improvements in the ADHD symptoms. The authors state this to be the first-ever evidence that 

differences in phase-based effective connectivity in ADHD children, compared with healthy children, 

could be reduced with the application of a targeted NF training protocol. In the case of dementia and 

MCI, both EEG-based and fMRI-based NF training techniques have demonstrated to produce 

improvements in the patients’ cognitive scores (Trambaiolli et al., 2021). In the case of PTSD, a study 

by Nicholson et al. (2016) showed that 30-min long alpha desynchronization EEG-based NF training 

produced a shift in amygdala complex connectivity from areas implicated in defensive, emotional, and 

fear processing/memory retrieval to prefrontal areas implicated in emotion regulation/modulation. These 

results were negatively correlated to PTSD symptom severity and were suggested as promising for the 

treatment of such condition. In the scope of stroke patients, Mottaz et al. (2018) showed in a study with 

10 chronic stroke survivors that through modulation of the alpha frequency band WND of the 

ipsilesional primary motor cortex using visual feedback assistance, improvements in motor functions 

could be achieved. Another group (Giulia et al., 2021) tried to assess, in chronic stroke patients, the 

effects of alternated protocol with periods of bimodal EEG-fMRI NF and periods of EEG-only NF 

training, on the effective connectivity, which was analyzed through dynamic causal modelling, and 

targeted both left and right hemisphere motor cortices activation over the frequency interval of 8 to 30 

Hz. The authors reported that NF upregulation of the target area not only reshaped the activation patterns 

but also decreased inter-hemisferic FC between the primary and pre-motor regions, and reduced 

ipsilesional self-inhibitory functional connections, underlying an increase in activation of such area. 

Both these studies are useful to perceive the underlying pathophysiology of chronic stroke and open up 

space for the design of new NF strategies for the purpose of stroke rehabilitation. A brief note to a recent 

study by Albarrán-Cárdenas and colleagues (2021) that revealed, through a 30-session long theta-to-

alpha ratio EEG-based NF training, in the context of children with reading disorders, that not only NF 

training contributed to EEG power normalization and cognitive-behavioral improvement, but that it also 

lead to changes in FC, with interhemispheric coherence being reduced in the beta, theta and delta bands, 

mainly on Fp regions, and intrahemispheric coherence increase in the alpha band and decreases in the 

beta, theta and delta bands. The authors found, among all the significant changes, that the highest 

association with reading outcomes and scores occurred with the reduction in the theta band coherence, 

paving the way for NF treatments in the context of reading disorders (Albarrán-Cárdenas et al., 2021).  

 

1.6.3 Neurofeedback Sensory Modalities and Functional Connectivity 

 In the matter of how different feedback sensory modalities affect the outcome of the NF 

procedure, which is one of the more understudied areas in NF, as verified during an in-depth literature 

review, guidelines on the choice of the feedback sensory modality are lacking. There are scarce articles 

directly comparing the different modalities, which is also reported by both Enriquez-Geppert et al. 

(2017), and Huster et al. (2014).  

 The main articles that directly perform this comparison are “Neurofeedback in Learning 

Disabled Children: Visual versus Auditory Reinforcement”, by Fernández et al. (2016), and Bucho et 

al. (2019) article “Comparison of Visual and Auditory Modalities for Upper-Alpha EEG-



27 

 

Neurofeedback”, as far as identified. In the first, Fernández et al (2016) performed a theta-to-alpha ratio 

downregulation with an EEG-based NF protocol that enrolled over 20 children with learning disabilities. 

The authors compared both the implementation with visual feedback (a white square) and with auditory 

feedback (tone of a 500 Hz sound). Only the auditory group showed behavioral/cognitive improvements, 

which might be related to attention processing. In the second study, upregulation of RAUA at the Cz 

channel was the target in a EEG-based NF protocol, applied to 16 subjects split into two groups, an 

auditory and a visual feedback modality group, respectively, while simultaneously assessing outcomes 

in working memory―this experiment was performed at LaSEEB, and the recorded data are used in this 

Master Thesis project. The results of this study demonstrated that both groups had increases in the 

RAUA feature on the course of the 4-day training sessions, despite not accompanied by significant 

improvements regarding the working memory scores, with the authors concluding that none of the 

sensory modalities seemed to outperform the other for this specific protocol. A limitation in this study, 

similarly to what is found generally in NF literature, is the small sample size, which impairs the capacity 

to generalize results to the population level.   

 In the context of VR-based NF protocols, the researchers usually compare the immersive visual 

feedback (VR) with two-dimensional screen displays, with results suggesting the potential superiority 

of the former for power-regulation based trainings (Berger et al., 2022; B.-H. Cho et al., 2004; Kober, 

Reichert, et al., 2017). 

 Concerning how different feedback sensory modalities in NF training may affect the brain FC 

profile, there are currently no studies that explore this topic specifically, as far as we could identify. The 

“scarce articles” mentioned above, usually tend to analyze spectral evolution and cognitive outcomes, 

but FC analysis is usually not done.  

 

1.7 Objectives 

As seen in the section 1.4.3, the field of FC and modulation of brain’s integrated activity may 

represent a possible landscape for the implementation of NF training, specifically as there is a wide 

range of diseases that can benefit from the FC and brain’s integrated activity modulation that such 

technique provides. Thus, this still seems to be reserved to the future as, at the moment, too many topics 

remain underexplored and not clearly characterized in the scope of NF training methodology, for this to 

be fully ready to be used in clinical context. Indeed, one of the main unclarities resorts with the choice 

of the NF-training sensory feedback modality. There are just a few studies which explore how these can 

affect the fate of the training, and none of them analyzed possible “integrated activity modulation 

effects” in terms of functional connectivity. With this said, this thesis aims to go further on such topic 

and answer the following question: 

“How is the individual’s brain functional connectivity affected by the use of different sensory 

modalities in EEG-based Neurofeedback training protocols that target the upper alpha band?” 

 In other words, we will analyze how the usage of different sensory modalities in EEG-based 

Neurofeedback training protocols targeting the upper alpha band, will affect and modulate the brains 

integrated activity, analyzed by means of functional connectivity and network analyzes. 

 Hopefully, the results achieved in this work may provide a step further on understanding what  

are the underlying mechanisms of NF training and, to pave the way to improve the overall quality of the 

design of NF-protocols, as indeed these will benefit of knowing, in dept, how different feedback sensory 
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modalities will, or will not, have influence on the fate of the NF-training, on the reorganization of the 

brain networks, among others… Such that, in the future this technique can be more explored, at its full 

potential, in clinical context, more specifically in the field of the previously reported connectivity-related 

diseases. 

 Last but not least, since there is not a clear consolidation of the implementation of the SL method 

as a spatial filtering technique in EEG, and more specifically in the context of FC analysis in EEG data, 

this study has the secondary purpose of analyzing further this topic, by comparing the implementation 

of SL re-referenced data, with common average re-referenced data, over the different analyses.   
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2 Methods 

 In this section we will explore the applied methodology. By the following order, we will detail 

the subjects’ characteristics, the neurofeedback protocol design, the equipment setup and signal 

acquisition settings, the data preprocessing pipeline, and the assessment of the training effects. Note that 

in scope of this project the data that are analyzed had been acquired in two previous experiments at 

LaSEEB, ISR-Lisboa. The first study was Teresa Bucho’s master thesis, “Comparison of auditory and 

visual modalities for EEG-neurofeedback” (Bucho et al., 2019), and the second was Cristiano Berhanu’s 

master thesis, “Connectivity-based EEG-neurofeedback in VR pipeline development and experimental 

validation” (Berhanu, 2019). Teresa’s master thesis experiment (from now on Experiment 1) contains 

data from EEG-based UA Neurofeedback using visual and auditory feedback modalities, while 

Cristiano’s master thesis (from now on Experiment 2) contains data from EEG-Based UA 

Neurofeedback using a visually immersive VR feedback modality. 

 

2.1 Subjects 

 For this research, the data of 20 healthy subjects, from the previously referred experiments, were 

considered. In both experiments, the subjects were mostly students and researchers from Instituto 

Superior Técnico, Universidade de Lisboa, and participation was voluntary, without any monetary 

compensation. Also, in both cases, exclusion criteria would rule out individuals with serious health 

problems, for example ophthalmic or auditory disease, , psychiatric or psychological disorders, and with 

historic of drug abuse/dependence or under medical prescription of psychoactive substances. In 

Experiment 1, the age of subjects ranged between 18 to 30 years old, while in Experiment 2 subjects 

age ranged between 18 to 50 years old. All the subjects signed an informed consent after duly informed 

about the respective experimental procedures, objectives, possible side effects and exclusion criteria. 

Hence, in this project, 3 groups of subjects are considered: i) the visual NF-training group, containing 8 

subjects (4 males and 4 females, with ages in the range 22.5 ± 2.73), ii) the auditory NF-training group, 

containing 8 subjects (3 males and 5 females, with ages in the range 22.88 ± 1.25), and iii) the VR NF-

training group, containing 4 subjects, (2 males, 2 females, with ages in the range 34 ± 12 years old). All 

groups were randomly assembled in the respective experiments. 

 

2.2 Neurofeedback Protocol 

2.2.1 Protocol Design 

 Concerning the time design for the NF protocol, both experiments used the same temporal 

organization. Each session would start with a 4-minute calibration period, consisting of alternated 1-

minute periods of eyes open and eyes closes, in which the subjects would be in a passive state. The 

calibration was used to extract a baseline for UA activity, to build an appropriate threshold for the 

feedback parameter of the NF procedure, but also to extract the IAB. After this period, the NF training 

period started, which was divided into five sets, with each set composed by three blocks, and each block 

was composed by two 1-minute trials. In between trials there was a 10 second interval, and in between 

blocks there was a 15 seconds interval and, if necessary, in between sets the interval could be more than 

15 seconds long. All of this would make a total duration of approximately 37 minutes. In the end of the 

NF training, another calibration would be done to obtain a post-training baseline and IAB, and the 
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subjects would be asked to fill-in some questionnaires. All the subjects recorded four sessions, on 

consecutive days, at approximately the same time of the day. 

 

 

Figure 2.1 - Time design of a NF training session 

2.2.2 Feedback 

 In both experiments, the individual UA band was the target of the NF protocol, specifically 

the RAUA at the Cz channel, defined by Wan et al. (Wan et al., 2014) with the following equation: 

 

 

 

(2.1) 

where X(k) is the frequency amplitude spectrum at frequency k, calculated by means of a sliding window 

FFT, ∆f the frequency resolution, IAF is the individual alpha frequency and HTF is the higher transition 

frequency  

To present the desired feedback to the subjects, 3 sensory modalities were used. The individuals 

from the visual group received the feedback in form of visual stimuli, which consisted in a sphere set 

over a horizon background, with the sphere size reflecting the RAUA on the Cz electrode. Also, the 

color of the sphere would change accordingly to whether the RAUA was above or below the specified 

threshold, between white and red, respectively. The main goal of the subjects was to keep the sphere as 

large as possible and to keep it white as big as possible.  
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Figure 2.2 - Visual feedback presented to the subjects. (Left) When the Cz-RAUA is below the threshold, the sphere color is 

red and the radius is smaller. (Right) When the Cz-RAUA is above the threshold, the sphere color is white and the radius is 

bigger. Adapted from (Bucho et al., 2019). 

 

 The individuals from the auditory group received the feedback in form of an auditory stimulus, 

which consisted in a sound with the volume exponentially modulated by the RAUA. In this modality, 

the individuals would remain with their eyes open while visualizing the same horizon background 

presented in the visual feedback. When the feedback parameter was below the specified threshold, a 

white noise was heard with a volume that would grow in amplitude when the RAUA was farther from 

the threshold. When the RAUA at Cz was above the specified threshold, a 30- second piano loop would 

appear, with a volume that grew for higher values of RAUA. 

 

Figure 2.3 - Auditory feedback modulation. thr = threshold. Red curves: the dashed represents the perceived and the solid 

represents the actual noise volume. Gray curves: the dashed represents the perceived and the solid represents the actual 

music volume. Adapted from (Bucho et al., 2019). 

  

 The individuals from the VR group received feedback in form of a VR stimulus, displayed 

through the Oculus Rift hardware, which consisted of a planet in background with a rotating sphere of 

particles. To avoid repetitiveness, and provide a sense of progress to the subjects, three specific feedback 

tasks could be instructed. The task could consist in i) increasing the size of the rotating sphere, ii) 

increasing the rotation speed of the sphere of particles, or ii) reducing the distance, perceived by the 

subject, to the sphere of particles, and if possible, reach out the center of the particle system. When the 

latter happened, the subject would return to the initial position/perspective and would be instructed to, 

again, reduce the perceived distance. The goal would be to reach the center of particles as many times 

as possible. In the first session, the “size” feedback task was used, while in the second session the 

“rotation speed” task was used. In the third session the “distance” task was used. In the fourth session, 

each set would have a specific task. In the first and fourth set the “size” task was performed, in the 

second set the “rotation speed” task was used, and, finally, in the third and fifth set, the “distance” task 

was performed. Again, the feedback electrode was the electrode at position Cz. 
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2.2.3 Surveys 

 While enrolled in the experiment, the subjects were asked to answer some questionnaires to 

assess specific states and features.  

 In Experiment 1, at the end of each session the subjects were asked to fill-in a mental state 

questionnaire. Also, specifically, in the first session, before the NF training protocol, the subjects 

would be asked to fill health-related questionnaires, including the 36-Item Short Form Survey (SF-36) 

and Hospital Anxiety And Depression Scale (HADS) and some memory tests like the Digit Span and 

N-back. In the fourth session, the subjects were asked to perform the memory tests another time. 

 In Experiment 2, at the end of each session, the subjects were asked to perform a simulator 

sickness questionnaire, to assess the any negative sensation caused by the VR experiment, and a self-

perceived load questionnaire. Similarly to Experiment 1, memory tests would be performed both before 

the first session and after the last session. In the last session, the subjects were asked to fill a sense of 

presence questionnaire to assess the quality of the immersion in the VR experiment. 

 

2.3 Signal Acquisition and Equipment Setup 

The data for both Experiment 1 and Experiment 2 were collected in the NeuroLab room of the 

Evolutionary Systems and Biomedical Engineering Lab, a research lab of the Institute for Systems and 

Robotics (ISR) at Instituto Superior Técnico. The room provides both light and sound isolation, 

appropriate for the acquisition of EEG data. On the course of the experiments, the subjects would sit, 

comfortably, on a swivel chair with no wheels, placed approximately 1 meter from the monitor. Also, 

the subject would wear headphones and a researcher would supervise all the procedure in a separate 

partition. To record the EEG signals, the EEG amplifier LiveAmp (Brain Products GmbH, Germany) 

interface was used, connected to the OpenVibe (Inria Rennes, France) software. The ActiCap’s headset 

system of 32 channels, based on the extended 10-10 system was used, and data was collected with a 

sampling frequency of 500Hz. The following electrodes were active: Fp1, Fz, F3, F7, FT9, FC5, FC1, 

Figure 2.4 - VR feedback presented to the Subjects. Top row: particle system changes size, 

middle row: particle system changes rotation speed, bottom row: camera approaches 

particle system with changing speed. Adapted from (Berhanu, 2019) 
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C3, T7, FCz, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, 

F4, F8 and Fp2. The ground electrode was located at the forehead while the reference was located on 

the left mastoid, on the TP9 electrode. The electrodes are connected in a splitter box, connected to the 

LiveAmp interface. In Experiment 1, circuit impedance was kept below 10 kΩ for all electrodes, by 

scrubing the respective scalp position with an alcohol-soaked Q-tip and then injecting gel (SuperVisc, 

EasyCap, Germany) on the electrode aperture using a blunt needle, before placing the electrode. Using 

the same method, the impedances were kept below 25 kΩ in Experiment 2. 

 

2.4 Data Preprocessing 

 As we were dealing with raw EEG data containing artifacts, we needed to perform a 

preprocessing pipeline that ensured that in posterior analyses we wouldn’t have erroneous results, and 

in consequence, erroneous conclusions. 

 Firstly, raw data and the correspondent power spectral density plots were visually inspected to 

verify whether there were bad channels. If present, they would be marked and omitted from the 

following steps. Then, the raw data were band-pass filtered from 1 Hz, to remove slow drifts, until 45 

Hz, to remove the power line noise and narrow the frequency content to the range of interest (de 

Cheveigné & Nelken, 2019). Notice that in order to exclude possible time distortions caused by the 

filtering process (de Cheveigné & Nelken, 2019; Yael et al., 2018), we used the MNE default FIR zero-

delay filter. The following step was the data epoching, splitting each session into epochs, with each 

Figure 2.5 - Electrode positioning system used for the experiment 
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epoch consisting in one NF trial that contained 60 seconds of data. However, in some sessions, 

movement-related artifact could not be corrected for at the end of beginning of the trials, and in these 

specific cases the duration of the epochs was reduced to exclude the noisy time-intervals For instance, 

in some sessions, the artifacts would be focused on the first and last 5 seconds of each trial. In this case, 

the epochs for that session corresponded to the interval from 5 seconds to 55 seconds of each trial. After 

this, two ICAs were applied. The first, would mainly serve to remove ocular artifacts like blinks, 

horizontal eye movements and well-defined muscular artifacts (Lakshmi et al., 2014). The second ICA, 

tried to remove remaining muscular artifacts as it was fitted by a high passed epoch (cut frequency=15 

Hz). This was based on the conclusion of Frolach et al. (Frølich & Dowding, 2018), which reported that 

adequate high pass filtering was more important for muscular artifact detection than the type of ICA 

algorithm. On both ICA’s we considered the recommendations made by Chaumons et al.(2015). Then, 

the channels marked as bad were interpolated and the data were re-referenced to the common average 

(avgREF), a referencing technique with well-known advantages (Lakshmi et al., 2014). Since the 

volume conduction problem is one of the main causes of error in FC measurements (Anzolin et al., 2019; 

Bastos & Schoffelen, 2016) and the benefits of using SL, especially with an ICA, are highlighted in 

recent literature, as exposed in the sections above (Foffani et al., 2004; Kayser & Tenke, 2015b), we 

performed two different configurations of spline lines SL on the re-referenced data. The first one (SL4) 

with the default parameters of stiffness (=4) and regularization(=1e-5) and the second (SL3) with 

stiffness=3 and regularization=0.000156, chosen according to the optimal parameters defined in the 

tutorial review by Kayser & Tenke ( 2015a). Ideally, we evaluated using the SL transformation before 

the ICA, as it would help on the deblurring task while aiding on the task of removing muscle activity 

(C. G. Carvalhaes et al., 2009; Fitzgibbon et al., 2015). However, that was not possible because the ICA 

function in MNE Python doesn’t supports .csd type of data, that is, MNE-python only supports ICA 

followed by SL. Finally, both avgREF data, SL3 data, and SL4 data were exported. A brief note to the 

fact that one subject from the auditory NF group was ruled out from the following analysis due to large 

portion of artifacts, which could not be dealt with the pre-processing steps previously described. 

 

 

2.5 Assessment of the training effects 

2.5.1 Spectral Analysis 

In this analysis we aimed to assess the effect of the NF training on the RAUA. To calculate the specific 

spectral density, we first translated our data to the frequency domain. Although the multitaper method 

has been defined as the “go to method” because of the highly reported advantages on literature (Babadi 

& Brown, 2014; van Vugt et al., 2007), its high computational cost, led us to choose to use the Welch 

method, with an overlap of 50 points.  

 Using the Welch method, we estimated the per-block RAUA for every subject and each of the 

respective NF training sessions. As we wanted to separate subjects which were learners, from the 

subjects who weren’t, we fitted, for each subject and each session, the previously calculated block 

RAUA into a linear regression. Then for each subject, a mean slope, IntraS, would be obtained from 

the 4 sessions’ linear regressions. If the mean linear regression slope was negative, then the subject 

would be classified as a non-learner. The previously described IntraS is translated to the following 

equation: 

 
𝐼𝑛𝑡𝑟𝑎𝑆 =

𝑚1 + 𝑚2 +  𝑚3 + 𝑚4

4
 

(2.2) 
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Note that this was only calculated for the avgREF data, as this is the re-referencing method that was 

used on the online protocol, and we didn’t want to bias our results by analyzing other re-referencing 

method. 

Once the non-learners were identified, further data analysis was performed only with the data from the 

Learners. First, we analyzed intra-session variations in RAUA in a per-set analysis over the visual, 

auditory and VR NF-training groups, by plotting, for each group, the median Per-Set RAUA at the Cz 

channel. Recalling that each NF training session is composed of 5 sets per session, in a total of 4 session, 

for every session, we performed an Intra-Session Spearman correlation between a “cloud” containing 

the set mean Cz-RAUA, normalized with respect to the first set of the respective session, and a list 

containing the respective numbers of the sets. We also performed a within-session correlation over the 

groups median set Cz-RAUA and the set number. Then, we established a new metric that would 

synthetize the within-session variations of Cz-RAUA for all the sessions, per-each subject. This was 

defined as the IntraA1, and was calculated through the following equation: 

 
𝐼𝑛𝑡𝑟𝑎𝐴1 =

∑ ∑ (𝑠𝑒𝑡𝑖 − 𝑠𝑒𝑡1)𝑠𝑒𝑠𝑠𝑖𝑜𝑛
𝑛𝑠𝑒𝑡𝑠
2

𝑛𝑠𝑒𝑠𝑠𝑖𝑜𝑛
1

𝑛𝑠𝑒𝑠𝑠𝑖𝑜𝑛 ∗ (𝑛𝑠𝑒𝑡 − 1)
 

(2.3) 

 Considering this, we performed a Wilcoxon Signed Rank test, over the list of the IntraA1 values 

of the learners for each modality. The Wilcoxon test was be used to find out whether the median of each 

RAUA list was greater than zero, which would correspond to a modality persistent significant within-

session increase of the Cz-RAUA. 

 To end the analysis of the spectral changes caused by the neurofeedback training, we addressed 

for each group, the learners RAUA median topological distribution across the sets of the first session 

and the median topological distribution of the first session vs the fourth session. A similar topological 

analysis was performed for the relative amplitude of the theta (4 to IAF-2 Hz), lower-alpha (IAF-2 to 

IAF Hz), Alpha (IAF-2, IAF+2), lower-beta (IAF+2 to 20 Hz), upper-beta (20 Hz to 30 Hz) and beta 

band (IAF+2 to 30 Hz). This would also be used to analyze the independence of the other bands 

regarding the context of UA EEG-based NF training.  

 

2.5.2 Functional Connectivity Analysis 

 This section contains three different subsections. The first part exposes a preliminary analysis 

that aimed to point out the best approach for the FC calculus. More precisely, we aimed to select the 

most appropriate algorithm from a set or pre-selected options, and we aimed to avoid the sample size 

bias problem, thus ensuring that the chosen algorithm would be stable. The second part explains how 

the effect of NF EEG-based NF training on brain FC was evaluated. This will be done in two parts, the 

first in which we explain the evaluation of the evolution of FC patterns over the course of the training, 

and the second where we expose our Network analysis, in particular the network metrics that were used. 

 

2.5.2.1 Choice of Metric and Time Design for Functional Connectivity Analysis 

 As previously exposed, in EEG there are several algorithms and metrics used to estimate   FC. 

Also, a frequent limitation in the FC measurement is the sample size bias. Too few epochs or even 
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epochs with small lengths tend to bias the FC results (Bastos & Schoffelen, 2016; Miljevic et al., 2022). 

To answer and explore in depth both issues, we performed an intermediate analysis where the ImC and 

wPLI were considered. Notice that we only used these metrics because they have quite known 

advantages, like the removal of instantaneous interactions (commonly caused by the common input or 

volume conduction problem) (Bastos & Schoffelen, 2016).  We split a specific session trial, block, and 

set in windows of 1, 2, 4 and 6 seconds. For example, in the block splitting, we would have a list 

containing the N-s windows of the correspondent merged two trials, this means that if a trial contains 

60 seconds, our “block list”, with the window of 1s, would contain 120 epochs/windows of one second.  

The same applies to the set but in such case, it contains 6 trials merged. Using both metrics, ImC and 

wPLI, we performed the FC analysis of the UA band over the different time profiles, and with the 

guidance of heatmaps and violin plots we verified which was the most stable and suited design of FC 

analysis.  Our results came in agreement to those exposed by Fraschini et al. (2016), as the wPLI barely 

became stable in the specified time designs. This can be linked with the described 12 seconds windows 

duration, which is reported as the ideal for the FC measuring with this algorithm. The ImC turned out to 

be more stable with shorter epoch duration, with splittings of 4-s and 6-s proofing to be enough to enable 

a stable output. Also, as the per-set analysis is the temporal profile that reports less variations we agreed 

to perform a per-set analysis. 

 In summary, a per-set computation of the ImC was performed over windows of 4-s, for the UA 

band. This would return several channel connectivity matrices. The results for this preliminary analysis 

experiment are in the Appendix 7.1.  

 

2.5.2.2 Functional Connectivity Evolution 

 With the data resulting from the previous computation, we would perform a FC evolution 

analysis, more specifically, we would verify the intra-session evolution of the FC for every recorded 

session. This intra-session evolution was assessed for the learners per-channel-pair, comparing the 

values of FC between set 5 and set 1, and using the Wilcoxon Signed Rank 2-tailed Test, with 

Benjamin/Hochberg false discovery rate multiple comparison correction, to analyze if these sets were 

significantly differences. Significance level was reached when the p-value was less than 0.05. This 

analysis was performed across all the learners of all modalities, across learners of the visual NF-training 

group, across learners of the auditory NF-training group, and across learner of the VR NF-training group.  

 

2.5.2.3 Network Analysis 

 The next step aimed at a network analysis in order to obtain more information on functional 

organization. For this analysis, a preliminary thresholding step was performed to remove spurious 

correlations. This threshold would be equal to the quantile 0.20 of the mean connectivity matrix for the 

corresponding NF training session. FC estimates from interpolated channels were considered below 

threshold. 

 Then, using the brain-connectivity Python toolbox bctpy - https://pypi.org/project/bctpy/ we 

performed a per-set computation of the strength, betweenness centrality, transitivity, charpath and GE. 

For the latter two, we performed an intermediate step to obtain the weight corresponding distance, based 

on Floyd’s proposed transform (Floyd, 1962). Each metric was computed on the median set connectivity 

matrix of each groups’ learners and for each session. For the transitivity, the charpath and GE we 

https://pypi.org/project/bctpy/


37 

 

performed within-session Spearman correlations between the cloud containing each learner normalized 

values, normalized with respect to the first set of the same session, and set number, and correlation 

between the learner’s normalized median set value, again normalized with respect to the first set of the 

same session of the referred metric and the number of the set. For both transitivity and GE, the Spearman 

correlations aimed to test if there was a positive correlation between the metric of interest and the set 

number, thus the test being a 1-tailed test for positive correlation values with significance threshold 

being reached when p-value is <0.05, meaning that the metric’s value would increase with the set 

number. On the other hand, for the charpath computation, the Spearman correlation aimed at evaluating 

if there was a negative correlation among the charpath per-set values and the number of the set, thus the 

test being a 1-tailed test for negative correlation values with significance threshold being reached when 

p-value is < 0.05, meaning that if the set number increases, the charpath decreases. Also, for the 

transitivity, charpath and GE, set 1 vs set 5 differences were assessed across the learners of the different 

groups, for each session, using a Wilcoxon Signed Rank 1-tailed with significance threshold reached 

when p-value <0.05. We aimed to evaluate if the metrics transitivity and GE would be greater in set 5 

than in set 1, whilst for the charpath we evaluated if the metric values were greater in the set 1 than in 

the set 5. 

With both strength and betweenness centrality we tried to verify whether there was a significant 

reinforcement of specific nodes, whereas with the transitivity metric we tried to verify whether there 

was a significant reinforcement of functional segregation. Finally, with the charpath and GE we tried to 

analyze whether there was a reinforcement of the functional integration. 

 A brief note to the fact, that we also considered implementing the modularity algorithms as we 

considered interesting to disentangle the clusters’ composition. Unfortunately, due to lack of 

information about the cluster assignment and some randomness associated with the algorithm, we 

excluded modularity from the analysis. Also, the strength and betweenness centrality results are exposed 

in the appendix as they didn’t produce a specific interpretable pattern.   

Note: 

 Before we move to the next session, we shall refer that according to the guidelines exposed in 

the review by Miljevic et al. (2022) “Electroencephalographic Connectivity: A Fundamental Guide and 

Checklist for Optimal Study Design and Evaluation” our study is classified as having a moderate-quality 

assessment of FC with a total score of 4.5 out of 7, as we fulfill, by order, the following: “Laplacian Re-

referencing”, “4-6s epoch duration”, “50-100s epochs”, “All types of artefacts addressed”, “Lag, 

weighted, source or Laplacian”, both “valid post hoc control” for non-network analysis”, and “model-

data driven: threshold or weighted” for network analysis, and our sample size had “no considerations”. 
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3 Results 

3.1 Spectral Analysis: Results  

3.1.1 Learner vs non-Learner 

The results from the identification of learners and non-learners are displayed in Tables 3.1, 3.2, 

and 3.3, for each group of subjects, with the respective IntraA1 metric value and the learner status. In 

the visual NF-training group one non-learner was identified (subject V2), whereas for the auditory NF-

training group two non-learners were found (subject AUD2 and Aud3). The VR NF-training group did 

not have non-learners. 

Table 3.1 - Learners vs Non-Learners for the Visual NF-training Group 

   

    

 

 

 

 

 

Subject

1

2

3

4

5

6

7

8 7.25×10^-2

Non-Learner

Learner 

Learner 

Learner 

Learner 

Learner 

Learner 

-6.52×10^-3

7.46×10^-4

7.29×10^-4

1.97×10^-3

1.71×10^-2

4.90×10^-2

IntraS

1.13×10^-2

Learner Status

Learner 

Visual NF-Training Group

Subject

1

2

3

4

5

6

7

7.94×10^-2 Learner 

1.23×10^-3 Learner 

-2.57×10^-2 Non-Learner

4.28×10^-2 Learner 

1.23×10^-3 Learner 

-3.93×10^-2 Non-Learner

Auditory NF-Training Group

IntraS Learner Status

3.06×10^-2 Learner 

Table 3.2 - Learners vs Non-Learners for the VR NF-training Group 

Table 3.3 - Learners vs Non-Learners for the Visual NF-training 

Group 

Subject

1

2

3

4

3.70×10^-2 Learner 

6.77×10^-3 Learner 

VR NF-Training Group

IntraS Learner Status

1.02×10^-2 Learner 

1.94×10^-2 Learner
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3.1.2 Per-Set Cz Channel RAUA Evolution 

Figure 3.1 depicts the median per-set RAUA in the Cz channel, for each NF-training group and 

for each re-referencing method. Analyzing such figure, for the visual NF-training group, we noticed an 

initial increase of the median per-set Cz RAUA corresponding to the first session, independently of the 

applied re-referencing technique, while for session 2 an increase over such metric is reported only when 

data was re-referenced to the average. For the remaining sessions, increases on the per-set Cz RAUA 

were visually noticeable, independently of the applied re-referencing technique. For the VR NF-training 

group, an increase of the median per-set Cz RAUA was observed in every session when applying an 

avgREF re-referentiation, whereas when applying a SL re-referentiation a similar pattern was observed 

with the exception of session 3 where a decreasing tendency was observed. Finally, for the auditory NF-

training group, an increase in median per-set Cz RAUA was observed for all the sessions when using 

the avgREF re-referentiation, but when applying SL transformation only the first two sessions 

maintained the pattern while session 3 and session 4 show a stable and a decreasing pattern, respectively. 

Indeed, these results were confirmed by the correlation coefficients presented on the table 3.4.  

In Table 3.4, spearman’s correlation coefficients and p-values are reported for the analysis 

between the Cz RAUA per-set values and the set number, using both all the values for each subject and 

the median values per-set. The results are presented for each NF-training group and re-referentiation 

method. When the avgREF was applied, significant positive correlations were identified for the visual 

NF-training group between the median RAUA per-set and set number for sessions 1 and 3, and in session 

2 for all Cz RAUA per-set values and Set Number. When the SL was applied, independently of its 

configuration, significant positive correlations were noticed in the session 2 between all Cz RAUA per-

set values and Set Number. Regarding the VR NF-training group, when the avgREF was applied 

significant positive correlations were identified between all Cz RAUA per-set values and set number, in 

Figure 3.1 - Median Per-Set RAUA for the Cz Channel for each sensory modality (rows) and for each re-referencing method (columns). Error 

bars represent the inter-quartile interval. 
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the session 1 and 4, and between the median Cz RAUA values and the set number, in the session 1 and 

2. When the SL4 is applied significant positive correlations are identified between all Cz RAUA per-set 

values and set number, in the session 1, and between the median Cz RAUA values and the set number, 

in the session 2. When the SL3 is applied, no significant positive correlations are reported. Finally, for 

the auditory group, significant positive correlations are identified between all Cz RAUA per-set values 

and set number, in the session 1, independently of its configuration, and between the median Cz RAUA 

values and the set number, in the session 2 for both avgREF and SL3 configurations. 

 

 

Finally, Table 3.5 shows the results for the IntraA1 analysis, for each of the NF-training groups 

and for each re-referentiation method. With Wilcoxon Signed Rank test we tested the hypothesis H0: 

The median of the IntraA1 list is greater than 0, which only reached statistical significance (p < 0.05) 

for the Auditory NF-Training Group when SL4 was applied.  

 

Table 3.5 - Wilcoxon Signed Rank test - H0: The median of the IntraA1 list is greater than 0. (Significance threshold reached 

for p-value < 0.05 & no correction for multiple comparisons) 

 

avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

Corr coef 0.279 0.102 0.064 0.794 0.430 0.178 0.377 0.381 0.370

P-value 0.052 0.279 0.357 1.464e-5 0.029 0.225 0.031 0.030 0.034

Corr coef 0.900 0.400 0.700 0.999 0.500 0.100 0.800 0.800 0.200

P-value 0.019 0.252 0.094 7.021e-25 0.195 0.436 0.052 0.052 0.373

Corr coef 0.335 0.315 0.327 0.024 0.030 0.068 0.118 0.295 0.260

P-value 0.024 0.032 0.027 0.458 0.448 0.388 0.286 0.076 0.105

Corr coef 0.300 -0.499 -0.199 0.900 0.900 0.700 0.999 0.800 0.900

P-value 0.311 0.804 0.626 0.019 0.018 0.094 7.021e-25 0.052 0.018

Corr coef 0.223 0.070 0.072 0.102 -0.347 -0.243 0.078 -0.008 0.074

P-value 0.100 0.344 0.339 0.335 0.933 0.849 0.354 0.515 0.361

Corr coef 0.900 0.800 0.800 0.500 -0.6 0.200 0.800 -0.100 -0.300

P-value 0.018 0.052 0.052 0.196 0.857 0.373 0.052 0.564 0.688

Corr coef 0.249 0.232 0.127 0.443 0.339 0.172 0.185 0.031 0.059

P-value 0.075 0.089 0.234 0.025 0.072 0.233 0.187 0.440 0.390

Corr coef 0.200 0 0.100 0.700 0.100 0.300 0.800 -0.300 -0.300

P-value 0.187 0.500 0.436 0.094 0.436 0.311 0.052 0.688 0.688
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Visual NF-training Group VR NF-training Group Auditory NF-training Group

Table 3.4 - Spearman Correlation between RAUA per-set and Set Number, for the Cz channel. H0: Correlation coefficient is positive 

(Significance threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

0.054 0.148 0.109 0.062  0.437 0.437 0.062 0.031 0.062P-value

Visual NF-training Group VR NF-training Group Auditory NF-training Group
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3.1.3 Topological Changes 

 

Figure 3.2 – Median relative power spectral density values across the Sets for the Session 1 for the Visual NF-training group 

and avgREF. 

 

Figure 3.3 – Median Values of the Session 1 vs Session 4 for the Visual NF-training group and avgREF 

 The topological representation of the median relative power spectral density is displayed in 

Figure 3.3 for the visual group and avgREF data. We verified that across the sets of the session 1, an 

upper-alpha relative power increment happened over the right parietal area and the left temporal area, 

with the same tendency being noticed, when comparing the visual NF-training group session 1 mean 

upper-alpha band topology with their mean upper-alpha band topology on the session 4. Regarding the 

theta band power topology, we verified a narrowing of the high theta activity areas accompanied by an 

overall reduction of such activity on peripheral areas. This peripheral reduction tendency is also noticed 

when comparing session 1 mean theta band power topology with their mean theta band power topology 

on the session 4. The lower-alpha band registers an increment on midline parietal activity and 

consequentially, and the alpha band reports an overall increment over the left temporal and central 

parietal alpha activity. Concerning the beta band, this wasn’t largely affected by the procedure. On the 

same analysis over SL re-referenced data, presented on the supplemental figures 7.13, 7.14, 7.19 and 

7.20, both SL configurations, maintained the above tendencies yet more focal activity was detected and 

non-focal activity was attenuated, in every frequency band. Left temporal activity on the upper-alpha 

band was attenuated. Reducing the stiffness of the SL spline lines produced smother “isopotential” lines. 
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Figure 3.4 - Median values across the Sets for the Session 1 for the VR NF-training group and avgREF. 

 

Figure 3.5 - Median Values of the Session 1 vs Session 4 for the VR NF-training group and avgREF. 

Concerning VR NF-training group, for the avgREF data, we verified that across the session 1, 

there were increments on the power of the upper alpha band for the left temporal and mainly for the 

occipital areas. Also, theta and beta non-focal activity registered a reduction, and an increment in the 

occipital lower-alpha activity. When comparing session 1 mean upper-alpha band topology of the 

learners of the VR NF-training group with their mean topology on the session 4, a more left temporal 

profile of upper–alpha activity was noted on the session 4, and the theta non-focal activity is reduced. 

Concerning the same results for the SL re-referenced data, presented on the supplemental figures 7.15, 

7.16, 7.21 and 7.22 the above referred tendencies are maintained, while more focal activity profiles are 

verified. The application of the SL4 configuration revealed a more prominent right occipital upper-

alpha activity, while attenuated the left temporal activity. The application of the SL3 configuration, 

attenuated even more the left temporal upper-alpha activity, highlighting the occipital activity, and 

again, produced smoother isopotential lines due to the reduced stiffness. 
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Figure 3.6 - Median values across the Sets for the Session 1 for the Auditory NF-training group and avgREF. 

 

 

Figure 3.7 - Median Values of the Session 1 vs Session 4 for the Auditory NF-training group and avgREF. 

 

For the auditory NF-training group, for the avgREF data, we noticed that, across sets, the 

evolution of upper-alpha focal activity didn’t follow a specific tendency. Across the sets, the theta-band 

activity diminished in peripheral areas while maintaining the fronto-central midline tendency, as lower-

beta band denoted a high-reduction in the frontal and occipital activity. Concerning the lower-alpha sub-

band it was noted an establishment of such activity on the central areas. When comparing session 1 

mean upper-alpha band topology of the learners of the auditory NF-training group, with their mean 

topology on the session 4, the occipital profile of the upper–alpha activity was accentuated. The 

application of different configurations of SL, presented on the supplemental results figures 7.17, 7.18, 

7.23 and 7.24, highlighted a clearer right central-parietal activity. Also, both implementations resulted 

in a reduction on the non-focal activity, across the different frequency bands.  Again, reducing the 

stiffness of the SL spline lines produced smoother isopotencial lines. 

 

  



44 

 

3.2 Functional Connectivity Analysis: Results 

3.2.1 Functional Connectivity Evolution 

Regarding the results, for the visual NF-training group and more specifically considering 

avgREF data, figure 3.8, on the session 1, a “significant” increase over the right parietal (CP6, TP10, 

P8, P4) and occipital channels (O2) functional connections was noted. The FC1 channel significantly 

increased its correlation with Occipital channels and Pz channel. Also, the Pz channel presented a 

notable “significant” increase of functional connectivity with right parietal (P8, P4), temporal-parietal 

(TP10), central-parietal (CP6) areas and with some left frontal and central areas. A few significant 

decreases in the functional connectivity among the fronto-central inter-hemispheric groups were 

verified. Concerning the second session of the same group, a few significant decreases in the 

connectivity between contralateral frontal and central channels were verified (F4-F7, FC6, F8, FC2-

FT9). In the left hemisphere it occured a significant increase of the functional connectivity between Fz, 

F3, F7, and FT9. The left parietal area (P3) registered a significant increase in the functional connectivity 

with some specific frontal (F7), temporal (T7, FT9), and central parietal (CP1) areas. Finally, the midline 

occipital area and right occipital area, registered a significant increase in the functional connectivity 

with some right frontal, frontal-central, central, central-parietal, and parietal areas, thus, pointing out to 

a strengthening of the previously referred occipital/parietal complex. On the third session no significant 

differences over the channel-pairwise FC, between the set 1 and set 5, are detected. On the fourth session 

it was noted a significant increase of the functional connectivity of left and midline frontal/frontal-

temporal/frontal-central areas and some specific central/central-parietal/parietal areas. Regarding more 

posterior areas, mixed effects appeared over the parietal-to-occipital connections, as for example, the Pz 

significantly increased his connectivity with both O1 and Oz, the P4 significantly decreased its 

correlation with Oz and O2, and CP2 significantly decreased its correlation with Pz, O1, Oz and O2. 

This can represent a desegregation or rearrangement of the previously referred complex. When this 

analysis was performed over the SL4 data, figure 3.9, overall changes in the heatmaps were verified. In 

the session 1 some specific parietal/central-parietal channels, like the CP6, P4, P8, significantly 

increased their functional connections with both right parietal areas, right temporal and right temporal-

parietal areas. Still in the same session, the FC6 channel significantly increased his functional 

connections with left parietal/central-parietal areas while significantly decreasing its functional 

connectivity with left frontal areas. For the session 2, the FC5 significantly reduced its correlation with 

the right temporal areas while increasing with right occipital, O2, right parietal, P4, and right central-

parietal-area. T7 channel significantly decreased its correlation with contralateral frontal area, F8. More 

significant connection changes were reported, with no adjacent pattern. Also, on the third session, no 

pattern of evolution was noticed, although some changes were highlighted. On the fourth session, the 

CP1 significantly increased his functional connectivity with both parietal areas, as the P3 and P8, and 

frontal central area, FC1. Interestingly, both Pz and P4 revealed significant increases in the functional 

connections with the frontal-central area. A desegregation pattern was verified over the parieto-occipital 

connections. Similar heatmaps resulted from such analysis on SL4 and SL3 data, figure 3.10. 
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  Figure 3.8 - Changes in Functional Connectivity within session. Results are shown for the Visual NF-training group with avgREF, when comparing changes in ImC between 

Set 1 and Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons). The green boxes highlight specific patterns of 

connectivity changes. 
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Figure 3.9 - Changes in Functional Connectivity within session. Results are shown for the Visual NF-training group with SL4, when comparing changes in ImC between Set 1 

and Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) The green boxes highlight specific patterns of 

connectivity changes. 
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Figure 3.10 - Changes in the Functional Connectivity within session. Results are shown for the Visual NF-training group with SL3, when comparing ImC values between Set 1 

and Set 5. Red: increases;, Blue: decreases, *: p < 0.05 (corrected for multiple comparisons). The green boxes highlight specific patterns of connectivity changes. 
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Now referring to the group that merges all the learners from the different NF-training modalities, for the 

session 1 and avgREF, figure 3.11, the Pz increased its functional connectivity with left frontal, frontal-

temporal and frontal central channels, while also increasing its correlation with right and left parietal 

areas, right temporal-parietal areas, right central parietal areas and occipital areas. CP6, C4 and FC6 

channels revealed significant increases in their functional connectivity with right parietal, right 

temporal-parietal, and occipital channels, while decreasing their connectivity with left frontal, temporal 

and central areas. Temporal-parietal area, TP10, significantly increased its FC with the temporal area 

T8. Significant decreases over some contralateral frontal, frontal-central and central areas were verified. 

P8 and CP6 increased their correlation with right frontal areas. Concerning the second session, it was 

mainly verified the establishment of functional connections between the channels Oz, O2 and P4 with 

both right and left frontal and central areas. Also in this session, significant decreases were verified 

among some specific contralateral connections between frontal and frontal-central areas. In the third 

session, some significant decreases were verified among parietal connections, more specifically, the P7 

and P3 channel, P7 and CP1 channel, and P8 and CP1 channel. On the fourth session, pontual 

connectivity changes were verified. When the same group was considered, but the same analysis was 

performed over the SL4 data, figure 3.12, for the session 1, the Pz both established correlations with left 

frontal, left frontal-central, midline frontal-central areas, right parietal areas and occipital areas. Also, 

the CP1 and P4 significantly increased its correlations with occipital areas, while the CP6 and C4 

significantly increased, their correlation with right parietal channels. Both right temporal area, and CP2 

verified a significant decrease on their correlation with the occipital area. Also, now instead of directly 

increasing its correlation with right parietal areas, the right temporal areas significantly increased their 

connectivity with some contralateral central/parietal electrodes. The P3 channel also revealed increasing 

correlations with contra-lateral frontal/frontal-central areas. Although this may underlie the 

establishment of the previously referred parietal complex, this points out to a different configuration of 

such “complex”. Concerning the second session, reduction of the correlations between contralateral 

frontal areas, frontal-central areas, and temporal areas were noticed. Also, both left medial central-

parietal area (CP1) increased its correlation with contralateral frontal areas (F4, FC2), while left 

parietal(P3) and left occipital (O1) increased their functional connectivity with the right frontal-central 

area. Regarding the third session, some left Parietal/central-parietal/occipital areas revealed a significant 

reduction on their connection with left and medial frontal/frontal central areas, while contralateral areas 

statistically increased such functional connections, as for example the P8 and CP2 areas. The Cz channel 

increased its functional connectivity with both Oz and O2 channel. Again, a significant increment of the 

FC between left and medial parietal area, CP1 and Pz, and the right frontal-central area, more 

specifically, FC6, was verified. On the fourth session, we verified that certain right parietal and occipital 

to frontal/frontal-central functional connections significantly diminished, as it was verified for the 

channels in the CP6, P4, P8 and TP10 and O1. For the case of the P4 channel, it significantly increased 

its connection with the midline frontal-central area. Just a final mention to both Cz channel, which 

significantly increased its connectivity with the Fz, F3, FC5, FCz and O2 channels, while decreasing its 

correlation with the CP1, Pz, P3, P8 and CP6 channels, and C4 channel which significantly decreased 

its connectivity with the Fz, F3 and FC1 channel, while significantly increasing with the P4, P8 and CP6 

channel. Again, both heatmaps and significant differences resultant from this analysis on the SL4 data 

returned similar values to the ones from this analysis on the SL3 data, figure 3.13 

 Regarding both VR NF-training group and the auditory NF-training group, these are presented 

on the appendix, figure 7.25 to 7.30, since no significant-differences are verified over the learners’ 

channel-pairwise set 1 vs set 5 functional connectivity comparison, independently of the application, 

or not, of the SL. This seems to be highly related with the low sample size of the learners of both 
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groups. The Wilcoxon Ranked Sum test is largely dependent on the sample size, and for low sample 

sizes the algorithm is quite more restricted when considering if differences are significant.
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Figure 3.11 - Changes in the Functional Connectivity within session for the Learners of all the NF-training groups (visual, auditory, and VR). Results are shown for the avgREF, 

when comparing ImC values between Set 1 and Set 5. Red: increases;, Blue: decreases, *: p < 0.05 (corrected for multiple comparisons). The green boxes highlight specific patterns 

of connectivity changes. 
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Figure 3.12 - Changes in the Functional Connectivity within session for the Learners of all the NF-training groups (visual, auditory, and VR). Results are shown for the SL4, 

when comparing ImC values between Set 1 and Set 5. Red: increases;, Blue: decreases, *: p < 0.05 (corrected for multiple comparisons). The green boxes highlight specific 

patterns of connectivity changes. 
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Figure 3.13 - Changes in the Functional Connectivity within session for the Learners of all the NF-training groups (visual, auditory, and VR). Results are shown for the SL3, when 

comparing ImC values between Set 1 and Set 5. Red: increases;, Blue: decreases, *: p < 0.05 (corrected for multiple comparisons). The green boxes highlight specific patterns of 

connectivity changes. 
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3.2.2 Network Analysis 

3.2.2.1 Transitivity 

Figure 3.14 depicts the evolution of the median transitivity along each NF-training session, 

representing graphically results per sensory modality and method of data re-referentiation. For the visual 

NF-training group and avgREF, we verified that in the first 4 sets from the session 1 the median 

transitivity didn’t change as much, yet it increased for the fifth set. On the second session, the last two 

sets, had greater median transitivity values when compared with the first three sets. On the third session 

the median transitivity oscillated among sets without having a specific increment or reduction. On the 

fourth session a clear decreasing tendency was noted on the last four sets. When the SL was applied, 

independently of its configuration, an increasing tendency was verified on the median transitivity for 

the first three sessions, while in the last, is not as present. Regarding the VR NF-training group, for the 

avgREF, on the session 1, we verified that the last three sets had higher median transitivity values than 

the first set of the session. On the second and third session, an increasing tendency was noted. For the 

last session the median transitivity oscillated among sets without having a specific increment or 

reduction. When the SL was applied, independently of its configuration, increasing tendencies are 

verified in every session. Regarding the auditory group, independently of the re-referencing method an 

increasing tendency was verified across all the sessions.  

Spearmann’s correlation coefficients between the median group transitivity values/ all group 

transitivity values, and the set number are shown in Table 3.6. For the Visual NF-training group, we 

verify that in the first session, although both “median transitivity correlation” and “all transitivity values 

correlation” only registered positive correlation coefficients, statistical significance was only reached 

when all the transitivity values were considered and the SL was applied, independently of its 

configuration. The same happened for the second session, where both in “all transitivity values 

correlation” and “median transitivity correlation”, although only positive correlation coefficients were 

Figure 3.14 - Median transitivity (orange dots) and interquartile range (blue bars), per-set across the four NF-training 

sessions. Rows: NF-training modality. Columns: data re-referentiation method. Yellow stars mark sessions where the 

Wilcoxon Rank Sum Test with H0 denotes that the median Transitivty is greater in set 5 than in the set 1. (Significance 

threshold reached for p-value < 0.05 & no correction for multiple comparisons) 
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presented, only significant values were reported in the cases where SL was applied. Indeed, both in 

Session 1 and Session 2, concerning the SL4 and SL3 data, the Wilcoxon test (H0: The median 

transitivity is greater in Set 5 than in the set 1) reached a significant value (p-value<0.05) highlighting 

a transitivity increase from the first set to the fifth; Wilcoxon test results are presented in Table 3.7. For 

the remaining sessions no significant correlations were reported, with negative correlation coefficients 

appearing in certain cases, and no significant within-session transitivity differences are highlighted on 

the Wilcoxon test.   

 For the VR NF-training group, regarding the table 3.6, in the first session, only positive 

correlations were verified both for the “median transitivity correlation” and the “all transitivity values 

correlation”, but only in the latter, for the SL4 and SL3 data, the significance level was reached (p-

value<0.05). For the second session, while the “median correlations” only returned positive correlation 

coefficients with no significance, the “all transitivity values correlation”, independently of being 

avgREF, SL4 or SL3 data, returned only significant positive correlation coefficients. In the third session, 

significant positive coefficients were found for the “median transitivity correlation” and the “all 

transitivity values correlation”, independently of being analyzed SL4, SL3 or avgREF data. Concerning 

the last session although, for both “median transitivity and all transitivity values correlation” only 

positive correlation coefficients are reported, these only reached significance in the “median correlation” 

for the SL3 data, and in the “all-valued correlation” for both SL3 and SL4 data. Regarding the Wilcoxon 

Rank Sum Test results, presented at the table 3.7, although the significance level (p<0.05) was almost 

reached, no significant differences were found.  

 Finally, for the auditory NF-training group, regarding the table 3.6, we verified that both in the 

first and second session, the “median correlation” and “all transitivity values correlation” only registered 

significant positive correlation coefficients. Also, in both sessions, significant differences were revealed 

by Wilcoxon Rank Sum test, table 3.7, although on the second session this is only verified over the 

avgREF data, even that for the SL4 and SL3 data significance level was almost reached. Considering 

the third session, only positive correlation coefficients were verified whether on the “median 

correlation” and the “all-valued correlation”, table 3.6. With this said, only the correlation coefficients 

returned from the “all-valued correlation” were presented as significant, and again, the Wilcoxon Rank 

test, table 3.7 over the avgREF data highlighted a significant transitivity increase from the first to the 

last set. Regarding the last session, only positive correlation coefficients were returned for both the 

“median” and “all-valued” correlations, table 3.6. In fact, all the “median correlation” coefficients, were 

highlighted as significant, independently of the application, or not, of the SL, while for the “all-valued 

correlation”, only when it’s computed over SL4 resulting data it is non-significant. Wilcoxon Rank test, 

presented in the table 3.7, over the SL4 and SL3 data, highlighted a significant (p<0.05) increase in the 

transitivity values, from the set 1 to the set 5.  
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Table 3.7 Wilcoxon Rank Sum Test P-values - H0: The median transitivity is greater in Set 5 than in the set 1. (Significance 

threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

 

   

  

avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

0.109 0.023 0.015 0.063 0.063 0.063 0.031 0.031 0.031

0.234 0.023 0.023 0.063 0.063 0.063 0.031 0.094 0.094

0.188 0.756 0.594 0.125 0.188 0.188 0.031 0.094 0.063

0.531 0.756 0.756 0.188 0.063 0.0625 0.094 0.156 0.031

Visual NF-training Group VR NF-training Group Auditory NF-training Group

Session 1

Session 2

Session 3

Session 4

Table 3.6 – Spearman’s Correlation Between Set Transitivity and Set Number - H0: Correlation coefficient is positive. 

(Significance threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

Corr coef 0.247 0.315 0.456 0.357 0.683 0.745 0.547 0.701 0.689

P-value 0.076 0.032 0.003 0.061 0.0005 8.280e-05 0.002 4.766e-05 6.969e-05

Corr coef 0.600 0.600 0.700 0.700 0.700 0.700 0.900 0.999 0.900

P-value 0.142 0.142 0.090 0.094 0.094 0.094 0.019 7.021e-25 0.019

Corr coef 0.223 0.353 0.416 0.702 0.523 0.425 0.441 0.382 0.437

P-value 0.099 0.018 0.007 0.0002 0.009 0.031 0.013 0.030 0.014

Corr coef 0.800 0.999 0.900 0.700 0.600 0.600 0.900 0.900 0.999

P-value 0.052 7.021e-25 0.019 0.094 0.142 0.142 0.019 0.019 0.019

Corr coef 0.197 -0.030 0.048 0.526 0.440 0.471 0.539 0.394 0.465

P-value 0.129 0.568 0.392 0.009 0.026 0.018 0.003 0.026 0.009

Corr coef -0,300 0.000 0.300 0.900 0.999 0.900 0.800 0.400 0.300

P-value 0.688 0.500 0.312 0.019 7.021e-25 0.019 0.052 0.252 0.311

Corr coef -0.014 -0.235 -0.062 0.123 0.548 0.615 0.386 0.256 0.449

P-value 0.532 0.912 0.639 0.302 0.006 0.002 0.028 0.108 0.012

Corr coef -0.800 0.300 -0.600 0.100 0.600 0.900 0.900 0.999 0.900

P-value 0.948 0.311 0.858 0.436 0.142 0.019 0.019 7.021e-25 0.019

Visual NF-training Group VR NF-training Group Auditory NF-training Group
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3.2.2.2 Charpath and GE 

The evolution of the median GE and charpath are depicted in Figure 3.15 and Figure 3.16, 

respectively, along each NF-training session, representing graphically results per sensory modality and 

method of data re-referentiation. For the visual NF-training group and avgREF, we verified that in the 

session 1 the median GE and charpath oscillates and no specific increment or reduction was noted. On 

the second session, the last two sets, had greater median GE values, lower charpath values, when 

compared with the first three sets. On the third session, both median charpath and GE oscillated among 

sets without having a specific increment or reduction. On the fourth session a clear decreasing tendency 

was noted, for the GE, and increasing tendency was noted for the charpath, on the last four sets. When 

the SL was applied, independently of its configuration, an increasing/reduction tendency was verified 

on the median GE/charpath for the first three sessions, while in the last, is not as present. Regarding the 

VR NF-training group, for the avgREF, on the session 1, we verified that the last three sets had higher 

median GE values, lower median charpath values, than the first set of the session. On the second, third 

and fourth session, an increasing tendency was noted for the GE, and a decreasing tendency was noted 

for the charpath. When the SL was applied, independently of its configuration, increasing GE/ 

decreasing charpath tendencies were verified in every session. Regarding the auditory group, 

independently of the re-referencing method an increasing GE/ decreasing charpath tendency was 

verified across all the sessions. 

  

 

 

 

Figure 3.15 - Median GE (orange dots) and interquartile range (blue bars), per-set across the four NF-training sessions. Yellow 

stars mark sessions where the Wilcoxon Rank Sum Test with H0 denotes that the median GE is greater in set 5 than in the set 1. 

(Significance threshold reached for p-value < 0.05 & no correction for multiple comparisons)  
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Spearmann’s correlation coefficients between the median group charpath values/ all group 

charpath values, and the set number are shown in Table 3.8. Spearmann’s correlation coefficients 

between the median group GE values/ all group GE values, and the set number are shown in Table 3.10.  

Regarding the visual NF-training group, on the table 3.8 and 3.10, we verified that significant positive 

correlation between the GE and set number, accompanied by significant negative correlations between 

the charpath and the set number, were obtained for the session one, on the “cloud correlation” 

computation over the SL4 and the SL3 data, and for the second session, on both “median correlation” 

and cloud computation over the SL4 an SL3 data. Also, for the referred session, Wilcoxon test on the 

SL4 and SL3 data, on the table 3.9 and 3.11, revealed a significant increase over the GE from the first 

to the last set, while a significant reduction occurred over the charpath. In the sub-sequential sessions 

no significant correlations and differences were reported. In fact, on both third and fourth session, 

positive charpath correlation coefficients, and negative GE correlation coefficients were noted.  

Considering such results, for the learners of the VR NF-training group, we verified that significant 

positive correlation between the GE and set number, accompanied by significant negative correlations 

between the charpath and the set number, occurred for all the “all-valued correlations”, among the 

session 1, 2 and 3, while on the fourth session, only the “all-valued correlations” computed across the 

SL4 and SL3 data are significant. Concerning the “median correlations”, significant positive 

correlations of the GE, accompanied by significant negative correlations of the charpath, appeared 

only on the session 1 and 3, for the SL4 and SL3 data, and 4, for the SL3 data. The “median 

correlation”, for the session 2, computed on the avgREF data, returned a significant per-set negative 

correlation coefficient of the charpath that was not accompanied by a significant per-set positive 

correlation coefficient of the GE. Concerning the Wilcoxon Rank Sum Test results, presented in both 

tables 3.9 and 3.11, although for the session 1 and 2 significance level is almost reached, no significant 

differences were found.  

Regarding the results for the learners of the auditory NF-training group, presented in both table 

3.8 and 3.10, we verified that significant positive correlation between the GE and set number, 

Figure 3.16 - Median Charpath (orange dots) and interquartile range (blue bars), per-set across the four NF-training sessions. Yellow 

stars mark sessions where the Wilcoxon Rank Sum Test with H0 denotes that the median charpath is lower in set 5 than in the set 1. 

(Significance threshold reached for p-value < 0.05 & no correction for multiple comparisons)  
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accompanied by significant negative correlations between the charpath and the set number, occurred 

for all the “all-valued correlations”, among the session 1, 2 and 3, while on the fourth session only the 

correlation computed on the SL3 data, was significant. Concerning the “median correlations”, we 

verified that significant positive correlation between the GE and set number, accompanied by significant 

negative correlations between the charpath and the set number, occured for all avgREF, SL3 and SL4 

data, in the session 1, 2 and 4. Regarding the results of the Wilcoxon Rank Sum test over this group, 

both presented at the table 3.9 and 3.11, significant increases on the GE from the set 1 to set 5, and 

significant decreases on the charpath from the set 1 to set 5, were found on the session 1, for both 

avgREF, SL4 and SL3 data, and on the session 2 and 3, for the avgREF data. Also, GE significantly 

increased on the fourth session for the SL3 data.  
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Table 3.9 - Wilcoxon Rank Sum Test P-values - H0: The median Charpath is greater in set 1 than in the set 5. (Significance 

threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

 

avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

0.055 0.023 0.023 0.063 0.063 0.063 0.031 0.031 0.031

0.234 0.023 0.016 0.063 0.063 0.063 0.031 0.063 0.063

0.188 0.813 0.656 0.125 0.125 0.063 0.031 0.094 0.063

0.531 0.711 0.766 0.188 0.063 0.063 0.156 0.156 0.063

Visual NF-training Group VR NF-training Group Auditory NF-training Group

Session 1

Session 2

Session 3

Session 4

Table 3.8-Spearmans Correlation Between Set Charpath and Set Number - H0: Correlation coefficient is negative. 

(Significance threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

 
avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

Corr coef -0.232 -0.416 -0.530 -0.499 -0.677 -0.788 -0.614 -0.689 -0.693

P-value 0.089 0.007 0.001 0.012 0.0005 1.862e-05 0.0005 6.969e-05 6.152e-05

Corr coef -0.300 -0.600 -0.700 -0.700 -0.900 -0.900 -0.900 -0.999 -0.900

P-value 0.312 0.142 0.094 0.094 0.019 0.019 0.019 7.021e-25 0.019

Corr coef -0.265 -0.341 -0.386 -0.739 -0.542 -0.492 -0.532 -0.390 -0.476

P-value 0.062 0.022 0.011 0.0001 0.006 0.013 0.003 0.027 0.008

Corr coef -0.800 -0.900 -0.999 -0.900 -0.700 -0.600 -0.900 -0.900 -0.999

P-value 0.052 0.019 7.021e-25 0.019 0.094 0.142 0.019 0.019 7.021e-25

Corr coef -0.181 0.042 -0.022 -0.440 -0.440 -0.545 -0.512 -0.343 -0.460

P-value 0.150 0.595 0.450 0.026 0.026 0.006 0.004 0.047 0.010

Corr coef 0.300 0.000 -0.700 -0.600 -0.999 -0.900 -0.600 -0.400 -0.500

P-value 0.688 0.500 0.094 0.142 7.021e-25 0.019 0.142 0.252 0.196

Corr coef 0.028 0.171 0.100 -0.185 -0.492 -0.579 -0.256 -0.319 -0.362

P-value 0.564 0.837 0.717 0.218 0.013 0.004 0.108 0.060 0.038

Corr coef 0.800 -0.100 0.200 -0.200 -0.800 -0.900 -0.800 -0.900 -0.900

P-value 0.948 0.436 0.626 0.374 0.052 0.019 0.052 0.019 0.019
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Table 3.10 - Spearmans Correlation Between Set GE and Set Number - H0: Correlation coefficient is positive. (Significance 

threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

Table 3.11 -Wilcoxon Rank Sum Test P-values - H0: The median GE is greater in set 5 than in the set 1. (Significance 

threshold reached for p-value < 0.05 & no correction for multiple comparisons) 

avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

Corr coef 0.267 0.426 0.530 0.499 0.720 0.775 0.618 0.661 0.685

P-value 0.060 0.005 0.001 0.013 0.0002 2.947e-05 0.0004 0.0002 7.880e-05

Corr coef 0.600 0.600 0.700 0.700 0.900 0.900 0.900 0.999 0.900

P-value 0.142 0.142 0.094 0.094 0.019 0.019 0.019 7.021e-25 0.019

Corr coef 0.239 0.353 0.372 0.757 0.499 0.468 0.567 0.398 0.457

P-value 0.083 0.019 0.013 5.577e-05 0.013 0.019 0.002 0.024 0.010

Corr coef 0.800 0.900 0.999 0.700 0.700 0.600 0.900 0.900 0.999

P-value 0.052 0.019 7.021e-25 0.094 0.094 0.142 0.019 0.019 7.021e-25

Corr coef 0.185 -0.022 0.034 0.440 0.453 0.446 0.488 0.394 0.429

P-value 0.144 0.550 0.423 0.026 0.023 0.024 0.007 0.026 0.016

Corr coef -0.300 0.000 0.400 0.600 0.999 0.900 0.600 0.400 0.300

P-value 0.688 0.500 0.252 0.142 7.021e-25 0.019 0.142 0.252 0.312

Corr coef -0.024 -0.188 -0.186 0.166 0.492 0.566 0.307 0.323 0.488

P-value 0.555 0.861 0.859 0.241 0.014 0.005 0.067 0.058 0.007

Corr coef -0.900 0.100 -0.200 0.200 0.800 0.900 0.900 0.999 0.999

P-value 0.981 0.436 0.626 0.374 0.052 0.019 0.019 7.021e-25 7.021e-25
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avgREF SL4 SL3 avgREF SL4 SL3 avgREF SL4 SL3

0.110 0.016 0.016 0.063 0.063 0.063 0.031 0.031 0.031

0.234 0.023 0.023 0.063 0.063 0.063 0.031 0.094 0.094

0.148 0.766 0.594 0.125 0.125 0.125 0.031 0.094 0.094

0.656 0.711 0.852 0.188 0.063 0.063 0.219 0.156 0.031

Visual NF-training Group VR NF-training Group Auditory NF-training Group

Session 1

Session 2

Session 3

Session 4
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4 Discussion 

4.1 Spectral Analysis 

4.1.1 Learners vs Non-Learners 

 The results for this analysis are exposed in the section 3.1.1, with supplemental results exposed 

in the appendix section 7.2.1. Starting by the supplemental results, just a brief remark to the fact that as 

we verified among the several plots, the per-block computation of the RAUA returned highly variable 

values, among the different blocks. With this said, although this provided a greater number of values 

where a linear model can be fitted, sometimes the fit was not as efficient and informative. Yet, if we 

performed a per-set linear model fitting, although we could had more “fitted” model, this would be 

computed just over 5 values, which indeed could cause a sample size bias. 

 Concerning the exposed results on the previous section, we verified that the subject V2 from 

the visual NF-training group, and both subject AUD2 and AUD3 from the auditory NF-training group 

were considered non-learners as they have a negative mean average slope across the four NF-training 

sessions. The VR sample only had subjects classified as learners. It is important to mention that, as can 

be observed Table 3.1, that subjects V3 and V4 had an almost negligible positive mean slope, yet they 

were considered learners according to our metric. When observing the effects of NF-training on the 

levels of RAUA, as depicted in the supplementary Figure 7.10, both subjects showed a quite negligible 

effect of the NF-training, that is, an increasing trend for the RAUA is not clearly observed. If using other 

metrics to classify learners from non-learners it might be possible that these individuals be considered 

non-learners, which would obviously change overall group-level analyses. For example, Escolano et 

al.(2011) considered non learners, those whose the UA power on the last trial of the last session, wasn’t 

significantly higher than the same band power on the “pre-active” assessment block. Weber et al. (2011), 

performed a study to attempt to predict the performance of an SMR training protocol concerning the 

spectral changes on such frequency range. On such study, the authors defined learners as being the ones 

whose, 1) mean percentage increase in EEG amplitude during training (compared to baseline) for the 

last 5 training days exceeded 8% and 2) the EEG amplitudes of the subjects should tend to increase 

across all training sessions. Maybe these could represent better methods to implement and adapt to our 

experiment, as they are stricter, as the method by Escolano et al. (2011) only consider learners those 

who registered significant increments, and as the method by Weber et Al. (2011) ensures that an 

increasing tendency is maintained across all the sessions, what indeed lacks in our experiment, as some 

sessions register negative slopes. At the bottom line, all of this reinforces the necessity of establishing 

an exact guideline when performing such differentiation.  

 

4.1.2 Per-Set Cz Channel RAUA Evolution 

First, we shall recall the main findings from such According to the Table 3.4, where spearman’s 

correlation coefficients and p-values are reported for the analysis between the Cz RAUA per-set values 

and the set number, using both all the values for each subject and the median values per-set. When the 

avgREF was applied, significant positive correlations were identified for the visual NF-training group 

between the median RAUA per-set and set number for sessions 1 and 3, and in session 2 for all Cz 

RAUA per-set values and Set Number. When the SL was applied, independently of its configuration, 

significant positive correlations exist in session 2 between all Cz RAUA per-set values and Set Number. 

For the VR NF-training group, when the avgREF was applied, significant positive correlations were 
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identified between all Cz RAUA per-set values and set number, in the session 1 and 4, and between the 

median Cz RAUA values and the set number, in the session 1 and 2. When the SL4 was applied, 

significant positive correlations were identified between all Cz RAUA per-set values and set number, in 

the session 1, and between the median Cz RAUA values and the set number, in the session 2. When the 

SL3 was applied, no significant positive correlations were reported. For the auditory group, significant 

positive correlations were identified between all Cz RAUA per-set values and set number, in the session 

1, independently of its configuration, and between the median Cz RAUA values and the set number, in 

the session 2 for both avgREF and SL3 configurations. Regarding the results for Wilcoxon Signed Rank 

test for the IntraA1 analysis, table 3.5, only reached statistical significance (p < 0.05) for the Auditory 

NF-Training Group when SL4 is applied.  

Excluding the visual NF-training group, both the VR and the auditory NF-training groups, on the 

correlation analysis presented at the table 3.4, seem to point out an initial statistically significant per-set 

increase of the Cz-RAUA over their learners in the first sessions of NF-training. In posterior stages of 

the NF-training, all the modalities revealed non-significant positive correlations and, in fact, when the 

SL is applied, some negative trends may appear on later stage correlations. Concerning the effects of 

the NF-training on the Cz-RAUA upregulation, evaluated in terms of the IntraA1 metric, we verify that, 

although almost significant results are pointed out, inclusively in the auditory NF-training group for the 

SL4 data a significant difference is detected, we can’t conclude that the NF-training significantly 

improved the Cz-RAUA. This comes in agreement with what was expected, as only 4 sessions of 

training were performed and 8 sessions, are defined as the minimum number of sessions for effective 

improvements in investigation context (Gruzelier, 2014). Also, as the sample of each modality group, is 

quite small, the previously results can be largely biased. 

 

4.1.3 Topological Changes 

 Regarding the results above exposed for the UA NF-training, independently of the feedback 

modality, it seemed to promote a more parietal and occipital profile over such band activity pattern. This 

is interesting, as this are the main areas that are related to the alpha band activity on a relaxed state 

according to Groppe et al. (Groppe et al., 2013).Unfortunately, due to the low sample size, we can’t 

generalize such results, yet these can reflect expected alterations of the functional connectivity profiles, 

that we are going to verify below.  

 In matter of the independence of the brainwaves, we noticed that upper-alpha NF-training didn’t 

only produced alterations on the “upper-alpha topology” but also in the near bands, most evident ones 

being theta band and lower-alpha band. This comes in agreement to what Egner et al. reported that 

usually a training protocol didn’t strictly alter the target band topography, but also alter the near 

frequency bands topography (Egner et al., 2004). Interestingly, the lower-alpha bands seemed to 

accompany the increasing tendency and topographic evolution of the upper-alpha band, the overall theta 

band power seemed to diminish, while maintaining a specific frontal-central activity. This “obeys” to 

the reported results of Klimesch et al., where such brainwave bands show an opposite behavior 

(Klimesch, 1999).  

 Concerning the results of the implementation of the SL, when compared to the avgREF ones, 

as we expected a deblurring tendency was verified as more focal activity was highlighted and overall 

non-focal activity was highly reduced in every frequency band. In fact, a quite evident case was auditory 

NF-training group session 1 per-set mean upper-alpha topographic distribution, that when computed 

over the avgREF data didn’t reveal any specific pattern, due to the widespread distribution of less 
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“powerful activity”, but when computed over SL reveal a more focal and well-defined “hot” activity 

areas. This seems to reinforce that is advantageous the re-referencing procedure of the SL as a spatial 

filtering and “deblurring” technique, as Kayser et al. support (Kayser & Tenke, 2015b).  Also as 

expected by reducing the stiffness parameter of the spline lines used for the computation of the laplacian, 

smoother, more well-defined and focal isopotential lines arise (Kayser & Tenke, 2015a).      

 

4.2 Functional Connectivity Analysis  

4.2.1 Functional Connectivity Evolution 

 Recalling the results of the the pair-wise analysis of the FC within-session, exposed on 

subsection 3.2.1, for the visual NF-training group with avgREF, figure 3.8, on the session 1, a 

“significant” increase over the right parietal (CP6, TP10, P8, P4) and occipital channels (O2) functional 

connections was noted. The FC1 channel significantly increased its correlation with Occipital channels 

and Pz channel. Also, the Pz channel presented a notable “significant” increase of functional 

connectivity with right parietal (P8, P4), temporal-parietal (TP10), central-parietal (CP6) areas and with 

some left frontal and central areas. A few significant decreases in the functional connectivity among the 

fronto-central inter-hemispheric groups were verified. The latter also happened on the second session. 

Also in the second session, the left parietal area (P3) registered a significant increase in the functional 

connectivity with some specific frontal (F7), temporal (T7, FT9), and central parietal (CP1) areas. 

Finally, the midline occipital area and right occipital area, registered a significant increase in the 

functional connectivity with some right frontal, frontal-central, central, central-parietal, and parietal 

areas. On the third session no significant differences over the channel-pairwise FC, between the set 1 

and set 5, are detected. On the fourth session it was noticed a significant increase of the functional 

connectivity of left and midline frontal/frontal-temporal/frontal-central areas and some specific 

central/central-parietal/parietal areas. Regarding more posterior areas, mixed effects appeared over the 

parietal-to-occipital connections, as for example, the Pz significantly increased his connectivity with 

both O1 and Oz, the P4 significantly decreased its correlation with Oz and O2, and CP2 significantly 

decreased its correlation with Pz, O1, Oz and O2. When this analysis was performed over the SL4 and 

SL3 data, figure 3.9, overall changes in the heatmaps were verified. In the session 1 some specific 

parietal/central-parietal channels, like the CP6, P4, P8, significantly increased their functional 

connections with both right parietal areas, right temporal and right temporal-parietal areas. Still in the 

same session, the FC6 channel significantly increased his functional connections with left 

parietal/central-parietal areas while significantly decreasing its functional connectivity with left frontal 

areas. For the session 2, the FC5 significantly reduced its correlation with the right temporal areas while 

increasing with right occipital, O2, right parietal, P4, and right central-parietal-area. On the third session, 

no pattern of evolution is noticed, although some changes were noticed. On the fourth session, the CP1 

significantly increased his functional connectivity with both parietal areas, as the P3 and P8, and frontal 

central area, FC1, and both Pz and P4 revealed significant increases in the functional connections with 

the frontal-central area. A desegregation pattern was verified over the parieto-occipital connections. 

 Regarding the group that merges all the learners from training, for the session 1 and avgREF, 

figure 3.11, again, the Pz increased its functional connectivity with left frontal, frontal-temporal and 

frontal central channels, while also increasing its correlation with right and left parietal areas, right 

temporal-parietal areas, right central parietal areas and occipital areas. CP6, C4 and FC6 channels 

revealed significant increases in their functional connectivity with right parietal, right temporal-parietal, 

and occipital channels, while decreasing their connectivity with left frontal, temporal and central areas. 

Temporal-parietal area, TP10, significantly increased its FC with the temporal area T8. P8 and CP6 

increased their correlation with right frontal areas. Concerning the second session, it was mainly verified 

the establishment of functional connections between the channels Oz, O2 and P4 with both right and 



64 

 

left frontal and central areas, and significant decreases were verified among some specific contralateral 

connections between frontal and frontal-central areas. In the third session, some significant decreases 

were verified among parietal connections, more specifically, the P7 and P3 channel, P7 and CP1 

channel, and P8 and CP1 channel. On the fourth session, pontual connectivity changes were verified. 

When the same group was considered, but the same analysis was performed over the SL4 and SL3 data, 

figure 3.12, for the session 1, the Pz both established correlations with left frontal, left frontal-central, 

midline frontal-central areas, right parietal areas and occipital areas. Also, the CP1 and P4 significantly 

increased its correlations with occipital areas, while the CP6 and C4 significantly increased, their 

correlation with right parietal channels. Both right temporal area, and CP2 verified a significant decrease 

on their correlation with the occipital area. Also, now instead of directly increasing its correlation with 

right parietal areas, the right temporal areas significantly increased their connectivity with some 

contralateral central/parietal electrodes. The P3 channel also revealed increasing correlations with 

contra-lateral frontal/frontal-central areas. Concerning the second session, both left medial central-

parietal area (CP1) increased its correlation with contralateral frontal areas (F4, FC2), while left parietal 

(P3) and left occipital (O1) increased their functional connectivity with the right frontal-central area. 

Regarding the third session, some left Parietal/central-parietal/occipital areas revealed a significant 

reduction on their connection with left and medial frontal/frontal central areas, while contralateral areas 

statistically increased such functional connections, as for example the P8 and CP2 areas. The Cz channel 

increased its functional connectivity with both Oz and O2 channel. Again, a significant increment of the 

FC between left and medial parietal area, CP1 and Pz, and the right frontal-central area, more 

specifically, FC6, was verified. On the fourth session, we verified that certain right parietal and occipital 

to frontal/frontal-central functional connections significantly diminished, as it was verified for the 

channels in the CP6, P4, P8 and TP10 and O1. For the case of the P4 channel, it significantly increased 

its connection with the midline frontal-central area. Just a final mention to both Cz channel, which 

significantly increased its connectivity with the Fz, F3, FC5, FCz and O2 channels, while decreasing its 

correlation with the CP1, Pz, P3, P8 and CP6 channels, and C4 channel which significantly decreased 

its connectivity with the Fz, F3 and FC1 channel, while significantly increasing with the P4, P8 and CP6 

channel.  

 Regarding both VR NF-training group and the auditory NF-training group no significant within 

session variations were noticed. 

 Considering the avgREF data results for the learners of the visual NF-training group and for the 

“merged learners’ group”, we verified that, for early training stages, both point out to the formation of 

a right parietal complex (CP6, TP10, P8, P4), which relates with other central areas, temporal areas, and 

occipital areas. For the “merged learners’ group” such complex was more pronounced. Furthermore, 

this may underlie the existence of a specific upper-alpha neurofeedback training functional connectivity 

pattern of evolution, which might be shared in the training with different feedback modalities. 

Interestingly both analyses highlighted an initial increase over functional connectivity of the Pz channel, 

with widespread areas, thus, this channel may work as enabler for the establishment of the FC-

improvements-related pathways. In fact, recalling the results for the upper-alpha topographic analysis, 

all the different groups reveal a tendency of increasing the upper-alpha activity the parietal areas that 

we previously referred as a “complex”, thus indicating that the upregulation of the upper-alpha in such 

channels, was accompanied by the establishment of new functional connections with such specific areas. 

Also, for both groups, after the session 2, there weren’t as many “significant” differences over the 

Functional connectivity values, with only specific pairs of channels reporting statistically significant 

changes on their functional connectivity and no clear pattern being evident. This result leads us to 

believe that it exists a breakthrough point, like the one in Wang et al. (2021) article, where the 

connectivity “improvements” started to be less accentuated and even some connectivity “reductions” 

were noticed. Unfortunately, due to the reduced number of learners in both VR NF-training group and 

auditory NF-training group, no statistically meaningful differences were reported, thus, no conclusions 

can be made in such cases, and we can´t enrich the analysis concerning the modality comparison. 
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Regarding the implementation of the SL, it alters the connectivity profiles showed in this analysis, The 

complex previously denoted is less pronounced, yet statistically significant increments over the 

functional connections of some central parietal, left and right parietal and temporal parietal areas were 

noticed. Also, interestingly, for the visual NF-training group on the fourth session it became evident a 

certain rearrangement of the referred complex. Apart from that, specific pairwise connection changes 

were revealed, as for example some statistically significant hotpoints disappeared. Likely, this is a 

manifestation of the effect of the SL in the removal of spurious connections related to volume 

conduction.   

 

4.2.2 Network Analysis  

4.2.2.1 Betweenness Centrality  

 Concerning the betweenness centrality analysis whose results are exposed in the supplemental 

results exposed on the appendix section 7.3.2.1, no specific reinforcement profiles were noticed, due to 

the high variability of values per channel across the sets of each NF-training sessions. With this said we 

can’t highlight a particular node on such analysis, which may result from the low sample size for each 

group of learners. Another contribution may come from the misclassification of subjects into learners 

and non-learners, which might possibly bias the group analysis for specific features that have lower 

effect-sizes. A brief note to the fact that as expected, the implementation of the SL alters the between 

centrality profiles.  

 

4.2.2.2 Strength 

 Regarding the strength analysis, with results are exposed in the supplemental results in the 

appendix section 7.3.2.2, no specific reinforcement profiles were observed, due to the high variability 

of values presented by each channel across the sets within each of the NF-training sessions. With this 

said we can’t highlight a particular node/channel on such analysis, which might result from the low 

sample size for each the NF-training groups. Hence, statistical power will not be sufficient to identify 

potential patterns, if existing. Also, the previously referred non-clear definition of learners vs non-

learners, might contribute to a misclassification of an individual as learner or non-learner, and possibly 

corrupt the analysis of group specific features. A brief note to the fact that as expected, the 

implementation of the SL creates different strength values for each channel, set, and session. 

 

4.2.2.3 Transitivity  

 The results for this analysis are exposed in the results section 3.2.2.1, with supplementary results 

exposed in the appendix section 7.3.2.3. As we previously referred the transitivity is a metric/algorithm 

that measures the clustered activity of the network.  

 Concerning the results for the analysis of the transitivity, presented in the section3.2.2.3, over 

the Visual NF-training group, these suggests an increase on the RAUA clustered activity during the first 

two sessions of such training protocol. For the remaining sessions, as no within-session transitivity 

significant differences were identified, and no significant positive correlations were reported, we cannot 

conclude that a reinforcement of the UA clustered activity is present. In fact, during the third and fourth 

sessions the transitivity sometimes decreases. This is interesting as the third session was the 
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breakthrough point for the FC evolution, for the learners of the visual NF-training group. Thus, a similar 

tendency was previously observed in the study by Wang et al. (2021) , in which a decrease was shown 

to be significant for the clustering coefficient analysis after such breakthrough point―when FC ceased 

to increase, network metrics started to decrease. The results for the VR NF-training group are in sharp 

contrast to those observed in the visual NF-training group, with longer lasting significant positive 

correlations between both the median transitivity and all-transitivity values vs set number, even for the 

fourth NF-training session. This might point out to the possibility that the UA upregulation in NF-

training with VR feedback promotes clustered UA activity during a greater amount of time, but we these 

results can not be generalized since the sample is composed of only four subjects. In addition, for the 

Wilcoxon test that compares if median transitivity is greater in Set 5 than in the set 1, presented in the 

table 3.7, no significant differences were reported, although some results were close to such significance 

level. Finally, for the auditory NF-training group, similarly to the VR NF-training group, longer lasting 

significant positive correlations were reported between the group median transitivity and Set Number 

and all transitivity values group learners’ and Set Number. Regarding the Wilcoxon test results, that 

compared if median transitivity was greater in Set 5 than in the set 1, presented in the table 3.7, we 

verified that the application of the SL largely affected the results, as for the avgREF the first three 

sessions significant increases of the upper-alpha band transitivity from the set 1 to the set 5 were 

reported, and when the SL was applied, independently of the configuration, significant increases in 

transitivity for the UA up-regulation were noticed in session 1 and in session 4. Overall, we may 

conclude that auditory NF-training promotes clustered UA activity. 

 

4.2.2.4 Charpath and GE 

The results for these analyses are both in sections 3.2.2.2 and 3.2.2.3. Supplemental results are 

exposed in the appendix sections 7.3.2.4 and 7.3.2.5. As we previously referred, both charpath and GE 

are metrics that measure the integrated activity of a network.  

 A primary comment to the fact that, just by observing the results shown in Tables 3.8 to 3.11 

that synthetize the results for both the Charpath and the GE analyses, we verify that for the correlation 

Tables 3.8 and 3.10, the coefficients that reached statistical significance occur in similar conditions, this 

means, same re-referencing configurations, reinforcing the fact that these two metrics are intimately 

connected. A more surprising appointment can be made when comparing the above referred tables, and 

the table that synthetizes the results for the transitivity analysis. Again, and although with some 

exceptions, the majority of the “significant correlation coefficient” occured in similar conditions. These 

same appointments can also be done regarding the tables 3.9 and 3.11 that synthesize the results from 

the Wilcoxon Rank Sum Test, that verified if the median charpath wass less in set 5 than in the set 1, 

and if the median GE was greater in set 5 than in the set 1, respectively, as only for the Session 4 of the 

auditory NF-training group there aren’t consistent “marked statistically significances”. Thus, this might 

support the conclusion that the NF-training reorganizes the brain clustered activity, associated with the 

functional segregation, while also reorganizing the brain “integrated” activity, associated with the 

functional integration. 

 Furtermore, regarding the Tables 3.8 and 3.10 that contain the results for charpath and GE 

analyses, respectively, and as expected, the correlation coefficients have opposite signs throughout the 

results. For example, in session 1 of the visual NF-training group, both the median charpath values, and 

all charpath values, correlation with set number returned only negative coefficients. This occurs 

independently of the re-referencing method, avgREF, SL3 or SL4. In contrast, for the GE analysis with 
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the same group, on the GE analysis, only positive coefficients were returned (although they aren’t 

necessarily significant). This in fact, translates the inverse relation that these metrics have, and is also 

seen through the results for the remaining sessions, and groups. Greater GE will be associated with 

smaller paths for the information transmission such that the characteristic path will consequentially 

diminish. 

 Regarding the results for the learners of the visual NF-training group, during the first two 

session, significant positive spearman’s correlation and statistically significant increments within-

session were detected, but only for the data with SL applied. This may suggest the optimization of the 

“network” paths during such sessions. Interestingly, as we referred to, this only was reported for the SL 

re-referenced data, thus leading us to suggest that the process of spatial filtering and the removal of 

volume conduction interferences affected the detection of such dispersed connected activity that was 

previously overshadow by the blurring effect. In the following sessions 3 and 4 no significant 

correlations and no significant differences were reported, even if noting that positive charpath 

correlation coefficients and negative GE correlation coefficients are reported, respectively. Thus, these 

may represent a possible degrading over the functional integration-related paths. Again, for the visual 

NF-training group, the third session seems to be a breakthrough point where the training stops to induce 

improvements, or changes, on such network metrics. On the other hand, for the VR NF-training group, 

longer lasting paths optimization was reported, as significant correlations were detected in all the 

sessions for both charpath and GE. Again, concerning the Wilcoxon Rank Sum Test results, presented 

on the tables 3.9 and 3.11, that verified if the median charpath was lower in set 5 than in the set 1, and 

if the median GE was greater in set 5 than in the set 1, respectively, no significant differences were 

found due to the low sample. These results suggest the possibility that UA upregulation during NF-

training with VR feedback may actively contribute to the promotion of integrated UA activity. However, 

since no significant differences were found within the different sessions, mainly due to the low sample, 

these findings cannot be generalized. Finally, considering the results of both charpath and GE network 

analyses for the learners of the auditory NF-training group, similarly to what was observed in VR NF-

training group, longer lasting paths optimization was reported, since these significant 

associations/correlations were detected in all the four sessions. Regarding the results of the Wilcoxon 

Rank Sum test over this group, presented on the tables 3.9 and 3.11, that verified if the median charpath 

was less in set 5 than in the set 1, and if the median GE was greater in set 5 than in the set 1, respectively, 

significant within-session increases on the GE/decreases on the charpath were found on the session 1, 

2 and 3 for the avgREF data, while for the SL data, significance was only reached in the first session. 

These results point out that the UA upregulation NF-training with auditory feedback actively contributes 

to the promotion of integrated UA activity, yet mainly on early stages of the training.  

 

4.2.2.5 Modality Comparison 

 First, we shall recall the main question that we want to answer with this thesis: 

“How is the individual’s brain functional connectivity affected by the use of different sensory 

modalities in EEG-based Neurofeedback training protocols that target the upper alpha band?” 

 Regarding such question, some comments can be made. First, from the results of the FC 

analysis, specifically when considering all the learners together, from the three groups / sensory 

modalities, significant changes between set 1 and set 5 FC values are identified in channels over right 

parietal (P4,P8, CP6, TP10) and central parietal areas (Pz) in sessions 1 and 2.. This suggests a shared 

parietal connectivity profile across the learners of the UA EEG-based Neurofeedback training, 
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independently of the feedback modality. In fact, recalling the results from the topological analysis, we 

notice that such parietal and occipital areas tend to be reinforced, in terms of relative UA band power, 

within-session and from the first to the last session. This formation of a complex, in the initial stages of 

training, is also evident when we narrow our scope to the visual NF-training group. Unfortunately, due 

to the reduced sample neither for VR NF-training group, neither for the auditory NF-training group, we 

can extract conclusion regarding such matter. Although for later stages of training both “merged learners 

group” and Visual NF-training group seem to have less within-session connectivity variations, becoming 

more stable, in the Visual NF-training group a desegregation of the parietal complex can be noticed. 

This might be linked with the existence of a breakthrough point for the Visual NF-training, where not 

only the “learning” stabilized, but also the functional connectivity for such parietal complex starts to 

decrease. In the matter of the Network analyzes, no conclusions can be extracted from both betweenness 

centrality and strength analyzes. Concerning the transitivity analysis, we notice that while Visual NF-

training has a short-term effect on promoting the clustered/segregated upper-alpha band activity, mainly 

on the first two sessions, while after the third session it stabilizes or even decreases, the VR and auditory 

NF-training seem to have a longer lasting reinforcement effect over the upper alpha segregated activity. 

With this said, further studies with greater samples are required to confirm such results. Regarding the 

GE and charpath analyzes, similar conclusions can be made, as a short-term effect of reinforcement in 

the integrated upper-alpha activity happens on the Visual NF-training. Again, after the third session it 

stabilizes and in some case the GE decreases. In opposite way, both VR and Auditory NF-training point 

to a longer lasting integrated upper-alpha activity reinforcement. Again, further studies with greater 

samples are required to confirm such results. 

 

4.2.2.6 Surface Laplacian Application 

 Regarding whether the implementation of the SL re-referencing technique was advantageous 

for our protocol, and how different configurations of such technique affected our data, we shall first 

recall the topological analysis results. There, both SL3 and SL4 contributed as a spatial filter, by 

narrowing our focal activity and decreasing the non-focal one, which might be associated with low 

spatial frequencies, as expected. So, indeed it accomplished its spatial filtering purpose. For the FC 

analyzes, on the heatmaps, we noticed that consistently for the avgREF more “cold zones” and “hot 

zones” were reported, while on the SL re-referenced data less of such “zones” were present. This indeed 

can be a manifestation of the filtering power, more specifically, with the reduction of volume conduction 

on FC estimates. Regarding the transitivity, GE and Charpath, the implementation of the SL, 

significantly alters each metric profile when compared to the results from the same analysis on the 

avgREF data. A final remark to the fact that, while for the spectral analysis, the implementation of the 

SL3 created different results from the same analysis over SL4 data, whether by narrowing and smoothing 

the focal activity of each frequency band in the topological analysis due to the less rigidity of the spline 

lines, whether by changing the behavior of the  per-set median RAUA activity on the Cz channel, for 

the FC connectivity analysis and network analysis almost no different statistically significant results are 

reported. Unfortunately, although the spatial filtering advantage of using the SL is verified in the 

topological analysis, and from our FC analysis and Networks analysis, indeed different results are 

produced when such technique is deployed, no clear conclusion can be made in terms of a possible 

causal-effect advantageous relationship of the application of the SL. Possibly, the best method to 

perform this analysis, is with simulated signals, as in such case we control the time-series, and indeed 

know what to expect after performing such filtering technique. On our case, as we only access a time-

series that almost surely is biased, we can’t clearly state that after performing such technique, our data 
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won’t have for example volume conduction problems, as we don’t have a control group where the 

volume conduction problem was already solved, to compare with. 
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5 Conclusion 

 In this thesis, data, from Cz-RAUA EEG-based NF-training with different feedback sensory 

modalities, was analyzed to verify if, by varying the feedback modality, different training outcomes 

would be reported in terms of FC. The data were preprocessed and evaluated in terms of the RAUA 

band upregulation at the Cz channel, theta, LA, UA, alpha, LB, UB and beta bands relative amplitude 

topological distribution across sets and sessions, in terms of per-set variations of FC in the UA band, 

among every possible channel pair, and in terms of a UA network analysis that would be used to assess 

node importance, clustered activity, and integrated activity of the brain networks, as assessed at the 

sensor level. Also, as there is a great discussion on the literature about the benefits of the application of 

the SL on the EEG data as a “deblurring method”, we performed the above analysis on preprocessed 

data re-referenced to a common average reference, and re-referenced through spline lines SL, through a 

stiffer interpolation and a smoother interpolation.  

 The results suggest a tendency for the increase of Cz-RAUA increases within each session, for 

all the NF-training groups, although no significant differences are registered when comparing values 

between sets at the beginning and at the end of the session. Regarding the topological changes, an 

increase in RAUA was observed in all the NF-training groups for channel in parieto-central, parietal, 

and parieto-occipital areas. Interestingly, the application of the different configurations of the spline 

lines SL contributed to highlight more focal activity, while negatively shifting the non-focal one, which 

may underlie the deblurring effect of such technique. Regarding the pair-wise analysis of the FC within-

session, no significant variations are obtained for both the VR and auditory NF-training group, which 

might be related to the low number of learners that were considered for such modalities. The visual NF-

training reported significant variations with an early increment over the medial and right parietal 

connections to widespread locations, but also, with the strengthening of the connections within such 

areas, pointing the existence of a specific cluster in such area. Also, some connections are established 

between the midline parietal and left frontal, frontal-temporal and frontal central areas. Then, a 

strengthening of such right parietal cluster happens, with the reinforcement of right parietal-to-right 

occipital areas, and right occipital-to-right frontal and frontal central areas. Also, on such stage of the 

training some left-temporal to left-parietal and left-occipital are reinforced. After, on the third session 

of training, no significant within-session differences are verified, and on the last a desegregation of the 

right parietal- to right-occipital connections happens. Thus, the third session may underlie a 

breakthrough point for such group. The same analysis over the SL re-referenced data, highlights 

previous results, and for early stages also notes the establishment of some left-parietal to medial and 

righ-frontal/frontal central/temporal correlations. The same analysis over all the learners of the 

experiment, also highlights these same features, although in the last session no significant desegregation 

is noted, leading us to believe that such parietal reinforcement is an upper-alpha training inherent 

outcome and not a feedback modality specific outcome. On the network analysis, for the betweenness 

centrality and strengths analyzes, no specific patterns were found. Regarding the transitivity, although 

positive significant correlations with the set number were verified for all the groups, only for the visual 

and the auditory NF-training groups significant within-session increases were verified. Thus, 

neurofeedback with both auditory and visual feedback modalities seem to promote clustered upper-alpha 

band activity, while for the VR modality, although the results also suggest the same conclusion, no 

significant differences are found within the session. Recall that these results might be biased by the low 

sample that each group has. Interestingly, for the learners of the visual training group, the third session 

is also a breakthrough point for the increment of the transitivity, where no more significant increases are 

verified. Now considering the GE and the charpath, significant negative charpath per-set correlations 

accompanied by significant positive per-set GE correlations are found for all the feedback modalities, 
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but only for the visual and auditory NF-training groups, significant within-session variations are 

reported. Thus, neurofeedback with both auditory and visual feedback modalities seem to promote 

integrated upper-alpha band activity, while for the VR modality although the results also suggest the 

same conclusion, no significant differences are found within the session. Again, these results might be 

biased by the low sample that each group contains. 

 The results here presented, suggest that the upper-alpha NF-training establishes higher 

connections over specific parietal areas, independently of the feedback modality. Also, all the modalities 

seem to promote both clustered and integrated brain activity, although for the VR-group due to the low 

sample, no significant differences can be verified. Interestingly, while for the visual NF-training group 

the third session seems to be a breakthrough point, for the auditory NF-training group longer lasting 

“increases” are reported. With this said, for such low number of subjects, no significant differences 

between functional connectivity outcomes of the training can be linked with the different feedback 

modalities that are used. Further investigation, with a larger sample, is needed to confirm such results. 

Also, guidelines for the distinction of learners from non-learners are needed such that only real learners 

are selected, as with the procedure that we used we can’t clearly ensure that some of the classified 

learners were indeed real learners, what can also bias the results. No clear conclusion can be made in 

terms of a possible causal-effect advantageous relationship of the application of the SL.  

A final remark to the fact that, for future publication, we predict that we are going to replace the 

Spearman correlation models, here presented, by generalized mixed linear effect models which capture 

better the randomness associated with the individuals, and that mainly corrupts the cloud correlations. 

This might help us to extract new and more precise conclusion.   
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7 Appendix 

7.1 Preliminary Study: Choice of FC metric and time  

Figure 7.2 - Per-Block wPLI computation 

 

Figure 7.1 - Per-Epoch wPLI computation 
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Figure 7.3 - Per-Set wPLI computation 

Figure 7.4 - Per-Epoch ImC computation 
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Figure 7.5 - Per-Block ImC computation 

Figure 7.6 - Per-Set ImC computation 
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7.2 Spectral Analysis 

7.2.1 Learners vs Non-Learners 

Figure 7.7 - Per-Block RAUA at Cz channel for Visual NF-training group 

Figure 7.8 - Per-Block RAUA at Cz channel for VR NF-training group 
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Figure 7.9 – Per-Block RAUA at Cz channel for Auditory NF-Training group 
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7.2.2 Per-Set Cz Channel RAUA Evolution 

Figure 7.10 - Per-Set RAUA at Cz channel for the Visual NF-training group 

Figure 7.11 - Per-Set RAUA at Cz channel for the VR NF-training group 
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Figure 7.12 - Per-Set RAUA at Cz channel for the Auditory NF-training group 
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7.2.3 Topological Changes 

Figure 7.14 - Median Values of the Session 1 vs Session 4. Learners of the Visual NF-training group with SL4 

 

Figure 7.15 - Median values across the Sets for the Session 1. Learners of the VR NF-training group and SL4 

Figure 7.13 - Median values across the Sets for the Session 1. Learners of the Visual NF-training group with SL4 
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Figure 7.16 - Median Values of the Session 1 vs Session 4. Learners of the VR NF-training group and SL4 

 

Figure 7.17 - Median values across the Sets for the Session 1. Learners of the Auditory NF-training group and SL4 

Figure 7.18 - Median Values of the Session 1 vs Session 4. Learners of the Auditory NF-training group and SL4 
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Figure 7.19 - Median values across the Sets for the Session 1. Learners of Visual NF-training group and SL3 

 

Figure 7.20 - Median Values of the Session 1 vs Session 4. Learners of Visual NF-training group and SL3 

 

Figure 7.21 - Median values across the Sets for the Session 1. Learners of the VR NF-training group and SL3 
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Figure 7.22 - Median Values of the Session 1 vs Session 4. Learners of the VR NF-training group and SL3 

 

Figure 7.23 - Median values across the Sets for the Session 1. Learners of the Auditory NF-training group and SL3 

 

Figure 7.24 - Median Values of the Session 1 vs Session 4. Learners of the Auditory NF-training group and SL3 
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7.3 Functional Connectivity Analysis 

7.3.1 Functional Connectivity Evolution 

Figure 7.25 - Changes in Functional Connectivity within session. Results are shown for the VR NF-training group with avgREF, when comparing changes in ImC between  

Set 1 and Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) 
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Figure 7.26 - Changes in Functional Connectivity within session. Results are shown for the VR NF-training group with SL4, when comparing changes in ImC between  Set 

1 and Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) 
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Figure 7.27 - Changes in Functional Connectivity within session. Results are shown for the VR  NF-training group with SL3, when comparing changes in ImC between  Set 1 and 

Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) 
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Figure 7.28 - Changes in Functional Connectivity within session. Results are shown for the Auditory NF-training group with avgREF, when comparing changes in ImC between  Set 

1 and Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) 
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Figure 7.29 - Changes in Functional Connectivity within session. Results are shown for the Auditory NF-training group with SL4, when comparing changes in ImC between Set 1 

and Set 5, in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) 
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Figure 7.30 - Changes in Functional Connectivity within session. Results are shown for the Auditory NF-training group with SL3, when comparing changes in ImC between  Set 1 and Set 5, 

in each NF-training session. Red: increases; Blue: decreases; *: p < 0.05 (corrected for multiple comparisons) 
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7.3.2 Network Analysis 

7.3.2.1 Betweenness Centrality 

Figure 7.31- Betweenness Centrality per Set for the Session 1, with avgREF data. 



103 

 

       

  

Figure 7.32 - Betweenness Centrality per Set for the Session 2 – avgREF 
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Figure 7.33 - Betweenness Centrality per Set for the Session 3 – avgREF 
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Figure 7.34 - Betweenness Centrality per Set for the Session 4 – avgREF 
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Figure 7.35 - Betweenness Centrality per Set for the Session 1 – SL4 data 
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Figure 7.36 - Betweenness Centrality per Set for the Session 2 – SL4 data 
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Figure 7.37 - Betweenness Centrality per Set for the Session 3 – SL4 data 

  



109 

 

 

 

 

Figure 7.38 - Betweenness Centrality per Set for the Session 4 – SL4 data 
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Figure 7.39 - Betweenness Centrality per Set for the Session 1 – SL3 data 
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Figure 7.40 - Betweenness Centrality per Set for the Session 2 – SL3 data 
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Figure 7.41 - Betweenness Centrality per Set for the Session 3 – SL3 data 
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Figure 7.42 - Betweenness Centrality per Set for the Session 4 – SL3 data 
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7.3.2.2 Strength 

  

Figure 7.43 - Strength per Set for the Session 1, with avgREF data. 
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Figure 7.44 - Strength per Set for the Session 2 – avgREF 
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Figure 7.45 - Strength per Set for the Session 3 – avgREF 
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Figure 7.46 - Strength per Set for the Session 4 – avgREF 
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Figure 7.47 - Strength per Set for the Se7ssion 1 – SL4 data 
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Figure 7.48 -Strength per Set for the Session 2 – SL4 data 

  



120 

 

Figure 7.49 - Strength per Set for the Session 3 – SL4 data 
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Figure 7.50 - Strength per Set for the Session 4 – SL4 data 
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Figure 7.51 - Strength per Set for the Session 1 – SL3 data 
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Figure 7.52 - Strength per Set for the Session 2 – SL3 data 
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Figure 7.53 - Strength per Set for the Session 3 – SL3 data 
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Figure 7.54 - Strength per Set for the Session 4 – SL3 data 
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7.3.2.3 Transitivity 

Figure 7.56 - Per-Set Transitivity for the VR NF-training group 

  

Figure 7.55- Per-Set Transitivity for the Visual NF-training group 
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Figure 7.57 - Per-Set Transitivity for the Transitivity NF-training group 
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7.3.2.4 Charpath 

Figure 7.58 - Per-Set Charpath for the Visual NF-training group 

 

Figure 7.59 - Per-Set Charpath for the VR NF-training group 
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Figure 7.60-Per-Set Charpath for the Auditory NF-training group 
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7.3.2.5 GE 

Figure 7.61 - Per-Set GE for the Visual NF-training group 

 

Figure 7.62 - Per-Set GE for the VR NF-training group 
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Figure 7.63 - Per-Set GE for the Auditory NF-training group 

 


