
University of Nevada, Reno

Multi-Core Parallel Routing

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Ahmet Soran

Dr. Murat Yuksel / Dissertation Advisor

May, 2017

Copyright by Ahmet Soran c© 2017

All Rights Reserved

We recommend that the dissertation
prepared under our supervision by

AHMET SORAN

Entitled

Multi-Core Parallel Routing

be accepted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

Murat Yuksel, Ph.D., Advisor

Mehmet Hadi Gunes, Ph.D., Committee Member

Shamik Sengupta, Ph.D., Committee Member

Sergiu Dascalu, Ph.D., Committee Member

Gokhan Pekcan, Ph.D., Graduate School Representative

David W. Zeh, Ph. D., Dean, Graduate School

 May, 2017

THE GRADUATE SCHOOL

i

Abstract

The recent increase in the amount of data (i.e., big data) led to higher data volumes

to be transferred and processed over the network. Also, over the last years, the

deployment of multi-core routers has grown rapidly. However, such big data transfers

are not leveraging the powerful multi-core routers to the extent possible, particularly

in the key function of routing. Our main goal is to find a way so we can use these cores

more effectively and efficiently in routing the big data transfers. In this dissertation,

we propose a novel approach to parallelize data transfers by leveraging the multi-core

CPUs in the routers. Legacy routing protocols, e.g. OSPF for intra-domain routing,

send data from source to destination on a shortest single path. We describe an end-

to-end method to distribute data optimally on flows by using multiple paths. We

generate new virtual topology substrates from the underlying router topology and

perform shortest path routing on each substrate. With this framework, even though

calculating shortest paths could be done with well-known techniques such as OSPF’s

Dijkstra implementation, finding optimal substrates so as to maximize the aggregate

throughput over multiple end-to-end paths is still an NP-hard problem. We focus our

efforts on solving the problem and design heuristics for substrate generation from a

given router topology. Our heuristics’ interim goal is to generate substrates in such

a way that the shortest path between a source-destination pair on each substrate

minimally overlaps with each other. Once these substrates are determined, we assign

each substrate to a core in routers and employ a multi-path transport protocol, like

MPTCP, to perform end-to-end parallel transfers.

ii

to Halil Soran and my family

iii

Acknowledgments

I would like to start with the name of the One who gives me everything; GOD.

Secondly, I want to thank the most important people in my life who always supported

me and as I walked down new paths in my life journey; my family. In the first year of

elementary school, my family moved out to a bigger city to ensure a better education

for me. To them, I have to say more than ’thank you.’ Hopefully, they will consider

this dissertation as my gift in return for all that they did. By name they are: Munise

Soran, Iffet Soran, Zeliha Soran, Serdar Soran, and Omer Batu Akcal. Also, I would

like to thank Halil Soran for not only being my father; but also for being my life-

coach. I want to express my gratitude to the dissertation committee and my advisor

for their extreme patience in the face of numerous obstacles. Moreover, I would like

to thank Cemal Elci for his material and spiritual support, rest in peace. Thanks to

the Ministry of National Education of Turkey for their support.

I would like to thank all of my friends in this period of my life: Mehmet Dogan,

Murat Demirbuken, Hicabi Bozkaya, and Ethem Coskun. They were always there to

give me a hand. I would like to thank Turkish Cultural Association members. I would

also like to thank Ibrahim Ethem Bagci for his overseas support and his sincere and

relentless support. I am grateful to Esra Torlak, the best psychologist I have ever

met, for all of her support, smile and motivation work. I also thank to Carol Souders

and Dennis Ciceu for their kindness and hospitality.

I want to personally credit and sincerely acknowledge Dr. Mustafa Omer

iv

Kilavuz for starting me on my journey to success. He convinced me to apply to

UNR. And my first and the most influential teacher Zehra Erunsal is also held in

high esteem for her initial belief in my potential way back in elementary school. I

would like to thank all the staff and teachers Beytepe Elementary School for giving

me a chance to build a better life.

And now may I move forward and note a special thank you to my most-

admired colleagues of the UNR Computer Networking Lab - with a special mention

to Esra Erdin, Mahmudur Kahn, Prasun Dey, Vahid Behzadan, Paulo Regis, Suman

Bhunia, Jay Thom and Nate Thom. I would also like to thank TOBB Economics

and Technology University for giving me an excellent education to demonstrate my

skills and TOBB ETU Alumni for always keeping in touch with me to show their

support. Most significantly, I would like to thank Dr. Bulent Tavli for mentoring me

and always pushing me to do my best. Further, I want to thank the Guest Services

staff of Athletics and Lawlor Event Center for being kind to me, and all others.

Also, I want to thank all those people that smiled at me and supported me in this

monumental journey.

Ahmet Soran

University of Nevada, Reno

May 2017

v

Contents

Abstract i

Acknowledgments iii

List of Tables viii

List of Figures ix

Chapter 1 Introduction 1

1.1 Parallel Routing: A Simplified Example 5

1.2 Contributions and Key Insights . 8

1.3 Dissertation Organization . 10

Chapter 2 Background 11

2.1 Networking Basics and Protocols . 16

2.1.1 Link State Routing and Link Layer Support for Traffic Engi-

neering . 18

2.1.2 Internet Protocol: End-to-End Design 20

2.1.3 Transmission Control Protocol 21

2.1.4 Multi-Path TCP . 23

vi

2.2 Multi-path Routing . 24

2.3 Bulk Data Transfer in Data Center Networking 27

2.4 Multi-Core Protocols . 29

2.5 Theory - NP Completeness . 31

2.5.1 Multi-Commodity Flow Problem 32

2.5.2 Subset Sum Problem . 33

2.5.3 Edge Disjoint Path Problem 33

Chapter 3 Parallel Routing 35

3.1 Formal Description . 39

Chapter 4 Parallel Routing Heuristics 45

4.1 Graph-Based Heuristics . 48

4.2 Flow-Based Heuristics . 55

4.3 Comparison of Heuristics . 57

4.4 Removal Methods . 59

4.5 Parallel Routing Under Network Dynamics 63

4.5.1 Traffic Spikes . 64

4.5.2 Failures . 65

4.6 Experimental Setup . 66

4.7 Evaluation of Heuristics . 71

4.7.1 Analysis of Substrates . 73

4.7.2 Analysis of Removal Heuristics 77

4.7.3 Performance Comparison . 78

4.7.4 Analysis of Network Dynamics 82

vii

Chapter 5 Parallel Routing Under Heterogenous Core Distribution 84

5.1 Heterogeneous Heuristics . 85

5.2 Simulation Environment . 87

5.3 Evaluation Results . 88

Chapter 6 Conclusion and Future Work 92

Appendix A Additional Figures 96

A.1 Centrality Metrics . 96

A.2 Remove Heuristics . 99

A.3 Substrate Characteristics . 109

Bibliography 119

viii

List of Tables

4.1 High level comparison of heuristics 57

4.2 Low level comparison of heuristics . 58

4.3 Characteristics of network topologies 69

ix

List of Figures

1.1 Parallel routing over multiple abstractions of the same underlying net-

work. 6

1.2 A sample heuristic for parallel routing: Remove the link maxed out by

current substrates. 7

2.1 Open Systems Interconnections conceptual reference model 16

2.2 Encapsulation during data connection 18

2.3 TCP 3-way handshaking for connection initialization 22

2.4 Comparison of TCP and MPTCP protocol stacks 24

3.1 Motivating scenario with two cores 36

4.1 Activity diagram for parallel routing with n cores 46

4.2 Activity diagram for simulator . 49

4.3 Visualization of removal methods on AboveNet with 8% removal . . . 60

4.4 Visualization of region removal on AboveNet with 8 % removal 61

4.5 Class diagram for substrate generator 67

4.6 Visualization of Rocketfuel topologies 72

x

4.7 Average of average node degree of the substrates for 2%, 6%, and 10%

removal . 73

4.8 Average of maximum node degree of the substrates for 2%, 6%, and

10% removal . 74

4.9 Average of clustering coefficient of the substrates for 2%, 6%, and 10%

removal . 74

4.10 Speedups for Removal heuristics (Region, Block, Bucket and Individual

approaches) for both independent and cumulative substrate generation 76

4.11 Performance of MCPR heuristics for the Telstra topology 78

4.12 Average performance of MCPR heuristics for all topologies 79

4.13 Effect of the number of cores with 8% independent removal (log-scale) 81

4.14 Performance of AboveNet with node/edge failures 83

5.1 Multi-core parallel routing performance with Edge Betweenness Cen-

trality metric under the heterogenous core distribution for both cumu-

lative and independent substrate generation approaches 89

5.2 Multi-core parallel routing performance with Edge Node Betweenness

metric under the heterogenous core distribution for both cumulative

and independent substrate generation approaches 90

5.3 Multi-core parallel routing performance with Node Node Betweenness

metric under the heterogenous core distribution for both cumulative

and independent substrate generation approaches 91

A.1 Centrality results - AboveNet . 96

A.2 Centrality results - Ebone . 97

A.3 Centrality results - Exodus . 97

xi

A.4 Centrality results - Telstra . 98

A.5 Centrality results - Tiscali . 98

A.6 Removal approaches with cumulative substrate generation for AboveNet 99

A.7 Removal approaches with independent substrate generation for AboveNet100

A.8 Removal approaches with cumulative substrate generation for Ebone . 101

A.9 Removal approaches with independent substrate generation for Ebone 102

A.10 Removal approaches with cumulative substrate generation for Exodus 103

A.11 Removal approaches with independent substrate generation for Exodus 104

A.12 Removal approaches with cumulative substrate generation for Telstra 105

A.13 Removal approaches with independent substrate generation for Telstra 106

A.14 Removal approaches with cumulative substrate generation for Tiscali 107

A.15 Removal approaches with independent substrate generation for Tiscali 108

A.16 Substrate changes with cumulative generation for AboveNet 109

A.17 Substrate changes with independent generation for AboveNet 110

A.18 Substrate changes with cumulative generation for Ebone 111

A.19 Substrate changes with independent generation for Ebone 112

A.20 Substrate changes with cumulative generation for Exodus 113

A.21 Substrate changes with independent generation for Exodus 114

A.22 Substrate changes with cumulative generation for Telstra 115

A.23 Substrate changes with independent generation for Telstra 116

A.24 Substrate changes with cumulative generation for Tiscali 117

A.25 Substrate changes with independent generation for Tiscali 118

1

Chapter 1

Introduction

The amount of data, “big data”, to be processed at computers and/or transferred

across the Internet is growing 50 percent a year [57]. The concept of big data has

been introduced in the early 2000s, especially in genetics research [87]. Big data

research has become popular in computer science research more recently. The data

needed to be managed has grown up rapidly, and managing or even classifying the

big data became challenging. Although there is no particular threshold for classifying

a dataset as “big”, largely speaking, big data are the datasets so large and complex

that managing and processing (i.e., storage, search, sharing, analysis, transfer) them is

legitimately challenging within the current capabilities of computing and networking

technologies. Another key pattern that arose with big data is the difficulty of moving

such large data around. From the networking perspective, data is “big” if it is so

large that it cannot be moved to a centralized place but rather only be processed at

different locations.

Statistically, the world’s technological capacity to store data per person is

doubled every 40 months, and the telecommunication capacity is doubled every 34

2

months as well [38]. This storage and transfer capacities facilitate larger and big data

to exist, intuitively with increasing amounts in future. Therefore, many techniques

and discussions about managing big data have been proposed in different fields of

study [41, 59]. According to the MGI studies [61], if management of the big data in

the US health-care were to be effective, the sector would yield $300 billion every year

more than what it is today. On the other hand, big data provoked the emergence of

new database management systems like parallel [24] and distributed [86] databases,

and brought back batch processing systems such as Hadoop [90] with a customized

computation phasing, i.e., MapReduce [23]. As big data kept emerging, the desire

to centralize the processing of the data and transfer of it in more controlled settings

have prevailed. Arguably, these have been the major causes for the advent of cloud

computing and data center networking technologies. In parallel with those trends, an-

other problem emerged: How to effectively and efficiently transfer big data across and

within data centers? Legacy networking protocols are not capable of handling trans-

fers with speeds beyond 100Gbps. New transport and routing protocols able to handle

beyond petabytes of data are of crucial importance to furthering our capabilities to

manage big data. The key points for cloud-based scalable data management systems

are given as “scalability, elasticity, fault-tolerance, self-manageability and ability to

run on commodity hardware” in [2]. Therefore, new data transfer protocols should

not only be as fast as possible but also scalable, versatile, compliant with legacy

systems, and flexible to adapt new schemes.

Data centers, arguably, are at the heart of big data management. Their de-

sign, placement, organization and structure play key role in how big data is going to

be handled in the future [28]. Data centers can be located at various parts of the

world, because of geographical issues, economic concerns or potential loss under fail-

3

ures. Accordingly, as geographically distributed data centers are gaining importance,

the need for big data intra- and inter-datacenter transfers is more paining. More

essentially, these big data transfers are crucial to the operation of the data centers

for maintenance and backup [79]. Data centers are mostly built geo-distributed [63]

because of cost efficiency, and data replication among two or more data centers is a

much-used technique to improve the resilience against failures [1]. Also, most of the

end-to-end (e2e) sessions in the Internet traffic are now going through a data cen-

ter, and thus, the performance of “big data” intra- and inter-datacenter transfers is

crucial to the overall Internet experience. Data migration techniques, virtualization

methods or providing regional services to balance the workload over data center net-

works are imperative to reduce operational costs [20,67]. For instance, transferring a

high volume of bulk data causes outrageous workload on links between Yahoo! data

centers causing peta-scale data to be moved around [19]. When there are multiple

sources that need to send bulk data to another data center, managing these transfers

becomes much harder, and scheduling is one of the solutions [49,99].

The legacy end-to-end transfer techniques are not adequate to reach such

speeds at the level of 100s of Gbps because of lack of performance on data con-

nections over long-distance or high-bandwidth networks [8,43,64]. Apparently, under

the scenario that uses a single path for data transfers, the aggregate end-to-end trans-

fer rate will be limited to the bottleneck(s) on that path [45]. Parallel data transfers

can be spread over the network in a non-overlapping manner, and hence improve

the aggregate throughput [101]. The downside is that such parallel transfers require

multi-path routing capability. Availability of such end-to-end paths allows parallel

TCP streams to be fed onto different paths and thereby attain a higher utilization

of the underlying network which is not possible by legacy single-path shortest-path

4

routing algorithms [70,97].

According to recent studies, the multi-path parallel streaming approaches seem

to be highly successful in addressing the big data transfers. The key focus of these

techniques is to diversify and spread the paths available to the end-to-end transport

while satisfying various constraints such as delay or loss. Since the problem is too

complex, most multi-path routing work boiled down to pre-computed techniques with

heavy computations [62,70]. Further, they typically involve non-shortest path calcu-

lations requiring considerable updates to legacy routers, which are not designed for

non-shortest path routing. Yet, to attain multi-path routing, the routing system must

be able to provide multiple paths for a source-destination pair. So, to address the

big data transfer needs, we continue working on how to attain multiple and poten-

tially non-shortest paths between endpoints in the network. Recently, the multi-path

routing techniques proved to be useful for scaling up the end-to-end reliable trans-

fers [66]. Still, a practical routing protocol that can offer multiple (non-)shortest

paths while effectively handling network dynamics and failures is missing, since ex-

isting solutions are too compute-heavy and incapable of handling dynamism. Even

under these circumstances, the paths generated by the multi-path routing methods

were statically adopted and TCP sessions were successfully parallelized with practical

solutions [9, 22].

One key observation is that these end-to-end transfers and the legacy multi-

path routing schemes are still yet to utilize multi-core CPUs available in most routers.

Although [95] shows that CPUs reach to almost 90 percent of usage under heavy data

transfer scenarios, consideration of multiple cores of router CPUs as a first-class citizen

in network layer functions, like routing, has been missing. To improve our multi-path

routing service within “parallel routing”, we propose routing protocols that leverage

5

the multi-core CPUs. Our goal is to ease the computational complexities of close-

to-optimal multi-path routing algorithms by dividing the overall multi-path routing

problem into smaller parts and lending each part to one separate CPU core.

We propose a “parallel routing” framework [92] that explicitly considers multi-

core routers and employs only shortest-path calculations. The basic idea is to virtually

slice the router topology into “substrate” topologies and assign them to a separate

router core, which runs a classical shortest path routing protocol on the assigned sub-

strate. We name this approach as “multi-core parallel routing” since it parallelizes

the multi-path routing calculation and provides multiple paths for parallel end-to-end

transfers by using multiple CPU cores. Rather than solving the multi-path routing

problem all at once, our approach transforms it into two subproblems: (i) slicing out

substrates from the router topology so that the collection of the shortest paths on

each substrate is diverse and has non-overlapping end-to-end paths, and (ii) calculate

shortest paths on each substrate. Since the latter problem is already being handled

in legacy routers, our approach can easily be adapted to current routers if the former

problem is solvable. In one point of view, our approach transforms the multi-path

routing problem into a topology/substrate generation as a graph embedding/virtual-

ization problem.

1.1 Parallel Routing: A Simplified Example

A simplified version of the parallel routing problem is illustrated in Figure 1.1. For

this sample scenario, we consider only one end-to-end flow and aim to maximize its

throughput. It is possible to generate different substrates, i.e. virtual topologies, by

abstracting the underlying network multiple times. In Figure 1.1, three substrate

6

1

1

1

2

1
5 Mb/s

2

1

1

2

2

5 Mb/s

1

3

1

1

4

5 Mb/s

Substrate 1 Substrate 2 Substrate 3

10 Mb/s

5 Mb/s

5 Mb/s

10 Mb/s

5 Mb/s

A

B

C

D

Figure 1.1: Parallel routing over multiple abstractions of the same underlying net-
work.

networks are generated and different link weights are assigned to each substrate.

Applying shortest-path routing yields different end-to-end paths from A to D. Each

additional substrate adds 5Mb/s to the end-to-end throughput of the flow from A

to D. This represents a linear speedup in routing parallelism. However, adding one

more substrate would not add any extra throughput for the A-D flow under the same

assumptions, showing the criticality of the number of substrates to be generated.

Further, selecting the link weights for each substrate is not an easy task and plays a

critical role in the efficiency of parallel routing as well.

When we consider a network with multiple flows attempting to maximize their

throughput via parallel routing, the problem essentially becomes the well-known mul-

ticommodity flow problem [42]. However, our parallel routing approach here is taking

the same network and divide it into multiple substrates, and thus allows us to tackle a

7

1

1

1

1

2

5 Mb/s

Substrate 1

1

1

1

2
5 Mb/s

Substrate 2

1

1

1

5 Mb/s

Substrate 3 A-C is maxed out B-D is maxed out

Figure 1.2: A sample heuristic for parallel routing: Remove the link maxed out by
current substrates.

smaller version of the multicommodity flow problem. A key issue is how to generate

these substrates (such as the number of them, their link weights) so that the end

result of solving the multicommodity flow problem in each substrate is still close to

the optimum.

Although our parallel routing approach divides the multi-path routing com-

putation into smaller pieces and lends them to multi-core CPUs, it brings a new

challenge to tackle: How to establish overlay substrates so that a close-to-optimal

multi-path routing is attained? To address this issue, we will develop heuristics to

construct and dynamically adapt the overlay substrates on the same underlying net-

work. One possible heuristic is to iteratively increase the number of substrates and

observe the aggregate throughput of the network. Before generating a new substrate,

we can remove the links that are maxed out by the existing substrates. Figure 1.2 il-

lustrates this heuristic for our sample scenario. It is not trivial to extend this heuristic

to a general networking environment where cross-traffic and many concurrent flows

exist. Substrates might become unnecessary due to changes in background traffic, or

more substrates might be needed for the same reason. We will tune various paral-

lelism parameters to establish the substrates, including the number of substrates for

a given underlying network and the link weights in the generated substrates.

8

1.2 Contributions and Key Insights

In this dissertation, we propose Multi-Core Parallel Routing (MCPR) as a novel

approach. The thesis offers the following key contributions and insights:

• Multi-Core Parallel Routing is a divide-and-conquer approach for the general

multipath routing problem. It transforms the problem of calculating multiple

paths to abstracting the underlying topology into multiple virtual topologies.

• MCPR actively uses the cores in CPUs to improve routing large data flows.

• MCPR is compliant with typical SDN setups in that the substrate generation

can be done in the centralized control plane while shortest-path calculations for

substrates can be done at the routers where data plane resides.

• MCPR leverages the existing shortest-path routing mechanisms, which are

highly-optimized and ubiquitously available in legacy network routers.

• While updating legacy routers is possible, deploying a new multipath routing

protocol to the legacy routers is challenging. MCPR is advantageous in this

respect. It is easy to deploy with minimal changes to the existing routers which

are highly optimized for shortest-path calculations.

• Recalculation of end-to-end paths in MCPR will be much easier in comparison

to existing multipath routing schemes which try to solve the entire problem at

once. Since MCPR deploys multiple shortest-path routing topologies in parallel,

only shortest path recalculation will be necessary when a topological change

takes place.

9

• MCPR will increase the robustness of routing against link or node failures. It

will enable multiple simultaneous paths and only a subset of the substrates

will recalculate due to failed link or node. This reduces the disruptions to the

routing tables and the ongoing high-volume traffic.

• MCPR attains higher throughput for large data transfers and better perfor-

mance in balancing the load over the network. In particular, during our static

analyses of comparing MCPR heuristics against single shortest-path routing in

Rocketfuel topologies, we observed 1.6 times speedup in the aggregate through-

put when 4-core routers are used. This speedup was minimally affected (i.e.,

reduced to 1.5) when the count of cores was heterogeneous across the routers.

• MCPR offers robust and low-cost solution for multi-path calculation that can

be easily adapted to the current systems and performs well on different topology

environments. MCPR also responses well to the network failures.

• MCPR is minimally affected when the network failures, both node and edge

failures, occur. In our static analysis, we observed that MCPR’s performance

may reduce up to 0.4% in the face of failures. Also, MCPR responses better

when edge failure occurs. We also observed that edge failures may contribute to

MCPR performance, and it might give higher throughput up to 0.2% in some

cases.

• MCPR supports scalability when network size is growing because of its adative

background.

10

1.3 Dissertation Organization

In this dissertation, we propose a new end-to-end traffic method, which is exploiting

multiple CPU cores of routers to parallelize traffic flows, especially for bulk data

transfer such as between data centers. The rest of the dissertation is organized as

follows: We start with the background information in Chapter 2 and give details about

some of the popular routing protocols. Multi-path routing techniques, Multi-path

TCP and some successful applications employing multiple cores are also explained

here. We outline the problem of parallel routing and mathematical background for

parallel routing in Chapter 3. We present multi-core parallel routing heuristics to

solve the substrate generating problem and the results of our simulation experiments

in Chapter 4. We give how multi-core parallel routing performs when a failure occurs

on the network in Chapter 4.5. We show the performance of parallel routing under

the heterogeneous scenarios in Chapter 5. We discuss our proposed framework and

future works in Chapter 6.

11

Chapter 2

Background

Assuming multiple paths are provided between end-systems, the task of selecting a

subset of the available paths and performing load balancing of traffic among them is

a highly complicated problem, which is also known as end-to-end traffic engineering.

Such end-to-end traffic engineering capability has been a common practice in wire-line

networking via protocols like MPLS [85] which provides ISPs a way of managing and

throttling their traffic over the network. However, the time-scale of this end-to-end

traffic engineering practice has been very large since MPLS requires configuration

and management of several switches and routers to realize path establishment and

teardown. Further, similar to the source routing in GridFTP, the load balancing of

the overall network necessitates pre-computation of MPLS paths (i.e. LSPs) ahead

of time as there will be many such end-to-end traffic flows. In general, Layer 2 (link

layer) techniques, like MPLS, are external to routing in Layer 3 (i.e., network layer)

and require heavy configuration tasks in a large-scale network to be operational. Due

to the static and heavy configuration overhead of these Layer 2 techniques, they fall

short of addressing network dynamics arising from failures or traffic spikes and coming

12

up with a generalized end-to-end traffic engineering framework. Further, in the face

of recent needs for big data transfers, a generalized solution within network layer is

becoming a necessity, particularly within or across data centers.

Most of the current routing and transport protocols employ single path, such

as in OSPF [65], RIP [60], and TCP [78]. In the early 2000s, discussions on single

path routing effectiveness intensified in the context of congestion and throughput

achievements needed for emerging big data network transfers. Because of the poor

performance of legacy routing and transport protocols on load balancing and con-

gestion control, it has been a consensus that usage of multiple end-to-end paths is

needed to attain sustainable transport rates beyond 100Gbps.

Although single path solutions are fast to compute and apply in the real world,

one of the important reasons for congestion and data loss has been the single shortest

path routing approach of the legacy routing protocols. Therefore, multi-path routing

[31, 36, 44, 97] became one of the popular topics as a solution to balance the load

over the network. Several techniques, most of which require a-priori computation

of paths, have been proposed for multi-path routing. Diversification of paths from

source to destination with the additive increase methods has been proposed [69].

Additionally, a path selection method [70] is also worked on to find paths from the

set of all possible paths. However, the routing system needs the ability to generate all

paths and select a few of them in a short period. Moreover, some researchers tried to

compute end-to-end multi-paths like in network flow approach or shortest path with

the selection possibility of links [72]. With all that, the real drawbacks of multi-path

routing techniques have been (i) the adaptation to the actual systems because of high

computation costs and (ii) the un-availability of network infrastructure like routers

and switches that allow sending data through more than one path by using current

13

protocols. Eventually, the temporary solution, improving link bandwidths, curtailed

the cost of congestion over the network and postponed the problem of multi-path

routing until a better and permanent solution for data transfers is found.

Within ten years, some new applications for solving multi-path routing problem

have been evaluated with new proposed protocols to support multiple connections

between a pair of nodes. However, with growing Internet, some protocols have been

standardized, like IP [77] and TCP, and adaptation of new protocols to the current

systems has become the biggest problem. For example, changing IPv4 to IPv6 has

been taking a much longer time than expected, even though IPv6 has been deployed

for about two decades due to lack of IPv4 addresses for new systems. Accordingly, new

end-to-end multiple path protocols should be TCP-friendly, and Internet Engineering

Task Force (IETF) teams generated Multi-Path TCP (MPTCP) [22, 26, 29], which

improves TCP and uses almost the same structure. Briefly, MPTCP is a high-level

design which encapsulates sub-flows into TCP packets with a fair congestion control

mechanism. MPTCP assumes no knowledge of the underlying topology and focuses

on congestion control. Though this is important in realizing a generic multi-path

congestion control approach, most of the time situations involving extremely large

data transfers are already given a topology of end-systems which can be leveraged for

jointly optimizing the selection of end-to-end paths as well as throttling of sending

rates on sub-flows.

In the case of failures, one of the fundamental problems for routing protocols is

to re-calculate optimized paths while recovering the ongoing data transfer in a timely

manner. Calculation and provisioning of multiple paths to the end-systems has been

done in various tools. A widely used protocol, as part of the science project Large

Hadron Collider [56] for data communications between super computers, is stripped

14

GridFTP [5], which allows source routing. However, like most of the existing multi-

path routing protocols, GridFTP requires all routing calculations to be done a-priori

and is not sufficiently adaptive to dynamism and changes in the underlying topology.

For example, a link failure or link cost change will trigger recalculation of the complete

multi-path routes, which incurs a non-polynomial computational complexity if certain

guarantees are desired [32, 97]. Further, this recalculation will have to be performed

at a central location so that one can install the new paths to the GridFTP source

routing module.

The capability of end-to-end traffic engineering has become essential in finer

time-scales to achieve real-time load balancing of large inter-data-center traffic flows

[52] coupled with the dynamism of the underlying Internet connectivity. Another

solution, SPAIN [66], for inter-datacenter traffics is to use pre-computed paths for

utilizing redundancy in a network, especially under the high bandwidth data traffic.

However, these two techniques fix multiple end-to-end problem with side-channel

solutions (i) scheduling or (ii) using offline network controllers. To have adaptive

solutions, proposed method should be either scalable or flexible and able to balance

workload over the network without big disruptions.

Ultimately, most of the previous solutions for multi-path routing are based on

pre-computed techniques with large computation cost. We propose multi-path end-

to-end traffic routing method using well-known shortest path calculations. Moreover,

our approach exploits CPU cores included in multi-core routers more effectively and

efficiently routes big data transfers. Since it uses legacy shortest-path routing as the

basic building block, our method is easy to deploy and easily adapts to current routing

systems.

The term “network” is used for several descriptions as in social network, biolog-

15

ical network, telecommunications network, and neural network. Basically, a network is

a set of elements interconnected with each other. In information technology, “network

meant the set of serial lines used to attach dumb terminals to mainframe computers”

as described by Peterson in “Computer Networks: A Systems Approach” [75]. Dif-

ferent from other kinds of networks like telephone systems, the networks in computer

science are built for a general purpose. Therefore, computer networks can carry differ-

ent types of data and support various applications to make the system more scalable

and fast growing. In mathematics, a network is a sub-category or specialized type

of a mathematical graph representation of the set of elements and connections be-

tween them. Computer networks are directed graphs built by nodes (e.g., computers,

routers or other network elements) and arcs/links (i.e.,physical channel between two

computers).

According to the term of “network”, we can name the Internet as a “network

of networks” built by connected devices. However, physical channel can establish

a connection between any pair of elements. Therefore, those elements have to use

a common guideline for speaking, namely protocols, to define the general rules of

communication steps. Current systems use two different communication approaches:

(i) circuit switching and (ii) packet switching. In our work, we focus on “packet

switching” approach which forwards data from a node to another node. This method

improves the scalability of the network, compared to circuit switching as paths are

not reserved for individual flows but shared. In packet switching, however, forwarding

incoming packets towards the destination incurs overhead as for each packet routes

needs to determine the next hop. Thus, switches are used to forward packets directly

to the next hop as fast as possible. However, switches are limited in addressing

the routing problem in large networks as they are not scalable that employs routing

16

Application Layer : Application Communication

Presentation Layer : Data Representation

Session Layer : Inter-host Communication

Transport Layer : E2E Connection

Network Layer : Forwarding & Logical Addressing

Data Link Layer : Physical Addressing

Physical Layer : Signal and Binary Transmissions

7

6

5

4

3

2

1

Figure 2.1: Open Systems Interconnections conceptual reference model

problem.

2.1 Networking Basics and Protocols

To solve the problem of route generation/calculation, essentially all nodes in the

network act as a ‘router’ and participate in a larger but distributed computation of

paths. They calculate the end-to-end paths by sharing information with each other.

Once the end-to-end paths are calculated, all routers will have a routing/forwarding

table which shows the next node for an incoming packet according to the destination of

that data packet. There are two protocol approaches to calculate these routing tables:

(i) link-state (e.g., OSPF [65], IS-IS [91]) and (ii) distance vector protocols (e.g.,

RIP [60], BGP [82]). The basic difference between those two methods is how they

make the routers communicate and organize with each other. The link-state protocols

17

make every router exchange information with all other nodes in the network so that

each node can have information about the links of the whole network. On the other

hand, in the distance vector protocols, the routers collect and store local information

about their neighbors and share their knowledge with nearby nodes. While the former

approach collects the cost information about the links of the network, the latter

gathers the distance to every other node in the network. In this thesis, we focus

on link-state protocols, because our proposed system is based on knowing the entire

map.

ISO (International Organization for Standardization) standardized a concep-

tual reference model to separate basic network processes by creating abstract layers

over networks in 1994. That OSI (Open Systems Interconnections) [81] model con-

tains seven layers from low-level, physical architecture, to high-level, applications as

shown in 2.1. Briefly, physical layer, Layer 1, involves with devices and physical con-

nections between these devices at a machine level. Then, link layer, Layer 2, manages

reliability on data-links with controlling packet synchronization. Following Layer 3

is network layer that provides the appropriate environment to perform end-to-end

data transfers. Beyond that, transport layer, Layer 4, yields reliable delivery dur-

ing data transfer sessions. Also, session layer, Layer 5, organizes sessions that allow

the communication between the application and transportation layers. Presentation

layer, Layer 6, manages data conversions and securities before the application. Lastly,

application layer, Layer 6, is the end user layer of OSI reference model. During the

data transferring period data processes is shown in Figure 2.2. Every step that data

reaches a router, it follows high-level to low-level conversion and while forwarding

that data it follows low-level to high-level processes.

18

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Physical Layer

Data Link Layer

Network Layer

Physical Layer

Data Link Layer

Network Layer

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Session Layer

Presentation Layer

Application Layer

Figure 2.2: Encapsulation during data connection

2.1.1 Link State Routing and Link Layer Support for Traffic

Engineering

MPLS (Multi-protocol Label Switching) [84] is a Layer 2 protocol, but it works in

between Layer 2 and Layer 3 which controls end-to-end traffic management on switch

level by using packet information. It supports not only IP packets but also other

network layer protocols such as ATM (Asynchronous Transfer Mode) [54]. However,

it extends the current routing protocols’ abilities by diversifying end-to-end path

selections for connectionless networks. The main purpose of MPLS is to create a

virtual end-to-end connection that data can flow through without network layer (i.e.,

IP level) changes. It is used for two primary purposes: (i) establishing backup paths

for each link and (ii) load balancing on an end-to-end basis. By using label switched

19

paths (LSPs), MPLS allows us to configure a backup path for each link so that the

traffic is immediately (i.e., in 50 ms) rerouted to a backup path when a link fails.

Further, and more relevant to this thesis, LSPs can be used to establish to end-to-

end non-shortest-path routes so that traffic can be routed over paths that don’t follow

typical shortest-path. The purpose of this is to achieve a more load-balanced network.

One of the alternative methods to control these label switched paths is that changing

OSPF [65] weights as in [15]. Changing Open Shortest Path First (OSPF) weights

can be done within the network layer without necessarily requiring a Layer 2 protocol

like MPLS. However, one of the well-known problem for changing OSPF link weights

is that it may lead to persistent oscillations (i.e., route flaps) between two different

end-to-end paths if the links weights are associated with the utilization of the links,

which is the usual practice.

OSPF [65] is one of the link-state routing protocols for IP networks that make

it possible to compose routing tables to forward datagram packets when it reaches a

router. OSPF is mostly used for organizing a network within an autonomous system

(AS) or intra-data-center networks. As it is named, OSPF merely provides single path

solutions and uses Dijkstra’s shortest path algorithm to generate a possible path for

a pair of nodes. Therefore, many applications are proposed to change link weights for

getting a different path to balance the load on the network. The main advantage of

using OSPF is that adapting failure scenarios as fast as possible because of OSPF’s

collection algorithms of routing information. It detects network breakdowns for link-

state routing/link-state update message combinations among the routers and creates

a new loop-free path within seconds. Therefore, we propose a new method that

maintains the benefits of OSPF for failure scenarios. Our approach uses OSPF as the

routing protocol for each substrate running in parallel.

20

2.1.2 Internet Protocol: End-to-End Design

IP, Internet Protocol, is a network layer protocol designed, in 1981, for packet-

switched communication networks which allows to divide data into small packets

and organize the addressing of network elements [77]. The key point of IP is to allow

a proper environment for inter-connected devices to communicate with each other

even if they may be using various kind of different communication protocols among

them in a manner that is entirely end-to-end, as discussed in [88].

IP has two principal works: (i) fragmentation and (ii) addressing to point

standard rules for interpreting addresses and creating datagrams, which are small

packets carrying data. Thus, data can be transferred in a connectionless manner by

using datagrams which are independent entities. However, splitting a given data into

little packages and reassembling divided packets in a system became another problem.

Therefore, various fragmentation methods have been proposed for helping to improve

data communications. Although fragmentation process takes time, it improves the

system performance during data transfer because of less cost on carrying out a small

size data over the network.

On the other hand, to have an end-to-end agreement, nodes should know each

other in a uniquely identifiable way which necessitates addresses. So, IP includes des-

tination addresses into every packet after fragmentation procedure and those packets

can be analyzed by routers to figure out the final destination of them at each hop.

Many network address mapping techniques have been proposed to organize address-

ing as well. As a result, IP not only creates a systematic environment to manage

packet-switched data transfers but also gives the opportunity to generate new trans-

port layer protocols which might be adapted to the current systems because of IP’s

encapsulation ability.

21

2.1.3 Transmission Control Protocol

As a connectionless protocol, IP does not have the ability to guarantee reliable com-

munications between source-destination pairs and needs application-specific protocols

to manage flow paths among network elements. On the other hand, TCP [78], one

of the connection-oriented transport (i.e., Layer 4) protocols, establishes a reliable

communication pipe between the source and the destination while supporting packet-

switched end-to-end connections. TCP uses sockets [18] to interact with devices and

selects a route from the IP layer for data to be sent through. These sockets use specific

ports in addition to network address while reaching a device. So, the devices can be

used by several connections simultaneously at any time which shows that the devices

can also work on reliability issues during data transfers. Therefore, TCP works in

a manner similar mail posting by sending and receiving letters indicating the intent

of connections. After connection establishes, data transfer process is started on the

agreed ports between two the devices.

TCP connection establishment based on three-way handshaking is given in

Figure 2.3. There are two nodes one is the server which is the destination, and

the other one is sender device called client. The server always in Listen mode to

gather any connection requests coming from a sender node. Therefore, the client

node, to get a connection with the server node, send a special SYN packet which

shows the intention of communicating. When the server node gets the connection

request, it produces a new value based on coming data and replies that request with

a specific SYN-ACK packet showing the availability for the establishment. Then,

when that packet received by the client node, the last step of handshaking is done by

sending ACK packet which is setting an agreed number that provides the reliability

during the data transferring. After connection installation, these two nodes can start

22

Listening

SYN
Received

Established

SYN Sent
Wait

Connection
Request

Established

Client Server

Figure 2.3: TCP 3-way handshaking for connection initialization

to communicate with each other within for each new packets agreed the number is

changed based on the agreement. Therefore when a packet is transmitted, the server

is able to verify the received data in a manner of reliability by checking that special

segment number.

Although that three-way handshaking method provides the connection-oriented

reliable end-to-end data connections, in this technique, multi-path solutions are not

supported for fair connection between a source/destination pair. Therefore, there are

some works on trying to evolve TCP for supporting multi-path communications by

creating different TCP sessions among the nodes [7]. However, adding new TCP ses-

sions only improves the data amount which can be transmitted if path diversification

is not executed.

23

2.1.4 Multi-Path TCP

Internet Engineering Task Force (IETF) teams have been working to standardize

Multi-Path TCP [29], which is a new TCP-friendly protocol that allows multi-path

solutions for end-to-end traffic engineering. As we discussed before, although TCP

has a significant performance to solve the end-to-end path connectivity problems,

the lack of ability to support for multiple paths is one of the bottlenecks for the

current Internet routing. Because of the emerging big data issues, load balancing and

congestion control aspects of the Internet need to be improved. Therefore, Multi-

Path TCP [22] has been proposed as an approach to perform such real-time practice

of multi-path routing, but, it assumes no knowledge of the underlying topology and

focuses on congestion control with a little modification on the baseline TCP scheme.

In addition to initial connection setup of TCP settings, Multi-Path TCP also

sets up additional sub-flows under the package of the main flow. Each sub-flow is an

individual path between a pair of nodes acting as a regular TCP connection as shown

in Figure 2.4. In contrary to creating new end-to-end TCP sessions, encapsulating

these sub-flows with a new scheme is also optimizing fairness by the congestion control

method. Therefore, instead of creating separate TCP flows, the TCP streams are

packaged in one big larger Multi-Path TCP connection. However, this congestion

control mechanism provokes the increase of control plane traffic over the network.

In parallel with being standardized, new applications based on Multi-Path TCP

has been proposed expeditiously in various areas such as wireless networks [73], energy

efficiency [76], network management [92], and open flow architectures [96]. Following

this trend, we also propose a new technique using Multi-Path TCP architecture to

optimize inter/intra -datacenter traffic with leveraging multi-core routers to parallelize

path selection mechanism for end-to-end paths. We would like to note, however, that

24

Application

MPTCP

TCP

IP

TCP

IP

TCP

IP

Sub-flow 1 Sub-flow 2 Sub-flow 3

Standard TCP
Protocol Stack MPTCP Protocol Stack

Application

TCP

IP

Figure 2.4: Comparison of TCP and MPTCP protocol stacks

our parallel routing approach can work with other multi-path transport protocols as

well.

2.2 Multi-path Routing

In addition to MPTCP, in recent years, there has been significant interest in multi-

path routing [40, 66, 100, 104]. As we discussed before, multi-path routing is one of

the old problems in the networking research community. In the 1990s, an analysis

of shortest path routing in dynamic network environments [103] classified routing

algorithms based on how adaptive they are as static, quasi-static and dynamic. Then,

it showed that single-path solutions limit the maximum flow between the source and

the destination nodes. These years, additively increased, a.k.a. incremental, path

calculations became one of the popular solutions as in congested-oriented multi-path

routing [68], disjoint path computation [71] or loop-free multi-path routing [102]. In

the 2000s, multi-path routing was adapted to wireless networks and an alternate path

routing scheme [74] was proposed for MANET environments, and 40% improvement

25

was shown in end-to-end traffic delay. Another method [55] proposed to split multi-

path routing problem into establishment of more than one paths between pairs in ad

hoc networks.

The well-known multi-path routing problem is Maximum Flow/Network Flow

problem which aims to send as much data as possible from one source to a destination,

without worrying about the end-to-end delay. Extension of this problem to real

networks is more complex and includes multiple source-destination pairs for sending

data at a given time. This extended version is called Multi-Commodity Flow problem

[42]. In a given graph, there are nodes/devices and edges/links as network elements,

and each link has a cost if it is used. Basically, shortest path means minimizing the

total cost and maximizing data sent between a pair of nodes. Theoretical solutions to

the maximum flow problems by mathematicians, but, these solutions are typically not

able to be run in real-time due to their intractability. So, instead of finding the best

result, researchers aim to figure out a solution which is proximate to the optimum

solution and as fast as possible in terms of gaining higher throughput. As a result,

the problem is reduced to selecting best paths between a pair of nodes from the all

possible path sets [70]. In some solutions, links’ weights are changed to diversify

paths for end-to-end transfers [84], however, that can cause persistent oscillations

between two different end-to-end paths. Therefore, some additional metrics to point

costs such as possibility or propagation delay to be chosen are assigned to links in

some techniques [51]. But, finding better possibilities and managing the entire links

a network, particularly under network dynamism, becomes a big problem waiting to

be solved for these methods. Another improvement on end-to-end path calculations

is finding k-shortest paths as in additively increased methods. However, in that case,

the system should find some different paths which are not the shortest paths. So,

26

similarly, some links’ weight must be changed, and additional computation costs will

be needed. To sum up, there could be two different solution approaches for multi-path

routing: completely disjoint sets or some intersections/overlaps between the paths.

As powerful computers have been grown in a parallel with technological devel-

opments, finding a new end-to-end multi-path traffic engineering becomes a popular

instead of using adaptive techniques to get multiple paths between a pair of nodes.

Therefore, such systems, SPAIN [66] and Net-Stitcher [52], have been proposed for

improving the throughput performance of inter-datacenter networks while satisfying

the reliability of the data transfers. On the other hand, mPath [100] solves multi-path

routing problem by using a new TCP-friendly mechanism which finds other possible

paths via a set of proxies that give a one-hop detour within the end-to-end paths.

In addition to the key metrics of increasing throughput and balancing load

the traffic load on the network in an end-to-end manner, there are other important

applications of multi-path routing for reducing delays or controlling congestion. One

of the relevant directions is to use multi-path routing in large-scale circuit design.

Parallel routing approaches have been proposed in LSI (Large Scale Integration) [94]

circuit design. Y. Shintani et.al. [89] use a multi-threaded approach on multi-core

processors to find paths for global routing between net-lists which are connections of

cells on LSI circuit design. Proposed method creates different blocks for the net-lists

and distributes those blocks to the threads, so, each block can be processed in parallel.

With their parallel routing method, new technique performs 7.1 times faster than the

sequential method.

Multi-path routing is also be a part of a solution to avoid traffic conges-

tion in communication networks such as Software-Defined Networks(SDN) for inter-

datacenter networking. Briefly, in SDNs, controllers manages the traffic patterns on

27

the network and configures data-plane communications among the devices. How-

ever, control plane messages, communication data between devices for controlling the

network, can cause temporary congestion on network elements in software defined

networks (e.g., in SD-WANs). Chi-Yao Hong et. al. [40] proposed a new approach

which is using multi-path routing to manage capacities on links efficiently for sending

these update messages. Then, with this improvement, 60 percent more traffic can be

carried than the current system.

2.3 Bulk Data Transfer in Data Center Network-

ing

Bulk data transfers has reached peta scales, and it currently dominates the inter-

datacenter traffic. In ACM SIGCOMM 2011 conference, bulk data transfer for data

centers was announced as one of the sessions. It shows the importance of the problem

as it became very popular in recent years, and multi-path routing can be used to

solve the bulk data transfer problem on data center networking applications. In the

case of multiple bulk data transfers, the system needs to solve complex problems

for deciding paths for sending the bulk data by avoiding congestion. Some of the

current solutions include extreme methods like shipping the data in large disks and

enlarging or dedicating link capacity between data centers. Therefore, improving

the performance of transferring bulk data via the public Internet has been of much

interested.

Scheduling techniques that push more data through the Internet for such bulk

transfers have attracted interest [53,99].Scheduling to avoid congestion during multi-

ple bulk data transfers has been of crucial interest too [99]. Wang et al. first observed

28

traffic patterns which they found to be strongly diurnal. The problem, however, is

the time differences between data-centers. When one data-center is active due to the

morning hours on the East Coast, the other one on the West Coast could be in idle

condition because it is not morning the West Coast yet. Thus, the goal is to split

the bulk data into blocks and transfer them over multiple multi-hop paths to attain

a balanced load across the data centers. Lexicographical minimization, minimizing

the traffic of the maximally loaded link and attempts to minimize the traffic of the

second maximally loaded link have also been tried in this work.

In addition to scheduling, there have been several other proposals based on im-

proving the underlying infrastructure. For example, in data center networks, shallow-

buffered switches are used for decreasing the cost. However, under the congested

scenarios, the amount of dropped packets will be higher since the queueing systems

at the routers drop packets automatically when the buffer is full. Calder et al. [16]

changed paths for those dropped packets instead of losing them. In these approaches,

the entire system (which might involve multiple data centers) is under the single ad-

ministrative control; so, switches can share their buffer conditions with each other.

With this type of information sharing, it becomes possible to monitor the whole traf-

fic and detour paths for the packets that would be dropped otherwise. Although this

approach could preserve packets, it could cause congestion over the network.

Another work has been done on managing workloads on data centers under

the transport fabric [4]. In some applications, as in social networking, short request-

response flows which are relevant to each other could be demanded with small response

time. In that case, requests are collected with a fraction and responded to the user

together. According to the latency metric, one of the methods used is TCP-fabric

which is not effective because of waiting time in queues. Therefore, instead of avoiding

29

congestion, pFabric [4] proposed a new scheduling method to balance the load over

the network and to improve the performance of fabric transport.

Consequently, the latest research shows that bulk/big data transfers are gain-

ing more importance with the boost of the number and size of data centers on the

Internet. Therefore, bulk data transfers is one of the big issues for today and the fu-

ture Internet and present several specific research challenges to be tackled. In order to

solve managing big data transfer issues, all resources will need to be used efficiently;

and, in our work, we aim to use multiple cores that already exist in the routers more

effectively to offer and improve multi-path routing for the Internet and for the data

center networks in particular.

2.4 Multi-Core Protocols

The deployment of multi-core routers has grown rapidly. However, big data transfers

are not leveraging the powerful multi-core routers to the extent possible, particularly

in the key function of routing. We aim to revise multi-core or multi-threaded solutions

for improving data communications of inter-/intra-datacenter traffic. The emerging

need for greener energy and greener data centers [] also motivate us to optimize

available networking and computing resources. It is now a major challenge to design

information technology solutions that are green and use the resources in the best

manner possible. Thus, leveraging multi-core devices is gaining importance as well

to balance/parallelize works on the machines and the network.

This mindset of using multi-core and multi-threaded routers has recently be-

come prevalent, and there are a few ideas that aimed to use multi-core or multi-

threaded techniques in the network protocols. Grover [37] proposed to employ multi-

30

core routers to improve BGP protocols with a multi-threaded PBTS model during

the BGP operations. Also, in industry, creating a solution utilizing multi-core routers

has been patented by Kingsley et al. in [48], net-list devices are managed in parallel

by different regions on the LSI devices. However, in [11], bounding boxes are created

on nets, and multiple threads manage each net. Executed threads routed in parallel

according to the created boxes.

In addition to usage of hardware-based routers, in the first years of the 2000s,

the approach of software-based routers was proposed. A key motivation was that

multi-core platforms could be profitable because of their easy customization. Bolla

et.al. [14] measured software-based routers’ performance and analyzed the network-

ing performance based on throughput and power consumption. They were able to

show that the new model proposed was able to save energy in terms of green-energy.

Proposed optimization policy provided about %40-%50 of energy savings by using a

multi-core structure on software routers.

Multi-core routers are also used for managing router tables in parallel [27].

The leading idea here is to improve software-based routers’ performance during for-

warding mechanism for a given packet. It is hard to manage the next hop during data

transfers because of the growing Internet background traffic. However, by means of

smart scheduling, virtualization and parallelization of router’s processes across mul-

tiple cores, the researchers showed that CPU loads and packet lookup time could be

reduced significantly.

Also, multi-core routers are used for lookup process of IPv6 addresses with new

proposed approach [30] which uses multi-core background to parallelize store/scan

routing tables. IPv4 addresses are 32 bits, and they are becoming insufficient because

of the increasing number of Internet-enabled devices. For this reason, a new IP

31

addressing method, IPv6, with 128 bits long addresses is being deployed. This new

deployment and augmentation impose two main problems at the routers: bigger size

of the routing tables and greater complexity for the packet lookup process. Improving

hardware skills and developing new software solutions have been tried to make these

processes faster. Another new approach is parallelizing the method of storing and

scanning routing tables by means of multi-core designs. In this approach, routing

tables are split into smaller ranges organized in a tree-based structure, and different

cores process each of them at the same time. Performance is increased 10x times

[30] by exploiting multiple cores on the routers for the forwarding problem of IPv6

addressing.

In general, most of the proposed multi-core routing techniques focus on im-

proving the packet lookup time in a router. In our approach, we aim to improve the

network-wide routing performance via a multi-core routing design, and, further, in-

troduce a framework to employ multiple cores for composing multiple paths between

endpoints.

2.5 Theory - NP Completeness

In the algorithmic analysis, problems’ complexity is determined in terms of their

computability (i.e., solvable or not) for a given set of input parameters and verifiability

of a given possible solution’s existence in the set of all possible solutions. Polynomial

time bounded (P) problems are the set of problems that can be solved in polynomial

time and also verified in polynomial time. On the other hand, Non-Polynomial time

bounded problems (NP) can be solved in non-deterministic Turing Machine which is

a Turing Machine enhanced with non-deterministic choice function. However, these

32

NP problems can be verified in polynomial time. The relation between P and NP

problems is still one of the famous argue that are not exactly known yet.

NP-Complete problems are NP problems that can be verified in polynomial

time and be solved in polynomial time on a non-deterministic Turing Machine. Ev-

ery NP problem must be reducible/transferable to one of the NP-Complete problems

in polynomial time quickly to be stated as an NP-Complete. So, every problem in

the NP-Complete set can be reduced to each of them quickly, i.e., in polynomial time.

NP-Complete problems are not solvable in realistic time. Further, NP-Hard problems

are unique problems that as hard as the most difficult NP-Problem. NP-Complete

problems are also NP-Hard, but vice versa is not true for the NP-Hard problems.

For example, some decision problems are NP-Hard but not NP-Complete [39]. To

show the given problem is NP-Complete/NP-Hard, it is required to confirm that the

given problem is in NP-class followed by finding a polynomial time function for reduc-

ing the problem to one of the NP-Hard/NP-Complete problems. Some well-known

NP-Complete problems [33, 34] are Boolean Satisfiability Problem(SAT), Knapsack

Problem, Travelling Salesman Problem (TSP), Subset Sum Problem, Clique Problem,

Vertex Cover Program, Independent Set Problem, and Graph Coloring Problem. Also

most of combinatorial search problems are considered as NP-Hard [50], and our sub-

strate generation problem is a version of this kind of problems. We now cover some of

the most relevant NP-Complete problems relevant to the substrate generation prob-

lem for multi-core parallel routing.

2.5.1 Multi-Commodity Flow Problem

Network flow problem is a path selection problem for a flow from one source node to

another destination which maximizes the throughput. As a more general version of

33

this problem, multi-commodity flow problem [3] has multiple flow demands among

different source-destination pairs. Multi-commodity flow problem finds if all the de-

mands can be satisfied or not by finding a separate path to each flow through the

network. In one perspective, the multi-commodity flow problem is the most generic

form of the multi-path routing problem we face on the Internet. The problem is NP-

complete for feasible integer solutions that allow just integer flow demands. When the

fractional flow demand is allowed, the problem can be solved with linear programming

in polynomial time.

2.5.2 Subset Sum Problem

Subset Sum Problem is crucial in cryptography and complexity theory. For a given

set of integers (S) and a value sum (t), the Subset-Sum Problem determines if there

is a subset of S such that the sum of elements in S is equal to the given sum t.

The Subset-Sum Problem is a specific version of the Knapsack Problem [47] and

the Partition Problem [17], and it is one of Karp’s 21 NP-Complete problems [46].

Approximation algorithms can be used to solve this decision problem. It is related

to our substrate generation problem as we want to create a set of all possible virtual

topologies that maximizes the sum of throughput of each substrate.

2.5.3 Edge Disjoint Path Problem

The Disjoint Set Problem [58] can be both vertex-disjoint or edge-disjoint which

are reducible each other. Edge-disjoint path problem tries to find k different non-

overlapping paths for a given source-destination pair. Edge-disjoint path problem is

one of the graph decomposition problems in graph theory. The disjoint path problem

34

is known NP-Complete, and it is hard to approximate. The disjoint path problem is

related to our proposed MCPR technique as its overall goals are similar to our heuris-

tics’ goals. In MCPR, we try to generate substrates that include non-overlapping,

i.e., most disjoint paths.

35

Chapter 3

Parallel Routing

Calculating single shortest-path is a well known and spread technique, such as OSPF,

for data transfers between two nodes. Shortest-path calculation gives a fast response

because of its greedy approach; however, one of the problems with that technique is

a limited capability to derive distributed load balancing over the network. In order

to solve the workload balancing issue, data transfers can be done through multiple

path routing. Yet, dynamic multi-path routing protocols reacting sufficiently fast to

the network changes is hard, and typically it takes too much time to generate diverse

paths in a feasible time span. The key novelty of our method is to ensure both

scalability and load balancing in a practical manner. The main goal of our approach

is that many of the current routers have multi-cores, and this parallel processing

ability of these routers could be utilized to optimize the data load over the network,

instead of jamming all the data into one shortest single path.

Parallel routing aims to provide multiple shortest paths, each of which is gen-

erated over different substrates of the topology, as shown in Figure 3.1. The main

idea is that different slices (substrates) of the router topology are given to each core,

36

1

2

3 4
10 Mb/s

5 M
b/s

5

6 5 Mb/s

5 Mb/s
1

2

4

5

6 5 Mb/s

5 Mb/s

5 Mb/s

5 Mb/s

1 3 4
5 Mb/s 5 Mb/s

1 4 5
5 Mb/s 5 Mb/s

Flow from Substrate 0 Flow from Substrate 1

1

2

3 4
10 Mb/s

5 M
b/s

5

6 5 Mb/s

5 Mb/s

Router Topology Substrate 0 Substrate 1

Figure 3.1: Motivating scenario with two cores

and the e2e data transfer is split into the shortest paths calculated on each substrate

topology. Once assigned to Substrate i, flow will follow the shortest path calculated

by that Substrate i. However, all the flows will be using the same physical topology

regardless of which substrate they are assigned to. So parallel routing can lead to a

system where parallel routes are produced on virtual substrates over the same phys-

ical topology. It is, then, up to the e2e transport protocol’s decision to which one of

these paths from the substrate topologies to use with what rate.

If (i) different virtual routing topologies based on the actual topology are as-

signed to a separate core of multi-core routers, (ii) data transfers could be distributed

over these virtual topologies, and (iii) the current well-known shortest-path calcula-

tion techniques are executed on each core as well; then data load could potentially be

better distributed over the network. This thinking is the key inspiration for our design

of MCPR. Figure 3.1 illustrates a motivating scenario where two virtual substrates

are produced. Substrate 0 is equivalent to the real router topology, whilst Substrate 1

is generated by removing node 3 from Substrate 0. Even though there are many other

37

possible paths available over the network, current systems would carry 5 Mb/s on a

single path. But, if these two topologies were given to a two-core router and current

shortest path finding algorithms were executed in parallel on each core, then each

path could transfer 5 Mb/s data. Comparing to the current systems, each substrate’s

shortest path is different, and the two collectively yield a total of 10Mb/s throughput

from node 1 to 4 for two cores scenario. While creating a new substrate, in addition

to removing node(s), some edge(s) can also be omitted, like the edge connecting node

1 and node 3. In that case, similar to the previous example, there would be two

different paths to reach the destination node 4, which are path 1-3-4 and path 1-2-4.

Each substrate is able to find the shortest path that can carry 5 Mb/s and a total

of 10 Mb/s capacity can be transferred which is again two times of the capacity of

current systems that calculate single shortest-path over one virtual topology, a.k.a.

OSPF.

Parallel routing, based on shortest path calculations on separate substrate

topologies, shows that with little changes on the current systems and by using multi-

core property of routers, data transfers can be done over different paths at the same

time and those paths can be found in parallel by devising multiple substrate topolo-

gies. This way, the multi-path routing problem can be reduced to a heuristic that

decides which nodes/edges will be left out when generating the next substrate such

that the largest possible aggregate throughput is attained. To reach an optimum so-

lution, the design goal of parallel routing is to generate substrates that yield the most

diverse and non-overlapping shortest paths possible. For a network with E edges, 2E

different substrates could be generated with no constraints on nodes or connectedness

of the network, and we propose various heuristics that select network elements to be

removed for creating a new substrate in Chapter 4.

38

The parallel routing design principles and main features are:

• Shortest path calculation is abundant and efficient. Legacy shortest path

routing solutions are very much optimized and designed into the fabric of routers.

Multi-path calculations utilizing them will be easy to deploy as well.

• Multi-core CPUs are readily available. It is possible to execute multiple

shortest path routing daemons in parallel on the existing routers with multiple cores.

Each core can run a separate instance of legacy routing protocols such as OSPF.

• Robustness to network dynamics. A critical challenge of multi-path routing

is its brittleness against network dynamics such as failures or demand spikes. Such

network changes may require re-calculation of the entire multi-path set, which can

be prohibitively costly in routing timescales. Parallel routing delegates the path re-

calculation to each substrate and lets the shortest path routing algorithm on each

substrate perform the re-calculation.

• Substrate generation can be centralized. The dividing part of parallel rout-

ing is the most challenging as it requires finding the best set of substrate topologies

so that their shortest paths minimally overlap. This is, as we will detail later, a

heavy computation task. The advantage is that such heavy computation can be done

in software-defined networking (SDN) controllers or other centralized locations with

high computation power. Failures or network dynamics do not necessitate the sub-

strate generation to be done within the routers themselves since the re-calculations

of shortest paths can be independently done by each core. The substrate generation

could be done at larger timescales without any major sub-optimality. Further, cen-

tralizing substrate generation allows goals like multi-path traffic engineering which

require a global and centralized view of the network.

39

3.1 Formal Description

We, now, provide a formal definition of the substrate graph generation problem of

multi-core parallel routing. Given an underlying network topology as a graph G

= {V,E} with a set of vertices |V | = n and edges |E| = m, multi-core parallel

routing’s substrate graph generation involves several decision parameters: (i) number

of substrate graphs to generate and (ii) edge weights on each substrate graph. Let

wuv = 0..k − 1 be the weight of the edge from vertex u to v in G, where wuv can be

set to k different integer values. Further, let S be the set of all possible substrates of

G. Substrate Si ∈ S, can be expressed as Si = {Vi, Ei} where Vi ⊆ V and Ei ⊆ E.

Then, the number of possible substrate graphs is |S| = km.

The overall goal of multi-core parallel routing is to maximize the through-

put of the network by using the shortest paths from a subset of the substrates.

Let q ⊆ S represent a group of substrates and P (q) be the collection of shortest

paths generated from the substrates in q. Further let T (q) be the total throughput

attained from the shortest paths P (q). Then, we can formulate multi-core parallel

routing’s problem of generating a group/set of substrates that maximizes the through-

put, MAX SUBSTRATE SET, as follows:

max
q⊆S

T (q) (3.1)

subject to

∃ (u→ v) ∈ P (q) ∀ u, v ∈ V (3.2)

where (u→ v) is a path from node u to node v. (3.7) assures the resulting multi-path

40

routing provides at least one path between all source-destination pairs.

Formulation of MAX SUBSTRATE SET in (3.1) looks at the problem in a

black box manner. It is possible to express the substrate generation problem from

the network’s point of view in a white box style. In particular, network throughput is

maximized when routing calculates paths with minimal overlap. Next, we will express

the substrate generation problem in terms of minimizing overlap.

For a graph g={υ, ε}, let Rg be the routing vector such that Rg(l) is the number

of shortest paths traversing link l ∈ ε. Note that Rg(l) is the edge betweenness

centrality of a node. Given a set of substrate graphs q = {G1, G2, .., Gj} in multi-core

parallel routing, we can express the number of shortest paths traversing l as

t(l, P) =
∑
g∈P

Rg(l) (3.3)

The substrate generation problem of multi-core parallel routing is, then, to make

the usage of each link as even as possible, which also implies a minimal overlap

among shortest paths. To factor in the varying number of substrates, we can aim to

minimize the difference between the minimum and the maximum Rg(l). Hence, we

write multi-core parallel routing’s substrate generation problem as a minimization of

the unevenness in the usage of links, MIN SUBSTRATE SET, in G={V,E}:

min
q⊆S

(max
l∈V

t(l, q)−min
l∈V

t(l, q)) (3.4)

subject to

∃ (u→ v) ∈ P (q) ∀ u, v ∈ V. (3.5)

41

MIN SUBSTRATE SET provides a clear guidance on how heuristics should be de-

signed for the substrate generation problem. In the next section, we will use this

guidance to minimize the maximum load on individual links while trying to maxi-

mize the aggregate throughput.

Producing a new substrate dynamically to reach the optimum result is hard

to determine in a feasible time cost normally. On each step, we remove one or more

network element(s) which could be stuck earlier than others. In multi-core parallel

routing method, we defined these elements by using some heuristics, based on network

centrality metrics, defined in Chapter 4.

Now, we show MAX SUBSTRATE SET problem is NP-Complete by giving a

reduction to the Subset Sum problem. First, we formally represent the Subset Sum

Problem as SUBSET SUM(S, t), which is the problem of finding if there is any subset

of S such that the sum of its elements is equal to t for a given set of S integer numbers.

SUBSET SUM(S,t) is one of the Karp’s 21 NP-Complete problems [46]. Next,

we define one part of the MAX SUBSTRATE SET problem, i.e., SUBSTRATE SET.

Let SUBSTRATE SET(S,t) be the Substrate Set Problem which finds the

substrate set q such that the aggregate throughput obtained from the shortest paths

of the substrates in q is equivalent to t. This decision problem can be formulated as

follows:

∃q ⊂ S | T (q) = t (3.6)

subject to

∃ (u→ v) ∈ P (q) ∀ u, v ∈ V (3.7)

42

Corollary 1: MAX SUBSTRATE SET’s search space is O(2km).

Proof: Finding the q that maximizes T (q) requires scanning of all possible qs. LetQ be

the set of all possible q ⊆ S. Then, the search space size for MAX SUBSTRATE SET

is the size of Q, which is:

|Q| =
∑

i=1..|S|

(
|S|
i

)
(3.8)

=
∑

i=1..|S|

|S|!
i!(|S| − i)!

(3.9)

= 2|S| − 1 (3.10)

Substituting |S| = km in (3.10), we find the number of possible substrate sets |Q| =

2km − 1, which is clearly not polynomial in terms of the number of edges m. Since

m ≥ n − 1 in a connected network, it is NP in terms of the number of nodes n as

well.

Lemma 1: SUBSET SUM(S,t) <P SUBSTRATE SET(S,t)

Proof: Calculation of T (q) in (3.1) can be done with |q| all pair shortest path cal-

culations, which is polynomial. Let’s assume that a solution substrate set q is one

of the combinations of S which is a subset of all possible substrates set. In order to

reduce to the SUBSET SUM(S,t) problem, selected subset will be summed up which

is a polynomial process. Similarly, in SUBSTRATE SET(S,t), each substrate set has

a value of total throughput T (q) which can be calculated in polynomial time by using

the legacy shortest-path routing algorithms. So, finding a subset of substrates that

gives an exact value of a given throughput, can be reduced to SUBSET SUM(S,t)

which is NP-Complete [33].

Lemma 2: SUBSTRATE SET(S,t) <P MAX SUBSTRATE SET(S)

43

Proof: MAX SUBSTRATE SET(S) problem is trying to find a solution to the SUB-

STRATE SET(S,t) problem such that the solution maximizes the value of t. As-

suming that data flows have inifinite demand, the maximum amount of transferable

data via the graph G is equal to the sum of capacities of edges/links in G. Let

that sum be totaldataflown. So, we can write a polynomial time algorithm that re-

duces MAX SUBSTRATE SET(S) to SUBSTRATE SET(S,t) by decrementing given

value of maximum possible t, i.e., totaldataflown, until the SUBSTRATE SET(S,t) is

solved. Assuming that the edge capacities are integer, and hence t is an integer, the

complexity of this reduction algorithm will be in the order of sum of all edge capacities,

which is clearly polynomial. Algorithm 1 details this reduction algorithm. Instead of

decrementing, it is also possible to perform a binary search to find the maximum t

value solving SUBSTRATE SET(S,t). As shown in Algorithm 2, this approach could

also work with decimal edge capacities as long as a fixed precision is defined as a

stopping condition for SUBSTRATE SET(S,t). Thus, MAX SUBSTRATE SET(S)

problem is also NP-Complete with a reduction to SUBSTRATE SET(S,t).

Theorem 1: MAX SUBSTRATE SET is NP Complete.

Proof: It follows from Lemma 1 and Lemma 2.

Algorithm 1 Decremental design for Maximum Substrate Set

procedure MAX SUBSTRATE SET(S)
t = totaldataflown
while !solved do

solved = SUBSTRATE SET (S, t)
t = t− 1

end while
end procedure

44

Algorithm 2 Binary search design for Maximum Substrate Set

procedure MAX SUBSTRATE SET(S)
start = 0
t = totaldataflown
maxt = t
while start <= t do

mid = (start+ t)/2
solved = SUBSTRATE SET (S, t) . returns true if there is a solution S

attaining throughput within a certain precision of t
if solved is true then

start = mid
else

t = mid
maxt = t

end if
end while
return maxt

end procedure

45

Chapter 4

Parallel Routing Heuristics

Parallel routing creates slices, i.e., substrates, from the entire router topology to

run those substrates on each core for getting more diversified paths for end to end

data transfers. For a given network with E edges, 2E different substrates could be

generated if no constraints are imposed on the substrates being generated. In the

entire set of possible substrates, some topologies could be incapable of producing

better results, i.e., that could include a partitioned set of nodes in a substrate which

causes disconnected routing within a substrate. Considering such constraints, our

design goal of parallel routing is to find optimal substrates that yield the most diverse

and non-overlapping shortest paths possible. Thus, we develop intuitive heuristics to

create new substrates which can improve total aggregate throughput.

High level of activity diagram for substrate generation is given in Figure 4.1.

According to the substrate generation method and number of cores, all substrates will

be created by the system. Then, the generated substrates will be assigned to different

cores of routers, and each of them will continue to do the same thing as in their

current shortest path policies without any modifications. Therefore, the proposed

46

Get the number of cores
inside of the router = n

Choose the substrate
creating method

Graph Based
Heuristics

Flow Based
Heuristics

Calculate substrates
based on flow pattern

Use the pre-calculated
substrates

Assign created substrates
to one core

Calculate the shortest
path for the given

substrate

Send data through
the calculated path

Core 1 Core 2 Core n-1 Core n

Calculate the shortest
path for the given

substrate

Calculate the shortest
path for the given

substrate

Calculate the shortest
path for the given

substrate

Send data through
the calculated path

Send data through
the calculated path

Send data through
the calculated path

Figure 4.1: Activity diagram for parallel routing with n cores

47

parallel routing method is able to (i) give a fast reaction to network dynamics since,

in the event of a topology change (e.g., due to failures or demand spikes), each core

will be automatically calculating the new shortest paths within their substrates, and

(ii) adapt to existing systems easily with little adaptation cost.

When generating the substrates, a crucial challenge is to assure all-to-all con-

nectivity. To address this issue, we define Substrate 0 as the actual given topology.

When generating the subsequent substrates, however, some nodes or edges are going

to be omitted. A simple heuristic step could be to omit the nodes/edges that are

being used the most by the shortest paths in Substrate 0. We try two approaches

which are explained in later in this chapter.

While generating subsequent substrates, some network elements, such as nodes

or edges, will be omitted from the given real topology. Our heuristics analyze the given

topology to predict which routers/edges could be maxed out earlier than others. These

routers/edges will be removed from some of the subsequent substrates to balance the

load in the underlying topology. Thus, the primary design parameter is to decide

which nodes/edges are going to be omitted on the generated substrate. Our first step

of heuristics could be to max out the most utilized nodes or edges that might be

more centralized, and as a result, these elements can be used more than the others

by being on the most of shortest paths. There could be two different criteria where

we can focus on to have improvements in the long term: Graph-based solutions and

Flow-pattern-based solutions. In the graph-based technique, the whole topology will

be analyzed and all the edges connected to the central elements are going to be

expelled on the next generated substrate. Similarly, in the flow-based method, the

traffic pattern at the particular time is going to be inspected, and selected edges

with highest utilization will not be on the new substrate. Therefore, our heuristics

48

are concentrated on figuring out the possible behavior of the network elements and

network dynamics in a feasible way and finding the network elements that can be

omitted to generate new substrates.

As Substrate 0 will be the original topology to guarantee the connectivity, for

other substrates, the generating process could be done in two ways of selecting the

base topology that the new substrate will be generated from: Cumulative approach or

Independent approach. In the first method, all substrates are forked from the previous

substrate that was already produced. This process ensures that over-capacitated net-

work elements, which are already removed from the previously generated substrates,

cannot be on the newly created substrate. For instance, in order to calculate the 4th

substrate for a 4 core router, 2nd and 3rd substrates should have already been calcu-

lated for that router. If the node was removed in the 2nd substrate, it would not be

on the 3rd and 4th substrate as well. Whereas, in the second method, all substrates

are calculated from the given real topology, and so all of the different substrates can

be generated at the same time. We also observe different amount of node or edge

removals and analyze the effect of removal percentages. In each step of substrate

generation, we remove elements and calculate the number of removed edges until we

reach the amount of the given removal percentage of the edges.

4.1 Graph-Based Heuristics

Graph-based heuristics are purely based on the graph properties of the given real

topology. In graph-based heuristics, network centrality metrics are used to find the

most ’central’ nodes as they are most likely the nodes to be maxed out by the short-

est paths. The main purpose of those methods is to increase the number of non-

49

Get the actual
topology

Add main topology
as a first substrate

Set the metric for
network centrality

Calculate all pair
shortest path

Check each node

Calculate degree
for each node

Sort nodes based on
centrality metric

Check if new substrate
needed

Select k nodes from the top

Add selected nodes
into remove list

Remove all nodes
in the remove list from

actual topology

Check the type of removing

Add newly created topology
as a new substrate

Clear the remove list

Remove top k nodes
from the sorted list

Increment number
of created substrate

Check each node
Count how many

paths travers that node

Assign calculated value
as a metric for each node

Calculate the distance
from the selected node to

each other nodes

Sum all distances Get the inverse of 1

Figure 4.2: Activity diagram for simulator

overlapping shortest paths for the newly generated substrate. For the graph-based

approaches, the only consideration will be the topology information, regardless of the

traffic pattern, to determine the order of node(s) to be removed. Therefore, these

selected nodes for removal can be pre-calculated and remain unchanged until some-

how the topology changes. On the other hand, the graph-based methods might not

be robust in the dynamic and changing traffic flow patterns because they determine

the congestion area only by using the topology information. Also in these methods,

substrates are generated for being able to perform well under every possible condition

50

Algorithm 3 Graph-Based Remove

procedure Graph-Based Remove(amount, cores)
substrateList.Add(mainTopology)
metric← [Betweenness, Closeness,Degree, etc.]
sortedList← nodes.Sort(metric)
numOfSubstrates← 1
while numOfSubstrates < cores do

selectedNodes← sortedList.Top(amount)
generatedGraph← topology.Remove(selectedNodes)
substrateList.Add(generatedGraph)
numOfSubstrate← numOfSubstrate+ 1

end while
end procedure

instead of the specific solutions for the given network dynamics. Therefore, spreading

data load over the network may not temporarily be well as in flow-based solutions.

Algorithm 3 shows the steps for graph-based heuristics.

Our graph-based heuristics are based on the centrality characteristics of the

nodes in the network topology. Central nodes are calculated and selected as potential

congestion areas without detailed analysis of the actual network flow. They can be

calculated once and recomputed solely when the topology changes. We utilized the

following centrality metrics to determine which nodes to remove:

Node Degree Centrality (NDC): NDC is based on degree centrality metric

which measures the number of one step in/out connections between the other nodes.

It gives the number of neighbors which also shows the possibility of using a node. If

the node has a higher degree value, that node iintuitively should be more central to

the overall topology and used (i.e., traversed by shortest paths) more than others.

Thus, in the NDC heuristic, higher degree nodes will be eliminated first. For a given

topology with n nodes and m edges, time complexity for NDC is O(n+m).

51

Node Betweenness Centrality (NBC): NBC uses betweenness centrality metric

to find the central node(s) to estimate the congested nodes statically. Betweenness

centrality is a graph metric that measures the number of all pairs shortest paths

traversing through a particular node. Since the current systems use the shortest

path for data transfers between the source-destination pairs, NBC reduces possible

intersection of the nodes that most commonly used on shortest paths and helps load

balancing. NBC, in essence, captures the very basic notion of overlapping shortest

paths. Thus, eliminating the nodes with high NBC is in direct intuition with the

goal of graph-based heuristics, i.e., to increase non-overlapping shortest paths in the

subsequent substrates.

NBC needs to calculate all shortest paths between each possible pairs to find

how many shortest paths will pass through a given node, Algorithm 4. For a given

topology with n nodes, the time complexity of calculating betweenness centrality

metric for the entire topology will be O(n2 log n).

Algorithm 4 Betweenness Centrality score calculation

procedure Betweenness(nodeList)
for each node t ∈ nodeList do

t.metric← 0 . initialized to 0
end for
for each node source ∈ nodeList do

for each node dest ∈ nodeList do
pathList← ShortestPath(source, dest)
for each node t ∈ pathList do

t.metric← t.metric+ 1
end for

end for
end for

end procedure

52

Edge Betweenness Centrality (EBC): EBC is the edge version of the Node

Betweenness Centrality. Instead of counting the number of shortest paths using a

given node, EBC calculates how many shortest paths use a given edge. Thus, EBC

is an edge-centric centralization metric that addresses the most central edges over

the topology. Removing the most used edges of the central node can be helpful to

reach higher aggregate throughput than losing the node itself. Similar to NBC, the

complexity time for EBC will be O(n2 log n).

Node Closeness Centrality (NCC): The primary goal of multi-core parallel

routing is trying to find the most central node to exclude from the subsequent sub-

strates, and NCC uses closeness centrality metric which is another graph metric

measuring the distance from one of the nodes to all others. NCC selects the nodes

for removal when they have the average shortest distance to all other nodes, with

the intuition that such a node would be on more of the shortest paths. NCC is a

normalized parameter which all the values are between [0..1]. The time complexity

for NCC will be O(n2 log n) for a topology has n nodes, and pseudo code is given in

Algorithm 5.

Edge Closeness Centrality (ECC): In comparison to node removal, multi-

core parallel routing performs better when the edges are removed to generate a new

substrate. So, similar to EBC, we calculate the shortest distance from a given edge to

other edges instead of measuring the shortest distance other nodes as in EBC. Small

ECC values give us the edges closest to the all other edges on the topology. For a

topology with n nodes, the time complexity will be O(n2 log n) as NCC.

53

Algorithm 5 Closeness Centrality score calculation

procedure Closeness(nodeList)
for each node t ∈ nodeList do

t.metric← 0 . initialized to 0
end for
for each node source ∈ nodeList do

for each node dest ∈ nodeList do
distance← ShortestPath(source, dest)
source.metric← source.metric+ distance

end for
source.metric← 1/source.metric

end for
end procedure

Eigen Vector Centrality (EVC): Eigen Vector Centrality is another metric in

graph theory that gives the relative scores to all nodes. The continuous calculations

are performed to find the score of a node. High-scored neighbor nodes will contribute

more than low-scored neighbors to score a given node. We used a network analyzing

tool Gephi [10, 21] for calculate the EVC. In our calculations, we performed 100

iterations.

Page Rank Centrality (PRC): Page Rank Centrality is a modified version of

EVC. It is based on traversing nodes like EVC, additionally with a scaling factor. We

used Gephi to calculate PRC scores. We chose probability as 0.85, and 0.001 for the

epsilon in our calculations.

Harmonic Closeness Centrality (HCC): HCC is a different version of the Node

Closeness Centrality. NCC is the inverted version of the sum of distances. However,

HCC is the sum of the inverted distances. We try to see the effect of this little change

on multi-core parallel routing.

54

Multiplication Centrality: Centrality metrics are used to determine the most

central nodes in the given graphs. However, in multi-core parallel routing, removing

nodes will likely cause significant disruption on the later substrates. So, we decided

to add another step for choosing some edges of the central nodes to remove. Instead

of scoring node centralities, we try to find the most central edges like EBC, a metric

to find how many times shortest paths are traversing through the edge. To merge

both the node and edge centrality measures, we multiply the centrality metrics of the

two nodes of a given edge to calculate the centrality score of that edge. Thus, the

edge will inherit the centrality information of both of the nodes it touches during this

decomposition step. In some sense, we change the scoring formula from node space to

edge space. For example, when edge connects two central nodes, that means this edge

has higher centrality score. However, central nodes can have a connection between

nodes with lower centrality scores. In that case, multiplication centrality will give us

a lower score than the other edges. As a result, we will not lose all the central edges

of the central node in the next generated substrate(s), but the congestion on the hot

spot edges will be removed.

We test three node centralities as a multiplication centrality. Since we are using

the node centrality metrics to calculate the multiplication centralities, the complexity

of the multiplication centralities will be the same as node centrality calculations.

Multiplication Betweenness Centrality (ENB): uses NBC, a.k.a Node Between-

ness Centrality, to calculate the centralities of the nodes.

Multiplication Closeness Centrality (ENC): uses NCC, a.k.a Node Closeness

Centrality, to find centrality scores.

Multiplication Degree Centrality (END): uses NDC, a.k.a Node Degree Cen-

trality, for the node centrality value.

55

Random Node Removal (RN): Multi-core parallel routing tries to select re-

movable nodes wisely for generating the next substrate. We also experiment with

random node removal to observe the performance of an uninformed node removal

process. We perform 20 times uniformly distributed random substrate generations

and make static analysis to observe the average performance of multi-core parallel

routing.

4.2 Flow-Based Heuristics

Most of current systems use the shortest path which is well-known and widespread

technique for deciding a path from source to destination. In that case, some edges

can be shared by multiple paths, and such overlapping of end-to-end paths causes

congested spots on the network. Intuitively, the most used edges are going to be

maxed out earlier than the other edges. In multi-core parallel routing, each substrate

will calculate its own shortest paths independently that could increase the load on the

shared edges of different substrates. As we remove the most utilized edges from the

previous substrate(s), we try to obtain short paths that avoid congestion spots. Thus,

our main goal in flow-based heuristics is predicting which edges carry more data flows

than other edges, and use that prediction to balance the load across all edges on the

topology. According to multi-core parallel routing, those heavily used edges will not

be placed on the new substrate and data will be sent through the longer alternative

paths.

The graph-based properties might not have an ability to capture dynamism

in network traffic. Thus, designing heuristics that consider the current utilization

of edges would be favorable to adapt the substrate generation process under traffic

56

Algorithm 6 Flow-based removal

procedure Flow-Based Remove(removalAmount, cores)
substrateList.Add(mainTopology)
for each edge t ∈ edgeList do

e.metric← 0 . initialized to 0
end for
numOfSubstrates← 1
while numOfSubstrates < cores do

nodeList← SubstrateList.Last().nodeList
for each node source ∈ nodeList do

for each node dest ∈ nodeList do
pathList← ShortestPath(source, dest)
for each edge e ∈ pathList do

e.metric← e.metric+ 1
end for

end for
end for
sortedList← edges.Sort(metric)
selectedEdges← sortedList.Top(removalAmount)
generatedGraph← topology.Remove(selectedEdges)
substrateList.Add(generatedGraph)
numOfSubstrate← numOfSubstrate+ 1

end while
end procedure

dynamics. We propose flow-based heuristics as a short-term approach, dependent on

the traffic patterns in addition to topology information. So, the generated substrates

might change with the estimated/predicted data traffic flows that can emerge later

on the network. Worse, for each flow set, a new substrate set must be generated

periodically, and that might increase computational complexity. Therefore, flow-

based heuristics can be computationally intensive but adaptive to the traffic dynamics.

Highest Flow (HF): To generate a new substrate, we count existing flows, tra-

verse each edge and omit the most used edges in substrate i to produce substrate

i + 1, which leads us to Highest Flow (HF), given in Algorithm 6. In each step of

57

Table 4.1: High level comparison of heuristics
Graph-Based Flow-Based

Depends on Topology Depends on Flows
Pre-Computed Dynamic

Complex Simple
Less Speedup More Speedup

Coarse Granularity Fine Granularity

substrate generating, we remove the number of edges according to the given removal

percentage. If s represents the number of substrates, and n shows the number of

nodes, the time complexity for HF is shown in O(sn2 log n). Although that method

is faster than some of the graph-based heuristics, HF must be performed in regular

periods when the traffic pattern changes. On the other hand, note that the graph-

based heuristics must be run when the topology changes, e.g., due to node or edge

failures.

Random Edge Removal (RE): In addition to Random Node Removal, multi-

core parallel routing is also experimented with random edge removal. We perform

multi-core parallel routing with 20 different random seeds to avoid noise.

4.3 Comparison of Heuristics

Graph-based heuristics are based on the topologies and infer which nodes would be

congested first by analyzing network centrality metrics, and then remove selected

nodes from next substrates. On the other hand, the flow-based heuristics are based

on data flow patterns and try to predict which edges will be over-capacitated first.

Therefore, graph-based techniques are just performed if the topology is changed such

as insertion or deletion of edges or nodes. So, there are no additional computational

58

Table 4.2: Low level comparison of heuristics
- NBC NCC NDC HF

Metric Betweenness Closeness Degree Traffic
Complexity O(n2 log n) O(n2 log n) O(n2) O(n log n ∗ s)

costs to find priority of nodes for removal when the flow patterns change. Yet, flow-

based methods adapt to current flows with some additional computational cost at

each time when a new flow is generated.

A nice property of the graph-based heuristics is that the re-computation of

the shortest paths could be performed if and only if there is a change in the topol-

ogy, e.g., due to a node or link failure. Thus, flow level changes and traffic trends

could be ignored in the graph-based approach, while the flow-based approach may

have to recompute its substrates and their shortest paths against such dynamism.

Of course, this dynamism brings more computational overhead for the flow-based ap-

proach, in return for more speedup possibilities in the aggregate throughput. Table

4.1 summarizes these tradeoffs between the two heuristic approaches.

Although graph-based heuristics are pre-computed techniques, generating a

new substrate has higher computation cost. Contrary, the flow-based approach solves

basic problems, but it should be held in real time. Explicitly, the flow-based technique

will have better performance because of focusing on to spread possible paths by

centering in the intensive traffic pattern over the network. Thus, flow-based heuristics

achieve higher aggregate throughput with a better load balancing performance. Also,

comparison of heuristics based on complexity is given in Table 4.2.

To sum up, flow level changes and traffic trends are ignored in the graph-based

heuristics, while the flow-based approach needs to recompute its substrate graphs with

such dynamism. The flow-based heuristic typically would achieve higher aggregate

59

throughput with a better load balancing performance.

4.4 Removal Methods

We explained how to score the node or edge centralities for choosing the removal of

elements for the next generated substrates in 4.1 and 4.2. Multi-core parallel routing

has different selection methods to remove elements from the ordered list. Flow-based

heuristics periodically adapt to the flow patterns. They are also very sensitive and

adaptive during the new substrate generation process by calculating shortest paths in

each step. So, Highest Flow, HF, gives an upper bound for multi-core parallel routing

heuristics using the centrality measures. Although HF is the upper bound, it should

be calculated each time when flow pattern changes. That means, HF needs to change

dynamically and will increase control plane communication. Graph-based heuristics,

however, give pre-computed and statically generated substrates for multi-core parallel

routing.

Thus, the main idea is that finding the best-chosen nodes to generate a new

substrate from the ordered node list by centrality scores as close as possible to the

HF. On the other hand, we compare these heuristics with Random Node Removal as

a baseline which gives us a greedy solution without a computation cost.

After calculating all the centralities, we perform four different removal methods

for different amount of removal percentages. We also experiment with both indepen-

dent and cumulative methods of the substrate generation techniques in all the removal

methods. We now describe the removal methods.

60

(a) Block Substrate 2 (b) Block Substrate 3 (c) Block Substrate 4

(d) Bucket Substrate 2 (e) Bucket Substrate 3 (f) Bucket Substrate 4

(g) Individual Substrate 2 (h) Individual Substrate 3 (i) Individual Substrate 4

(j) Block Cumulative (k) Bucket Cumulative (l) Individual Cumulative

Figure 4.3: Visualization of removal methods on AboveNet with 8% removal

61

Block Remove : For a given list of elements (nodes or edges) ordered by their

centrality, we choose elements as a block of some nodes or edges to remove. In the

first substrate, we remove the first top block, and in the second one, elements in the

second top block are removed, so on. That method removes most central nodes at the

same time, and tries to offload the load to the least central nodes in the subsequent

substrates.

Bucket Remove : We create different clusters of the nodes on the ordered list as

blocks and choose one item from each block into a bucket. Thus, in each substrate,

we do not clean the top central nodes, and keep nodes in each cluster that causes

small changes on the paths as in the adaptive iterative shortest path methods [70].

(a) Region Independent (b) Region Independent (c) Region Independent
Substrate 2 Substrate 3 Substrate 4

(d) Region Cumulative (e) Region Cumulative (f) Region Cumulative
Substrate 2 Substrate 3 Substrate 4

Figure 4.4: Visualization of region removal on AboveNet with 8 % removal

62

Region Remove : We perform Breadth First Search [13] to discover the neighbors

of the most central node and remove the central node along with its BFS tree. In each

step, we choose a central node and try to clear the neighboring region of the node

in the topology. So, if the congestion is coming from the usage of central nodes and

it is regional, then we would be able to deal with congestion by clearing the whole

congested spot. We do not have the depth limit while creating the BFS tree that

discovers all the items until we reach the removal amount. Once, we reach the target

count of nodes/edges to remove, we stop the BFS tree discovery process and remove

the selected elements.

Individual Remove : In every step, we just remove one element from the ordered

list to try to find how we are performing on other methods.

Comparison of The Removal Methods: We analyze different removal methods

after scoring all the elements with various metrics. We, now, discuss how these

methods affect generated substrates. We show which nodes are removed on the first

four substrates of AboveNet, when NBC is used as a metric, and eight percent of the

nodes are removed, in Figures 4.3 and 4.4. Remember that the first substrate, i.e.,

Substrate 0, is the actual topology, so we just show the rest of generated substrates.

Green-ish nodes have higher scores whereas dark browns are less central nodes, and

yellow nodes represent eliminated nodes. The last row, Figure 4.3(j)(k)(l) respectively

Block, Bucket, and Individual remove methods, shows which nodes are deleted for a

four core scenario when they are created cumulatively. Note that, all removed nodes

on the fourth substrate are also removed on the previous substrates. However, in

the Region removal method, there is no correlation between the independent and

cumulative methods because of the dynamic discovery of which region to remove

63

based on BFS tree.

In the Individual removal method, in each step, we select the top element and

remove this element. Thus, we remove the highest top three nodes one by one as shown

in Figure 4.3(g)(h)(i). So, we start to discover the topology from these nodes in the

Region removal method. Also, note that, in Block, given in Figure 4.3(a)(b)(c), these

three nodes are excluded on the first substrate whereas Bucket selects different nodes

with smaller scores. Each of those three nodes is discarded on separate substrates as

shown in Figure 4.3(d)(e)(f). When we analyze the cumulative substrate generation,

in Figure 4.3(j)(k), we observe that the massive graph disruptions can reveal small

changes on the later substrates that causes the similarities. Although Bucket gives us

a little bit diversification, it is not better to clean the entire hot spot(s) than Block

removal.

On the other hand, in Region remove which is given in Figure 4.4, independent,

and cumulative substrate generations have a different pattern because of regional

discovery of which nodes to remove. In later substrates, when a node is excluded

from previous substrates, we also skip this node to start to discover it again. Thus,

intuitively, the Region removal method will give better throughput in the case of

cumulative substrate generation. Although there is no pattern for the Region, ap-

parently, it is clearing the neighborhood of the top next element that could provide

better throughput.

4.5 Parallel Routing Under Network Dynamics

As changes to a network topology is reality, we need to analyze MCPR’s perfor-

mance when the network has changed unexpectedly because of traffic spikes and/or

64

sudden failures. Multi-Core Parallel Routing creates new virtual topologies, named

substrates, and each topology calculates their own shortest paths. In the case of

network dynamics due to failures, end-to-end multi-path routing algorithms will need

to recompute their paths, or it is required to pre-compute the paths for the common

failure patterns. Recomputation process means extra overhead on both control-plane

communication and CPU usage. However, in multi-core parallel routing, only short-

est path calculation is enough to modify the paths on each substrate when node or

edge failures occur. Yet, after a failure, these modified shortest paths on substrates

can have more or less overlap in comparison to the original shortest paths on the

substrates. To evaluate the robustness of multi-core parallel routing against such

failures, we calculate the total throughput over the network when one node or edge is

down, and we compare the average throughput achieved with respect to the original

throughput without failures.

4.5.1 Traffic Spikes

Network traffic patterns can be very dynamic and may result in temporary spikes

with very different than expected rates. Mail server problems, virus scanners, mali-

cious attacks are the most common reasons for the traffic spikes [98]. In addition to

these, remote backups or scheduled backups on the network can cause traffic spikes.

When we have a significant amount of data suddenly needed to be transferred among

routers, it may cause new hot spots over the network topology. Retuning routing to

accommodate these spikes means more calculation that affects CPU and more data

on the link or specific paths that fall into congestion. System administrators try to

estimate the traffic spikes before they happen to reduce the risk such as scheduling the

backups and interfering the path calculations when a spike is detected. Yet, having

65

a routing scheme that is robust to these spikes is critical to the practice.

4.5.2 Failures

In networks, there are two types of failure scenarios: (i) device or node failure, and

(ii) link or edge failure. Traffic spikes can increase the workload of the routers which

eventually trigger device failures. Also, changing traffic patterns can cause edge

failures because of overloading of particular edges. A software update, bugs, traffic

spikes, and electrical shut down are the common reasons for the failure of devices.

Link failure can occur because of the device failure, and also traffic congestion. Device

failures are mostly because of maintenance problems; however, edge failures do not

have any specific pattern [35].

End-to-end path calculation is needed whenever network topology changes due

to failures. Also, most of the failures are short-term and failed link or device could be

back online in a while. In that case, all paths will be recalculated to determine the

paths between source and destination pairs, which means increasing the CPU usage

and the amount of control-plane data. Existing multi-path routing techniques require

partial and complete re-calculation of multi-path routes, which can be too costly in

terms of CPU overhead. This process typically is costlier than typical shortest path

calculations. On the other hand, Multi-Core Parallel Routing does not require any

additional re-calculation overhead because of its reliance on the well-known shortes

path calculations. During this calculation, alternative paths are also computed, and

it is mostly not needed to recalculation in the case of failure.

66

4.6 Experimental Setup

We implemented a new static analysis on C++ to create virtual world for calculat-

ing the amount of data throughput over the network under the proposed MCPR

heuristics. Based on this simulator, we have the capability to generate substrates,

find paths between each flows, and carry all data on flows by using max-min alloca-

tion method for competition on edge capacities. The simulator generates substrates

according to our MCPR heuristics, and defines the data transfer paths on the sub-

strates generated by the heuristics. Then, all data flows are sent on the substrates,

and aggregate throughput is calculated based on the edge capacities of the given

topology.

We used C++ in this static analysis because of its both object oriented back-

ground and adaptivity on most of the environments. In the object-oriented model [83],

we create a set of objects or modules that are interacting with each other. There-

fore, we implemented each module (e.g., metric calculator, and substrate generator)

separately that improves the performance of the tests with parallelism. Further, we

followed the Spiral software development model [12] to reduce the risks, and in each

cycle, we implemented one of the modules. In our framework, a class diagram is given

in Figure 4.5, we have five modules: Main module, Analysis, Metric Calculator, Re-

moval Selector, and Substrate Generator. We store topology information, data flows,

run parameters, centrality metrics, and generated substrates in different folders and

files separately.

In this static analysis, we create a scratch folder for each topology and combine

all the input files into this temporary folder. Metric Calculator module calculates the

scores of the nodes/edges to order them, and stores the scores in a file. Then, removal

67

Main Module
- decide:

removal method
substrate type
number of cores

- read Graph
- read Flows
- �find paths

Graph
- node_list
- edge_list

- readGraphFromFile
- readMetricsFromFile

Metric Calculator
- generateMetrics (Graph)
- writeMetric
- readMetric

Node
- id
- weight
- edge_list
- metrics

Edge
- id
- capacity
- from, to

Flow
- flow id
- from, to
- amount

Path
- path id
- flow id
- edge_list
- assigned flow

same id

Substrate Generator
- GraphBased(metric)
- FlowBased

Analysis

Removal Selector
- readMetric
- get removal method
- write removal
elements

- Get parameters
- Read Substrates
- Read Flows
- Calculate Throughput

Max-min allocation
- Give total throughput

Figure 4.5: Class diagram for substrate generator

selector module defines which nodes/edges will not exist for the next substrate ac-

cording to the given removal method. Substrate generator module gets these outputs

that generated by first two modules and creates substrates cumulatively or indepen-

dently according to removal percentage. This module stores all substrates in different

files. Lastly, the analysis module calculates the total throughput can be sent over the

substrates by using max-min allocation when edge sharing occurs. All these modules

use the main module that includes the definition of common classes and functions.

We tested our heuristics on six Rocketfuel topologies that have different char-

acteristics [93]. Table 4.3 presents the number of nodes, number of edges, maximum

degree, average degree, average path length, clustering coefficient, and assortativity

68

of the network graphs.

In Rocketfuel topologies, link capacities are not provided, but delay-based

edge weight is provided. In our analysis, we determine link capacities inversely pro-

portional to the link weights in the Rocketfuel data set. In order to calculate the

throughput attained by subgraphs/substrates, we assign data loads incrementally.

First, we send maximal data on the first subgraph, re-arrange capacities and use the

next subgraph(s) to send the rest of the data. A finer grained model could look for

maximum flow in the underlying subgraphs.

We performed a static analysis that calculates the total throughput for a given

network. We compared the MCPR against the currently used single shortest path

routing to analyze the throughput across the network. We generated network flow

between all node pairs based on the gravity model between the point of presences

(PoPs) of in the Rocketfuel topologies. In the gravity model [6], flow demands are

calculated as the product of populations divided by the square of the geo-distance

between two PoP locations. We assumed the link capacities inversely proportional

to the link weights that were provided by Rocketfuel. We used max-min allocation

to determine the end-to-end rates the flows will attain. We normalized the flow

rates based on the smallest flow rate, and, so our throughput results are shown in

normalized units.

We tested both cumulative and independent approaches to generate substrates.

In the independent generation, all substrate graphs are generated from the actual

topology. In the cumulative substrate generation, each substrate is forked from the

previously created one, and hence following graphs have a larger portion of the net-

work removed.

We created a new network model including flow patterns, estimated link ca-

69

Table 4.3: Characteristics of network topologies
Network Nodes Edges Max Avrg Avrg Cluster. Assortativity

Deg Deg Path Len Coeff.
AboveNet 141 922 40 13.1 3.62 0.269 0.698

Ebone 87 403 51 9.3 3.90 0.299 0.357
Exodus 79 352 24 8.9 3.94 0.286 0.749

SprintLink 315 2333 90 14.8 3.89 0.331 0.387
Telstra 108 368 92 6.8 2.89 0.171 0.006
Tiscali 161 874 406 10.9 2.31 0.072 -0.063

pacities, flow demands of nodes. Instead of using different metrics to calculate total

throughput, our model is evaluated based on how many units can be transferred.

Thus, we can convert that model to other metric systems.

Topology: Rocketfuel topologies have information about nodes and links. But,

link capacities are not measured. In our analysis, we get link capacities inversely

proportional to the link weight information coming from Rocketfuel instead of trying

to estimate link capacities with actual real capacities.

Flow patterns: In our analysis, gravity-based flow patterns are calculated. In

a gravity-based model, we use actual population and geo-location of the cities where

nodes are located. Flow demands are calculated based on the gravity model, which

is the product of populations divided by the square of the geo-distance between the

source and destination locations of the flows. We also normalized the estimated flow

rates by the minimum rate attained by any flow. In both models, data flows are

full-duplex for each pair of nodes.

Unit equalization: Link capacities are calculated based on weight metrics com-

ing from Rocketfuel and flow demands are given in terms of the minimum flow rate.

Thus, unit equalization between the link capacities and the flow rates is needed to

calculate the total throughput. We performed this matching process during the max-

70

min allocation when flows share link capacities. Instead of equal distribution, we

allocated a link’s capacity based on rates/demands of the flows which are crossing

through that link. In homogeneous traffic pattern, capacity sharing will be equal.

However, in the gravity-based model, each flow will get their portion based on their

demands.

Load balancing on substrates: Our proposed method reduces multi-path cal-

culation problem to another problem: finding optimal subsets of possible substrates

to achieve maximum total throughput sent over network. In this model, it is needed

to determine the load on each substrate. In our analysis, we assigned data loads

incrementally on the substrates, starting from Substrate 0. First, we try to send all

data on a substrate, re-arrange capacities, and use the next substrate to send the rest

of data amount. For instance, let us assume that we have two cores and one flow. We

try to send the whole data on Substrate 1. If there is still data packets needed to be

sent, we will send them on Substrate 2.

Single Failure Analysis: MCPR is also tested when a failure occurs to show

robustness under dynamic networks. Under single failure analysis, nodes are down

one by one, and total throughput is calculated for each scenario at the time of failure.

Then, the average amount of throughput is computed to understand the performance

of MCPR in the case of losing a node temporarily.

We compare the heuristics against the single shortest path according to the

total throughput achieved from the generated substrates. In each scenario, we se-

lected different topologies. We generated gravity distributed model (inter-datacenter

traffic) flow sets for various topologies. We tested both cumulative and indepen-

dent approaches to generate substrates. In the independent generation, all substrate

graphs are generated from the actual topology. In the cumulative generation, each

71

substrate is forked from the previously created one and hence later graphs have a

larger portion of the network removed. We also test our performance in different

percentage of node removals and different removal approaches.

4.7 Evaluation of Heuristics

In this section we provide the comparison between multi-core parallel routing heuris-

tics and the shortest path routing. We first provide a summary of key results. Al-

though all techniques are better than the single core, HF (a.k.a. a measure of con-

gestion on the nodes/links) seems to be giving much better results as we expected.

HF identifies the edges that are most struck by shortest paths the flows use, and

hence attains a better balancing of traffic loads on substrates, each one of which uses

shortest-paths for routing. On the other hand, graph-based approaches, although they

perform better than the single shortest path, can not attain significant improvements

as nodes are being eliminated instead of edges. Note that, graph-based heuristics are

pre-computed methods that generate substrates by only using the network topology

information, and they do not require recalculation of the substrates until topology

changes.

Under the weighted traffic pattern, i.e., inter-data center traffic, parallel routing

heuristics achieve higher total throughput in comparison to the single core routing.

Also, they outperform even further as the number of cores and the offered load (i.e.,

the number of source-destination flows) increase. Edge removal clearly outperforms

node removal techniques since it works at the finer granularity of edges rather than

nodes. However, as the number of flows and the network gets larger, the flow-based

heuristics are computationally harder as they will have to cope with more dynamism

72

(a) Telstra - 1221 (b) SprintLink - 1239

(a) Ebone - 1755 (b) Tiscali - 3257

(a) Exodus - 3967 (b) AboveNet - 6461

Figure 4.6: Visualization of Rocketfuel topologies

73

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 6 10

independent subgraph generation

Average of Average Node Degrees

HF EBC NBC CC

DC EVC HCC PRC

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 6 10

cumulative subgraph generation

Average of Average Node Degrees

HF EBC NBC CC

DC EVC HCC PRC

Figure 4.7: Average of average node degree of the substrates for 2%, 6%, and 10%
removal

via repeated shortest path calculations on each substrate. Also, in the long term,

substrates generation process must be repeated periodically depending on the changes

in the flow sets.

4.7.1 Analysis of Substrates

In this section, we perform a detailed analysis of the substrates generated by each of

the heuristics. Figure 4.7 presents the average of the average node degree, Figure 4.8

gives the average maximum node degree, and Figure 4.9 shows the average clustering

coefficient of all created substrates. We show the average resulsts for the independent

as well as the cumulative removal on all Rocketfuel topologies. Cumulative substrates

generation significantly changes graph characteristic and sometimes removes connec-

tivity in the substrate. In general, node centrality heuristics disrupt the network in

substrates more than edge centrality and HF heuristics. Node centrality heuristics

have almost the same effect in terms of topology disruption. As expected, we observe

that small removal percentages have small effects on substrate characteristics. How-

74

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 6 10

independent subgraph generation

Average of Maximum Node Degree
HF EBC NBC

CC DC EVC

HCC PRC

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 6 10

cumulative subgraph generation

Average of Maximum Node Degree

HF EBC NBC

CC DC EVC

HCC PRC

Figure 4.8: Average of maximum node degree of the substrates for 2%, 6%, and 10%
removal

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 6 10

independent subgraph generation

Average of Clustering Coefficient HF EBC NBC CC

DC EVC HCC PRC

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 6 10

cumulative subgraph generation

Average of Clustering Coefficient
HF EBC NBC CC

DC EVC HCC PRC

Figure 4.9: Average of clustering coefficient of the substrates for 2%, 6%, and 10%
removal

75

ever, in larger removal percentages, multi-core parallel routing heuristics are not able

to generate different substrates, and start to generate too similar substrates after a

while. As practical observation, note that the removal percentage should be less than

100/numberOfCores as, after this point, there are no more nodes/edges to remove

in the substrates.

In node centrality heuristics, graph-based heuristics, the first substrate ex-

cludes the most centralized nodes, which causes a significant decrease in the average

and maximum node degree. After a point, the heuristics start to remove periphery

nodes from the network, and this increases the average node degree. This indicates

that later substrates might not improve the performance as removing periphery nodes

does not contribute to balance the load. Average node degree, however, is not affected

much by the edge removal heuristics. As a result, edge removal heuristics perform

better than node centralities (in Figure 4.12). We can observe the same pattern for

maximum node degree.

As HF is dynamically generating new substrates, it tends to remove the bridge

edges in the network. This causes an increase in the clustering coefficient of new

substrates. As EBC, edge betweenness centrality, removes the highest centrality

edges in initial substrates, the bridges remain in the subsequent substrates. This

leads to a decrease in clustering as central group of nodes are removed in subsequent

substrates.

On the other hand, in cumulative approach, average and maximum node de-

grees reduce significantly. Clustering increases with small removal percentages but,

when removal percentage is increased, clustering also plummets. For further results,

please see Appendix A.3.

76

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores 2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region Block

Independent Substrate Generation

Independent Substrate Generation - Average SU
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores 2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket Individual

Independent Substrate Generation

Independent Substrate Generation - Average SU
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores 2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region Block

Cumulative Substrate Generation

Cumulative Substrate Generation - Average SUEBC

ENC

END

NNB

HF

RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores 2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket Individual

Cumulative Substrate Generation

Cumulative Substrate Generation - Average SUEBC

ENC

END

NNB

HF

RNN

RNE

Figure 4.10: Speedups for Removal heuristics (Region, Block, Bucket and Individual
approaches) for both independent and cumulative substrate generation

77

4.7.2 Analysis of Removal Heuristics

In this section, we compare the performance of the removal heuristics for Bucket,

Region, Individual, and Block approaches. We give results for a couple of metrics

including EBC, ENC, END, NNB, HF, RNN, and RNE. We show HF and RNN

to determine upper and lower bounds of multi-core parallel routing performance, as

shown in Figure 4.10. As we discussed in the previous section, in cumulative substrate

generation, the new substrate are being disrupted rapidly which sets back the total

throughput. However, in the Individual method, we remove only one element at

each step that lessen deformation on the substrates but improve the performance at

a low level. As shown in Figure 4.10, Bucket removal performs better and reduces

the topology disruption for the cumulative method, but it does not entirely clear

congested spots at the same time. So, it does not have enough contribution to the

amount of total throughput. Block removes a block of nodes/edges while creating a

new substrate that removes the most important elements in first substrates, and this

gives good improvement in throughput. However, in later substrates, it removes low-

scored elements which reduces the performance significantly. Finally, Region removal

outperforms all other heuristics because of its sense of clearing the neighborhood of the

possible hot spots at the same time. On the other hand, in the independent removal

method, Region and Block perform better similar to the cumulative process. The

Individual approach has moderate improvement, and Bucket does not have significant

contribution to the performance. In Bucket, we remove some elements in each block

that are not able to clear the whole block and balance the load across the blocks.

When we remove the whole block to generate a new substrate, we reduce the load on

most used nodes synchronously which improves the performance of load balancing.

Finally, Region clears the neighborhood, so the overloaded nodes and the regions

78

around those nodes will not be on the newly generated substrates. When we increase

the number of cores, for the later substrates, Region will remove the area of the low-

scored nodes, which affects the performance severely. For further results, please see

Appendix A.2.

4.7.3 Performance Comparison

In this section, we evaluate the performance of centrality based heuristics to solve

substrate generation for multi-core parallel routing with Block Removal method.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup Telstra

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup Telstra

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure 4.11: Performance of MCPR heuristics for the Telstra topology

To analyze the speedup of heuristics, we show the performance of each against

the single shortest path as a baseline. Note that, highest flow heuristic is expected to

provide the best speedup as it dynamically adopts to the network flow in substrates.

79

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup Average
HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup Average
HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure 4.12: Average performance of MCPR heuristics for all topologies

Similarly, random network is supposed to provide the lower bound of speed-up as it

randomly removes nodes from the substrates.

Figure 4.11 presents the performance gain of substrate generation heuristics

compared to the single shortest path for Telstra topology. In the Figure, x-axis has two

different indicators. The first line on the top shows the removal percentage of network

nodes/links (which is incremented between 2% and 16% by 2). The second line gives

the number of cores (i.e., 2, 4, 8, 16, 32 cores) that will generate substrates. The last

line indicates the substrate creation approach, i.e., independent and cumulative. Test

results are given for gravity-based flow pattern which is proper for inter-data center

traffic flows. From Figure 4.11, we observe that multi-core parallel routing performs

much better than the single core routing (ranging from 1.2 times with 2 cores to 2.0

times with 32 cores).

80

Figure 4.12 presents the average performance gain of substrate generation

heuristics compared to the single shortest path for all topologies. Each heuristic

yields a higher performance than the single shortest path approach indicating even

with a poorly chosen heuristic (such as random node removal), multi-core parallel

routing can produce better throughput than traditional routing. We observe that

multi-core parallel routing heuristics improve with the number of cores.

While in some instances of independent substrate generation (e.g., 16% removal

with 32 cores), node centrality heuristics perform slightly worse than random network

generation, centrality heuristics overall yield better results than random removals.

Additionally, highest flow heuristic produces best throughput speed-up in a majority

of the instances as it adopts the substrate generation to network flows.

In both independent and cumulative methods, a specified percent of nodes/edges

are removed in the next substrate. As a result, the independent method removes fewer

elements in generating the next substrate. In Figure 4.12, we observe that the cu-

mulative method performs worse with higher node/edge removal rates in subsequent

substrates. As there are the greater number of nodes/edges ignored in the later sub-

strates, they are not able to yield viable e2e paths. Hence, node centrality metrics

occasionally perform worse than random node removal. On the other hand, with

independent substrate generation, higher removal rates yield better performance for

the HF approach that adjusts the substrates to the networks’ flow. Hence, in general

with a greater number of cores, one should utilize the independent edge removal in

the substrates to obtain viable paths that would provide higher throughput in the

network. For further results, please see Appendix A.1.

In the highest flow approach, a small number of removals with a higher number

of cores provides better throughput because HF removes hot spot(s) from the sub-

81

sequent substrates. Note that, however, highest flow approach needs to recalculate

substrates after each flow change. Hence, it is viable to use edge betweenness central-

ity that produces the best among centrality heuristics. Overall, for a large topology,

edge centrality heuristics are better with a high number of cores and independent

removal percentage within 8% to 10%.

When analyzing individual topologies, we observe that the best overall perfor-

mance is achieved with the SprintLink and AboveNet, two of the largest networks in

the data set. However, the third biggest network, Tiscali shows the most substan-

tial difference between highest flow and other centrality metrics. We believe this is

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2 4 8 16 32

Speedup Telstra

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2 4 8 16 32

Speedup Average

HF EBC

NBC CC

DC EVC

HCC PRC

RN

Figure 4.13: Effect of the number of cores with 8% independent removal (log-scale)

82

in part due to Tiscali graphs’ slightly disassortative behavior where highest degree

nodes form a core of the network. Hence, centrality based removals are not able to

produce viable substrates.

Figure 4.13 presents the effect of the number of cores in the networks with

%8 independent edge removal. As observed in both the Telstra and overall average

results, the speedup performance improves with the number of cores. However, this

improvement is sub-linear as the number of cores increases.

4.7.4 Analysis of Network Dynamics

In this section, we analyze the Multi-Core Parallel Routing heuristics under single

node/edge failures. Failure analysis helps to determine the robustness of the approach

under dynamic network conditions. Under single failure analysis, nodes or edges are

eliminated one by one and the total throughput is calculated for each graph with

the failed node/edge. We assume that the substrate graphs stay still even though a

node/edge fails. This allows us to see how robust the substrate graphs are against

single failures. In our simulation, we fail all the nodes and edges one by one separately

and compute the total throughput achieved on the given substrates. We use the same

Rocketfuel topologies and the same substrates used in Section 4.7.1. We compare the

average results to understand the single node failures and single edge failures.

Figure 4.14 presents the average throughput change when 6% and 8% removal

rate is used with closeness centrality and highest flow approaches in the AboveNet

topology. Multi-Core Parallel Routing uses only single shortest path calculation, even

though when one of the nodes/edges is down. In this case Multi-Core Parallel Routing

calculates new shortest paths on respective substrates instead of calculating the whole

end-to-end multiple paths. Overall, we observe that performance of multi-core parallel

83

routing is reduced by 0.4% when a node or edge failure occurs. When considering

the node failure, both NCC and HF approaches loose 0.7% and 0.6% throughput

on average for 6% and 8% removal rates, respectively. When considering the edge

failures, NCC looses 0.2% throughput on average while HF looses 0.1% throughput

with 6% removal rate. Similarly, with 8% removal rate, the average throughput

loss is 0.1%. Note that HF even improves the throughput with edge failures under

independent substrate graph generation with 8, 16 and 32 cores. This is due to the

fact that HF adjusts to the network condition and, with failure of an edge, it was

able to find alternative paths that slightly improved the overall throughput.

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

2 4 8 16 32 2 4 8 16 32

cumulative independent

Throughput
Change AboveNet (6% removal)

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

2 4 8 16 32 2 4 8 16 32

cumulative independent

Throughput
Change AboveNet (8% removal)

CC - EdgeFail CC - NodeFail

HF - EdgeFail HF - NodeFail

Figure 4.14: Performance of AboveNet with node/edge failures

84

Chapter 5

Parallel Routing Under

Heterogenous Core Distribution

There are different kinds of routers manufactured by various companies with the sev-

eral numbers of CPU cores. While building a new system, there could be different

requirements or limitations such as cost-effectiveness issues or geographical restric-

tions. Therefore, all devices on the network wouldn’t either work or be the same.

Since updating most of the systems with new technological devices, is not possible

in a short period of time, the homogeneity of the network system will be broken. As

a result, we need to find an appropriate MCPR solution that can also work in the

heterogeneous environment. MCPR could run on not only homogeneous systems but

also on the systems that have routers with various numbers of cores.

Recall that MCPR empowers each core to handle one of the generated sub-

strates to find a feasible manner for multi-path routing. Therefore, each core will

be having different topology information and every first core of the routers in the

system will have the same topology. Although this attains a basic consistency and

85

connectivity in routing, in the heterogeneous systems, not all substrates may be effi-

ciently hosted by some of the routers if their number of cores is fewer than the count

of generated substrates. For example, when four substrates are created, third and

fourth substrates cannot be assigned to a separate and dedicated core at a two cored

router. The problem with such situations is that, when two cored router has a flow

coming from a substrate that is not assigned to a separate core (e.g., third one), the

forwarding of the data packets for that flow will have to be handled by one of the two

cores that are already assigned to another substrate (e.g., the first or the second sub-

strates). This means that the flows on these unassigned substrates will have to share

the cores with other substrates. Such sharing of the cores will reduce the forwarding

(and control plane actions) speed and deteriorate the overall performance gains from

MCPR.

We will propose two heuristics to accommodate parallel routing with the het-

erogeneous count of router cores and experiment those solutions with the flow simula-

tor. In our first technique, we just gave up on some routers that cannot manage more

substrates during the substrate generation process. The next heuristic is to create an

average number of cores with an estimate of additional processing delay due to lack

of sufficient number of cores on some of the routers.

5.1 Heterogeneous Heuristics

To design MCPR heuristics that can run over routers with heterogeneous count of

cores, we try to estimate the additional load on the routers due to excessive sub-

strates than their core count. The first estimation we have is the router that has a

bigger degree value might be carrying more cores since those routers are needed to

86

be more powerful for processing more data than others. So, the distribution of the

core count over routers in a given topology is built depending on the degree centrality

of each router in our network model. We use the same graph-based heuristics for

heterogeneous scenarios with two different additional initial heuristics. These extra

features are needed to solve the substrate-core matching problems when all the cores

of a router had already been assigned to a substrate and a new substrate is created.

Additional Node Elimination: In this heuristic, after deciding which nodes

will be removed to generate a new substrate, some nodes are also maxed out if their

core number is fewer than the substrate count. Therefore, those nodes cannot be

included on the next substrate generations because they are not able to process the

data coming from the excessive substrates. Note that this is a preventive approach,

in that it eliminates the possibility of having excessive substrates than the number of

cores on a router.

Average Number of Cores - Normal: The second method is to create new

substrates up to an average number of cores and consider the additional processing

delay at the routers with excessive substrates. Since we did not implement a packet

simulator, we decided to simulate the worst case scenario for the data processing

delay. In order to evaluate the performance of this heuristic, we drop the data flow

speed by some amount if there wasn’t enough cores on the router in proportion to

how many times the router’s interface(s) was used. Following the observations on

the performance of MPTCP, we reduce the data flow speeds for the overloaded cores

proportionally [80] [25].

To model the data flow speed reduction, we generate three different versions of

the flow speed loss based on delay-tolerant and loss-tolerant applications. We assign

87

a (down)scaling factor to each node based on the excessiveness of the substrates, and

then, we calculate the scaling factor for a given path. For a flow traversing several

routers, we merge the scaling factors of those router to come up with one scaling factor

for the end-to-end flow’s data flow speed. For loss-tolerant applications, we product

all the nodes’ scaling factors to calculate how much extra data will be lost (i.e., the

reduction in the data flow speed) for a given path. For delay-tolerant applications, we

use the arithmetic average of the scaling factors to determine the amount of data flow

speed reduction. Finally, we use harmonic average of the scaling factors to understand

the heuristic’s performance for both delay and loss sensitive applications.

5.2 Simulation Environment

We use a modified version of the implemented simulation environment explained in

Chapter 4. We added processing delay for each interface and updated the simulation

to calculate the throughput for a delay, loss and mixed tolerant applications. Similar

to the homogeneous cases in Chapter 4, we evaluate our flow tests with max-min

allocation method to resolve the competition among the flows. But, if there is a data

stream coming from an excessive substrate, the router interfaces would be working

more to process the data on a core that is not already assigned. So, we added a new

feature that computes how many units will be lost because of this processing delay.

We reduce the performance of the interface depending on how many additional flows

will be processed by that interface. For instance, if there is a two core router trying

to handle four substrates, then both cores will be working two times more to process

the data flows because of sharing their capacity with other two excessive substrates.

In our evaluation we are taking a pessimistic approach, and even if the cores are not

88

used simultaneously, we are downscaling the data flow speeds as a worst case scenario.

In a real environment, less data would be lost due to the non-overlapping use of the

cores, but the worst case is simulated in our tests.

Similarly, we evaluate our heuristics on all Rocketfuel data set, and our results

are shown in normalized unit flow rates. Rocketfuel topologies give the topology

information and latencies on the links. However, there is no information about the

number of cores on each router. So, it is needed to create a new model simulating the

core distribution among the routers. We assume that the most used routers should

be stronger than the others to process the data passing through them. We create

usage model of the routers with geo-location and population. We use 2, 4, 8, 16, and

32 core routers, and we put an equal amount of each router into the topology. For

example, when a topology has 25 routers, we assume that the top 5 most-used, based

on their population, routers have 32 cores and following top 5 routers have 16 cores

and so on. Our comparison baseline is single shortest path according to the total

throughput gained.

5.3 Evaluation Results

We test all topologies for heterogeneous scenarios with a selected set of parameters

for core and removal percentages under both independent and cumulative substrate

generation methods. However, we just give the performance of EBC, ENB, and

NNB to show how multi-core parallel routing performs under heterogeneous core

distribution. We also show the average speedup among all Rocketfuel topologies.

We show the average performance of both Eliminated and the additional pro-

cessing loss (Normal) methods. We indicate the upper and lower bounds with a

89

1

1.2

1.4

1.6

1.8

2

2.2

2.4

10 16 10 16 6 16 6 16 6 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Independent Substrate Generation

Independent Substrate Generation - Average - Heterogenity
Eliminated - SU Throughput - EBC

Normal - SU Throughput - EBC

Normal - SU Arithmetic - EBC

Normal - SU Harmonic - EBC

Normal - SU Product - EBC

1

1.2

1.4

1.6

1.8

2

2.2

16 8 10 14 6 14 4 10 2

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Cumulative Substrate Generation

Cumulative Substrate Generation - Average - Heterogenity
Eliminated - SU Throughput - EBC

Normal - SU Throughput - EBC

Normal - SU Arithmetic - EBC

Normal - SU Harmonic - EBC

Normal - SU Product - EBC

Figure 5.1: Multi-core parallel routing performance with Edge Betweenness Centrality
metric under the heterogenous core distribution for both cumulative and independent
substrate generation approaches

line. The Normal Method throughput is the upper limit of the metric’s performance

when all nodes have enough capability to process all of the assigned substrates. The

Eliminated Method is a heuristic for the heterogeneous scenarios in such a way that it

eliminates the nodes with fewer cores than the number of substrates being assigned to

them. Since this elimination is done after the substrate is created, it means that the

technique removes additional elements after the substrate is created and this reduces

the total throughput. The Normal Method with Arithmetic, Harmonic and Product

downscaling factors show the speedup, each with a different type of sensitivity to loss

90

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

10 16 10 16 6 16 6 16 6 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Independent Substrate Generation

Independent Substrate Generation - Average - Heterogenity
Eliminated - SU Throughput - ENB

Normal - SU Throughput - ENB

Normal - SU Arithmetic - ENB

Normal - SU Harmonic - ENB

Normal - SU Product - ENB

1

1.2

1.4

1.6

1.8

2

2.2

16 8 10 14 6 14 4 10 2

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Cumulative Substrate Generation

CumulativeSubstrate Generation - Average - Heterogenity
Eliminated - SU Throughput - ENB

Normal - SU Throughput - ENB

Normal - SU Arithmetic - ENB

Normal - SU Harmonic - ENB

Normal - SU Product - ENB

Figure 5.2: Multi-core parallel routing performance with Edge Node Betweenness
metric under the heterogenous core distribution for both cumulative and independent
substrate generation approaches

and delay. Although the Normal Product is the lower bound of the multi-core parallel

routing, it still has an improvement to single shortest path baseline.

Since we got better performance with independent substrate generation tech-

nique as shown in Chapter 4, we get a better speed up for independent substrate

production for heterogeneous scenarios too. For both of the heuristic techniques, het-

erogeneous core distribution reduces the performance of multi-core parallel routing,

but it still outperforms the current single shortest path routing. In the cumulative

scenarios, we already remove most of the nodes from the given topology as shown

in Figures 5.1 and 5.2. So, node based heuristics, i.e., NNB as given in Figure 5.3,

are not affected too much like other heuristics. For all other scenarios, eliminating

additional nodes performs better than other techniques. Note that, in the Normal

91

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

10 16 10 16 6 16 6 16 6 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Independent Substrate Generation

Independent Substrate Generation - Average - Heterogenity
Eliminated - SU Throughput - NNB

Normal - SU Throughput - NNB

Normal - SU Arithmetic - NNB

Normal - SU Harmonic - NNB

Normal - SU Product - NNB

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

16 8 10 14 6 14 4 10 2

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Cumulative Substrate Generation

Cumulative Substrate Generation - Average - Heterogenity
Eliminated - SU Throughput - NNB

Normal - SU Throughput - NNB

Normal - SU Arithmetic - NNB

Normal - SU Harmonic - NNB

Normal - SU Product - NNB

Figure 5.3: Multi-core parallel routing performance with Node Node Betweenness
metric under the heterogenous core distribution for both cumulative and independent
substrate generation approaches

Method, we add some additional processing delay which causes data loss for those

flows going through the nodes with fewer cores than the number of substrates running

on them. So, multi-core parallel routing may give better results in real settings.

92

Chapter 6

Conclusion and Future Work

In this dissertation, we presented a new multi-path routing framework that uses graph

abstraction of the network topology and employs network centrality calculations to

generate subgraphs for multi-core routers. The basic idea is to virtually slice the

router topology into different subgraphs and assign each to a separate router core,

which calculates the classical shortest paths on the assigned subgraph. This eases

the computational complexity of multi-path routing by dividing the overall problem

into smaller ones and lending each subgraph to a separate CPU core with traditional

shortest path algorithms. Our evaluations showed that Multi-Core Parallel Routing

achieves higher total throughput and performs better with inter-data center network-

ing.

We proposed a new divide and conquer solution for multi-path calculation.

In this method, we create new virtual topologies, named as substrates, and calculate

shortest paths on each of them, instead of calculating end-to-end multiple paths. After

we show the general performance of Multi-Core Parallel Routing under various condi-

tions, we focus on the key point of this divide and conquer method. Normally, multi-

93

path routing algorithms need to calculate end-to-end paths when topology changes

including network failures. However, in MCPR, we solely calculate shortest paths

which is well-known algorithm already built in most of routers. We, finally, showed

how Multi-Core Parallel Routing is robust against single failures. Please note that

failures can also improve the performance of MCPR in some cases.

We performed a detailed graph analysis of subgraphs on multiple topologies to

determine best centrality heuristics to utilize in Multi-Core Parallel Routing (MCPR).

Experimental results show that centrality based heuristics are able to increase overall

throughput in the network 2+ times with 8-core routers compared to the current

single shortest path approach.

By designing MCPR, we transformed the multiple path routing calculation to

a subset selection problem from the set of all possible virtual topologies that can be

generated from a given topology. We defined MCPR as a MAX SUBSTRATE SET

problem and we analyzed its theoretical background. We gave the mathematical def-

inition of the MAX SUBSTRATE SET and showed that MCPR is an NP-Complete

problem by reducing the MAX SUBSTRATE SET to the well-known SUBSET SUM

problem.

We followed two approaches to designing heuristics: graph-based and flow-

based. In the former approach, we omitted the most utilized node(s) from Substrate

0 to generate new substrates. In the latter approach, we omitted the most utilized

edge for incrementally generating the substrates. Both approaches have advantages

and disadvantages. The graph-based approach is less expensive computationally

but attains lower aggregate throughput, while the latter achieves higher aggregate

throughput with a larger computational cost. We also followed both cumulative and

independent approaches to generate later substrates. In the independent approach,

94

we created all the substrates from the underlying topology, however, in the cumu-

lative approach, each substrate is produced from the previous one. We observed

that the independent approach gives better throughput with higher removal amount

whereas the cumulative approach performs better with small amount of removals as

new substrates are generated.

We also analyzed the effects of various selection methods after finding the

central nodes to remove for generating the following substrate. We showed that a dy-

namic method, i.e., discovering the neighborhood in each step, gains better through-

put and can cause less disruptions on the later substrates. However, static methods,

such as block removing and bucket removing, also outperforms single shortest path

baseline, even though they can cause the significant changes on later substrates. Note

that, discovering the neighborhoods of nodes dynamically will cause additional cost

during the substrate generation process.

We showed the performance of Multi-Core Parallel Routing when routers have

different number of cores. We created a model of heterogenous distribution of routers

and tested MCPR with this scenario. In this model, some substrates not be assigned

a dedicated core on the routers that have fewer cores than the substrate count. We

modified our heuristics with both additional node removing and additional processing

cost after creating substrates as before. We showed our results for delay-tolerant and

loss-tolerant applications. MCPR attains higher throughput against the shortest path

baseline under heterogeneous distribution of cores across network routers.

To sum up, in this dissertation, we proposed a new framework having higher

throughput during the big data transfers, and better performance to balance the

load over the network. Multi-core parallel routing framework solves the multi-path

calculation problem with well-known techniques that adapts to the current systems

95

easily. Further, proposed framework is robust and responds well to network failures

because of its divide and conquer design.

Possible future work includes to create subgraphs with other search algorithms

such as genetic algorithms, and improving heuristics with dynamic and static solu-

tions. Multi-Core Parallel Routing can also be run on a test-bed or real environment

to show easy adaptation and real performance. We will experiment our heuristics with

end-to-end reliable transport protocols on a larger test base. Lastly, this technique

might be enhanced and kernel level implementation can be done as a new protocol.

The comparison between Multi-Core Parallel Routing and other multi-path routing

algorithms can be investigated. In this dissertation, we focused on the routing aspects

to show how Multi-Core Parallel Routing framework performs. As a possible future

work, Multi-Core Parallel Routing framework can be analyzed with different aspects

of networking such as by exploring its SDN implementations and the performance of

Multi-Core Parallel Routing on centralized and de-centralized systems.

96

Appendix A

Additional Figures

A.1 Centrality Metrics

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup AboveNet

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.5

2.0

2.5

3.0

3.5

4.0

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup AboveNet

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure A.1: Centrality results - AboveNet

97

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup Ebone

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup Ebone

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure A.2: Centrality results - Ebone

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup Exodus

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup Exodus

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure A.3: Centrality results - Exodus

98

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup Telstra

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup Telstra

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure A.4: Centrality results - Telstra

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Speedup Tiscali

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Speedup Tiscali

HF

EBC

NBC

CC

DC

EVC

HCC

PRC

RN

Figure A.5: Centrality results - Tiscali

99

A.2 Remove Heuristics

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Cumulative Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Cumulative Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Cumulative Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Cumulative Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

Figure A.6: Removal approaches with cumulative substrate generation for AboveNet

100

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Independent Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Independent Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Independent Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Independent Substrate Generation

AboveNet - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

Figure A.7: Removal approaches with independent substrate generation for AboveNet

101

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Cumulative Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Cumulative Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Cumulative Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Cumulative Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

Figure A.8: Removal approaches with cumulative substrate generation for Ebone

102

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Independent Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Independent Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Independent Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Independent Substrate Generation

Ebone - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

Figure A.9: Removal approaches with independent substrate generation for Ebone

103

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Cumulative Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Cumulative Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Cumulative Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Cumulative Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

Figure A.10: Removal approaches with cumulative substrate generation for Exodus

104

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Independent Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Independent Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Independent Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Independent Substrate Generation

Exodus - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

Figure A.11: Removal approaches with independent substrate generation for Exodus

105

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Cumulative Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Cumulative Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Cumulative Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Cumulative Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

Figure A.12: Removal approaches with cumulative substrate generation for Telstra

106

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Independent Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Independent Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Independent Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Independent Substrate Generation

Telstra - SpeedUp
EBC

ENC

END

NNB

HF

RNN

RNE

Figure A.13: Removal approaches with independent substrate generation for Telstra

107

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Cumulative Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Cumulative Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Cumulative Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Cumulative Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

Figure A.14: Removal approaches with cumulative substrate generation for Tiscali

108

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Block

Independent Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Bucket

Independent Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Individual

Independent Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

Region

Independent Substrate Generation

Tiscali - SpeedUp
EBC ENC

END NNB

HF RNN

RNE

Figure A.15: Removal approaches with independent substrate generation for Tiscali

109

A.3 Substrate Characteristics

1

3

5

7

9

11

13

15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

AboveNet - Average Node Degree HF EBC

NBC CC

DC EVC

HCC PRC

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

AboveNet - Maximum Node Degree HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

AboveNet - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.16: Substrate changes with cumulative generation for AboveNet

110

1

3

5

7

9

11

13

15

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

AboveNet - Average Node Degree

HF EBC

NBC CC

DC EVC

HCC PRC

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

AboveNet - Maximum Node Degree

HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

AboveNet - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.17: Substrate changes with independent generation for AboveNet

111

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Ebone - Average Node Degree HF EBC

NBC CC

DC EVC

HCC PRC

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Ebone - Maximum Node Degree
HF EBC NBC

CC DC EVC

HCC PRC

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Ebone - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.18: Substrate changes with cumulative generation for Ebone

112

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Ebone - Average Node Degree

HF EBC

NBC CC

DC EVC

HCC PRC

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Ebone - Maximum Node Degree

HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Ebone - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.19: Substrate changes with independent generation for Ebone

113

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Exodus - Average Node Degree HF EBC

NBC CC

DC EVC

HCC PRC

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Exodus - Maximum Node Degree HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Exodus - Clustering Coefficient HF EBC NBC

CC DC EVC

HCC PRC

Figure A.20: Substrate changes with cumulative generation for Exodus

114

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Exodus - Average Node Degree

HF EBC

NBC CC

DC EVC

HCC PRC

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Exodus - Maximum Node Degree

HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Exodus - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.21: Substrate changes with independent generation for Exodus

115

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Telstra - Average Node Degree
HF EBC

NBC CC

DC EVC

HCC PRC

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Telstra - Maximum Node Degree HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Telstra - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.22: Substrate changes with cumulative generation for Telstra

116

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Telstra - Average Node Degree
HF EBC

NBC CC

DC EVC

HCC PRC

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Telstra - Maximum Node Degree
HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Telstra - Clustering Coefficient HF EBC NBC

CC DC EVC

HCC PRC

Figure A.23: Substrate changes with independent generation for Telstra

117

1

3

5

7

9

11

13

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Tiscali - Average Node Degree HF EBC

NBC CC

DC EVC

HCC PRC

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Tiscali - Maximum Node Degree

HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

cumulative subgraph generation

Tiscali - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.24: Substrate changes with cumulative generation for Tiscali

118

1

3

5

7

9

11

13

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Tiscali - Average Node Degree

HF EBC

NBC CC

DC EVC

HCC PRC

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Tiscali - Maximum Node Degree

HF EBC NBC

CC DC EVC

HCC PRC

0.00

0.05

0.10

0.15

0.20

0.25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2 6 10

independent subgraph generation

Tiscali - Clustering Coefficient

HF EBC NBC

CC DC EVC

HCC PRC

Figure A.25: Substrate changes with independent generation for Tiscali

119

Bibliography

[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. Volley:
Automated data placement for geo-distributed cloud services. In NSDI, pages
17–32, 2010.

[2] D. Agrawal, S. Das, and A. El Abbadi. Big data and cloud computing: Current
state and future opportunities. In Proceedings of the 14th International Con-
ference on Extending Database Technology, EDBT/ICDT ’11, pages 530–533,
New York, NY, USA, 2011. ACM.

[3] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algo-
rithms, and applications. 1993.

[4] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker. pfabric: Minimal near-optimal datacenter transport. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 435–446. ACM,
2013.

[5] W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu,
and I. Foster. The Globus striped GridFTP framework and server. In Proceed-
ings of ACM/IEEE conference on Supercomputing, page 54, 2005.

[6] J. E. Anderson. The gravity model. Annu. Rev. Econ., 3(1):133–160, 2011.

[7] M. Balman and T. Kosar. Dynamic adaptation of parallelism level in data
transfer scheduling. In Complex, Intelligent and Software Intensive Systems,
2009. CISIS’09. International Conference on, pages 872–877. IEEE, 2009.

[8] C. Barakat, E. Altman, and W. Dabbous. On tcp performance in a hetero-
geneous network: a survey. Communications Magazine, IEEE, 38(1):40–46,
2000.

[9] S. Barré, O. Bonaventure, C. Raiciu, and M. Handley. Experimenting with
multipath tcp. ACM SIGCOMM Computer Communication Review, 41(4):443–
444, 2011.

120

[10] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an open source software for
exploring and manipulating networks. ICWSM, 8:361–362, 2009.

[11] V. Betz, J. Swartz, and V. Gouterman. Method and apparatus for performing
parallel routing using a multi-threaded routing procedure, Sept. 10 2013. US
Patent 8,533,652.

[12] B. W. Boehm. A spiral model of software development and enhancement. Com-
puter, 21(5):61–72, 1988.

[13] L. Bolc and J. Cytowski. Search methods for artificial intelligence. Academic
Press, 1992.

[14] R. Bolla, R. Bruschi, and P. Lago. Energy adaptation in multi-core software
routers. Computer Networks, 65:111–128, 2014.

[15] J. E. Burns, T. J. Ott, A. E. Krzesinski, and K. E. Müller. Path selection and
bandwidth allocation in {MPLS} networks. Performance Evaluation, 52(2–
3):133 – 152, 2003. Internet Performance and Control of Network Systems.

[16] M. Calder, R. Miao, K. Zarifis, E. Katz-Bassett, M. Yu, and J. Padhye. Don’t
drop, detour! In Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 503–504. ACM, 2013.

[17] K. Cameron, E. M. Eschen, C. T. Hoàng, and R. Sritharan. The list partition
problem for graphs. In Proceedings of the fifteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 391–399. Society for Industrial and Applied
Mathematics, 2004.

[18] V. Cerf, Y. Dalal, and C. Sunshine. Specification of internet transmission control
program rfc 675. 1974.

[19] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and K. Xu. A first look at inter-
data center traffic characteristics via yahoo! datasets. In INFOCOM, 2011
Proceedings IEEE, pages 1620–1628. IEEE, 2011.

[20] A. CloudFront. Amazon cloudfront. URL: http://aws. amazon. com/cloudfront,
2014.

[21] G. Consortium et al. Gephi. Computer program](version 0.8. 2 Beta)
http://gephi. github. io/. Accessed, 14, 2014.

[22] C.Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving datacenter performance and robustness with multipath tcp. In Pro-
ceedings of ACM SIGCOMM, pages 266–277, 2011.

121

[23] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[24] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao,
and R. Rasmussen. The gamma database machine project. Knowledge and
Data Engineering, IEEE Transactions on, 2(1):44–62, 1990.

[25] J. Duan, Z. Wang, and C. Wu. Responsive multipath tcp in sdn-based data-
centers. In Communications (ICC), 2015 IEEE International Conference on,
pages 5296–5301. IEEE, 2015.

[26] P. Eardley. Survey of mptcp implementations. 2013.

[27] N. Egi, G. Iannaccone, M. Manesh, L. Mathy, and S. Ratnasamy. Improved
parallelism and scheduling in multi-core software routers. The Journal of Su-
percomputing, 63(1):294–322, 2013.

[28] N. Farrington and A. Andreyev. Facebook’s data center network architecture.
In IEEE Opt. Interconnects Conf, pages 5–7. Citeseer, 2013.

[29] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. Tcp extensions for mul-
tipath operation with multiple addresses. RFC, (6824), January 2013.

[30] T. Ganegedara and V. Prasanna. 100+ gbps ipv6 packet forwarding on multi-
core platforms.

[31] Y. Ganjali and A. Keshavarzian. Load balancing in ad hoc networks: single-path
routing vs. multi-path routing. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, volume 2,
pages 1120–1125. IEEE, 2004.

[32] J. J. Garcia-Luna-Aceves, M. Mosko, and C. E. Perkins. A new approach to
on-demand loop-free routing in networks using sequence numbers. Computer
Networks, 50(10):1599–1615, 2006.

[33] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

[34] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete
graph problems. Theoretical computer science, 1(3):237–267, 1976.

[35] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data cen-
ters: measurement, analysis, and implications. In ACM SIGCOMM Computer
Communication Review, volume 41, pages 350–361. ACM, 2011.

122

[36] I. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl. Adaptive multipath routing
for dynamic traffic engineering. In Proceedings of IEEE Global Communications
Conference (GLOBECOM), San Francisco, CA, November 2003.

[37] S. Grover. Using Multicore to Accelerate Network Routing Protocols. North
Carolina State University, 2013.

[38] M. Hilbert and P. López. The world’s technological capacity to store, commu-
nicate, and compute information. Science, 332(6025):60–65, 2011.

[39] C. J. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal of the
ACM (JACM), 60(6):45, 2013.

[40] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven wan. In Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 15–26.
ACM, 2013.

[41] D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D. P. Hill,
R. Kania, M. Schaeffer, S. St Pierre, et al. Big data: The future of biocuration.
Nature, 455(7209):47–50, 2008.

[42] T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344–360,
1963.

[43] V. Jacobson, R. Braden, D. Borman, M. Satyanarayanan, J. Kistler, L. Mum-
mert, and M. Ebling. Rfc 1323: Tcp extensions for high performance, 1992.

[44] J.Raju and J. Garcia-Luna-Aceves. A new approach to on-demand loop-free
multipath routing. In International Conference on Computer Communications
and Networks (ICCCN), pages 522–527, 1999.

[45] H. T. Karaoglu, M. Yuksel, and M. H. Gunes. On the scalability of path ex-
ploration using opportunistic path-vector routing. In 2011 IEEE International
Conference on Communications (ICC), pages 1–5. IEEE, 2011.

[46] R. M. Karp. Reducibility among combinatorial problems. pages 85–103, 1972.

[47] H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to NP-Completeness of
knapsack problems. Springer, 2004.

[48] C. H. Kingsley and G. L. McHugh. Parallel signal routing, Feb. 26 2013. US
Patent 8,386,983.

123

[49] T. Kosar, E. Arslan, B. Ross, and B. Zhang. Storkcloud: Data transfer schedul-
ing and optimization as a service. In Proceedings of the 4th ACM workshop on
Scientific cloud computing, pages 29–36. ACM, 2013.

[50] D. L. Kreher and D. R. Stinson. Combinatorial algorithms: generation, enu-
meration, and search, volume 7. CRC press, 1998.

[51] L. Lan, L. Li, and C. Jianya. A multipath routing algorithm based on ospf
routing protocol. In Semantics, Knowledge and Grids (SKG), 2012 Eighth
International Conference on, pages 269–272. IEEE, 2012.

[52] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter bulk
transfers with netstitcher. In Proceedings of ACM SIGCOMM, 2011.

[53] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter bulk
transfers with netstitcher. ACM SIGCOMM Computer Communication Review,
41(4):74–85, 2011.

[54] M. Laubach and J. Halpern. Rfc 2225: Classical ip and arp over atm. Newbridge
Networks, 1998.

[55] S.-J. Lee and M. Gerla. Split multipath routing with maximally disjoint paths
in ad hoc networks. In Communications, 2001. ICC 2001. IEEE International
Conference on, volume 10, pages 3201–3205. IEEE, 2001.

[56] T. LHC Study Group et al. The large hadron collider, conceptual design. Tech-
nical report, CERN/AC/95-05 (LHC) Geneva, 1995.

[57] S. Lohr. The age of big data. New York Times, 11, 2012.

[58] L. Lovász. Combinatorial problems and exercises, volume 361. American Math-
ematical Soc., 1993.

[59] C. Lynch. Big data: How do your data grow? Nature, 455(7209):28–29, 2008.

[60] G. Malkin. Rfc 2453: Rip version 2. Request for Comments, 2453, 1998.

[61] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers. Big data: The next frontier for innovation, competition, and productiv-
ity. 2011.

[62] M. K. Marina and S. R. Das. On-demand multipath distance vector routing in
ad hoc networks. In Network Protocols, 2001. Ninth International Conference
on, pages 14–23. IEEE, 2001.

[63] R. Miller. Google data center faq. Datacenter Knowledge, 27, 2008.

124

[64] S. Molnár, B. Sonkoly, and T. A. Trinh. A comprehensive tcp fairness analysis
in high speed networks. Computer Communications, 32(13):1460–1484, 2009.

[65] J. Moy. rfc 2328: Ospf version 2, 1998.

[66] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul. Spain: Cots
data-center ethernet for multipathing over arbitrary topologies. In NSDI, pages
265–280, 2010.

[67] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary. Netlord:
a scalable multi-tenant network architecture for virtualized datacenters. ACM
SIGCOMM Computer Communication Review, 41(4):62–73, 2011.

[68] S. Murthy and J. Garcia-Luna-Aceves. Congestion-oriented shortest multipath
routing. In INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE
Computer Societies. Networking the Next Generation. Proceedings IEEE, vol-
ume 3, pages 1028–1036. IEEE, 1996.

[69] A. Nasipuri and S. R. Das. On-demand multipath routing for mobile ad hoc net-
works. In Computer Communications and Networks, 1999. Proceedings. Eight
International Conference on, pages 64–70. IEEE, 1999.

[70] S. Nelakuditi and Z. Zhang. On selection of paths for multipath routing. In Pro-
ceedings of IEEE/IFIP International Workshop on Quality of Service (IWQoS),
pages 170–186, 2001.

[71] R. G. Ogier, V. Rutenburg, and N. Shacham. Distributed algorithms for com-
puting shortest pairs of disjoint paths. Information Theory, IEEE Transactions
on, 39(2):443–455, 1993.

[72] S. Okada. Fuzzy shortest path problems incorporating interactivity among
paths. Fuzzy Sets and Systems, 142(3):335–357, 2004.

[73] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring
mobile/wifi handover with multipath tcp. In Proceedings of the 2012 ACM
SIGCOMM workshop on Cellular networks: operations, challenges, and future
design, pages 31–36. ACM, 2012.

[74] M. R. Pearlman, Z. J. Haas, P. Sholander, and S. S. Tabrizi. On the impact of
alternate path routing for load balancing in mobile ad hoc networks. In Mobile
and Ad Hoc Networking and Computing, 2000. MobiHOC. 2000 First Annual
Workshop on, pages 3–10. IEEE, 2000.

[75] L. L. Peterson and B. S. Davie. Computer networks: a systems approach.
Elsevier, 2007.

125

[76] C. Pluntke, L. Eggert, and N. Kiukkonen. Saving mobile device energy with
multipath tcp. In Proceedings of the sixth international workshop on MobiArch,
pages 1–6. ACM, 2011.

[77] J. Postel. Rfc 791: Internet protocol. 1981.

[78] J. Postel. Transmission control protocol (tcp)-rfc 793, 1981.

[79] R. Potharaju and N. Jain. When the network crumbles: An empirical study of
cloud network failures and their impact on services. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 15. ACM, 2013.

[80] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
and M. Handley. How hard can it be? designing and implementing a deployable
multipath tcp. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, pages 29–29. USENIX Association, 2012.

[81] I. Recommendation. 200 (1994)— iso/iec 7498-1: 1994. Information technology–
Open Systems Interconnection–Basic Reference Model: The basic model.

[82] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). 1995.

[83] T. Rentsch. Object oriented programming. ACM Sigplan Notices, 17(9):51–57,
1982.

[84] E. Rosen et al. Rfc 3031: Mpls architecture. IETF Request of Comments, 2001.

[85] E. Rosen, A. Viswananthan, and R. Callon. Multiprotocol label switching ar-
chitecture. IETF RFC 3031, February 2001.

[86] J. B. Rothnie Jr, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A.
Landers, C. Reeve, D. W. Shipman, and E. Wong. Introduction to a system
for distributed databases (sdd-1). ACM Transactions on Database Systems
(TODS), 5(1):1–17, 1980.

[87] J. Rozas, J. Sanchez-Delbarrio, X. Messeguer, and R. Rozas. Dnasp, dna
polymorphism analyses by the coalescent and other methods. Bioinformatics,
19:2496–2497, 2003.

[88] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4):277–288, 1984.

[89] Y. Shintani, M. Inagi, S. Nagayama, and S. Wakabayashi. A multithreaded par-
allel global routing method with overlapped routing regions. In Digital System
Design (DSD), 2013 Euromicro Conference on, pages 591–597. IEEE, 2013.

126

[90] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1–10. IEEE, 2010.

[91] H. Smit and T. Li. Is-is extensions for traffic engineering. 2008.

[92] A. Soran, F. M. Akdemir, and M. Yuksel. Parallel routing on multi-core routers
for big data transfers. In Proceedings of the 2013 workshop on Student workhop,
pages 35–38. ACM, 2013.

[93] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with rock-
etfuel. In Proc. of ACM SIGCOMM, pages 133–145, 2002.

[94] T. Thorsen, S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration.
Science, 298(5593):580–584, 2002.

[95] B. Tierney, E. Kissel, M. Swany, and E. Pouyoul. Efficient data transfer pro-
tocols for big data. In E-Science (e-Science), 2012 IEEE 8th International
Conference on, pages 1–9. IEEE, 2012.

[96] R. van der Pol, M. Bredel, A. Barczyk, B. Overeinder, N. van Adrichem, and
F. Kuipers. Experiences with mptcp in an intercontinental multipathed open-
flow network. In Proceedings of the 29th Trans European Research and Educa-
tion Networking Conference, D. Foster, Ed. TERENA, 2013.

[97] S. Vutukury and J. Garcia-Luna-Aceves. Mdva: A distance-vector multipath
routing protocol. In Proceedings of IEEE INFOCOM, 2001.

[98] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg. Cope:
traffic engineering in dynamic networks. In ACM SIGCOMM Computer Com-
munication Review, volume 36, pages 99–110. ACM, 2006.

[99] Y. Wang, S. Su, A. X. Liu, and Z. Zhang. Multiple bulk data transfers schedul-
ing among datacenters. Computer Networks, 2014.

[100] Y. Xu, B. Leong, D. Seah, and A. Razeen. mpath: High-bandwidth data
transfers with massively multipath source routing. Parallel and Distributed
Systems, IEEE Transactions on, 24(10):2046–2059, 2013.

[101] E. Yildirim, E. Arslan, J. Kim, and T. Kosar. Application-level optimization
of big data transfers through pipelining, parallelism and concurrency. IEEE
Transactions on Cloud Computing, 4(1):63–75, 2016.

127

[102] W. T. Zaumen and J. Garcia-Luna-Aceves. Loop-free multipath routing using
generalized diffusing computations. In INFOCOM’98. Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1408–1417. IEEE, 1998.

[103] J. C. Zheng Wang. Analysis of shortest-path routing algorithms in a dynamic
network environment. Computer Communication Review, 22(2):63–71, 1992.

[104] Z. Zhu, W. Lu, L. Zhang, and N. Ansari. Dynamic service provisioning in elastic
optical networks with hybrid single-/multi-path routing. Lightwave Technology,
Journal of, 31(1):15–22, 2013.

