227 research outputs found

    Single failure resiliency in greedy routing

    Get PDF
    Using greedy routing, network nodes forward packets towards neighbors which are closer to their destination. This approach makes greedy routers significantly more memory-efficient than traditional IP-routers using longest-prefix matching. Greedy embeddings map network nodes to coordinates, such that greedy routing always leads to the destination. Prior works showed that using a spanning tree of the network topology, greedy embeddings can be found in different metric spaces for any graph. However, a single link/node failure might affect the greedy embedding and causes the packets to reach a dead end. In order to cope with network failures, existing greedy methods require large resources and cause significant loss in the quality of the routing (stretch loss). We propose efficient recovery techniques which require very limited resources with minor effect on the stretch. As the proposed techniques are protection, the switch-over takes place very fast. Low overhead, simplicity and scalability of the methods make them suitable for large-scale networks. The proposed schemes are validated on large topologies with properties similar to the Internet. The performances of the schemes are compared with an existing alternative referred as gravity pressure routing

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    Differential forms for target tracking and aggregate queries in distributed networks

    Get PDF
    Consider mobile targets moving in a plane and their movements being monitored by a network such as a field of sensors. We develop distributed algorithms for in-network tracking and range queries for aggregated data (for example returning the number of targets within any user given region). Our scheme stores the target detection information locally in the network, and answers a query by examining the perimeter of the given range. The cost of updating data about mobile targets is proportional to the target displacement. The key insight is to maintain in the sensor network a function with respect to the target detection data on the graph edges that is a differential one-form such that the integral of this one-form along any closed curve C gives the integral within the region bounded byC. The differential one-form has great flexibility making it appropriate for tracking mobile targets. The basic range query can be used to find a nearby target or any given identifiable target with cost O(d) where d is the distance to the target in question. Dynamic insertion, deletion, coverage holes and mobility of sensor nodes can be handled with only local operations, making the scheme suitable for a highly dynamic network. It is extremely robust and capable of tolerating errors in sensing and target localization. Due to limited space, we only elaborate the advantages of differential forms in tracking of mobile targets. The same routine can be applied for organizing many other types of informations, for example streaming scalar sensor data (such as temperature data field), to support efficient range queries. We demonstrate through analysis and simulations that this scheme compares favorably with existing schemes that use location services for answering aggregated range queries of target detection data

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    Multi-Core Parallel Routing

    Get PDF
    The recent increase in the amount of data (i.e., big data) led to higher data volumes to be transferred and processed over the network. Also, over the last years, the deployment of multi-core routers has grown rapidly. However, such big data transfers are not leveraging the powerful multi-core routers to the extent possible, particularly in the key function of routing. Our main goal is to find a way so we can use these cores more effectively and efficiently in routing the big data transfers. In this dissertation, we propose a novel approach to parallelize data transfers by leveraging the multi-core CPUs in the routers. Legacy routing protocols, e.g. OSPF for intra-domain routing, send data from source to destination on a shortest single path. We describe an end-to-end method to distribute data optimally on flows by using multiple paths. We generate new virtual topology substrates from the underlying router topology and perform shortest path routing on each substrate. With this framework, even though calculating shortest paths could be done with well-known techniques such as OSPF's Dijkstra implementation, finding optimal substrates so as to maximize the aggregate throughput over multiple end-to-end paths is still an NP-hard problem. We focus our efforts on solving the problem and design heuristics for substrate generation from a given router topology. Our heuristics' interim goal is to generate substrates in such a way that the shortest path between a source-destination pair on each substrate minimally overlaps with each other. Once these substrates are determined, we assign each substrate to a core in routers and employ a multi-path transport protocol, like MPTCP, to perform end-to-end parallel transfers

    Survivable Virtual Network Embedding in Transport Networks

    Get PDF
    Network Virtualization (NV) is perceived as an enabling technology for the future Internet and the 5th Generation (5G) of mobile networks. It is becoming increasingly difficult to keep up with emerging applications’ Quality of Service (QoS) requirements in an ossified Internet. NV addresses the current Internet’s ossification problem by allowing the co-existence of multiple Virtual Networks (VNs), each customized to a specific purpose on the shared Internet. NV also facilitates a new business model, namely, Network-as-a-Service (NaaS), which provides a separation between applications and services, and the networks supporting them. 5G mobile network operators have adopted the NaaS model to partition their physical network resources into multiple VNs (also called network slices) and lease them to service providers. Service providers use the leased VNs to offer customized services satisfying specific QoS requirements without any investment in deploying and managing a physical network infrastructure. The benefits of NV come at additional resource management challenges. A fundamental problem in NV is to efficiently map the virtual nodes and virtual links of a VN to physical nodes and paths, respectively, known as the Virtual Network Embedding (VNE) problem. A VNE that can survive physical resource failures is known as the survivable VNE (SVNE) problem, and has received significant attention recently. In this thesis, we address variants of the SVNE problem with different bandwidth and reliability requirements for transport networks. Specifically, the thesis includes four main contributions. First, a connectivity-aware VNE approach that ensures VN connectivity without bandwidth guarantee in the face of multiple link failures. Second, a joint spare capacity allocation and VNE scheme that provides bandwidth guarantee against link failures by augmenting VNs with necessary spare capacity. Third, a generalized recovery mechanism to re-embed the VNs that are impacted by a physical node failure. Fourth, a reliable VNE scheme with dedicated protection that allows tuning of available bandwidth of a VN during a physical link failure. We show the effectiveness of the proposed SVNE schemes through extensive simulations. We believe that the thesis can set the stage for further research specially in the area of automated failure management for next generation networks
    • 

    corecore