University of Nevada, Reno

Multi-Core Parallel Routing

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in

Computer Science and Engineering

by

Ahmet Soran

Dr. Murat Yuksel / Dissertation Advisor

May, 2017

Copyright by Ahmet Soran (¢) 2017

All Rights Reserved

THE GRADUATE SCHOOL

We recommend that the dissertation
prepared under our supervision by

AHMET SORAN
Entitled
Multi-Core Parallel Routing

be accepted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

Murat Yuksel, Ph.D., Advisor

Mehmet Hadi Gunes, Ph.D., Committee Member

Shamik Sengupta, Ph.D., Committee Member

Sergiu Dascalu, Ph.D., Committee Member

Gokhan Pekcan, Ph.D., Graduate School Representative

David W. Zeh, Ph. D., Dean, Graduate School

May, 2017

Abstract

The recent increase in the amount of data (i.e., big data) led to higher data volumes
to be transferred and processed over the network. Also, over the last years, the
deployment of multi-core routers has grown rapidly. However, such big data transfers
are not leveraging the powerful multi-core routers to the extent possible, particularly
in the key function of routing. Our main goal is to find a way so we can use these cores
more effectively and efficiently in routing the big data transfers. In this dissertation,
we propose a novel approach to parallelize data transfers by leveraging the multi-core
CPUs in the routers. Legacy routing protocols, e.g. OSPF for intra-domain routing,
send data from source to destination on a shortest single path. We describe an end-
to-end method to distribute data optimally on flows by using multiple paths. We
generate new virtual topology substrates from the underlying router topology and
perform shortest path routing on each substrate. With this framework, even though
calculating shortest paths could be done with well-known techniques such as OSPF’s
Dijkstra implementation, finding optimal substrates so as to maximize the aggregate
throughput over multiple end-to-end paths is still an NP-hard problem. We focus our
efforts on solving the problem and design heuristics for substrate generation from a
given router topology. Our heuristics’ interim goal is to generate substrates in such
a way that the shortest path between a source-destination pair on each substrate
minimally overlaps with each other. Once these substrates are determined, we assign
each substrate to a core in routers and employ a multi-path transport protocol, like

MPTCP, to perform end-to-end parallel transfers.

to Halil Soran and my family

i

il

Acknowledgments

I would like to start with the name of the One who gives me everything; GOD.
Secondly, I want to thank the most important people in my life who always supported
me and as I walked down new paths in my life journey; my family. In the first year of
elementary school, my family moved out to a bigger city to ensure a better education
for me. To them, I have to say more than 'thank you.” Hopefully, they will consider
this dissertation as my gift in return for all that they did. By name they are: Munise
Soran, Iffet Soran, Zeliha Soran, Serdar Soran, and Omer Batu Akcal. Also, I would
like to thank Halil Soran for not only being my father; but also for being my life-
coach. I want to express my gratitude to the dissertation committee and my advisor
for their extreme patience in the face of numerous obstacles. Moreover, I would like
to thank Cemal Elci for his material and spiritual support, rest in peace. Thanks to
the Ministry of National Education of Turkey for their support.

I would like to thank all of my friends in this period of my life: Mehmet Dogan,
Murat Demirbuken, Hicabi Bozkaya, and Ethem Coskun. They were always there to
give me a hand. I would like to thank Turkish Cultural Association members. I would
also like to thank Ibrahim Ethem Bagci for his overseas support and his sincere and
relentless support. I am grateful to Esra Torlak, the best psychologist I have ever
met, for all of her support, smile and motivation work. I also thank to Carol Souders
and Dennis Ciceu for their kindness and hospitality.

I want to personally credit and sincerely acknowledge Dr. Mustafa Omer

iv
Kilavuz for starting me on my journey to success. He convinced me to apply to
UNR. And my first and the most influential teacher Zehra Erunsal is also held in
high esteem for her initial belief in my potential way back in elementary school. I
would like to thank all the staff and teachers Beytepe Elementary School for giving
me a chance to build a better life.

And now may I move forward and note a special thank you to my most-
admired colleagues of the UNR Computer Networking Lab - with a special mention
to Esra Erdin, Mahmudur Kahn, Prasun Dey, Vahid Behzadan, Paulo Regis, Suman
Bhunia, Jay Thom and Nate Thom. I would also like to thank TOBB Economics
and Technology University for giving me an excellent education to demonstrate my
skills and TOBB ETU Alumni for always keeping in touch with me to show their
support. Most significantly, I would like to thank Dr. Bulent Tavli for mentoring me
and always pushing me to do my best. Further, I want to thank the Guest Services
staff of Athletics and Lawlor Event Center for being kind to me, and all others.
Also, T want to thank all those people that smiled at me and supported me in this

monumental journey.

AHMET SORAN

University of Nevada, Reno

May 2017

Abstract

Contents

Acknowledgments

List of Tables

List of Figures

Chapter 1 Introduction

1.1 Parallel Routing: A Simplified Example

1.2 Contributions and Key Insights

1.3 Dissertation Organization

Chapter 2 Background

2.1 Networking Basics and Protocols

2.1.1

2.1.2
2.1.3
214

Link State Routing and Link Layer Support for Traffic Engi-
NEETING . . . o o o v i e e e e e
Internet Protocol: End-to-End Design
Transmission Control Protocol

Multi-Path TCPo o oo

iii

viii

ix

10

11

2.2
2.3
24
2.5

Multi-path Routing
Bulk Data Transfer in Data Center Networking
Multi-Core Protocols
Theory - NP Completeness
2.5.1 Multi-Commodity Flow Problem
2.5.2 Subset Sum Problem

2.5.3 Edge Disjoint Path Problem

Chapter 3 Parallel Routing

3.1

Formal Description

Chapter 4 Parallel Routing Heuristics

4.1
4.2
4.3
4.4
4.5

4.6
4.7

Graph-Based Heuristics
Flow-Based Heuristics,
Comparison of Heuristics
Removal Methods
Parallel Routing Under Network Dynamics
4.5.1 Traffic Spikeso L
4.5.2 Failures
Experimental Setup oL
Evaluation of Heuristics
4.7.1 Analysis of Substrates L.
4.7.2 Analysis of Removal Heuristics
4.7.3 Performance Comparison

4.7.4 Analysis of Network Dynamics

vi
24

27
29
31
32
33
33

35
39

vii

Chapter 5 Parallel Routing Under Heterogenous Core Distribution 84

5.1 Heterogeneous Heuristics 85
5.2 Simulation Environment 87
5.3 Evaluation Results, 88
Chapter 6 Conclusion and Future Work 92
Appendix A Additional Figures 96
A.1 Centrality Metricso 96
A.2 Remove Heuristics 99
A.3 Substrate Characteristics 109

Bibliography 119

viil

List of Tables

4.1 High level comparison of heuristics o7
4.2 Low level comparison of heuristics 58

4.3 Characteristics of network topologies 69

List of Figures

Parallel routing over multiple abstractions of the same underlying net-

A sample heuristic for parallel routing: Remove the link maxed out by

current substrates.,

Open Systems Interconnections conceptual reference model
Encapsulation during data connection L.
TCP 3-way handshaking for connection initialization

Comparison of TCP and MPTCP protocol stacks
Motivating scenario with two cores

Activity diagram for parallel routing with n cores
Activity diagram for simulatoro
Visualization of removal methods on AboveNet with 8% removal . . .
Visualization of region removal on AboveNet with 8 % removal
Class diagram for substrate generator

Visualization of Rocketfuel topologies

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14

5.1

5.2

5.3

Al
A2
A3

Average of average node degree of the substrates for 2%, 6%, and 10%
removal 73
Average of maximum node degree of the substrates for 2%, 6%, and
10% removal 74
Average of clustering coefficient of the substrates for 2%, 6%, and 10%
removal L 74
Speedups for Removal heuristics (Region, Block, Bucket and Individual
approaches) for both independent and cumulative substrate generation 76
Performance of MCPR heuristics for the Telstra topology 78
Average performance of MCPR heuristics for all topologies 79
Effect of the number of cores with 8% independent removal (log-scale) 81

Performance of AboveNet with node/edge failures 83

Multi-core parallel routing performance with Edge Betweenness Cen-
trality metric under the heterogenous core distribution for both cumu-
lative and independent substrate generation approaches 89
Multi-core parallel routing performance with Edge Node Betweenness
metric under the heterogenous core distribution for both cumulative
and independent substrate generation approaches 90
Multi-core parallel routing performance with Node Node Betweenness

metric under the heterogenous core distribution for both cumulative

and independent substrate generation approaches 91
Centrality results - AboveNet, .. 96
Centrality results - Ebone L. 97

Centrality results - Exodus 97

A.4 Centrality results - Telstra 98
A.5 Centrality results - Tiscali 98
A.6 Removal approaches with cumulative substrate generation for AboveNet 99
A.7 Removal approaches with independent substrate generation for AboveNet 100
A.8 Removal approaches with cumulative substrate generation for Ebone . 101
A.9 Removal approaches with independent substrate generation for Ebone 102
A.10 Removal approaches with cumulative substrate generation for Exodus 103
A.11 Removal approaches with independent substrate generation for Exodus 104
A.12 Removal approaches with cumulative substrate generation for Telstra 105
A.13 Removal approaches with independent substrate generation for Telstra 106
A.14 Removal approaches with cumulative substrate generation for Tiscali 107

A.15 Removal approaches with independent substrate generation for Tiscali 108

A.16 Substrate changes with cumulative generation for AboveNet 109
A.17 Substrate changes with independent generation for AboveNet 110
A.18 Substrate changes with cumulative generation for Ebone 111
A.19 Substrate changes with independent generation for Ebone 112
A.20 Substrate changes with cumulative generation for Exodus 113
A.21 Substrate changes with independent generation for Exodus 114
A.22 Substrate changes with cumulative generation for Telstra 115
A.23 Substrate changes with independent generation for Telstra 116
A.24 Substrate changes with cumulative generation for Tiscali 117

A.25 Substrate changes with independent generation for Tiscali 118

Chapter 1

Introduction

The amount of data, “big data”, to be processed at computers and/or transferred
across the Internet is growing 50 percent a year [57]. The concept of big data has
been introduced in the early 2000s, especially in genetics research [87]. Big data
research has become popular in computer science research more recently. The data
needed to be managed has grown up rapidly, and managing or even classifying the
big data became challenging. Although there is no particular threshold for classifying
a dataset as “big”, largely speaking, big data are the datasets so large and complex
that managing and processing (i.e., storage, search, sharing, analysis, transfer) them is
legitimately challenging within the current capabilities of computing and networking
technologies. Another key pattern that arose with big data is the difficulty of moving
such large data around. From the networking perspective, data is “big” if it is so
large that it cannot be moved to a centralized place but rather only be processed at
different locations.

Statistically, the world’s technological capacity to store data per person is

doubled every 40 months, and the telecommunication capacity is doubled every 34

2
months as well [38]. This storage and transfer capacities facilitate larger and big data

to exist, intuitively with increasing amounts in future. Therefore, many techniques
and discussions about managing big data have been proposed in different fields of
study [41,59]. According to the MGI studies [61], if management of the big data in
the US health-care were to be effective, the sector would yield $300 billion every year
more than what it is today. On the other hand, big data provoked the emergence of
new database management systems like parallel [24] and distributed [86] databases,
and brought back batch processing systems such as Hadoop [90] with a customized
computation phasing, i.e., MapReduce [23]. As big data kept emerging, the desire
to centralize the processing of the data and transfer of it in more controlled settings
have prevailed. Arguably, these have been the major causes for the advent of cloud
computing and data center networking technologies. In parallel with those trends, an-
other problem emerged: How to effectively and efficiently transfer big data across and
within data centers? Legacy networking protocols are not capable of handling trans-
fers with speeds beyond 100Gbps. New transport and routing protocols able to handle
beyond petabytes of data are of crucial importance to furthering our capabilities to
manage big data. The key points for cloud-based scalable data management systems
are given as “scalability, elasticity, fault-tolerance, self-manageability and ability to
run on commodity hardware” in [2]. Therefore, new data transfer protocols should
not only be as fast as possible but also scalable, versatile, compliant with legacy
systems, and flexible to adapt new schemes.

Data centers, arguably, are at the heart of big data management. Their de-
sign, placement, organization and structure play key role in how big data is going to
be handled in the future [28]. Data centers can be located at various parts of the

world, because of geographical issues, economic concerns or potential loss under fail-

3
ures. Accordingly, as geographically distributed data centers are gaining importance,

the need for big data intra- and inter-datacenter transfers is more paining. More
essentially, these big data transfers are crucial to the operation of the data centers
for maintenance and backup [79]. Data centers are mostly built geo-distributed [63]
because of cost efficiency, and data replication among two or more data centers is a
much-used technique to improve the resilience against failures [1]. Also, most of the
end-to-end (e2e) sessions in the Internet traffic are now going through a data cen-
ter, and thus, the performance of “big data” intra- and inter-datacenter transfers is
crucial to the overall Internet experience. Data migration techniques, virtualization
methods or providing regional services to balance the workload over data center net-
works are imperative to reduce operational costs [20,67]. For instance, transferring a
high volume of bulk data causes outrageous workload on links between Yahoo! data
centers causing peta-scale data to be moved around [19]. When there are multiple
sources that need to send bulk data to another data center, managing these transfers
becomes much harder, and scheduling is one of the solutions [49,99].

The legacy end-to-end transfer techniques are not adequate to reach such
speeds at the level of 100s of Gbps because of lack of performance on data con-
nections over long-distance or high-bandwidth networks [8,43,64]. Apparently, under
the scenario that uses a single path for data transfers, the aggregate end-to-end trans-
fer rate will be limited to the bottleneck(s) on that path [45]. Parallel data transfers
can be spread over the network in a non-overlapping manner, and hence improve
the aggregate throughput [101]. The downside is that such parallel transfers require
multi-path routing capability. Availability of such end-to-end paths allows parallel
TCP streams to be fed onto different paths and thereby attain a higher utilization

of the underlying network which is not possible by legacy single-path shortest-path

routing algorithms [70,97].

According to recent studies, the multi-path parallel streaming approaches seem
to be highly successful in addressing the big data transfers. The key focus of these
techniques is to diversify and spread the paths available to the end-to-end transport
while satisfying various constraints such as delay or loss. Since the problem is too
complex, most multi-path routing work boiled down to pre-computed techniques with
heavy computations [62,70]. Further, they typically involve non-shortest path calcu-
lations requiring considerable updates to legacy routers, which are not designed for
non-shortest path routing. Yet, to attain multi-path routing, the routing system must
be able to provide multiple paths for a source-destination pair. So, to address the
big data transfer needs, we continue working on how to attain multiple and poten-
tially non-shortest paths between endpoints in the network. Recently, the multi-path
routing techniques proved to be useful for scaling up the end-to-end reliable trans-
fers [66]. Still, a practical routing protocol that can offer multiple (non-)shortest
paths while effectively handling network dynamics and failures is missing, since ex-
isting solutions are too compute-heavy and incapable of handling dynamism. Even
under these circumstances, the paths generated by the multi-path routing methods
were statically adopted and TCP sessions were successfully parallelized with practical
solutions [9,22].

One key observation is that these end-to-end transfers and the legacy multi-
path routing schemes are still yet to utilize multi-core CPUs available in most routers.
Although [95] shows that CPUs reach to almost 90 percent of usage under heavy data
transfer scenarios, consideration of multiple cores of router CPUs as a first-class citizen
in network layer functions, like routing, has been missing. To improve our multi-path

routing service within “parallel routing”, we propose routing protocols that leverage

5
the multi-core CPUs. Our goal is to ease the computational complexities of close-

to-optimal multi-path routing algorithms by dividing the overall multi-path routing
problem into smaller parts and lending each part to one separate CPU core.

We propose a “parallel routing” framework [92] that explicitly considers multi-
core routers and employs only shortest-path calculations. The basic idea is to virtually
slice the router topology into “substrate” topologies and assign them to a separate
router core, which runs a classical shortest path routing protocol on the assigned sub-
strate. We name this approach as “multi-core parallel routing” since it parallelizes
the multi-path routing calculation and provides multiple paths for parallel end-to-end
transfers by using multiple CPU cores. Rather than solving the multi-path routing
problem all at once, our approach transforms it into two subproblems: (i) slicing out
substrates from the router topology so that the collection of the shortest paths on
each substrate is diverse and has non-overlapping end-to-end paths, and (ii) calculate
shortest paths on each substrate. Since the latter problem is already being handled
in legacy routers, our approach can easily be adapted to current routers if the former
problem is solvable. In one point of view, our approach transforms the multi-path
routing problem into a topology/substrate generation as a graph embedding/virtual-

ization problem.

1.1 Parallel Routing: A Simplified Example

A simplified version of the parallel routing problem is illustrated in Figure 1.1. For
this sample scenario, we consider only one end-to-end flow and aim to maximize its
throughput. It is possible to generate different substrates, i.e. virtual topologies, by

abstracting the underlying network multiple times. In Figure 1.1, three substrate

10 Mb/s

Substrate 1 Substrate 2 Substrate 3

Figure 1.1: Parallel routing over multiple abstractions of the same underlying net-
work.

networks are generated and different link weights are assigned to each substrate.
Applying shortest-path routing yields different end-to-end paths from A to D. Each
additional substrate adds 5Mb/s to the end-to-end throughput of the flow from A
to D. This represents a linear speedup in routing parallelism. However, adding one
more substrate would not add any extra throughput for the A-D flow under the same
assumptions, showing the criticality of the number of substrates to be generated.
Further, selecting the link weights for each substrate is not an easy task and plays a
critical role in the efficiency of parallel routing as well.

When we consider a network with multiple flows attempting to maximize their
throughput via parallel routing, the problem essentially becomes the well-known mul-
ticommodity flow problem [42]. However, our parallel routing approach here is taking

the same network and divide it into multiple substrates, and thus allows us to tackle a

5 Mb/;

——————————— R T B et =
Substrate 1 AC s thaxed out Substrate 2 BD'is maxed out Substrate 3

Figure 1.2: A sample heuristic for parallel routing: Remove the link maxed out by
current substrates.

smaller version of the multicommodity flow problem. A key issue is how to generate
these substrates (such as the number of them, their link weights) so that the end
result of solving the multicommodity flow problem in each substrate is still close to
the optimum.

Although our parallel routing approach divides the multi-path routing com-
putation into smaller pieces and lends them to multi-core CPUs, it brings a new
challenge to tackle: How to establish overlay substrates so that a close-to-optimal
multi-path routing is attained? To address this issue, we will develop heuristics to
construct and dynamically adapt the overlay substrates on the same underlying net-
work. One possible heuristic is to iteratively increase the number of substrates and
observe the aggregate throughput of the network. Before generating a new substrate,
we can remove the links that are maxed out by the existing substrates. Figure 1.2 il-
lustrates this heuristic for our sample scenario. It is not trivial to extend this heuristic
to a general networking environment where cross-traffic and many concurrent flows
exist. Substrates might become unnecessary due to changes in background traffic, or
more substrates might be needed for the same reason. We will tune various paral-
lelism parameters to establish the substrates, including the number of substrates for

a given underlying network and the link weights in the generated substrates.

1.2 Contributions and Key Insights

In this dissertation, we propose Multi-Core Parallel Routing (MCPR) as a novel

approach. The thesis offers the following key contributions and insights:

e Multi-Core Parallel Routing is a divide-and-conquer approach for the general
multipath routing problem. It transforms the problem of calculating multiple

paths to abstracting the underlying topology into multiple virtual topologies.
e MCPR actively uses the cores in CPUs to improve routing large data flows.

e MCPR is compliant with typical SDN setups in that the substrate generation
can be done in the centralized control plane while shortest-path calculations for

substrates can be done at the routers where data plane resides.

e MCPR leverages the existing shortest-path routing mechanisms, which are

highly-optimized and ubiquitously available in legacy network routers.

e While updating legacy routers is possible, deploying a new multipath routing
protocol to the legacy routers is challenging. MCPR is advantageous in this
respect. It is easy to deploy with minimal changes to the existing routers which

are highly optimized for shortest-path calculations.

e Recalculation of end-to-end paths in MCPR will be much easier in comparison
to existing multipath routing schemes which try to solve the entire problem at
once. Since MCPR deploys multiple shortest-path routing topologies in parallel,
only shortest path recalculation will be necessary when a topological change

takes place.

9
e MCPR will increase the robustness of routing against link or node failures. It

will enable multiple simultaneous paths and only a subset of the substrates
will recalculate due to failed link or node. This reduces the disruptions to the

routing tables and the ongoing high-volume traffic.

e MCPR attains higher throughput for large data transfers and better perfor-
mance in balancing the load over the network. In particular, during our static
analyses of comparing MCPR heuristics against single shortest-path routing in
Rocketfuel topologies, we observed 1.6 times speedup in the aggregate through-
put when 4-core routers are used. This speedup was minimally affected (i.e.,

reduced to 1.5) when the count of cores was heterogeneous across the routers.

e MCPR offers robust and low-cost solution for multi-path calculation that can
be easily adapted to the current systems and performs well on different topology

environments. MCPR also responses well to the network failures.

e MCPR is minimally affected when the network failures, both node and edge
failures, occur. In our static analysis, we observed that MCPR’s performance
may reduce up to 0.4% in the face of failures. Also, MCPR responses better
when edge failure occurs. We also observed that edge failures may contribute to
MCPR performance, and it might give higher throughput up to 0.2% in some

cases.

e MCPR supports scalability when network size is growing because of its adative

background.

10
1.3 Dissertation Organization

In this dissertation, we propose a new end-to-end traffic method, which is exploiting
multiple CPU cores of routers to parallelize traffic flows, especially for bulk data
transfer such as between data centers. The rest of the dissertation is organized as
follows: We start with the background information in Chapter 2 and give details about
some of the popular routing protocols. Multi-path routing techniques, Multi-path
TCP and some successful applications employing multiple cores are also explained
here. We outline the problem of parallel routing and mathematical background for
parallel routing in Chapter 3. We present multi-core parallel routing heuristics to
solve the substrate generating problem and the results of our simulation experiments
in Chapter 4. We give how multi-core parallel routing performs when a failure occurs
on the network in Chapter 4.5. We show the performance of parallel routing under
the heterogeneous scenarios in Chapter 5. We discuss our proposed framework and

future works in Chapter 6.

11

Chapter 2

Background

Assuming multiple paths are provided between end-systems, the task of selecting a
subset of the available paths and performing load balancing of traffic among them is
a highly complicated problem, which is also known as end-to-end traffic engineering.
Such end-to-end traffic engineering capability has been a common practice in wire-line
networking via protocols like MPLS [85] which provides ISPs a way of managing and
throttling their traffic over the network. However, the time-scale of this end-to-end
traffic engineering practice has been very large since MPLS requires configuration
and management of several switches and routers to realize path establishment and
teardown. Further, similar to the source routing in GridF'TP, the load balancing of
the overall network necessitates pre-computation of MPLS paths (i.e. LSPs) ahead
of time as there will be many such end-to-end traffic flows. In general, Layer 2 (link
layer) techniques, like MPLS, are external to routing in Layer 3 (i.e., network layer)
and require heavy configuration tasks in a large-scale network to be operational. Due
to the static and heavy configuration overhead of these Layer 2 techniques, they fall

short of addressing network dynamics arising from failures or traffic spikes and coming

12
up with a generalized end-to-end traffic engineering framework. Further, in the face

of recent needs for big data transfers, a generalized solution within network layer is
becoming a necessity, particularly within or across data centers.

Most of the current routing and transport protocols employ single path, such
as in OSPF [65], RIP [60], and TCP [78]. In the early 2000s, discussions on single
path routing effectiveness intensified in the context of congestion and throughput
achievements needed for emerging big data network transfers. Because of the poor
performance of legacy routing and transport protocols on load balancing and con-
gestion control, it has been a consensus that usage of multiple end-to-end paths is
needed to attain sustainable transport rates beyond 100Gbps.

Although single path solutions are fast to compute and apply in the real world,
one of the important reasons for congestion and data loss has been the single shortest
path routing approach of the legacy routing protocols. Therefore, multi-path routing
[31, 36,44, 97] became one of the popular topics as a solution to balance the load
over the network. Several techniques, most of which require a-priori computation
of paths, have been proposed for multi-path routing. Diversification of paths from
source to destination with the additive increase methods has been proposed [69].
Additionally, a path selection method [70] is also worked on to find paths from the
set of all possible paths. However, the routing system needs the ability to generate all
paths and select a few of them in a short period. Moreover, some researchers tried to
compute end-to-end multi-paths like in network flow approach or shortest path with
the selection possibility of links [72]. With all that, the real drawbacks of multi-path
routing techniques have been (i) the adaptation to the actual systems because of high
computation costs and (ii) the un-availability of network infrastructure like routers

and switches that allow sending data through more than one path by using current

13
protocols. Eventually, the temporary solution, improving link bandwidths, curtailed

the cost of congestion over the network and postponed the problem of multi-path
routing until a better and permanent solution for data transfers is found.

Within ten years, some new applications for solving multi-path routing problem
have been evaluated with new proposed protocols to support multiple connections
between a pair of nodes. However, with growing Internet, some protocols have been
standardized, like IP [77] and TCP, and adaptation of new protocols to the current
systems has become the biggest problem. For example, changing IPv4 to IPv6 has
been taking a much longer time than expected, even though IPv6 has been deployed
for about two decades due to lack of IPv4 addresses for new systems. Accordingly, new
end-to-end multiple path protocols should be TCP-friendly, and Internet Engineering
Task Force (IETF) teams generated Multi-Path TCP (MPTCP) [22,26,29], which
improves TCP and uses almost the same structure. Briefly, MPTCP is a high-level
design which encapsulates sub-flows into TCP packets with a fair congestion control
mechanism. MPTCP assumes no knowledge of the underlying topology and focuses
on congestion control. Though this is important in realizing a generic multi-path
congestion control approach, most of the time situations involving extremely large
data transfers are already given a topology of end-systems which can be leveraged for
jointly optimizing the selection of end-to-end paths as well as throttling of sending
rates on sub-flows.

In the case of failures, one of the fundamental problems for routing protocols is
to re-calculate optimized paths while recovering the ongoing data transfer in a timely
manner. Calculation and provisioning of multiple paths to the end-systems has been
done in various tools. A widely used protocol, as part of the science project Large

Hadron Collider [56] for data communications between super computers, is stripped

14
GridFTP [5], which allows source routing. However, like most of the existing multi-

path routing protocols, GridF TP requires all routing calculations to be done a-priori
and is not sufficiently adaptive to dynamism and changes in the underlying topology.
For example, a link failure or link cost change will trigger recalculation of the complete
multi-path routes, which incurs a non-polynomial computational complexity if certain
guarantees are desired [32,97]. Further, this recalculation will have to be performed
at a central location so that one can install the new paths to the GridFTP source
routing module.

The capability of end-to-end traffic engineering has become essential in finer
time-scales to achieve real-time load balancing of large inter-data-center traffic flows
[52] coupled with the dynamism of the underlying Internet connectivity. Another
solution, SPAIN [66], for inter-datacenter traffics is to use pre-computed paths for
utilizing redundancy in a network, especially under the high bandwidth data traffic.
However, these two techniques fix multiple end-to-end problem with side-channel
solutions (i) scheduling or (ii) using offline network controllers. To have adaptive
solutions, proposed method should be either scalable or flexible and able to balance
workload over the network without big disruptions.

Ultimately, most of the previous solutions for multi-path routing are based on
pre-computed techniques with large computation cost. We propose multi-path end-
to-end traffic routing method using well-known shortest path calculations. Moreover,
our approach exploits CPU cores included in multi-core routers more effectively and
efficiently routes big data transfers. Since it uses legacy shortest-path routing as the
basic building block, our method is easy to deploy and easily adapts to current routing
systems.

The term “network” is used for several descriptions as in social network, biolog-

15
ical network, telecommunications network, and neural network. Basically, a network is

a set of elements interconnected with each other. In information technology, “network
meant the set of serial lines used to attach dumb terminals to mainframe computers”
as described by Peterson in “Computer Networks: A Systems Approach” [75]. Dif-
ferent from other kinds of networks like telephone systems, the networks in computer
science are built for a general purpose. Therefore, computer networks can carry differ-
ent types of data and support various applications to make the system more scalable
and fast growing. In mathematics, a network is a sub-category or specialized type
of a mathematical graph representation of the set of elements and connections be-
tween them. Computer networks are directed graphs built by nodes (e.g., computers,
routers or other network elements) and arcs/links (i.e.,physical channel between two
computers).

According to the term of “network”, we can name the Internet as a “network
of networks” built by connected devices. However, physical channel can establish
a connection between any pair of elements. Therefore, those elements have to use
a common guideline for speaking, namely protocols, to define the general rules of
communication steps. Current systems use two different communication approaches:
(i) circuit switching and (ii) packet switching. In our work, we focus on “packet
switching” approach which forwards data from a node to another node. This method
improves the scalability of the network, compared to circuit switching as paths are
not reserved for individual flows but shared. In packet switching, however, forwarding
incoming packets towards the destination incurs overhead as for each packet routes
needs to determine the next hop. Thus, switches are used to forward packets directly
to the next hop as fast as possible. However, switches are limited in addressing

the routing problem in large networks as they are not scalable that employs routing

16

Figure 2.1: Open Systems Interconnections conceptual reference model

problem.

2.1 Networking Basics and Protocols

To solve the problem of route generation/calculation, essentially all nodes in the
network act as a ‘router’ and participate in a larger but distributed computation of
paths. They calculate the end-to-end paths by sharing information with each other.
Once the end-to-end paths are calculated, all routers will have a routing/forwarding
table which shows the next node for an incoming packet according to the destination of
that data packet. There are two protocol approaches to calculate these routing tables:
(i) link-state (e.g., OSPF [65], IS-IS [91]) and (ii) distance vector protocols (e.g.,
RIP [60], BGP [82]). The basic difference between those two methods is how they

make the routers communicate and organize with each other. The link-state protocols

17
make every router exchange information with all other nodes in the network so that

each node can have information about the links of the whole network. On the other
hand, in the distance vector protocols, the routers collect and store local information
about their neighbors and share their knowledge with nearby nodes. While the former
approach collects the cost information about the links of the network, the latter
gathers the distance to every other node in the network. In this thesis, we focus
on link-state protocols, because our proposed system is based on knowing the entire
map.

ISO (International Organization for Standardization) standardized a concep-
tual reference model to separate basic network processes by creating abstract layers
over networks in 1994. That OSI (Open Systems Interconnections) [81] model con-
tains seven layers from low-level, physical architecture, to high-level, applications as
shown in 2.1. Briefly, physical layer, Layer 1, involves with devices and physical con-
nections between these devices at a machine level. Then, link layer, Layer 2, manages
reliability on data-links with controlling packet synchronization. Following Layer 3
is network layer that provides the appropriate environment to perform end-to-end
data transfers. Beyond that, transport layer, Layer 4, yields reliable delivery dur-
ing data transfer sessions. Also, session layer, Layer 5, organizes sessions that allow
the communication between the application and transportation layers. Presentation
layer, Layer 6, manages data conversions and securities before the application. Lastly,
application layer, Layer 6, is the end user layer of OSI reference model. During the
data transferring period data processes is shown in Figure 2.2. Every step that data
reaches a router, it follows high-level to low-level conversion and while forwarding

that data it follows low-level to high-level processes.

—_

8

, Application Layer
Presentation Layer . S—
Application Layer
:
Presentation Layer
Transport Layer .
Network Layer
Transport Layer
Data Link Layer
Network Layer

Physical Layer

‘T

Network Layer Phlcal Layer
Data Link Layer Network Layer i‘

Physical Layer Data Link Layer
Physical Layer

Figure 2.2: Encapsulation during data connection

2.1.1 Link State Routing and Link Layer Support for Traffic
Engineering

MPLS (Multi-protocol Label Switching) [84] is a Layer 2 protocol, but it works in
between Layer 2 and Layer 3 which controls end-to-end traffic management on switch
level by using packet information. It supports not only IP packets but also other
network layer protocols such as ATM (Asynchronous Transfer Mode) [54]. However,
it extends the current routing protocols’ abilities by diversifying end-to-end path
selections for connectionless networks. The main purpose of MPLS is to create a
virtual end-to-end connection that data can flow through without network layer (i.e.,
IP level) changes. It is used for two primary purposes: (i) establishing backup paths

for each link and (ii) load balancing on an end-to-end basis. By using label switched

19
paths (LSPs), MPLS allows us to configure a backup path for each link so that the

traffic is immediately (i.e., in 50 ms) rerouted to a backup path when a link fails.
Further, and more relevant to this thesis, LSPs can be used to establish to end-to-
end non-shortest-path routes so that traffic can be routed over paths that don’t follow
typical shortest-path. The purpose of this is to achieve a more load-balanced network.
One of the alternative methods to control these label switched paths is that changing
OSPF [65] weights as in [15]. Changing Open Shortest Path First (OSPF) weights
can be done within the network layer without necessarily requiring a Layer 2 protocol
like MPLS. However, one of the well-known problem for changing OSPF link weights
is that it may lead to persistent oscillations (i.e., route flaps) between two different
end-to-end paths if the links weights are associated with the utilization of the links,
which is the usual practice.

OSPF [65] is one of the link-state routing protocols for IP networks that make
it possible to compose routing tables to forward datagram packets when it reaches a
router. OSPF is mostly used for organizing a network within an autonomous system
(AS) or intra-data-center networks. As it is named, OSPF merely provides single path
solutions and uses Dijkstra’s shortest path algorithm to generate a possible path for
a pair of nodes. Therefore, many applications are proposed to change link weights for
getting a different path to balance the load on the network. The main advantage of
using OSPF is that adapting failure scenarios as fast as possible because of OSPF’s
collection algorithms of routing information. It detects network breakdowns for link-
state routing/link-state update message combinations among the routers and creates
a new loop-free path within seconds. Therefore, we propose a new method that
maintains the benefits of OSPF for failure scenarios. Our approach uses OSPF as the

routing protocol for each substrate running in parallel.

20
2.1.2 Internet Protocol: End-to-End Design
IP, Internet Protocol, is a network layer protocol designed, in 1981, for packet-
switched communication networks which allows to divide data into small packets
and organize the addressing of network elements [77]. The key point of IP is to allow
a proper environment for inter-connected devices to communicate with each other
even if they may be using various kind of different communication protocols among
them in a manner that is entirely end-to-end, as discussed in [88].

IP has two principal works: (i) fragmentation and (ii) addressing to point
standard rules for interpreting addresses and creating datagrams, which are small
packets carrying data. Thus, data can be transferred in a connectionless manner by
using datagrams which are independent entities. However, splitting a given data into
little packages and reassembling divided packets in a system became another problem.
Therefore, various fragmentation methods have been proposed for helping to improve
data communications. Although fragmentation process takes time, it improves the
system performance during data transfer because of less cost on carrying out a small
size data over the network.

On the other hand, to have an end-to-end agreement, nodes should know each
other in a uniquely identifiable way which necessitates addresses. So, IP includes des-
tination addresses into every packet after fragmentation procedure and those packets
can be analyzed by routers to figure out the final destination of them at each hop.
Many network address mapping techniques have been proposed to organize address-
ing as well. As a result, IP not only creates a systematic environment to manage
packet-switched data transfers but also gives the opportunity to generate new trans-
port layer protocols which might be adapted to the current systems because of IP’s

encapsulation ability.

21
2.1.3 Transmission Control Protocol
As a connectionless protocol, IP does not have the ability to guarantee reliable com-
munications between source-destination pairs and needs application-specific protocols
to manage flow paths among network elements. On the other hand, TCP [78], one
of the connection-oriented transport (i.e., Layer 4) protocols, establishes a reliable
communication pipe between the source and the destination while supporting packet-
switched end-to-end connections. TCP uses sockets [18] to interact with devices and
selects a route from the IP layer for data to be sent through. These sockets use specific
ports in addition to network address while reaching a device. So, the devices can be
used by several connections simultaneously at any time which shows that the devices
can also work on reliability issues during data transfers. Therefore, TCP works in
a manner similar mail posting by sending and receiving letters indicating the intent
of connections. After connection establishes, data transfer process is started on the
agreed ports between two the devices.

TCP connection establishment based on three-way handshaking is given in
Figure 2.3. There are two nodes one is the server which is the destination, and
the other one is sender device called client. The server always in Listen mode to
gather any connection requests coming from a sender node. Therefore, the client
node, to get a connection with the server node, send a special SYN packet which
shows the intention of communicating. When the server node gets the connection
request, it produces a new value based on coming data and replies that request with
a specific SYN-ACK packet showing the availability for the establishment. Then,
when that packet received by the client node, the last step of handshaking is done by
sending ACK packet which is setting an agreed number that provides the reliability

during the data transferring. After connection installation, these two nodes can start

22

Client
Connection
Request s
"W g, 0)
SYN Sent
Wait SYN

Received

=)l

Server

!

Listening

| Established

Established

Figure 2.3: TCP 3-way handshaking for connection initialization

to communicate with each other within for each new packets agreed the number is
changed based on the agreement. Therefore when a packet is transmitted, the server
is able to verify the received data in a manner of reliability by checking that special
segment number.

Although that three-way handshaking method provides the connection-oriented
reliable end-to-end data connections, in this technique, multi-path solutions are not
supported for fair connection between a source/destination pair. Therefore, there are
some works on trying to evolve TCP for supporting multi-path communications by
creating different TCP sessions among the nodes [7]. However, adding new TCP ses-
sions only improves the data amount which can be transmitted if path diversification

is not executed.

23
2.1.4 Multi-Path TCP
Internet Engineering Task Force (IETF) teams have been working to standardize
Multi-Path TCP [29], which is a new TCP-friendly protocol that allows multi-path
solutions for end-to-end traffic engineering. As we discussed before, although TCP
has a significant performance to solve the end-to-end path connectivity problems,
the lack of ability to support for multiple paths is one of the bottlenecks for the
current Internet routing. Because of the emerging big data issues, load balancing and
congestion control aspects of the Internet need to be improved. Therefore, Multi-
Path TCP [22] has been proposed as an approach to perform such real-time practice
of multi-path routing, but, it assumes no knowledge of the underlying topology and
focuses on congestion control with a little modification on the baseline TCP scheme.
In addition to initial connection setup of TCP settings, Multi-Path TCP also
sets up additional sub-flows under the package of the main flow. Each sub-flow is an
individual path between a pair of nodes acting as a regular TCP connection as shown
in Figure 2.4. In contrary to creating new end-to-end TCP sessions, encapsulating
these sub-flows with a new scheme is also optimizing fairness by the congestion control
method. Therefore, instead of creating separate TCP flows, the TCP streams are
packaged in one big larger Multi-Path TCP connection. However, this congestion
control mechanism provokes the increase of control plane traffic over the network.
In parallel with being standardized, new applications based on Multi-Path TCP
has been proposed expeditiously in various areas such as wireless networks [73], energy
efficiency [76], network management [92], and open flow architectures [96]. Following
this trend, we also propose a new technique using Multi-Path TCP architecture to
optimize inter/intra -datacenter traffic with leveraging multi-core routers to parallelize

path selection mechanism for end-to-end paths. We would like to note, however, that

24

Application

Application

MPTCP

Standard TCP
Protocol Stack

Figure 2.4: Comparison of TCP and MPTCP protocol stacks

MPTCP Protocol Stack

our parallel routing approach can work with other multi-path transport protocols as

well.

2.2 Multi-path Routing

In addition to MPTCP, in recent years, there has been significant interest in multi-
path routing [40, 66, 100, 104]. As we discussed before, multi-path routing is one of
the old problems in the networking research community. In the 1990s, an analysis
of shortest path routing in dynamic network environments [103] classified routing
algorithms based on how adaptive they are as static, quasi-static and dynamic. Then,
it showed that single-path solutions limit the maximum flow between the source and
the destination nodes. These years, additively increased, a.k.a. incremental, path
calculations became one of the popular solutions as in congested-oriented multi-path
routing [68], disjoint path computation [71] or loop-free multi-path routing [102]. In
the 2000s, multi-path routing was adapted to wireless networks and an alternate path

routing scheme [74] was proposed for MANET environments, and 40% improvement

25
was shown in end-to-end traffic delay. Another method [55] proposed to split multi-

path routing problem into establishment of more than one paths between pairs in ad
hoc networks.

The well-known multi-path routing problem is Maximum Flow/Network Flow
problem which aims to send as much data as possible from one source to a destination,
without worrying about the end-to-end delay. Extension of this problem to real
networks is more complex and includes multiple source-destination pairs for sending
data at a given time. This extended version is called Multi-Commodity Flow problem
[42]. In a given graph, there are nodes/devices and edges/links as network elements,
and each link has a cost if it is used. Basically, shortest path means minimizing the
total cost and maximizing data sent between a pair of nodes. Theoretical solutions to
the maximum flow problems by mathematicians, but, these solutions are typically not
able to be run in real-time due to their intractability. So, instead of finding the best
result, researchers aim to figure out a solution which is proximate to the optimum
solution and as fast as possible in terms of gaining higher throughput. As a result,
the problem is reduced to selecting best paths between a pair of nodes from the all
possible path sets [70]. In some solutions, links’ weights are changed to diversify
paths for end-to-end transfers [84], however, that can cause persistent oscillations
between two different end-to-end paths. Therefore, some additional metrics to point
costs such as possibility or propagation delay to be chosen are assigned to links in
some techniques [51]. But, finding better possibilities and managing the entire links
a network, particularly under network dynamism, becomes a big problem waiting to
be solved for these methods. Another improvement on end-to-end path calculations
is finding k-shortest paths as in additively increased methods. However, in that case,

the system should find some different paths which are not the shortest paths. So,

26
similarly, some links’ weight must be changed, and additional computation costs will

be needed. To sum up, there could be two different solution approaches for multi-path
routing: completely disjoint sets or some intersections/overlaps between the paths.

As powerful computers have been grown in a parallel with technological devel-
opments, finding a new end-to-end multi-path traffic engineering becomes a popular
instead of using adaptive techniques to get multiple paths between a pair of nodes.
Therefore, such systems, SPAIN [66] and Net-Stitcher [52], have been proposed for
improving the throughput performance of inter-datacenter networks while satisfying
the reliability of the data transfers. On the other hand, mPath [100] solves multi-path
routing problem by using a new TCP-friendly mechanism which finds other possible
paths via a set of proxies that give a one-hop detour within the end-to-end paths.

In addition to the key metrics of increasing throughput and balancing load
the traffic load on the network in an end-to-end manner, there are other important
applications of multi-path routing for reducing delays or controlling congestion. One
of the relevant directions is to use multi-path routing in large-scale circuit design.
Parallel routing approaches have been proposed in LSI (Large Scale Integration) [94]
circuit design. Y. Shintani et.al. [89] use a multi-threaded approach on multi-core
processors to find paths for global routing between net-lists which are connections of
cells on LSI circuit design. Proposed method creates different blocks for the net-lists
and distributes those blocks to the threads, so, each block can be processed in parallel.
With their parallel routing method, new technique performs 7.1 times faster than the
sequential method.

Multi-path routing is also be a part of a solution to avoid traffic conges-
tion in communication networks such as Software-Defined Networks(SDN) for inter-

datacenter networking. Briefly, in SDNs, controllers manages the traffic patterns on

27
the network and configures data-plane communications among the devices. How-

ever, control plane messages, communication data between devices for controlling the
network, can cause temporary congestion on network elements in software defined
networks (e.g., in SD-WANSs). Chi-Yao Hong et. al. [40] proposed a new approach
which is using multi-path routing to manage capacities on links efficiently for sending
these update messages. Then, with this improvement, 60 percent more traffic can be

carried than the current system.

2.3 Bulk Data Transfer in Data Center Network-
ing

Bulk data transfers has reached peta scales, and it currently dominates the inter-
datacenter traffic. In ACM SIGCOMM 2011 conference, bulk data transfer for data
centers was announced as one of the sessions. It shows the importance of the problem
as it became very popular in recent years, and multi-path routing can be used to
solve the bulk data transfer problem on data center networking applications. In the
case of multiple bulk data transfers, the system needs to solve complex problems
for deciding paths for sending the bulk data by avoiding congestion. Some of the
current solutions include extreme methods like shipping the data in large disks and
enlarging or dedicating link capacity between data centers. Therefore, improving
the performance of transferring bulk data via the public Internet has been of much
interested.

Scheduling techniques that push more data through the Internet for such bulk
transfers have attracted interest [53,99].Scheduling to avoid congestion during multi-

ple bulk data transfers has been of crucial interest too [99]. Wang et al. first observed

28
traffic patterns which they found to be strongly diurnal. The problem, however, is

the time differences between data-centers. When one data-center is active due to the
morning hours on the East Coast, the other one on the West Coast could be in idle
condition because it is not morning the West Coast yet. Thus, the goal is to split
the bulk data into blocks and transfer them over multiple multi-hop paths to attain
a balanced load across the data centers. Lexicographical minimization, minimizing
the traffic of the maximally loaded link and attempts to minimize the traffic of the
second maximally loaded link have also been tried in this work.

In addition to scheduling, there have been several other proposals based on im-
proving the underlying infrastructure. For example, in data center networks, shallow-
buffered switches are used for decreasing the cost. However, under the congested
scenarios, the amount of dropped packets will be higher since the queueing systems
at the routers drop packets automatically when the buffer is full. Calder et al. [16]
changed paths for those dropped packets instead of losing them. In these approaches,
the entire system (which might involve multiple data centers) is under the single ad-
ministrative control; so, switches can share their buffer conditions with each other.
With this type of information sharing, it becomes possible to monitor the whole traf-
fic and detour paths for the packets that would be dropped otherwise. Although this
approach could preserve packets, it could cause congestion over the network.

Another work has been done on managing workloads on data centers under
the transport fabric [4]. In some applications, as in social networking, short request-
response flows which are relevant to each other could be demanded with small response
time. In that case, requests are collected with a fraction and responded to the user
together. According to the latency metric, one of the methods used is TCP-fabric

which is not effective because of waiting time in queues. Therefore, instead of avoiding

29
congestion, pFabric [4] proposed a new scheduling method to balance the load over

the network and to improve the performance of fabric transport.

Consequently, the latest research shows that bulk/big data transfers are gain-
ing more importance with the boost of the number and size of data centers on the
Internet. Therefore, bulk data transfers is one of the big issues for today and the fu-
ture Internet and present several specific research challenges to be tackled. In order to
solve managing big data transfer issues, all resources will need to be used efficiently;
and, in our work, we aim to use multiple cores that already exist in the routers more
effectively to offer and improve multi-path routing for the Internet and for the data

center networks in particular.

2.4 Multi-Core Protocols

The deployment of multi-core routers has grown rapidly. However, big data transfers
are not leveraging the powerful multi-core routers to the extent possible, particularly
in the key function of routing. We aim to revise multi-core or multi-threaded solutions
for improving data communications of inter-/intra-datacenter traffic. The emerging
need for greener energy and greener data centers [| also motivate us to optimize
available networking and computing resources. It is now a major challenge to design
information technology solutions that are green and use the resources in the best
manner possible. Thus, leveraging multi-core devices is gaining importance as well
to balance/parallelize works on the machines and the network.

This mindset of using multi-core and multi-threaded routers has recently be-
come prevalent, and there are a few ideas that aimed to use multi-core or multi-

threaded techniques in the network protocols. Grover [37] proposed to employ multi-

30
core routers to improve BGP protocols with a multi-threaded PBTS model during

the BGP operations. Also, in industry, creating a solution utilizing multi-core routers
has been patented by Kingsley et al. in [48], net-list devices are managed in parallel
by different regions on the LSI devices. However, in [11], bounding boxes are created
on nets, and multiple threads manage each net. Executed threads routed in parallel
according to the created boxes.

In addition to usage of hardware-based routers, in the first years of the 2000s,
the approach of software-based routers was proposed. A key motivation was that
multi-core platforms could be profitable because of their easy customization. Bolla
et.al. [14] measured software-based routers’ performance and analyzed the network-
ing performance based on throughput and power consumption. They were able to
show that the new model proposed was able to save energy in terms of green-energy.
Proposed optimization policy provided about %40-%50 of energy savings by using a
multi-core structure on software routers.

Multi-core routers are also used for managing router tables in parallel [27].
The leading idea here is to improve software-based routers’ performance during for-
warding mechanism for a given packet. It is hard to manage the next hop during data
transfers because of the growing Internet background traffic. However, by means of
smart scheduling, virtualization and parallelization of router’s processes across mul-
tiple cores, the researchers showed that CPU loads and packet lookup time could be
reduced significantly.

Also, multi-core routers are used for lookup process of IPv6 addresses with new
proposed approach [30] which uses multi-core background to parallelize store/scan
routing tables. IPv4 addresses are 32 bits, and they are becoming insufficient because

of the increasing number of Internet-enabled devices. For this reason, a new IP

31
addressing method, IPv6, with 128 bits long addresses is being deployed. This new

deployment and augmentation impose two main problems at the routers: bigger size
of the routing tables and greater complexity for the packet lookup process. Improving
hardware skills and developing new software solutions have been tried to make these
processes faster. Another new approach is parallelizing the method of storing and
scanning routing tables by means of multi-core designs. In this approach, routing
tables are split into smaller ranges organized in a tree-based structure, and different
cores process each of them at the same time. Performance is increased 10x times
[30] by exploiting multiple cores on the routers for the forwarding problem of IPv6
addressing.

In general, most of the proposed multi-core routing techniques focus on im-
proving the packet lookup time in a router. In our approach, we aim to improve the
network-wide routing performance via a multi-core routing design, and, further, in-
troduce a framework to employ multiple cores for composing multiple paths between

endpoints.

2.5 Theory - NP Completeness

In the algorithmic analysis, problems’ complexity is determined in terms of their
computability (i.e., solvable or not) for a given set of input parameters and verifiability
of a given possible solution’s existence in the set of all possible solutions. Polynomial
time bounded (P) problems are the set of problems that can be solved in polynomial
time and also verified in polynomial time. On the other hand, Non-Polynomial time
bounded problems (NP) can be solved in non-deterministic Turing Machine which is

a Turing Machine enhanced with non-deterministic choice function. However, these

32
NP problems can be verified in polynomial time. The relation between P and NP

problems is still one of the famous argue that are not exactly known yet.
NP-Complete problems are NP problems that can be verified in polynomial
time and be solved in polynomial time on a non-deterministic Turing Machine. Ev-
ery NP problem must be reducible/transferable to one of the NP-Complete problems
in polynomial time quickly to be stated as an NP-Complete. So, every problem in
the NP-Complete set can be reduced to each of them quickly, i.e., in polynomial time.
NP-Complete problems are not solvable in realistic time. Further, NP-Hard problems
are unique problems that as hard as the most difficult NP-Problem. NP-Complete
problems are also NP-Hard, but vice versa is not true for the NP-Hard problems.
For example, some decision problems are NP-Hard but not NP-Complete [39]. To
show the given problem is NP-Complete/NP-Hard, it is required to confirm that the
given problem is in NP-class followed by finding a polynomial time function for reduc-
ing the problem to one of the NP-Hard/NP-Complete problems. Some well-known
NP-Complete problems [33,34] are Boolean Satisfiability Problem(SAT), Knapsack
Problem, Travelling Salesman Problem (TSP), Subset Sum Problem, Clique Problem,
Vertex Cover Program, Independent Set Problem, and Graph Coloring Problem. Also
most of combinatorial search problems are considered as NP-Hard [50], and our sub-
strate generation problem is a version of this kind of problems. We now cover some of
the most relevant NP-Complete problems relevant to the substrate generation prob-

lem for multi-core parallel routing.

2.5.1 Multi-Commodity Flow Problem

Network flow problem is a path selection problem for a flow from one source node to

another destination which maximizes the throughput. As a more general version of

33
this problem, multi-commodity flow problem [3] has multiple flow demands among

different source-destination pairs. Multi-commodity flow problem finds if all the de-
mands can be satisfied or not by finding a separate path to each flow through the
network. In one perspective, the multi-commodity flow problem is the most generic
form of the multi-path routing problem we face on the Internet. The problem is NP-
complete for feasible integer solutions that allow just integer flow demands. When the
fractional flow demand is allowed, the problem can be solved with linear programming

in polynomial time.

2.5.2 Subset Sum Problem

Subset Sum Problem is crucial in cryptography and complexity theory. For a given
set of integers (S) and a value sum (t), the Subset-Sum Problem determines if there
is a subset of S such that the sum of elements in S is equal to the given sum t.
The Subset-Sum Problem is a specific version of the Knapsack Problem [47] and
the Partition Problem [17], and it is one of Karp’s 21 NP-Complete problems [46].
Approximation algorithms can be used to solve this decision problem. It is related
to our substrate generation problem as we want to create a set of all possible virtual

topologies that maximizes the sum of throughput of each substrate.

2.5.3 Edge Disjoint Path Problem

The Disjoint Set Problem [58] can be both vertex-disjoint or edge-disjoint which
are reducible each other. Edge-disjoint path problem tries to find k different non-
overlapping paths for a given source-destination pair. Edge-disjoint path problem is

one of the graph decomposition problems in graph theory. The disjoint path problem

34
is known NP-Complete, and it is hard to approximate. The disjoint path problem is

related to our proposed MCPR technique as its overall goals are similar to our heuris-
tics” goals. In MCPR, we try to generate substrates that include non-overlapping,

i.e., most disjoint paths.

35

Chapter 3

Parallel Routing

Calculating single shortest-path is a well known and spread technique, such as OSPF,
for data transfers between two nodes. Shortest-path calculation gives a fast response
because of its greedy approach; however, one of the problems with that technique is
a limited capability to derive distributed load balancing over the network. In order
to solve the workload balancing issue, data transfers can be done through multiple
path routing. Yet, dynamic multi-path routing protocols reacting sufficiently fast to
the network changes is hard, and typically it takes too much time to generate diverse
paths in a feasible time span. The key novelty of our method is to ensure both
scalability and load balancing in a practical manner. The main goal of our approach
is that many of the current routers have multi-cores, and this parallel processing
ability of these routers could be utilized to optimize the data load over the network,
instead of jamming all the data into one shortest single path.

Parallel routing aims to provide multiple shortest paths, each of which is gen-
erated over different substrates of the topology, as shown in Figure 3.1. The main

idea is that different slices (substrates) of the router topology are given to each core,

Router Topology Substrate 0

10 Mb/s

© & @ (s) (4)
1 3 4 1 5 4
O 5Mb/s ~—/ 5 Mbls 5Mb/s ~—' 5Mbls

Flow from Substrate 0 Flow from Substrate 1

Figure 3.1: Motivating scenario with two cores

and the e2e data transfer is split into the shortest paths calculated on each substrate
topology. Once assigned to Substrate i, flow will follow the shortest path calculated
by that Substrate ¢. However, all the flows will be using the same physical topology
regardless of which substrate they are assigned to. So parallel routing can lead to a
system where parallel routes are produced on virtual substrates over the same phys-
ical topology. It is, then, up to the e2e transport protocol’s decision to which one of
these paths from the substrate topologies to use with what rate.

If (i) different virtual routing topologies based on the actual topology are as-
signed to a separate core of multi-core routers, (ii) data transfers could be distributed
over these virtual topologies, and (iii) the current well-known shortest-path calcula-
tion techniques are executed on each core as well; then data load could potentially be
better distributed over the network. This thinking is the key inspiration for our design
of MCPR. Figure 3.1 illustrates a motivating scenario where two virtual substrates
are produced. Substrate 0 is equivalent to the real router topology, whilst Substrate 1

is generated by removing node 3 from Substrate 0. Even though there are many other

37
possible paths available over the network, current systems would carry 5 Mb/s on a

single path. But, if these two topologies were given to a two-core router and current
shortest path finding algorithms were executed in parallel on each core, then each
path could transfer 5 Mb/s data. Comparing to the current systems, each substrate’s
shortest path is different, and the two collectively yield a total of 10Mb/s throughput
from node 1 to 4 for two cores scenario. While creating a new substrate, in addition
to removing node(s), some edge(s) can also be omitted, like the edge connecting node
1 and node 3. In that case, similar to the previous example, there would be two
different paths to reach the destination node 4, which are path 1-3-4 and path 1-2-4.
Each substrate is able to find the shortest path that can carry 5 Mb/s and a total
of 10 Mb/s capacity can be transferred which is again two times of the capacity of
current systems that calculate single shortest-path over one virtual topology, a.k.a.
OSPF.

Parallel routing, based on shortest path calculations on separate substrate
topologies, shows that with little changes on the current systems and by using multi-
core property of routers, data transfers can be done over different paths at the same
time and those paths can be found in parallel by devising multiple substrate topolo-
gies. This way, the multi-path routing problem can be reduced to a heuristic that
decides which nodes/edges will be left out when generating the next substrate such
that the largest possible aggregate throughput is attained. To reach an optimum so-
lution, the design goal of parallel routing is to generate substrates that yield the most
diverse and non-overlapping shortest paths possible. For a network with E edges, 2¥
different substrates could be generated with no constraints on nodes or connectedness
of the network, and we propose various heuristics that select network elements to be

removed for creating a new substrate in Chapter 4.

38
The parallel routing design principles and main features are:

e Shortest path calculation is abundant and efficient. Legacy shortest path
routing solutions are very much optimized and designed into the fabric of routers.
Multi-path calculations utilizing them will be easy to deploy as well.

o Multi-core CPUs are readily available. 1t is possible to execute multiple
shortest path routing daemons in parallel on the existing routers with multiple cores.
Each core can run a separate instance of legacy routing protocols such as OSPF.

e Robustness to network dynamics. A critical challenge of multi-path routing
is its brittleness against network dynamics such as failures or demand spikes. Such
network changes may require re-calculation of the entire multi-path set, which can
be prohibitively costly in routing timescales. Parallel routing delegates the path re-
calculation to each substrate and lets the shortest path routing algorithm on each
substrate perform the re-calculation.

e Substrate generation can be centralized. The dividing part of parallel rout-
ing is the most challenging as it requires finding the best set of substrate topologies
so that their shortest paths minimally overlap. This is, as we will detail later, a
heavy computation task. The advantage is that such heavy computation can be done
in software-defined networking (SDN) controllers or other centralized locations with
high computation power. Failures or network dynamics do not necessitate the sub-
strate generation to be done within the routers themselves since the re-calculations
of shortest paths can be independently done by each core. The substrate generation
could be done at larger timescales without any major sub-optimality. Further, cen-
tralizing substrate generation allows goals like multi-path traffic engineering which

require a global and centralized view of the network.

39
3.1 Formal Description

We, now, provide a formal definition of the substrate graph generation problem of
multi-core parallel routing. Given an underlying network topology as a graph G
= {V, E} with a set of vertices |V| = n and edges |F| = m, multi-core parallel
routing’s substrate graph generation involves several decision parameters: (i) number
of substrate graphs to generate and (ii) edge weights on each substrate graph. Let
Wy = 0..k — 1 be the weight of the edge from vertex u to v in G, where w,, can be
set to k different integer values. Further, let .S be the set of all possible substrates of
G. Substrate S; € S, can be expressed as S; = {V;, E;} where V; CV and E; C E.
Then, the number of possible substrate graphs is |S| = k™.

The overall goal of multi-core parallel routing is to maximize the through-
put of the network by using the shortest paths from a subset of the substrates.
Let ¢ C S represent a group of substrates and P(q) be the collection of shortest
paths generated from the substrates in g. Further let T'(¢) be the total throughput
attained from the shortest paths P(q). Then, we can formulate multi-core parallel

routing’s problem of generating a group/set of substrates that maximizes the through-

put, MAX_SUBSTRATE_SET, as follows:

max T(g) (3.1)
subject to
3 (u—v)eP(q VYV uveV (3.2)

where (u — v) is a path from node u to node v. (3.7) assures the resulting multi-path

40
routing provides at least one path between all source-destination pairs.

Formulation of MAX_SUBSTRATE_SET in (3.1) looks at the problem in a
black box manner. It is possible to express the substrate generation problem from
the network’s point of view in a white box style. In particular, network throughput is
maximized when routing calculates paths with minimal overlap. Next, we will express
the substrate generation problem in terms of minimizing overlap.

For a graph g={v, €}, let R, be the routing vector such that R,(() is the number
of shortest paths traversing link [€ e. Note that R,(l) is the edge betweenness
centrality of a node. Given a set of substrate graphs ¢ = {G1, G, .., G} in multi-core

parallel routing, we can express the number of shortest paths traversing [as

t(l,P) =Y Ry(l) (3.3)

geP

The substrate generation problem of multi-core parallel routing is, then, to make
the usage of each link as even as possible, which also implies a minimal overlap
among shortest paths. To factor in the varying number of substrates, we can aim to
minimize the difference between the minimum and the maximum R,(l). Hence, we
write multi-core parallel routing’s substrate generation problem as a minimization of

the unevenness in the usage of links, MIN_SUBSTRATE_SET, in G={V, E}:

min (maxt(l,q) — mint(l,q)) (3.4)
subject to

3 (u—v)ePlqg V uvelV. (3.5)

41
MIN_SUBSTRATE_SET provides a clear guidance on how heuristics should be de-

signed for the substrate generation problem. In the next section, we will use this
guidance to minimize the maximum load on individual links while trying to maxi-
mize the aggregate throughput.

Producing a new substrate dynamically to reach the optimum result is hard
to determine in a feasible time cost normally. On each step, we remove one or more
network element(s) which could be stuck earlier than others. In multi-core parallel
routing method, we defined these elements by using some heuristics, based on network
centrality metrics, defined in Chapter 4.

Now, we show MAX_SUBSTRATE_SET problem is NP-Complete by giving a
reduction to the Subset Sum problem. First, we formally represent the Subset Sum
Problem as SUBSET_SUM(S, t), which is the problem of finding if there is any subset
of S such that the sum of its elements is equal to t for a given set of S integer numbers.

SUBSET_SUM(S,t) is one of the Karp’s 21 NP-Complete problems [46]. Next,
we define one part of the MAX_SUBSTRATE_SET problem, i.e., SUBSTRATE _SET.

Let SUBSTRATE_SET(S,t) be the Substrate Set Problem which finds the
substrate set ¢ such that the aggregate throughput obtained from the shortest paths
of the substrates in ¢ is equivalent to ¢. This decision problem can be formulated as

follows:

qCS | T(q)=t (3.6)

subject to

3 (u—v)eP(q VY uveV (3.7)

42
Corollary 1: MAX_SUBSTRATE_SET’s search space is O(2F").

Proof: Finding the ¢ that maximizes T'(q) requires scanning of all possible ¢s. Let @) be
the set of all possible ¢ C S. Then, the search space size for MAX_SUBSTRATE_SET

is the size of (), which is:

_ 5]
QI = ;S (Z) (3.8)

3!
= 2 i!(|]@| |—i)! (3.9)

i=1.9]|
= oSl (3.10)

Substituting |S| = £™ in (3.10), we find the number of possible substrate sets |Q| =
2" — 1, which is clearly not polynomial in terms of the number of edges m. Since
m > n — 1 in a connected network, it is NP in terms of the number of nodes n as
well.

Lemma 1: SUBSET_SUM(S,t) <p SUBSTRATE_SET(S,t)

Proof: Calculation of T'(¢) in (3.1) can be done with |g| all pair shortest path cal-
culations, which is polynomial. Let’s assume that a solution substrate set ¢ is one
of the combinations of S which is a subset of all possible substrates set. In order to
reduce to the SUBSET_SUM(S,t) problem, selected subset will be summed up which
is a polynomial process. Similarly, in SUBSTRATE_SET(S,t), each substrate set has
a value of total throughput 7'(¢) which can be calculated in polynomial time by using
the legacy shortest-path routing algorithms. So, finding a subset of substrates that
gives an exact value of a given throughput, can be reduced to SUBSET_SUM(S,t)
which is NP-Complete [33].

Lemma 2: SUBSTRATE_SET(S,t) <p MAX_SUBSTRATE_SET(S)

43
Proof: MAX_SUBSTRATE_SET(S) problem is trying to find a solution to the SUB-

STRATE_SET(S,t) problem such that the solution maximizes the value of ¢ As-
suming that data flows have inifinite demand, the maximum amount of transferable
data via the graph G is equal to the sum of capacities of edges/links in G. Let
that sum be totaldataflown. So, we can write a polynomial time algorithm that re-
duces MAX_SUBSTRATE_SET(S) to SUBSTRATE_SET(S,t) by decrementing given
value of maximum possible ¢, i.e., totaldataflown, until the SUBSTRATE_SET(S,t) is
solved. Assuming that the edge capacities are integer, and hence t is an integer, the
complexity of this reduction algorithm will be in the order of sum of all edge capacities,
which is clearly polynomial. Algorithm 1 details this reduction algorithm. Instead of
decrementing, it is also possible to perform a binary search to find the maximum t
value solving SUBSTRATE_SET(S,t). As shown in Algorithm 2, this approach could
also work with decimal edge capacities as long as a fixed precision is defined as a
stopping condition for SUBSTRATE SET(S,t). Thus, MAX_SUBSTRATE_SET(S)
problem is also NP-Complete with a reduction to SUBSTRATE_SET(S,t).
Theorem 1: MAX_SUBSTRATE_SET is NP Complete.

Proof: Tt follows from Lemma 1 and Lemma 2.

Algorithm 1 Decremental design for Maximum Substrate Set
procedure MAX _SUBSTRATE_SET(S)
t = totaldata flown
while !solved do
solved = SUBSTRATE_SET(S,t)
t=t—1
end while
end procedure

44

Algorithm 2 Binary search design for Maximum Substrate Set
procedure MAX _SUBSTRATE_SET(S)

start =0
t = totaldata flown
maxt =1

while start <=1 do
mid = (start +t)/2
solved = SUBSTRATE_SET(S,t) © returns true if there is a solution S
attaining throughput within a certain precision of t
if solved is true then
start = mid
else
t = mid
maxt =1
end if
end while
return maxt
end procedure

45

Chapter 4

Parallel Routing Heuristics

Parallel routing creates slices, i.e., substrates, from the entire router topology to
run those substrates on each core for getting more diversified paths for end to end
data transfers. For a given network with E edges, 27 different substrates could be
generated if no constraints are imposed on the substrates being generated. In the
entire set of possible substrates, some topologies could be incapable of producing
better results, i.e., that could include a partitioned set of nodes in a substrate which
causes disconnected routing within a substrate. Considering such constraints, our
design goal of parallel routing is to find optimal substrates that yield the most diverse
and non-overlapping shortest paths possible. Thus, we develop intuitive heuristics to
create new substrates which can improve total aggregate throughput.

High level of activity diagram for substrate generation is given in Figure 4.1.
According to the substrate generation method and number of cores, all substrates will
be created by the system. Then, the generated substrates will be assigned to different
cores of routers, and each of them will continue to do the same thing as in their

current shortest path policies without any modifications. Therefore, the proposed

Get the number of cores
inside of the router = n

Choose the substrate
creating method

Flow Based
Heuristics

Calculate substrates
based on flow pattern

Graph Based
Heuristics

substrates

Assign created substrates
to one core

46

Use the pre-calculated

GD

Calculate the shortest

path for the given

substrate

Send data through
the calculated path

Calculate the shortest
path for the given
substrate

Send data through

the calculated path

o

Calculate the shortest
path for the given
substrate

Calculate the shortest
path for the given
substrate

Send data through
the calculated path

Send data through
the calculated path

Figure 4.1: Activity diagram for parallel routing with n cores

A7
parallel routing method is able to (i) give a fast reaction to network dynamics since,

in the event of a topology change (e.g., due to failures or demand spikes), each core
will be automatically calculating the new shortest paths within their substrates, and
(ii) adapt to existing systems easily with little adaptation cost.

When generating the substrates, a crucial challenge is to assure all-to-all con-
nectivity. To address this issue, we define Substrate 0 as the actual given topology.
When generating the subsequent substrates, however, some nodes or edges are going
to be omitted. A simple heuristic step could be to omit the nodes/edges that are
being used the most by the shortest paths in Substrate 0. We try two approaches
which are explained in later in this chapter.

While generating subsequent substrates, some network elements, such as nodes
or edges, will be omitted from the given real topology. Our heuristics analyze the given
topology to predict which routers/edges could be maxed out earlier than others. These
routers/edges will be removed from some of the subsequent substrates to balance the
load in the underlying topology. Thus, the primary design parameter is to decide
which nodes/edges are going to be omitted on the generated substrate. Our first step
of heuristics could be to max out the most utilized nodes or edges that might be
more centralized, and as a result, these elements can be used more than the others
by being on the most of shortest paths. There could be two different criteria where
we can focus on to have improvements in the long term: Graph-based solutions and
Flow-pattern-based solutions. In the graph-based technique, the whole topology will
be analyzed and all the edges connected to the central elements are going to be
expelled on the next generated substrate. Similarly, in the flow-based method, the
traffic pattern at the particular time is going to be inspected, and selected edges

with highest utilization will not be on the new substrate. Therefore, our heuristics

48
are concentrated on figuring out the possible behavior of the network elements and

network dynamics in a feasible way and finding the network elements that can be
omitted to generate new substrates.

As Substrate 0 will be the original topology to guarantee the connectivity, for
other substrates, the generating process could be done in two ways of selecting the
base topology that the new substrate will be generated from: Cumulative approach or
Independent approach. In the first method, all substrates are forked from the previous
substrate that was already produced. This process ensures that over-capacitated net-
work elements, which are already removed from the previously generated substrates,
cannot be on the newly created substrate. For instance, in order to calculate the 4th
substrate for a 4 core router, 2nd and 3rd substrates should have already been calcu-
lated for that router. If the node was removed in the 2nd substrate, it would not be
on the 3rd and 4th substrate as well. Whereas, in the second method, all substrates
are calculated from the given real topology, and so all of the different substrates can
be generated at the same time. We also observe different amount of node or edge
removals and analyze the effect of removal percentages. In each step of substrate
generation, we remove elements and calculate the number of removed edges until we

reach the amount of the given removal percentage of the edges.

4.1 Graph-Based Heuristics

Graph-based heuristics are purely based on the graph properties of the given real
topology. In graph-based heuristics, network centrality metrics are used to find the
most 'central’ nodes as they are most likely the nodes to be maxed out by the short-

est paths. The main purpose of those methods is to increase the number of non-

49

i

Get the actual i
Calculate all pair Count how man;
topoloy " Check each node Y
pology shortest path paths travers that node
Add main topology
as a first substrate

Set the metric for
network centrality

Calculate the distance
from the selected node to
each other nodes

(Sum all distances H Get the inverse of 1)_%/>_

]

!

Check each node

(Calculate degree \
for each node

H Select k nodes from the top ’ Remove top k nodes
from the sorted list
Assign calculated value
as a metric for each node
Add selected nodes
into remove list

(Check the type of removing ’
Sort nodes based on
centrality metric
Remove all nodes
in the remove list from :
Clear the remove list
actual topology
Add newly created topology
as a new substrate

Figure 4.2: Activity diagram for simulator

Check if new substrate \
needed

Increment number
of created substrate

overlapping shortest paths for the newly generated substrate. For the graph-based
approaches, the only consideration will be the topology information, regardless of the
traffic pattern, to determine the order of node(s) to be removed. Therefore, these
selected nodes for removal can be pre-calculated and remain unchanged until some-
how the topology changes. On the other hand, the graph-based methods might not
be robust in the dynamic and changing traffic flow patterns because they determine
the congestion area only by using the topology information. Also in these methods,

substrates are generated for being able to perform well under every possible condition

20

Algorithm 3 Graph-Based Remove
procedure GRAPH-BASED REMOVE(amount, cores)
substrateList. Add(mainT opology)
metric < [Betweenness, Closeness, Degree, etc.]
sortedList <— nodes.Sort(metric)
numO fSubstrates < 1
while numO fSubstrates < cores do
selectedNodes < sortedList.Top(amount)
generatedGraph < topology.Remove(selectedNodes)
substrateList. Add(generatedGraph)
numQO fSubstrate <— numO fSubstrate + 1
end while
end procedure

instead of the specific solutions for the given network dynamics. Therefore, spreading
data load over the network may not temporarily be well as in flow-based solutions.
Algorithm 3 shows the steps for graph-based heuristics.

Our graph-based heuristics are based on the centrality characteristics of the
nodes in the network topology. Central nodes are calculated and selected as potential
congestion areas without detailed analysis of the actual network flow. They can be
calculated once and recomputed solely when the topology changes. We utilized the

following centrality metrics to determine which nodes to remove:

Node Degree Centrality (NDC): NDC is based on degree centrality metric
which measures the number of one step in/out connections between the other nodes.
It gives the number of neighbors which also shows the possibility of using a node. If
the node has a higher degree value, that node iintuitively should be more central to
the overall topology and used (i.e., traversed by shortest paths) more than others.
Thus, in the NDC heuristic, higher degree nodes will be eliminated first. For a given

topology with n nodes and m edges, time complexity for NDC is O(n + m).

51
Node Betweenness Centrality (NBC): NBC uses betweenness centrality metric

to find the central node(s) to estimate the congested nodes statically. Betweenness
centrality is a graph metric that measures the number of all pairs shortest paths
traversing through a particular node. Since the current systems use the shortest
path for data transfers between the source-destination pairs, NBC reduces possible
intersection of the nodes that most commonly used on shortest paths and helps load
balancing. NBC, in essence, captures the very basic notion of overlapping shortest
paths. Thus, eliminating the nodes with high NBC is in direct intuition with the
goal of graph-based heuristics, i.e., to increase non-overlapping shortest paths in the
subsequent substrates.

NBC needs to calculate all shortest paths between each possible pairs to find
how many shortest paths will pass through a given node, Algorithm 4. For a given
topology with n nodes, the time complexity of calculating betweenness centrality

metric for the entire topology will be O(n?logn).

Algorithm 4 Betweenness Centrality score calculation
procedure BETWEENNESS(node List)
for each node t € nodeList do
t.metric < 0 > initialized to 0
end for
for each node source € nodeList do
for each node dest € nodeList do
pathList < SHORTESTPATH(source, dest)
for each node t € pathList do
t.metric < t.metric + 1
end for
end for
end for
end procedure

52
Edge Betweenness Centrality (EBC): EBC is the edge version of the Node

Betweenness Centrality. Instead of counting the number of shortest paths using a
given node, EBC calculates how many shortest paths use a given edge. Thus, EBC
is an edge-centric centralization metric that addresses the most central edges over
the topology. Removing the most used edges of the central node can be helpful to
reach higher aggregate throughput than losing the node itself. Similar to NBC, the

complexity time for EBC will be O(n?logn).

Node Closeness Centrality (NCC): The primary goal of multi-core parallel
routing is trying to find the most central node to exclude from the subsequent sub-
strates, and NCC uses closeness centrality metric which is another graph metric
measuring the distance from one of the nodes to all others. NCC selects the nodes
for removal when they have the average shortest distance to all other nodes, with
the intuition that such a node would be on more of the shortest paths. NCC is a
normalized parameter which all the values are between [0..1]. The time complexity
for NCC will be O(n?logn) for a topology has n nodes, and pseudo code is given in
Algorithm 5.

Edge Closeness Centrality (ECC): In comparison to node removal, multi-
core parallel routing performs better when the edges are removed to generate a new
substrate. So, similar to EBC, we calculate the shortest distance from a given edge to
other edges instead of measuring the shortest distance other nodes as in EBC. Small
ECC values give us the edges closest to the all other edges on the topology. For a

topology with n nodes, the time complexity will be O(n?logn) as NCC.

23

Algorithm 5 Closeness Centrality score calculation
procedure CLOSENESS(nodeList)
for each node t € nodeList do
t.metric < 0 > initialized to O
end for
for each node source € nodeList do
for each node dest € nodeList do
distance <~ SHORTESTPATH (source, dest)
source.metric <— source.metric + distance
end for
source.metric < 1/source.metric
end for
end procedure

Eigen Vector Centrality (EVC): Eigen Vector Centrality is another metric in
graph theory that gives the relative scores to all nodes. The continuous calculations
are performed to find the score of a node. High-scored neighbor nodes will contribute
more than low-scored neighbors to score a given node. We used a network analyzing
tool Gephi [10, 21] for calculate the EVC. In our calculations, we performed 100

iterations.

Page Rank Centrality (PRC): Page Rank Centrality is a modified version of
EVC. It is based on traversing nodes like EVC, additionally with a scaling factor. We
used Gephi to calculate PRC scores. We chose probability as 0.85, and 0.001 for the

epsilon in our calculations.

Harmonic Closeness Centrality (HCC): HCC is a different version of the Node
Closeness Centrality. NCC is the inverted version of the sum of distances. However,
HCC is the sum of the inverted distances. We try to see the effect of this little change

on multi-core parallel routing.

54
Multiplication Centrality: Centrality metrics are used to determine the most

central nodes in the given graphs. However, in multi-core parallel routing, removing
nodes will likely cause significant disruption on the later substrates. So, we decided
to add another step for choosing some edges of the central nodes to remove. Instead
of scoring node centralities, we try to find the most central edges like EBC, a metric
to find how many times shortest paths are traversing through the edge. To merge
both the node and edge centrality measures, we multiply the centrality metrics of the
two nodes of a given edge to calculate the centrality score of that edge. Thus, the
edge will inherit the centrality information of both of the nodes it touches during this
decomposition step. In some sense, we change the scoring formula from node space to
edge space. For example, when edge connects two central nodes, that means this edge
has higher centrality score. However, central nodes can have a connection between
nodes with lower centrality scores. In that case, multiplication centrality will give us
a lower score than the other edges. As a result, we will not lose all the central edges
of the central node in the next generated substrate(s), but the congestion on the hot
spot edges will be removed.

We test three node centralities as a multiplication centrality. Since we are using
the node centrality metrics to calculate the multiplication centralities, the complexity
of the multiplication centralities will be the same as node centrality calculations.

Multiplication Betweenness Centrality (ENB): uses NBC, a.k.a Node Between-
ness Centrality, to calculate the centralities of the nodes.

Multiplication Closeness Centrality (ENC): uses NCC, a.k.a Node Closeness
Centrality, to find centrality scores.

Multiplication Degree Centrality (END): uses NDC, a.k.a Node Degree Cen-

trality, for the node centrality value.

55
Random Node Removal (RN): Multi-core parallel routing tries to select re-

movable nodes wisely for generating the next substrate. We also experiment with
random node removal to observe the performance of an uninformed node removal
process. We perform 20 times uniformly distributed random substrate generations
and make static analysis to observe the average performance of multi-core parallel

routing.

4.2 Flow-Based Heuristics

Most of current systems use the shortest path which is well-known and widespread
technique for deciding a path from source to destination. In that case, some edges
can be shared by multiple paths, and such overlapping of end-to-end paths causes
congested spots on the network. Intuitively, the most used edges are going to be
maxed out earlier than the other edges. In multi-core parallel routing, each substrate
will calculate its own shortest paths independently that could increase the load on the
shared edges of different substrates. As we remove the most utilized edges from the
previous substrate(s), we try to obtain short paths that avoid congestion spots. Thus,
our main goal in flow-based heuristics is predicting which edges carry more data flows
than other edges, and use that prediction to balance the load across all edges on the
topology. According to multi-core parallel routing, those heavily used edges will not
be placed on the new substrate and data will be sent through the longer alternative
paths.

The graph-based properties might not have an ability to capture dynamism
in network traffic. Thus, designing heuristics that consider the current utilization

of edges would be favorable to adapt the substrate generation process under traffic

26

Algorithm 6 Flow-based removal
procedure FLOW-BASED REMOVE(removal Amount, cores)
substrateList. Add(mainT opology)
for each edge t € edgeList do
e.metric < 0 > initialized to O
end for
numO fSubstrates < 1
while numO fSubstrates < cores do
nodeList <— SubstrateList.Last().nodeList
for each node source € nodeList do
for each node dest € nodeList do
pathList <~ SHORTESTPATH(source, dest)
for each edge e € pathList do
e.metric < e.metric + 1
end for
end for
end for
sortedList < edges.Sort(metric)
selectedEdges < sortedList.Top(removal Amount)
generatedGraph < topology. Remove(selected Edges)
substrateList. Add(generatedGraph)
numQ fSubstrate <— numO fSubstrate + 1
end while
end procedure

dynamics. We propose flow-based heuristics as a short-term approach, dependent on
the traffic patterns in addition to topology information. So, the generated substrates
might change with the estimated/predicted data traffic flows that can emerge later
on the network. Worse, for each flow set, a new substrate set must be generated
periodically, and that might increase computational complexity. Therefore, flow-

based heuristics can be computationally intensive but adaptive to the traffic dynamics.

Highest Flow (HF): To generate a new substrate, we count existing flows, tra-
verse each edge and omit the most used edges in substrate ¢ to produce substrate

i + 1, which leads us to Highest Flow (HF), given in Algorithm 6. In each step of

57

Table 4.1: High level comparison of heuristics

Graph-Based H Flow-Based
Depends on Topology || Depends on Flows
Pre-Computed Dynamic
Complex Simple
Less Speedup More Speedup
Coarse Granularity Fine Granularity

substrate generating, we remove the number of edges according to the given removal
percentage. If s represents the number of substrates, and n shows the number of
nodes, the time complexity for HF is shown in O(sn?logn). Although that method
is faster than some of the graph-based heuristics, HF must be performed in regular
periods when the traffic pattern changes. On the other hand, note that the graph-
based heuristics must be run when the topology changes, e.g., due to node or edge

failures.

Random Edge Removal (RE): In addition to Random Node Removal, multi-
core parallel routing is also experimented with random edge removal. We perform

multi-core parallel routing with 20 different random seeds to avoid noise.

4.3 Comparison of Heuristics

Graph-based heuristics are based on the topologies and infer which nodes would be
congested first by analyzing network centrality metrics, and then remove selected
nodes from next substrates. On the other hand, the flow-based heuristics are based
on data flow patterns and try to predict which edges will be over-capacitated first.
Therefore, graph-based techniques are just performed if the topology is changed such

as insertion or deletion of edges or nodes. So, there are no additional computational

58
Table 4.2: Low level comparison of heuristics
- | NBC | NCC | NDC | HF

Metric Betweenness || Closeness || Degree Traffic
Complexity || O(n%*logn) | O(n*logn) || O(n?) || O(nlogn * s)

costs to find priority of nodes for removal when the flow patterns change. Yet, flow-
based methods adapt to current flows with some additional computational cost at
each time when a new flow is generated.

A nice property of the graph-based heuristics is that the re-computation of
the shortest paths could be performed if and only if there is a change in the topol-
ogy, e.g., due to a node or link failure. Thus, flow level changes and traffic trends
could be ignored in the graph-based approach, while the flow-based approach may
have to recompute its substrates and their shortest paths against such dynamism.
Of course, this dynamism brings more computational overhead for the flow-based ap-
proach, in return for more speedup possibilities in the aggregate throughput. Table
4.1 summarizes these tradeoffs between the two heuristic approaches.

Although graph-based heuristics are pre-computed techniques, generating a
new substrate has higher computation cost. Contrary, the flow-based approach solves
basic problems, but it should be held in real time. Explicitly, the flow-based technique
will have better performance because of focusing on to spread possible paths by
centering in the intensive traffic pattern over the network. Thus, flow-based heuristics
achieve higher aggregate throughput with a better load balancing performance. Also,
comparison of heuristics based on complexity is given in Table 4.2.

To sum up, flow level changes and traffic trends are ignored in the graph-based
heuristics, while the flow-based approach needs to recompute its substrate graphs with

such dynamism. The flow-based heuristic typically would achieve higher aggregate

59
throughput with a better load balancing performance.

4.4 Removal Methods

We explained how to score the node or edge centralities for choosing the removal of
elements for the next generated substrates in 4.1 and 4.2. Multi-core parallel routing
has different selection methods to remove elements from the ordered list. Flow-based
heuristics periodically adapt to the flow patterns. They are also very sensitive and
adaptive during the new substrate generation process by calculating shortest paths in
each step. So, Highest Flow, HF, gives an upper bound for multi-core parallel routing
heuristics using the centrality measures. Although HF is the upper bound, it should
be calculated each time when flow pattern changes. That means, HF needs to change
dynamically and will increase control plane communication. Graph-based heuristics,
however, give pre-computed and statically generated substrates for multi-core parallel
routing.

Thus, the main idea is that finding the best-chosen nodes to generate a new
substrate from the ordered node list by centrality scores as close as possible to the
HF. On the other hand, we compare these heuristics with Random Node Removal as
a baseline which gives us a greedy solution without a computation cost.

After calculating all the centralities, we perform four different removal methods
for different amount of removal percentages. We also experiment with both indepen-
dent and cumulative methods of the substrate generation techniques in all the removal

methods. We now describe the removal methods.

(g) Individual Substrate 2 (h) Individual Substrate 3 (i) Individual Substrate 4

(j) Block Cumulative (k) Bucket Cumulative (1) Individual Cumulative

Figure 4.3: Visualization of removal methods on AboveNet with 8% removal

61
Block Remove : For a given list of elements (nodes or edges) ordered by their

centrality, we choose elements as a block of some nodes or edges to remove. In the
first substrate, we remove the first top block, and in the second one, elements in the
second top block are removed, so on. That method removes most central nodes at the
same time, and tries to offload the load to the least central nodes in the subsequent

substrates.

Bucket Remove : We create different clusters of the nodes on the ordered list as
blocks and choose one item from each block into a bucket. Thus, in each substrate,
we do not clean the top central nodes, and keep nodes in each cluster that causes

small changes on the paths as in the adaptive iterative shortest path methods [70].

(a) Region Independent (b) Region Independent (c) Region Independent
Substrate 2 Substrate 3 Substrate 4

(d) Region Cumulative (e) Region Cumulative (f) Region Cumulative
Substrate 2 Substrate 3 Substrate 4

Figure 4.4: Visualization of region removal on AboveNet with 8 % removal

62
Region Remove : We perform Breadth First Search [13] to discover the neighbors

of the most central node and remove the central node along with its BF'S tree. In each
step, we choose a central node and try to clear the neighboring region of the node
in the topology. So, if the congestion is coming from the usage of central nodes and
it is regional, then we would be able to deal with congestion by clearing the whole
congested spot. We do not have the depth limit while creating the BFS tree that
discovers all the items until we reach the removal amount. Once, we reach the target
count of nodes/edges to remove, we stop the BFS tree discovery process and remove

the selected elements.

Individual Remove : In every step, we just remove one element from the ordered

list to try to find how we are performing on other methods.

Comparison of The Removal Methods: = We analyze different removal methods
after scoring all the elements with various metrics. We, now, discuss how these
methods affect generated substrates. We show which nodes are removed on the first
four substrates of AboveNet, when NBC is used as a metric, and eight percent of the
nodes are removed, in Figures 4.3 and 4.4. Remember that the first substrate, i.e.,
Substrate 0, is the actual topology, so we just show the rest of generated substrates.
Green-ish nodes have higher scores whereas dark browns are less central nodes, and
yellow nodes represent eliminated nodes. The last row, Figure 4.3(j) (k)(1) respectively
Block, Bucket, and Individual remove methods, shows which nodes are deleted for a
four core scenario when they are created cumulatively. Note that, all removed nodes
on the fourth substrate are also removed on the previous substrates. However, in
the Region removal method, there is no correlation between the independent and

cumulative methods because of the dynamic discovery of which region to remove

63
based on BFS tree.

In the Individual removal method, in each step, we select the top element and
remove this element. Thus, we remove the highest top three nodes one by one as shown
in Figure 4.3(g)(h)(i). So, we start to discover the topology from these nodes in the
Region removal method. Also, note that, in Block, given in Figure 4.3(a)(b)(c), these
three nodes are excluded on the first substrate whereas Bucket selects different nodes
with smaller scores. Each of those three nodes is discarded on separate substrates as
shown in Figure 4.3(d)(e)(f). When we analyze the cumulative substrate generation,
in Figure 4.3(j)(k), we observe that the massive graph disruptions can reveal small
changes on the later substrates that causes the similarities. Although Bucket gives us
a little bit diversification, it is not better to clean the entire hot spot(s) than Block
removal.

On the other hand, in Region remove which is given in Figure 4.4, independent,
and cumulative substrate generations have a different pattern because of regional
discovery of which nodes to remove. In later substrates, when a node is excluded
from previous substrates, we also skip this node to start to discover it again. Thus,
intuitively, the Region removal method will give better throughput in the case of
cumulative substrate generation. Although there is no pattern for the Region, ap-
parently, it is clearing the neighborhood of the top next element that could provide

better throughput.

4.5 Parallel Routing Under Network Dynamics

As changes to a network topology is reality, we need to analyze MCPR’s perfor-

mance when the network has changed unexpectedly because of traffic spikes and/or

64
sudden failures. Multi-Core Parallel Routing creates new virtual topologies, named

substrates, and each topology calculates their own shortest paths. In the case of
network dynamics due to failures, end-to-end multi-path routing algorithms will need
to recompute their paths, or it is required to pre-compute the paths for the common
failure patterns. Recomputation process means extra overhead on both control-plane
communication and CPU usage. However, in multi-core parallel routing, only short-
est path calculation is enough to modify the paths on each substrate when node or
edge failures occur. Yet, after a failure, these modified shortest paths on substrates
can have more or less overlap in comparison to the original shortest paths on the
substrates. To evaluate the robustness of multi-core parallel routing against such
failures, we calculate the total throughput over the network when one node or edge is
down, and we compare the average throughput achieved with respect to the original

throughput without failures.

4.5.1 Traffic Spikes

Network traffic patterns can be very dynamic and may result in temporary spikes
with very different than expected rates. Mail server problems, virus scanners, mali-
cious attacks are the most common reasons for the traffic spikes [98]. In addition to
these, remote backups or scheduled backups on the network can cause traffic spikes.
When we have a significant amount of data suddenly needed to be transferred among
routers, it may cause new hot spots over the network topology. Retuning routing to
accommodate these spikes means more calculation that affects CPU and more data
on the link or specific paths that fall into congestion. System administrators try to
estimate the traffic spikes before they happen to reduce the risk such as scheduling the

backups and interfering the path calculations when a spike is detected. Yet, having

65
a routing scheme that is robust to these spikes is critical to the practice.

4.5.2 Failures

In networks, there are two types of failure scenarios: (i) device or node failure, and
(ii) link or edge failure. Traffic spikes can increase the workload of the routers which
eventually trigger device failures. Also, changing traffic patterns can cause edge
failures because of overloading of particular edges. A software update, bugs, traffic
spikes, and electrical shut down are the common reasons for the failure of devices.
Link failure can occur because of the device failure, and also traffic congestion. Device
failures are mostly because of maintenance problems; however, edge failures do not
have any specific pattern [35].

End-to-end path calculation is needed whenever network topology changes due
to failures. Also, most of the failures are short-term and failed link or device could be
back online in a while. In that case, all paths will be recalculated to determine the
paths between source and destination pairs, which means increasing the CPU usage
and the amount of control-plane data. Existing multi-path routing techniques require
partial and complete re-calculation of multi-path routes, which can be too costly in
terms of CPU overhead. This process typically is costlier than typical shortest path
calculations. On the other hand, Multi-Core Parallel Routing does not require any
additional re-calculation overhead because of its reliance on the well-known shortes
path calculations. During this calculation, alternative paths are also computed, and

it is mostly not needed to recalculation in the case of failure.

66
4.6 Experimental Setup

We implemented a new static analysis on C++ to create virtual world for calculat-
ing the amount of data throughput over the network under the proposed MCPR
heuristics. Based on this simulator, we have the capability to generate substrates,
find paths between each flows, and carry all data on flows by using max-min alloca-
tion method for competition on edge capacities. The simulator generates substrates
according to our MCPR heuristics, and defines the data transfer paths on the sub-
strates generated by the heuristics. Then, all data flows are sent on the substrates,
and aggregate throughput is calculated based on the edge capacities of the given
topology.

We used C++ in this static analysis because of its both object oriented back-
ground and adaptivity on most of the environments. In the object-oriented model [83],
we create a set of objects or modules that are interacting with each other. There-
fore, we implemented each module (e.g., metric calculator, and substrate generator)
separately that improves the performance of the tests with parallelism. Further, we
followed the Spiral software development model [12] to reduce the risks, and in each
cycle, we implemented one of the modules. In our framework, a class diagram is given
in Figure 4.5, we have five modules: Main module, Analysis, Metric Calculator, Re-
moval Selector, and Substrate Generator. We store topology information, data flows,
run parameters, centrality metrics, and generated substrates in different folders and
files separately.

In this static analysis, we create a scratch folder for each topology and combine
all the input files into this temporary folder. Metric Calculator module calculates the

scores of the nodes/edges to order them, and stores the scores in a file. Then, removal

67

! I

Main Module Metric Calculator Removal Selector
- decide: - generateMetrics (Graph) - readMetric
removal method - writeMetric - get removal method
substrate type - readMetric - write removal
number of cores elements
- read Graph
- read Flows
- [Ifind paths
Graph Analysis Substrate Generator
- node_list - Get parameters) ggaveggsasgd(memc)
- edge_list - Read Substrates
) - Read Flows
- readGraphFromFile - Calculate Throughput
- readMetricsFromFile .)
Max-min allocation
/ \ - Give total throughput
Node Edge Path] Flow
- id - id - pathid sameid [, i
- weight - capacity - flow id _ <€ > - from, to
- edge_list - from, to - edge_list - amount
- metrics - assigned flow

Figure 4.5: Class diagram for substrate generator

selector module defines which nodes/edges will not exist for the next substrate ac-
cording to the given removal method. Substrate generator module gets these outputs
that generated by first two modules and creates substrates cumulatively or indepen-
dently according to removal percentage. This module stores all substrates in different
files. Lastly, the analysis module calculates the total throughput can be sent over the
substrates by using max-min allocation when edge sharing occurs. All these modules
use the main module that includes the definition of common classes and functions.
We tested our heuristics on six Rocketfuel topologies that have different char-
acteristics [93]. Table 4.3 presents the number of nodes, number of edges, maximum

degree, average degree, average path length, clustering coefficient, and assortativity

68
of the network graphs.

In Rocketfuel topologies, link capacities are not provided, but delay-based
edge weight is provided. In our analysis, we determine link capacities inversely pro-
portional to the link weights in the Rocketfuel data set. In order to calculate the
throughput attained by subgraphs/substrates, we assign data loads incrementally.
First, we send maximal data on the first subgraph, re-arrange capacities and use the
next subgraph(s) to send the rest of the data. A finer grained model could look for
maximum flow in the underlying subgraphs.

We performed a static analysis that calculates the total throughput for a given
network. We compared the MCPR against the currently used single shortest path
routing to analyze the throughput across the network. We generated network flow
between all node pairs based on the gravity model between the point of presences
(PoPs) of in the Rocketfuel topologies. In the gravity model [6], flow demands are
calculated as the product of populations divided by the square of the geo-distance
between two PoP locations. We assumed the link capacities inversely proportional
to the link weights that were provided by Rocketfuel. We used max-min allocation
to determine the end-to-end rates the flows will attain. We normalized the flow
rates based on the smallest flow rate, and, so our throughput results are shown in
normalized units.

We tested both cumulative and independent approaches to generate substrates.
In the independent generation, all substrate graphs are generated from the actual
topology. In the cumulative substrate generation, each substrate is forked from the
previously created one, and hence following graphs have a larger portion of the net-
work removed.

We created a new network model including flow patterns, estimated link ca-

69

Table 4.3: Characteristics of network topologies

Network |Nodes Edges Max Avrg Avrg Cluster. Assortativity
Deg Deg Path Len Coeff.

AboveNet 141 922 40 13.1 3.62 0.269 0.698
Ebone 87 403 51 93 3.90 0.299 0.357
Exodus 79 352 24 89 3.9 0.286 0.749

SprintLink| 315 2333 90 14.8 3.89 0.331 0.387
Telstra 108 368 92 6.8 2.89 0.171 0.006
Tiscali 161 874 406 10.9 2.31 0.072 -0.063

pacities, flow demands of nodes. Instead of using different metrics to calculate total
throughput, our model is evaluated based on how many units can be transferred.
Thus, we can convert that model to other metric systems.

Topology: Rocketfuel topologies have information about nodes and links. But,
link capacities are not measured. In our analysis, we get link capacities inversely
proportional to the link weight information coming from Rocketfuel instead of trying
to estimate link capacities with actual real capacities.

Flow patterns: In our analysis, gravity-based flow patterns are calculated. In
a gravity-based model, we use actual population and geo-location of the cities where
nodes are located. Flow demands are calculated based on the gravity model, which
is the product of populations divided by the square of the geo-distance between the
source and destination locations of the flows. We also normalized the estimated flow
rates by the minimum rate attained by any flow. In both models, data flows are
full-duplex for each pair of nodes.

Unit equalization: Link capacities are calculated based on weight metrics com-
ing from Rocketfuel and flow demands are given in terms of the minimum flow rate.
Thus, unit equalization between the link capacities and the flow rates is needed to

calculate the total throughput. We performed this matching process during the max-

70
min allocation when flows share link capacities. Instead of equal distribution, we

allocated a link’s capacity based on rates/demands of the flows which are crossing
through that link. In homogeneous traffic pattern, capacity sharing will be equal.
However, in the gravity-based model, each flow will get their portion based on their
demands.

Load balancing on substrates: Our proposed method reduces multi-path cal-
culation problem to another problem: finding optimal subsets of possible substrates
to achieve maximum total throughput sent over network. In this model, it is needed
to determine the load on each substrate. In our analysis, we assigned data loads
incrementally on the substrates, starting from Substrate 0. First, we try to send all
data on a substrate, re-arrange capacities, and use the next substrate to send the rest
of data amount. For instance, let us assume that we have two cores and one flow. We
try to send the whole data on Substrate 1. If there is still data packets needed to be
sent, we will send them on Substrate 2.

Single Failure Analysis: MCPR is also tested when a failure occurs to show
robustness under dynamic networks. Under single failure analysis, nodes are down
one by one, and total throughput is calculated for each scenario at the time of failure.
Then, the average amount of throughput is computed to understand the performance
of MCPR in the case of losing a node temporarily.

We compare the heuristics against the single shortest path according to the
total throughput achieved from the generated substrates. In each scenario, we se-
lected different topologies. We generated gravity distributed model (inter-datacenter
traffic) flow sets for various topologies. We tested both cumulative and indepen-
dent approaches to generate substrates. In the independent generation, all substrate

graphs are generated from the actual topology. In the cumulative generation, each

71
substrate is forked from the previously created one and hence later graphs have a

larger portion of the network removed. We also test our performance in different

percentage of node removals and different removal approaches.

4.7 Evaluation of Heuristics

In this section we provide the comparison between multi-core parallel routing heuris-
tics and the shortest path routing. We first provide a summary of key results. Al-
though all techniques are better than the single core, HF (a.k.a. a measure of con-
gestion on the nodes/links) seems to be giving much better results as we expected.
HF identifies the edges that are most struck by shortest paths the flows use, and
hence attains a better balancing of traffic loads on substrates, each one of which uses
shortest-paths for routing. On the other hand, graph-based approaches, although they
perform better than the single shortest path, can not attain significant improvements
as nodes are being eliminated instead of edges. Note that, graph-based heuristics are
pre-computed methods that generate substrates by only using the network topology
information, and they do not require recalculation of the substrates until topology
changes.

Under the weighted traffic pattern, i.e., inter-data center traffic, parallel routing
heuristics achieve higher total throughput in comparison to the single core routing.
Also, they outperform even further as the number of cores and the offered load (i.e.,
the number of source-destination flows) increase. Edge removal clearly outperforms
node removal techniques since it works at the finer granularity of edges rather than
nodes. However, as the number of flows and the network gets larger, the flow-based

heuristics are computationally harder as they will have to cope with more dynamism

(a) Exodus - 3967 (b) AboveNet - 6461

Figure 4.6: Visualization of Rocketfuel topologies

72

73

. ' BeR & satgs
cagmaedaaRddnaf [EEEEE R R R RN NN @ggugﬁgeegsééﬂ%%%ﬁiim : s
L] &

o L]

Average of Average Node Degrees

9
8

7

6

5] OHF +EBC xNBC xCC
41 @DC AEVC OHCC +PRC
3
2

012345678910111213141516171819202122232425262728293031(0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 192021222324 25262728293031/0 1 2 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 6 10
independent subgraph generation

0 0
10 ®°®® .
o] ®e by 8%, Average of Average Node Degrees :
Ba R TS Z
8 CToe, B, % LR
.Y AR 8 & st

7 by, Py, Bao fe, “53¢
N ugg&gxx . Bax EE" o

NS 3 a % x R e
5] oHF +EBC xNBC xCC ﬁml‘géxf‘zgfoA LES SR 99922 5Mx@%

o _ *x3H8g2%% % 290 Xy 4
4 c e He - o BxFHggiae of P X% x $£29, « *%9o
0DC AEVC GHCC +PRC o Aok EE BTN B ﬁQAA *%92909000500000 00

N ta 8 sl 85 e °
) X ® o,

012345678 0910111213141516171819202122232425262728293031(0 1 2 3 4 5 6 7 8 9 0111213141516 17181920 21222324 25262728293031(0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 6 10

cumulative subgraph generation

Figure 4.7: Average of average node degree of the substrates for 2%, 6%, and 10%
removal

via repeated shortest path calculations on each substrate. Also, in the long term,
substrates generation process must be repeated periodically depending on the changes

in the flow sets.

4.7.1 Analysis of Substrates

In this section, we perform a detailed analysis of the substrates generated by each of
the heuristics. Figure 4.7 presents the average of the average node degree, Figure 4.8
gives the average maximum node degree, and Figure 4.9 shows the average clustering
coefficient of all created substrates. We show the average resulsts for the independent
as well as the cumulative removal on all Rocketfuel topologies. Cumulative substrates
generation significantly changes graph characteristic and sometimes removes connec-
tivity in the substrate. In general, node centrality heuristics disrupt the network in
substrates more than edge centrality and HF heuristics. Node centrality heuristics
have almost the same effect in terms of topology disruption. As expected, we observe

that small removal percentages have small effects on substrate characteristics. How-

130

x@ap
@t
-
-
R
o -
-
=TS
=S
-
e
B+
B
ot
@
s
4 @se
+ @se
+ @se

P Average of Maximum Node Degree
OHF +EBC xNBC

xCC ODC AEVC

3 Hee +PRC & 1

012345678 0910111213141516171819202122232425262728293031(0 1 2 3 4 5 6 7 8 9 10111213 14151617 18192021 222324 252627 282930 31| 0 1 456 7 8 91011121314 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 6 10
independent subgraph generation

130

S
S

s

", Average of Maximum Node Degree

110 0®Q®o¢$°°oo b ®
¢ ©0000000 H

©OHF +EBC xNBC A + o4 eeeoococe

%0 ey

R + °o

xCC ODC AEVC

50| omoe +prC o
o
290

ooox

30 Eééé; 8
» L R S T IT I
g fesEsad

EExgi.

i
fha,
5 %e,
3 LN EIY
&

Skl T I T "elax

012345678 91011121314151617181920212223242526 27282930310 1 2 8 4 5 6 7 8 9 10111213 14 1616 17 18 19 20212223 24 25,26 27 282930 31]0 1 5 910111213 14 15 16 17 18 1920 21 22 23 24 25 26 27 26 29,30 31
2 6 10

cumulative subgraph generation

o

5%

S
e
o
=

@

Figure 4.8: Average of maximum node degree of the substrates for 2%, 6%, and 10%
removal

031 g L] i

"3xesiin§xggsggg§iggaizzagsssiansss@E@gg§ggg%5g%Eg%g%@§§%@%i%5?2E§x°E§g;§Eg%gé%?ﬁ?gﬁﬁiﬁﬁﬁﬁgggﬁgﬁﬁ

+ wao

oHF +EBC XNBC xCC Average of Clustering Coefficient

ODC AEVC OHCC +PRC

012345678 91011121314151617181920212223242526272829303110 1 2 3 4 5 6 7 8 9 1011121314151617 1819202122232425262728293031(0 1 2 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 6 10
independent subgraph generation

06 {oHF +EBC xNBC xCC . B
06 x Average of Clustering Coefficient
05{0DC 8EVC OHCC +PRC *

wxa +
[

®

>00%
b Oex
k3

o ©g00

=
>

o

P

B Do
>

03] pu &Y
031y e s @ ®

°

+ox OB
+ o0 4bxx

+ D>
°
.

- +

+ Tt

01 Tt

00 PR

012345678 910111213141516171819202122232425262728293031(0 1 2 3 4 5 6 7 8 91011121314 151617 181920212223 242626 27282930310 1 2 3 4 5 6 7 8 9 10111213 14151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 3 10

cumulative subgraph generation

Figure 4.9: Average of clustering coefficient of the substrates for 2%, 6%, and 10%
removal

75
ever, in larger removal percentages, multi-core parallel routing heuristics are not able

to generate different substrates, and start to generate too similar substrates after a
while. As practical observation, note that the removal percentage should be less than
100/numberO fCores as, after this point, there are no more nodes/edges to remove
in the substrates.

In node centrality heuristics, graph-based heuristics, the first substrate ex-
cludes the most centralized nodes, which causes a significant decrease in the average
and maximum node degree. After a point, the heuristics start to remove periphery
nodes from the network, and this increases the average node degree. This indicates
that later substrates might not improve the performance as removing periphery nodes
does not contribute to balance the load. Average node degree, however, is not affected
much by the edge removal heuristics. As a result, edge removal heuristics perform
better than node centralities (in Figure 4.12). We can observe the same pattern for
maximum node degree.

As HF is dynamically generating new substrates, it tends to remove the bridge
edges in the network. This causes an increase in the clustering coefficient of new
substrates. As EBC, edge betweenness centrality, removes the highest centrality
edges in initial substrates, the bridges remain in the subsequent substrates. This
leads to a decrease in clustering as central group of nodes are removed in subsequent
substrates.

On the other hand, in cumulative approach, average and maximum node de-
grees reduce significantly. Clustering increases with small removal percentages but,
when removal percentage is increased, clustering also plummets. For further results,

please see Appendix A.3.

76

28
- Average SU
2 EBC +ENC 9
28 . ..
xEND oNNB . .
24 v PR
«HF -RNN . .
22
o0 0 .
oo " 60 0 ° .. o 0 9 °
- RNE b - b ° % x x
. ° ° o x - . g S E¥
. DI S o S . gfeea il
S E-- - grilTes
. x - . 2 o
oo 60 ® N x 3 8o x5 x 2 g
" ER R Ploo- - - “ e gEBageg -
.. : Leka; . B N
o Xox ok & & o0ag ©
o © 0 0 9 - X x x
1 o -z == . R
° e R . 5§ B AEE s
. R R . 5 5
14
o I FEE === ¥
$eeet o853z LN R
e RS
M x
e s 008600 IR R A
-]
1
2 4 6 8 10 121416]2 4 6 8 101214 16]2 4 6 6 10 12 14 16]2 4 6 8 10 12 14 16]2 4 6 8 10 12 14 16| 2 4 6 6 10 12 14 16| 2 4 6 & 10 12 14 6|2 4 6 5 1012 14 16]2 4 6 & 1012 14 162 4 6 & 10 12 14 1
2Cores 4 Cores 8Cores 16 Gores 32 Cores 2Cores 4 Cores 8 Cores 16 Cores 52 Cores
Region Block
Independent Substrate Generation
28
- Average SU
<EBC +ENC 9
26 .. « e
xEND ©NNB .t .
24 PRI DY
«HF -RNN . .
22
- RNE " . I
. L eieuv s . -
. ESoocooon . 99888
1 vy idEoea -
. #5580 a . §98 8 B8
e . e g gAAEd o P [ECECE] o
e A e @R A RS = w e oEomw
218 8 8 a a8 a8 LI I R I B)
2 4 6 8 10121412 4 6 5 101214 16/2 4 6 6 101214162 4 6 5 10 12 14 16]2 4 6 5 10 12 14 16| 2 4 6 & 1012 14 16]2 4 6 6 10 12 14 16]2 4 6 & 1012 14 16| 2 4 6 8 10 12 14 16]2 4 6 & 10 12 14 16
2Cores 4 Cores 8Cores 16 Cores 32 Gores 2Cores 4Cores & Cores 16 Cores 32.Cores
Bucket Individual
Independent Subslrate Generation
28
©EBC Cumulative Substrate Generation - Average SU
20 ~ENC . .
*END . .
24 .. .
o NNB
«HF . .
22 .oy . e, .
-RNN ‘. . ME . . . -
. . o3 *o %% .
2 - RNE - LD S . Stk
g X% %o« o X o X
P . o ¥ Yo
. N x t: < o - - L e x =
. sie 5 X5l o - . N R P
. B . x x * - o ° - -
e e R B R x o T oTT-.. - .
LN N 2 PO S 2o, -2 R Lo e 6o ° - -
x dsoga - M 2ol s - o
14 £ & : =z
L B R O "¥es2:ll o ° °
e e oonnoo R . s s E
o o o o o
| o o o o o
2 4 6 8 101214 16]2 4 6 8 101214 16/2 4 6 & 10 12 14 16]2 4 6 8 10 12 14 16]2 4 6 & 10 12 14 16| 2 4 6 8 10 12 14 16]2 4 6 & 10 12 14 16]2 4 6 8 10 12 14 6|2 4 6 8 10 12 14 16]2 4 6 & 1012 14 1
2Cores 4Cores 8 Cores 16 Cores 32 Cores: 2Cores 4Cores 8 Cores 16 Cores 32 Cores
Region Block
Gumulatve Substrate Generation
28
< EBC Cumulative Substrate Generation - Average SU
26
+ENC . .
x END . .
" .. -
o NNB
«HF . .
22 .., . . .
- RNN
2 -RNE . . . H
¥ o
222222288
5 H
e P, ; A et Socoooa
. o o . 2 % %R R R R R -
. L . . - -
cEE H ° GEfesgoo - -
16 x 0o fgqgd0g - - - = - - -
% I - g g8 R R R RS -l - -
B iy H - - LR - -
oo 5ons g Gicegouooay
" Y o R
L8 88882 L8 HER R
12
B8 s s a8 [
2 4 6 8 101214 16]2 4 6 6 101214 16]2 4 6 8 1012 14 16]2 4 6 6 10 12 14 16| 2 4 6 6 10 12 14 16]2 4 6 & 1012 14 16| 2 4 6 6 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 6 10 12 14 16| 2 4 6 & 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores 2Cores 4Cores 8 Cores 16 Cores 32 Cores:
Bucket ncividual
Gumulative Substate Generaton

Figure 4.10: Speedups for Removal heuristics (Region, Block, Bucket and Individual
approaches) for both independent and cumulative substrate generation

7
4.7.2 Analysis of Removal Heuristics
In this section, we compare the performance of the removal heuristics for Bucket,
Region, Individual, and Block approaches. We give results for a couple of metrics
including EBC, ENC, END, NNB, HF, RNN, and RNE. We show HF and RNN
to determine upper and lower bounds of multi-core parallel routing performance, as
shown in Figure 4.10. As we discussed in the previous section, in cumulative substrate
generation, the new substrate are being disrupted rapidly which sets back the total
throughput. However, in the Individual method, we remove only one element at
each step that lessen deformation on the substrates but improve the performance at
a low level. As shown in Figure 4.10, Bucket removal performs better and reduces
the topology disruption for the cumulative method, but it does not entirely clear
congested spots at the same time. So, it does not have enough contribution to the
amount of total throughput. Block removes a block of nodes/edges while creating a
new substrate that removes the most important elements in first substrates, and this
gives good improvement in throughput. However, in later substrates, it removes low-
scored elements which reduces the performance significantly. Finally, Region removal
outperforms all other heuristics because of its sense of clearing the neighborhood of the
possible hot spots at the same time. On the other hand, in the independent removal
method, Region and Block perform better similar to the cumulative process. The
Individual approach has moderate improvement, and Bucket does not have significant
contribution to the performance. In Bucket, we remove some elements in each block
that are not able to clear the whole block and balance the load across the blocks.
When we remove the whole block to generate a new substrate, we reduce the load on
most used nodes synchronously which improves the performance of load balancing.

Finally, Region clears the neighborhood, so the overloaded nodes and the regions

78
around those nodes will not be on the newly generated substrates. When we increase

the number of cores, for the later substrates, Region will remove the area of the low-
scored nodes, which affects the performance severely. For further results, please see

Appendix A.2.

4.7.3 Performance Comparison

In this section, we evaluate the performance of centrality based heuristics to solve

substrate generation for multi-core parallel routing with Block Removal method.

21

Speedu,
oo | Speedup Telstra o o 5 o 0 O
19 o HF o o 0o 0 ©° ° ° o PR S
18 *EBC O o o o
xNBC o o © o e e e, L
1.7 xCC + X x
6 oDpC 6 o o o o L S x x 8 B 8 ® 4 ¥ B g
15 AEVC ot " xk§!§?§5=a
+ - -
14 hee L + ot 4 géeusag;&
+PRC o s + g 8 %
13 -RN
giéénggu
1.2 @ - -

® o o ¢
wit B s s 8 8 8 o

1.0

2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 162 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
independent subgraph generation

21 g

20] Speedup Telstra
191 o HF o M .
o o
e +EBC o . P + 5 j ° o
: xNBC P o ® o oy,
] 56t + 9 e F 9 -
1.7 xCC + []
16 3 oDC o 9 o 2 & t 3 + 4 °©
+ o o -
151 aEVC _
14 4 Hee @ - - 3 a ~ - - 8 2 - -
+PRC + a b % = % z
131 “RN + - x5 @ A - - R ® Ao a 2 § A A
- % N B oy A A B x A A

121 o © o o o & & 5 ¢ 4 2 3 4 LI S LI TN L N

@ 8 5 5 8 85 8 2 LI R o * *
[RE! & & B

1.0

2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Figure 4.11: Performance of MCPR heuristics for the Telstra topology

To analyze the speedup of heuristics, we show the performance of each against
the single shortest path as a baseline. Note that, highest flow heuristic is expected to

provide the best speedup as it dynamically adopts to the network flow in substrates.

79

2.6

o
255 |Speedup Average e
24 4 oHF o

o o © o
2-3:+EBC Ooo ++lg*+++
221 xNBC o o & @& & &8 &8 &8 ¥
2.1 A o
xCC o o N

291 apo o ° & & & ¥ 8 ¥4
Y 1 0
181 AEVC
17{ cHCC o ©°°° 4 oz & A oy ¥ K
16 1 +PRC o % . . .
151 RN 8 & & s w & g &

14
1.3 e © © © o °
12{8 &8 8 8 8 8 &8 &
11
1.0

2 4 6 8 10 12 14 162 4 6 8 10 12 14 16|2 4 6 8 10 12 14 16|2 4 6 8 10 12 14 16|2 4 6 8 10 12 14 16

2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

267 Speedup ° 5

25 Average

24 { oHF o o o

231 +EBC ° + o

224 o o

o1 xNBC ° 4 R N °o o + °

20] *CC © ° 5 A ° i A °

194 0ODC . B o, . " o,

18] AEVC 0o 0 0 o o o * e, BB A o+ [- ot

1.7 { < HCC 2 = 4 ¥ 8 g

16 { +PRC L4 v s BB BEBR g fa g L

151 _RN x

14 5 o= & F

1.3 1 @
® © & o o
1_27ﬂ ﬁ & 8 & 8 8 =
1.1 4
1.0

2 4 6 8 10 12 14 162 4 6 8 10 12 14 162 4 6 8 10 12 14 162 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

cumulative subgraph generation

Figure 4.12: Average performance of MCPR heuristics for all topologies

Similarly, random network is supposed to provide the lower bound of speed-up as it
randomly removes nodes from the substrates.

Figure 4.11 presents the performance gain of substrate generation heuristics
compared to the single shortest path for Telstra topology. In the Figure, x-axis has two
different indicators. The first line on the top shows the removal percentage of network
nodes/links (which is incremented between 2% and 16% by 2). The second line gives
the number of cores (i.e., 2, 4, 8, 16, 32 cores) that will generate substrates. The last
line indicates the substrate creation approach, i.e., independent and cumulative. Test
results are given for gravity-based flow pattern which is proper for inter-data center
traffic flows. From Figure 4.11, we observe that multi-core parallel routing performs
much better than the single core routing (ranging from 1.2 times with 2 cores to 2.0

times with 32 cores).

80
Figure 4.12 presents the average performance gain of substrate generation

heuristics compared to the single shortest path for all topologies. Each heuristic
yields a higher performance than the single shortest path approach indicating even
with a poorly chosen heuristic (such as random node removal), multi-core parallel
routing can produce better throughput than traditional routing. We observe that
multi-core parallel routing heuristics improve with the number of cores.

While in some instances of independent substrate generation (e.g., 16% removal
with 32 cores), node centrality heuristics perform slightly worse than random network
generation, centrality heuristics overall yield better results than random removals.
Additionally, highest flow heuristic produces best throughput speed-up in a majority
of the instances as it adopts the substrate generation to network flows.

In both independent and cumulative methods, a specified percent of nodes/edges
are removed in the next substrate. As a result, the independent method removes fewer
elements in generating the next substrate. In Figure 4.12, we observe that the cu-
mulative method performs worse with higher node/edge removal rates in subsequent
substrates. As there are the greater number of nodes/edges ignored in the later sub-
strates, they are not able to yield viable e2e paths. Hence, node centrality metrics
occasionally perform worse than random node removal. On the other hand, with
independent substrate generation, higher removal rates yield better performance for
the HF approach that adjusts the substrates to the networks” flow. Hence, in general
with a greater number of cores, one should utilize the independent edge removal in
the substrates to obtain viable paths that would provide higher throughput in the
network. For further results, please see Appendix A.1.

In the highest flow approach, a small number of removals with a higher number

of cores provides better throughput because HF removes hot spot(s) from the sub-

81
sequent substrates. Note that, however, highest flow approach needs to recalculate

substrates after each flow change. Hence, it is viable to use edge betweenness central-
ity that produces the best among centrality heuristics. Overall, for a large topology,
edge centrality heuristics are better with a high number of cores and independent
removal percentage within 8% to 10%.

When analyzing individual topologies, we observe that the best overall perfor-
mance is achieved with the SprintLink and AboveNet, two of the largest networks in
the data set. However, the third biggest network, Tiscali shows the most substan-

tial difference between highest flow and other centrality metrics. We believe this is

26
Speedup Telstra
24
22
2.0 o
@ +
1.8 o +
16 o + & 8
1.4 + 2
A
12 & 8
a
10
2 4 8 16 32
26
Speedup Average)
24
© +
2.2)
20 4 &
18 + OHF +EBC
o &
16 XNBC XCC
+
B ODC AEVC
1.4
é HCC +PRC
12 8
=RN
1.0
2 4 8 16 32

Figure 4.13: Effect of the number of cores with 8% independent removal (log-scale)

82
in part due to Tiscali graphs’ slightly disassortative behavior where highest degree

nodes form a core of the network. Hence, centrality based removals are not able to
produce viable substrates.

Figure 4.13 presents the effect of the number of cores in the networks with
%8 independent edge removal. As observed in both the Telstra and overall average
results, the speedup performance improves with the number of cores. However, this

improvement is sub-linear as the number of cores increases.

4.7.4 Analysis of Network Dynamics

In this section, we analyze the Multi-Core Parallel Routing heuristics under single
node/edge failures. Failure analysis helps to determine the robustness of the approach
under dynamic network conditions. Under single failure analysis, nodes or edges are
eliminated one by one and the total throughput is calculated for each graph with
the failed node/edge. We assume that the substrate graphs stay still even though a
node/edge fails. This allows us to see how robust the substrate graphs are against
single failures. In our simulation, we fail all the nodes and edges one by one separately
and compute the total throughput achieved on the given substrates. We use the same
Rocketfuel topologies and the same substrates used in Section 4.7.1. We compare the
average results to understand the single node failures and single edge failures.
Figure 4.14 presents the average throughput change when 6% and 8% removal
rate is used with closeness centrality and highest flow approaches in the AboveNet
topology. Multi-Core Parallel Routing uses only single shortest path calculation, even
though when one of the nodes/edges is down. In this case Multi-Core Parallel Routing
calculates new shortest paths on respective substrates instead of calculating the whole

end-to-end multiple paths. Overall, we observe that performance of multi-core parallel

83

routing is reduced by 0.4% when a node or edge failure occurs. When considering
the node failure, both NCC and HF approaches loose 0.7% and 0.6% throughput
on average for 6% and 8% removal rates, respectively. When considering the edge
failures, NCC looses 0.2% throughput on average while HF looses 0.1% throughput
with 6% removal rate. Similarly, with 8% removal rate, the average throughput
loss is 0.1%. Note that HF even improves the throughput with edge failures under
independent substrate graph generation with 8, 16 and 32 cores. This is due to the
fact that HF adjusts to the network condition and, with failure of an edge, it was

able to find alternative paths that slightly improved the overall throughput.

Throughput

Change AboveNet (6% removal)
1.002
o (@)
1.000
[[
0.998 ® e ® o ?
) [0} + [0] ¥
0.996 + + + @
o
0.994 ¥ o
0.992 o © 5@
0.990 o "
0.988 + @
0.986
| 2 4 8 16 32 | 2 4 8 16 32
| cumulative | independent
Throughput
Change AboveNet (8% removal)
1.002
o) o
1.000 —g e * + o & & © o
0.998 5 5 +
0.996 + +
@
0.994 ® T o © o
o) o)
0.992 o)
0.990 =+
0988 + CC - EdgeFail +CC - NodeFail
0986 OHF - EdgeFail OHF - NodeFail
2 4 8 16 32 | 2 4 8 16 32
| cumulative independent

Figure 4.14: Performance of AboveNet with node/edge failures

84

Chapter 5

Parallel Routing Under

Heterogenous Core Distribution

There are different kinds of routers manufactured by various companies with the sev-
eral numbers of CPU cores. While building a new system, there could be different
requirements or limitations such as cost-effectiveness issues or geographical restric-
tions. Therefore, all devices on the network wouldn’t either work or be the same.
Since updating most of the systems with new technological devices, is not possible
in a short period of time, the homogeneity of the network system will be broken. As
a result, we need to find an appropriate MCPR solution that can also work in the
heterogeneous environment. MCPR could run on not only homogeneous systems but
also on the systems that have routers with various numbers of cores.

Recall that MCPR empowers each core to handle one of the generated sub-
strates to find a feasible manner for multi-path routing. Therefore, each core will
be having different topology information and every first core of the routers in the

system will have the same topology. Although this attains a basic consistency and

85
connectivity in routing, in the heterogeneous systems, not all substrates may be effi-

ciently hosted by some of the routers if their number of cores is fewer than the count
of generated substrates. For example, when four substrates are created, third and
fourth substrates cannot be assigned to a separate and dedicated core at a two cored
router. The problem with such situations is that, when two cored router has a flow
coming from a substrate that is not assigned to a separate core (e.g., third one), the
forwarding of the data packets for that flow will have to be handled by one of the two
cores that are already assigned to another substrate (e.g., the first or the second sub-
strates). This means that the flows on these unassigned substrates will have to share
the cores with other substrates. Such sharing of the cores will reduce the forwarding
(and control plane actions) speed and deteriorate the overall performance gains from
MCPR.

We will propose two heuristics to accommodate parallel routing with the het-
erogeneous count of router cores and experiment those solutions with the flow simula-
tor. In our first technique, we just gave up on some routers that cannot manage more
substrates during the substrate generation process. The next heuristic is to create an
average number of cores with an estimate of additional processing delay due to lack

of sufficient number of cores on some of the routers.

5.1 Heterogeneous Heuristics

To design MCPR heuristics that can run over routers with heterogeneous count of
cores, we try to estimate the additional load on the routers due to excessive sub-
strates than their core count. The first estimation we have is the router that has a

bigger degree value might be carrying more cores since those routers are needed to

86
be more powerful for processing more data than others. So, the distribution of the

core count over routers in a given topology is built depending on the degree centrality
of each router in our network model. We use the same graph-based heuristics for
heterogeneous scenarios with two different additional initial heuristics. These extra
features are needed to solve the substrate-core matching problems when all the cores

of a router had already been assigned to a substrate and a new substrate is created.

Additional Node Elimination: In this heuristic, after deciding which nodes
will be removed to generate a new substrate, some nodes are also maxed out if their
core number is fewer than the substrate count. Therefore, those nodes cannot be
included on the next substrate generations because they are not able to process the
data coming from the excessive substrates. Note that this is a preventive approach,
in that it eliminates the possibility of having excessive substrates than the number of

cores on a router.

Average Number of Cores - Normal: = The second method is to create new
substrates up to an average number of cores and consider the additional processing
delay at the routers with excessive substrates. Since we did not implement a packet
simulator, we decided to simulate the worst case scenario for the data processing
delay. In order to evaluate the performance of this heuristic, we drop the data flow
speed by some amount if there wasn’t enough cores on the router in proportion to
how many times the router’s interface(s) was used. Following the observations on
the performance of MPTCP, we reduce the data flow speeds for the overloaded cores
proportionally [80] [25].

To model the data flow speed reduction, we generate three different versions of

the flow speed loss based on delay-tolerant and loss-tolerant applications. We assign

87
a (down)scaling factor to each node based on the excessiveness of the substrates, and

then, we calculate the scaling factor for a given path. For a flow traversing several
routers, we merge the scaling factors of those router to come up with one scaling factor
for the end-to-end flow’s data flow speed. For loss-tolerant applications, we product
all the nodes’ scaling factors to calculate how much extra data will be lost (i.e., the
reduction in the data flow speed) for a given path. For delay-tolerant applications, we
use the arithmetic average of the scaling factors to determine the amount of data flow
speed reduction. Finally, we use harmonic average of the scaling factors to understand

the heuristic’s performance for both delay and loss sensitive applications.

5.2 Simulation Environment

We use a modified version of the implemented simulation environment explained in
Chapter 4. We added processing delay for each interface and updated the simulation
to calculate the throughput for a delay, loss and mixed tolerant applications. Similar
to the homogeneous cases in Chapter 4, we evaluate our flow tests with max-min
allocation method to resolve the competition among the flows. But, if there is a data
stream coming from an excessive substrate, the router interfaces would be working
more to process the data on a core that is not already assigned. So, we added a new
feature that computes how many units will be lost because of this processing delay.
We reduce the performance of the interface depending on how many additional flows
will be processed by that interface. For instance, if there is a two core router trying
to handle four substrates, then both cores will be working two times more to process
the data flows because of sharing their capacity with other two excessive substrates.

In our evaluation we are taking a pessimistic approach, and even if the cores are not

88
used simultaneously, we are downscaling the data flow speeds as a worst case scenario.

In a real environment, less data would be lost due to the non-overlapping use of the
cores, but the worst case is simulated in our tests.

Similarly, we evaluate our heuristics on all Rocketfuel data set, and our results
are shown in normalized unit flow rates. Rocketfuel topologies give the topology
information and latencies on the links. However, there is no information about the
number of cores on each router. So, it is needed to create a new model simulating the
core distribution among the routers. We assume that the most used routers should
be stronger than the others to process the data passing through them. We create
usage model of the routers with geo-location and population. We use 2, 4, 8, 16, and
32 core routers, and we put an equal amount of each router into the topology. For
example, when a topology has 25 routers, we assume that the top 5 most-used, based
on their population, routers have 32 cores and following top 5 routers have 16 cores
and so on. Our comparison baseline is single shortest path according to the total

throughput gained.

5.3 Evaluation Results

We test all topologies for heterogeneous scenarios with a selected set of parameters
for core and removal percentages under both independent and cumulative substrate
generation methods. However, we just give the performance of EBC, ENB, and
NNB to show how multi-core parallel routing performs under heterogeneous core
distribution. We also show the average speedup among all Rocketfuel topologies.
We show the average performance of both Eliminated and the additional pro-

cessing loss (Normal) methods. We indicate the upper and lower bounds with a

89

1t Substrate Ger ion - Average - H genity
o Eliminated - SU Throughput - EBC

—=—Normal - SU Throughput - EBC
+ Normal - SU Arithmetic - EBC
x Normal - SU Harmonic - EBC

—+—Normal - SU Product - EBC -

10 16 10 16 6 16 6 16 6 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores.

Independent Substrate Generation

ive Substrate ion - Average -
o Eliminated - SU Throughput - EBC

2 ~—Normal - SU Throughput - EBC
+ Normal - SU Arithmetic - EBC
18 x Normal - SU Harmonic - EBC

—=Normal - SU Product - EBC

1
16 s 10 1 [14 4 10 2
2Gores 4Gores 8 Cores 16 Cores 32 Cores

Cumuiative Substrate Generation

Figure 5.1: Multi-core parallel routing performance with Edge Betweenness Centrality
metric under the heterogenous core distribution for both cumulative and independent
substrate generation approaches

line. The Normal Method throughput is the upper limit of the metric’s performance
when all nodes have enough capability to process all of the assigned substrates. The
Eliminated Method is a heuristic for the heterogeneous scenarios in such a way that it
eliminates the nodes with fewer cores than the number of substrates being assigned to
them. Since this elimination is done after the substrate is created, it means that the
technique removes additional elements after the substrate is created and this reduces
the total throughput. The Normal Method with Arithmetic, Harmonic and Product

downscaling factors show the speedup, each with a different type of sensitivity to loss

90

8 Cores 16 Coros 52Cores
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 5.2: Multi-core parallel routing performance with Edge Node Betweenness
metric under the heterogenous core distribution for both cumulative and independent
substrate generation approaches

and delay. Although the Normal Product is the lower bound of the multi-core parallel
routing, it still has an improvement to single shortest path baseline.

Since we got better performance with independent substrate generation tech-
nique as shown in Chapter 4, we get a better speed up for independent substrate
production for heterogeneous scenarios too. For both of the heuristic techniques, het-
erogeneous core distribution reduces the performance of multi-core parallel routing,
but it still outperforms the current single shortest path routing. In the cumulative
scenarios, we already remove most of the nodes from the given topology as shown
in Figures 5.1 and 5.2. So, node based heuristics, i.e., NNB as given in Figure 5.3,
are not affected too much like other heuristics. For all other scenarios, eliminating

additional nodes performs better than other techniques. Note that, in the Normal

Substrate ion - Average -

= Eliminated - SU Throughput - NNB
——Normal - SU Throughput - NNB

+ Normal - SU Arithmetic - NNB

x Normal - SU Harmonic - NNB

~~=Normal = SU Product - NNB

91

10 1 0 1 6 16 6 16 6 1
2Cores 4Cores 8Cores 16 Cores 32 Cores

Independent Subsirate Generation

c ive Substrate ion - Average -

= Eliminated - SU Throughput - NNB

—Normal - SU Throughput - NNB
+ Normal - SU Arithmetic - NNB
x Normal - SU Harmonic - NNB

——Normal - SU Product - NNB

16 8 10 14 6 14 4 1 2
2Cores 4Cores 8 Cores 16 Cores 32 Cores

Figure 5.3: Multi-core parallel routing performance with Node Node Betweenness
metric under the heterogenous core distribution for both cumulative and independent
substrate generation approaches

Method, we add some additional processing delay which causes data loss for those

flows going through the nodes with fewer cores than the number of substrates running

on them. So, multi-core parallel routing may give better results in real settings.

92

Chapter 6

Conclusion and Future Work

In this dissertation, we presented a new multi-path routing framework that uses graph
abstraction of the network topology and employs network centrality calculations to
generate subgraphs for multi-core routers. The basic idea is to virtually slice the
router topology into different subgraphs and assign each to a separate router core,
which calculates the classical shortest paths on the assigned subgraph. This eases
the computational complexity of multi-path routing by dividing the overall problem
into smaller ones and lending each subgraph to a separate CPU core with traditional
shortest path algorithms. Our evaluations showed that Multi-Core Parallel Routing
achieves higher total throughput and performs better with inter-data center network-
ing.

We proposed a new divide and conquer solution for multi-path calculation.
In this method, we create new virtual topologies, named as substrates, and calculate
shortest paths on each of them, instead of calculating end-to-end multiple paths. After
we show the general performance of Multi-Core Parallel Routing under various condi-

tions, we focus on the key point of this divide and conquer method. Normally, multi-

93
path routing algorithms need to calculate end-to-end paths when topology changes

including network failures. However, in MCPR, we solely calculate shortest paths
which is well-known algorithm already built in most of routers. We, finally, showed
how Multi-Core Parallel Routing is robust against single failures. Please note that
failures can also improve the performance of MCPR in some cases.

We performed a detailed graph analysis of subgraphs on multiple topologies to
determine best centrality heuristics to utilize in Multi-Core Parallel Routing (MCPR).
Experimental results show that centrality based heuristics are able to increase overall
throughput in the network 2+ times with 8-core routers compared to the current
single shortest path approach.

By designing MCPR, we transformed the multiple path routing calculation to
a subset selection problem from the set of all possible virtual topologies that can be
generated from a given topology. We defined MCPR as a MAX_SUBSTRATE_SET
problem and we analyzed its theoretical background. We gave the mathematical def-
inition of the MAX_SUBSTRATE_SET and showed that MCPR is an NP-Complete
problem by reducing the MAX_SUBSTRATE_SET to the well-known SUBSET_SUM
problem.

We followed two approaches to designing heuristics: graph-based and flow-
based. In the former approach, we omitted the most utilized node(s) from Substrate
0 to generate new substrates. In the latter approach, we omitted the most utilized
edge for incrementally generating the substrates. Both approaches have advantages
and disadvantages. The graph-based approach is less expensive computationally
but attains lower aggregate throughput, while the latter achieves higher aggregate
throughput with a larger computational cost. We also followed both cumulative and

independent approaches to generate later substrates. In the independent approach,

94
we created all the substrates from the underlying topology, however, in the cumu-

lative approach, each substrate is produced from the previous one. We observed
that the independent approach gives better throughput with higher removal amount
whereas the cumulative approach performs better with small amount of removals as
new substrates are generated.

We also analyzed the effects of various selection methods after finding the
central nodes to remove for generating the following substrate. We showed that a dy-
namic method, i.e., discovering the neighborhood in each step, gains better through-
put and can cause less disruptions on the later substrates. However, static methods,
such as block removing and bucket removing, also outperforms single shortest path
baseline, even though they can cause the significant changes on later substrates. Note
that, discovering the neighborhoods of nodes dynamically will cause additional cost
during the substrate generation process.

We showed the performance of Multi-Core Parallel Routing when routers have
different number of cores. We created a model of heterogenous distribution of routers
and tested MCPR with this scenario. In this model, some substrates not be assigned
a dedicated core on the routers that have fewer cores than the substrate count. We
modified our heuristics with both additional node removing and additional processing
cost after creating substrates as before. We showed our results for delay-tolerant and
loss-tolerant applications. MCPR attains higher throughput against the shortest path
baseline under heterogeneous distribution of cores across network routers.

To sum up, in this dissertation, we proposed a new framework having higher
throughput during the big data transfers, and better performance to balance the
load over the network. Multi-core parallel routing framework solves the multi-path

calculation problem with well-known techniques that adapts to the current systems

95
easily. Further, proposed framework is robust and responds well to network failures

because of its divide and conquer design.

Possible future work includes to create subgraphs with other search algorithms
such as genetic algorithms, and improving heuristics with dynamic and static solu-
tions. Multi-Core Parallel Routing can also be run on a test-bed or real environment
to show easy adaptation and real performance. We will experiment our heuristics with
end-to-end reliable transport protocols on a larger test base. Lastly, this technique
might be enhanced and kernel level implementation can be done as a new protocol.
The comparison between Multi-Core Parallel Routing and other multi-path routing
algorithms can be investigated. In this dissertation, we focused on the routing aspects
to show how Multi-Core Parallel Routing framework performs. As a possible future
work, Multi-Core Parallel Routing framework can be analyzed with different aspects
of networking such as by exploring its SDN implementations and the performance of

Multi-Core Parallel Routing on centralized and de-centralized systems.

Appendix A

Additional Figures

A.1 Centrality Metrics

96

4.0 -
Speedup AboveNet °
o
35 1 oHF
) o X o
+EBC ° 8 x o
X
30 7 xNBC x ik o 1 o
xCC o o o & 2 E x o é E » o
oDC © x 2 u o - - * A x 2 o - ¥ B x 9 o
251 x X p B 8 + 8 B _ + B B
: AEVC P g 8 b & - P & - + i
HCC 5 T - I o=,
20] +PRC . 0 9 8 5 8 g 2 - -t s - B -2
' -RN EE el
Sla 8 8 8 8 8 & g
1.0
2 4 6 8 10 12 14 162 4 6 8 10 12 14 162 4 6 8 10 12 14 162 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
cumulative subgraph generation
4.0 1
Speedup AboveNet o o © ©
o
35 1 oHF o ©
+EBC OOOQoggggaamﬁ
a0l XNBC o © y
' xCC g % 8 s & 8 B g
o o + + o+
obDC 5 © o ° *
B x
25 AEVC 8 3 8 8 B 8 8§
HCC +OF o3 o+
R
201 +PRC ° % o 9
ZRN B8 8y o5 os d oy
“Ia &8 8 8 8 8 R &
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Figure A.1: Centrality results - AboveNet

97

21 g
50 & Speedup Ebone
1.9 oHF
+EBC
1.8 4 xNBC
1.7 3 xCC
16 4 obC
15 AE\é(é °
o o ¥ o
141 +PRC | S o g X g o
o ¥ 2 o o ¥ X o o
133 -RN o o B E 2 R ox iy géggzgg ﬁﬁégzig
12] s g ¢ 2% % & LN N 28 %8
& 88 3 g
i &8 B B & 8 & #
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
cumulative subgraph generation
21
50 & SPeedup Ebone
19 o HF
18 +EBC
: xNBC
17 xCC
1.6 oDC
AEVC
1. 3
° HCC . 8 g 8 8 8 8 38 8 03
14 +PRC g 8 8 8 8 & % 8
o o o z
13 -RN 8 & 2 & 8 & £ B
o ©
12 s % % 8 8 & & &
Mig & & & 8 8 § 8
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 162 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
independent subgraph generation
Figure A.2: Centrality results - Ebone
21
40 1 Speedup Exodus
19 oHF
, +EBC
8 xNBC
1.7 xCC
16 oDC
5 AEVC
HCC
1.4 +PRC g
g g &
13 - 8
a "Ry "y feay
1.2 !.iiiiﬁg £ B 2 ¥ g g
113i® & 8 8 8 § ® W
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
cumulative subgraph generation
21
50 & SPeedup Exodus
1.9 oHF
8 +EBC
: xNBC
1.7 xCC
1.6 oDC
5 aEVC
Hee LI I §
14 +PRC x4 omB 8oy § 8 8¢
13 -RN ii!§§g§§ * + o+
12 = 8 B § g § § 8 ot
1118 ® 8 8 8 B @ W
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
independent subgraph generation

Figure A.3: Centrality results - Exodus

98

21 g
50 & SPeedup Telstra
@
19 1 oHF o ® o o R
+EB °
18 c o o + %+ g e, g o
xNBC &+ <] ® ° o+ 4
+ 4 ® 2 9 -
17 3 xCC + o 5% +
o
+
16 3 oDC o © ° 9 Py + —
151 AEVC ©
4] HCC ° - - i a - - T - a a - -o-
: +PRC + A A _ - _ -
* - z Ao & - - ® ¥ A a ® § a a
13 4 -RN 4o s s _ éy;sagﬁA A§¢@AA A@%QAA
1.2 e o o 4 L oa £ 5 ¥y £y
s sl . is 82t - L Rw @
14 8 & B & B &
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
cumulative subgraph generation
21 s
peedup
20 Telstra o o 5 o 0 O
1.9 oHF o 0o o © 0 ° % o o oo
18 +EBC o
. % NBC 6 o © o o © o + o, PO y
+ + o+ x v
1.7 xCC X -
16 oDC 0 o 0 o +*++++++ * x 8 8 8 8 & B 8 §
E =2 8 B @ 8 8 g
15 AEVC + t X ¢ - = - = =
HCC . . A e og i
- +PRC S e B ¥ o8 B
13 -RN x 3
8 & u O
1.2 ® ® @ o @& - s %
1i 8 5 8 e 5 8 &
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
independent subgraph generation
Figure A.4: Centrality results - Telstra
21 7 s "
peedup i i
20 1 6 ° o0 © Tiscali
1.9 o HF o ot L+ .
+EBC © o o +
1.8 §
xNBC i = - o+
17 7 xCC * LT S - -
16 1 oDC N = - -
+ + o+ - - - -
51 AEVC . .
HCC . _ A
43 LPRC * P B - ¥] - H -
131 -RN ——— - Boa gy . Hog . R .
x &
12f6 ® o o 6 o o o © B B & B F 5 § L % B % g % B g %
113® B B B B B B &
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
cumulative subgraph generation
21
50 1 SPeedup °© e o o Tiscali
19 o HF .
+EBC Lot +
8 x NBC g ¥ B & 8 B & §
1.7 xCC .
16 oDC ;] 8@ 8 ¥ g § 8
15 AEVC o PR
HCC ° a8 & 5 m 8 & ¥
4 +PRC Q o+ N
13 -RN & B K 8 ¥ & &
121 @ o e @ o ¢ 4
13i% B B B B F & @
1.0
2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores

independent subgraph generation

Figure A.5: Centrality results - Tiscali

A.2 Remove Heuristics

99

4
©EBC +ENC .
AboveNet - SpeedUp
<END oNNB N
35 ¥ %
. . x *
*HF -RNN . 5,
Lot ° .
31 -RNE I . g
. . . » . N o .
. R Coe . - N Do g
. L - : I H
25 o N x x ° - @ - z -
¢ - ° o ooz 5 -z
° o . . M * ¢ - N -
2 M * + + o - -
CENE T T SR S a o o
B - -
o o N N o a
15 g
PR T T T T
, o o B B B
2 4 6 8 10 12 14 18|2 4 6 & 1 12 14 1|2 4 6 & 10 12 14 1|2 4 6 8 10 1z 14 1]z 4 6 8 10 12 14 16
2 Cores 4Cores 8 Cores 16 Cores 32 Cores
Block
Cumulative Substrate Generation
< EBC +ENC .
AboveNet - SpeedUp
<END oNNB °
as .
“HF -RNN . * .
. S e, :
s -rNE - T T S T T
o e e ¥ - 2 e om
. . 3 8 N .
R BT ST B oo .
25 — oL —
o o N Tono- L o
2 PP - -
= 8§ p g 8 & g
15 0 . .
LR T T T T T Y
1
2 4 6 8 1 12 1 1|2 4 & s 1 12 1 1|z 4 6 8 1 12 14 1]z 4 s s 1 122 1 1|2 4 s s 10 12 1 1
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Bucket
Cumulative Substrate Genoration
< EBC +ENC .
AboveNet - SpeedUp
xEND ©NNB °
as .
HE-RNN : g ¢ ¢ § ¢ ¢ ¢ ¢
3 ~RNE . - -
Lo g & ® 8§ ¥ ¥ § @ - - R
25 - -
8 8 8 8 8 8 8 8 Sor- L -
2 o e
HE
15
RN T T T R TR T |
1
2 4 6 8 10 12 1 1|2 4 6 8 10 12 14 1|2 4 6 8 10 12 14]2 4 6 8 10 12 1 1|2 4 & 8 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Individual
Cumulative Substrate Generation
4
°EBC +ENC .
AboveNet - SpeedUp
*x END o NNB .
35 - E .
«HF -RNN . I B
$1 CRNE P . - ° M T
... i R P R v«
. . 3 o LI - N s 8
R R S S A S e ~ R To.
25 * L g . - ° - - - °
LI LN R -
Lo e . e N
2 T R b ER—
A
[2 g 5
L T
15
« 8 8 & & 8 @ &
1
2 4 6 8 10 12 14 16|z 4 6 8 10 1z 14 6]z 4 6 8 10 1z 14 1]z 4 6 8 10 12 14 1]z 4 6 8 10 1z 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Region
Cumulative Substrate Generation

Figure A.6: Removal approaches with cumulative substrate

generation

for AboveNet

100

< EBC +ENC
AboveNet - SpeedUp P
xEND o NNB R
35 8 x * * N P
D R
«HF -RNN . . - .
« - - s ° g
3 -RNE 3 3 3 3 3 g g B °
L. . 0 e
25 i3 R
s = & 1 EIEE s
H
. “ o o
X R o B
S S T T T °
LR
151 2 — o
L o @
o
o
1
2 4 6 8 10 12 14 1|2 4 6 8 10 12 14 1|2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16] 2 4 6 8 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Block
Independent Substrate Generation
4
9EBC +ENC
AboveNet - SpeedUp .o
<END = NNB . - -
38 [I T
e -2
<HF -RNN L - - -
31 -RNE E R B B
[
25 . - _ - - -
g ot Eor & ®
) .
(R B T B
15
) H 1) H H 1) H H
1
2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Bucket
Independent Substrate Generation
4
<EBC +ENC
AboveNet - SpeedUp .o
xEND oNNB . - -7
35 e - -
“HF -RNN e« + <« * 3 8 5 8 o o o
. s s s s s s s
3 -RNE . : e —
] L] =] a a o o o
. PR T T T S T
25 . . - - - -
8 ¢ o & & = = =
CI -
2 . . -
: ¥ ¥ 5 R 8 8 ¥
15
A & B & % 2 B B
h
2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 1|2 4 6 8 10 12 14 1] 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32Cores
Individual
Independent Substrate Generation
4
*EBC +ENC
AboveNet - SpeedUp et
*END =NNB e - - T
35 .t o
e e« & o 2
. . o B =
“HF -RNN . . 3 s R
« - oo T8 ok
31 -RNE S S S S .
L
Lo . . kx4 g
25 . R
s & e o - - - -
a5
%o+ x x oy oy o%
2 . . : °
v 8 e o= 22 7.
% o ox x % 3 8 &
5 A .
e & & 8 & & & &
|
2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 10 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 10 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Region
Independent Substrate Generation

Figure A.7: Removal approaches with independent substrate generation for AboveNet

101

Figure A.8: Removal approaches with cumulative

Cumulative Substrate Generation

substrate

©EBC
Ebone - SpeedUp
+ENC
< END [
oNNB .. L
;e .
«HF v M S [
_ [- A
. . FA . 3% - - e %
- RNN P « 3 e - - - - :
« DO S A T S - e
- RNE P - -
P S =l
5. o o
s N
LT T - N a a
e e e . e e B a o o
I T T R |
N o o o
a o o a a
a
o o o o o
o a a a a
2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Block
Cumulative Substrate Generation
©EBC
Ebone - SpeedU
+ENC P! p
*END .
o
°NNB . e .
. EET) o o
«HF e e x % .
L. . o8 B b % . ox o x
. . - o H - O
-RNN x o« % ow F ot s R T
-RNE e T -
- R -
D -+ I 4 & % %
. o o 8o g -
[P S S
L T ST T
T
§ 0F 8 &2 % &t B B
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
2 Cores 4 Cores. 8 Cores 16 Cores 32 Cores
Bucket
Cumulative Substrate Generation
©EBC
Ebone - SpeedUp
~ENC
xEND .
o o o o o o o o
=NNB PN b T
s o 8 o o o o o
«HF - . .
)) L) L] [[) -
-RNN R - -
-RNE P S T S S N I A - -
. . o ° B o o B s o
e
s & =5 & 8 o 8 o
e & &8 8 8 8 8 8
2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16
2 Cores. 4 Cores. 8 Cores 16 Cores 32 Cores
Individual
Cumulative Substrate Generation
©EBC
Ebone - SpeedUp
+ENC
x END -
o NNB . e
. . a < x
*HF A . [
8 ¢ o & 2 73 X xox
. . ° 5w x - e
-RNN - B H x o B :
T T ¢ B Sl
-RNE Le e L - T -t E-
. . B o [} 8 - - 2 s - -
P [
LI -
s & 5 & 58 B 5 3
x L S S SR
LI I T T S
-
2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 6|2 4 6 8 1 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Region

generation for Ebone

<EBC
Ebone - SpeedUp N
“ENC [
15 e L
x END v s . - - - s =
|- TR
H
oNNB . . i o0 s
14 . I :
o HF H gD E X
-RNN . . B . H h o o
13 ° L 3 o o O
-RNE R T S S SR
o o o
“ o o
12 . = . - 3
g 0§ oz 5 §% 3 s
“ o
a
B AT I SR
| o
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
2 Cores 4 Cores. 8 Cores. 16 Cores 32 Cores
Block
Independent Substrate Generation
16
©EBC
Ebone - SpeedUp
+ENC
15 . B * 5 3 =
~END . 2 x 2 F g 0w
M I
PR
5 NNB R
PP [3
14 . * 5 ¢ § 3S L <
«HF i s e - -
& o o o o °o 8 @
- RNN - s
. z ¥ ¥ §
13 * 3 M N : B 2
-RNE [
g 5 o0 o
12 - S SR S SR S
s 8 o
1_1 e e e . e e
§ 5 8 & 8 & % B
1
2 4 6 8 1 12 14 6] 2 4 6 8 1 12 14 6] 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16
2 Cores 4 Cores 8 Cores 16 Cores 32 Cores
Bucket
Independent Substrate Generation
16
9 EBC
Ebone - SpeedUp
+ENC
15 . . : & s
*END . I
o NNB A T T R R
14 P
<HF . oo
s g 3 & 3z g g @
s 8 5 8 5 8 35 3
-RNN .. e . e
13 o -t T
“RNE § 1 98 § § 8 @ @
12 oDt -
8 E 8 & 8 i E
= S
8 8 8 8 8 B 8 B
1
2 4 6 8 1 12 14 6|2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16| 2 4 6 8 10 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32Cores
Individual
Independent Substrate Generation
16
©EBC
Ebone - SpeedUp
+ENC
15 . e e 1] .
x END . - o 2 . H H
s 8 % & o°o o 8 g
o NN P S T
14 . = = > -
* HF 2 e 3 3 S
g & 8 = o 0 o o
-RNN .. . e . -
s P T -
- x 3 K M b4 o °
RNE B g 8 & & 8 g g
2 s B S
§ 2 B 8 3 3 §
PR S PR
MIE b s e s 5 ¥ %
o o o o
h
2 4 6 8 1 12 14 6] 2 4 6 8 1 12 14 1|2 4 6 8 10 12 14 1] 2 4 6 8 1 12 14 16| 2 4 6 8 10 12 14 16
2Cores 4 Cores 8 Cores. 16 Cores 32 Cores
Region
Independent Substrate Generation

Figure A.9: Removal

approaches with independent substrate

generation for Ebone

103

145
©EBC +ENC
. Exodus - SpeedUp Yoy
<END ©oNNB . : . -
I T S : <
1351 «HF -RNN B % - P
P s 15 . R
131 RNE ¢ — S S SRR S
R T S S Lo oL
125 St o xe .o .o
: Lo, L]
12 B e Y B o o o
R
. :
115
L T S TR S B
wle ol CRE T T B o o -
1.05 - =
o 5 o o o o o o o o
1
2 4 6 8 10 12 14 1|2 4 6 8 10 12 14 1|2 4 6 8 1 12 14 1|2 4 6 8 1 12 14 6|2 4 6 8 10 12 14 1
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Block
Cumulative Substrate Goneration
145
<EBC +ENC
M Exodus - SpeedUp ;
xEND oNNB - ©
[s o o
131 «HF -RNN 5§ o T R
S I
[. 5 o o L
131 -RNE - S — ; o x
$., 9 ° s % % H e 7 s X
- S o o o 0t e . <
125 ° s 3 . ; . - .
2 i s . . .
8 . o
12 L g o g
K 2 H s 3
115
L] . [} o
1 e LI
1.05
1
2 4 & 8 1 12 14]2 4 6 8 1 12 14 16|z 4 6 8 1 12 14 1] 2 4 6 s 1 12 16 6]z 4 & 8 10 12 14 16
2Cores 4Cores 8 Coros 16 Coros 32 Coros
Bucket
Cumulative Substrate Generation
15
*EBC +ENC
s Exodus - SpeedUp
= END oNNB . - - - » » » »
14
3 3
«HF -RNN % & & 2
: : : B § o 5 o o o @
135 anE : s o o o o o -
) P02 3 8 % 3 3 3 . P
13 = - = - -
1.25 B R —= —=
¥ = s s o x = - s ° °
o8 ¢ ©°o o o o
12 z . - -
115
& & 8 ¥ ¥ 5 85 8
1 L
105
1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Individual
Cumlative Substrate Generation
145
< EBC +ENC
M Exodus - SpeedUp Co
. N
<END =NNB . z PR
- H
. LS LI SRS
«HF -RNN EI B BN - x
P A - e
: 5 H g
13 -RNE I R B R R R - s
E A Do, i, 3 -
o Y o . I P
125 Tooe o2 - -
i + & ¢ . .
12 T ? o
115
[Y PO
e LI . |
105
1
2 4 6 8 1 12 1 1]z 4 6 8 1 12 14 1|2 4 6 8 10 1 14 1|2 4 6 s 10 12 14]2 4 6 8 10 12 14 1
2Cores 4Cores 8 Cores 16 Coros 32 Cores
Region
Cumulative Substrate Generation

Figure A.10: Removal approaches with cumulative

substrate generation for Exodus

104

16
< EBC +ENC
Exodus - SpeedUp
xEND = NNB
15
«HF -RNN -
O O
o] rae s s s s e LI T
I - @ .
i 3 3 3 H N a
H 3 3 . o o o
13 ¢ g 1
- .
s B
12 e e o
o ° ° o
s [. + o
PRI - N S S T
s
1 ° =
2 4 6 8 10 12 u 1 s 10 12 1 1 © s 1 12 1]2 4 6 8 1 12 1w]2 4 & 8 1 12 1 1
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Block
Independent Substrate Generation
15
*EBC +ENC E d s du
xodus - SpeedUp T
<END =NNB I S S
14 5 ¥ %2 g 2 .
«HF -RNN E 8 ¢ 3 3 & o @
1.35 . . :
-RNE - S M
: B E
13 oo .
125
.
- LI S T R |
115
L] .
1 t 8 % 8§ 3
105
1
2 4 6 8 10 12 14 16 8 10 12 14 16 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Bucket
Independent Substrate Generation
15
< EBC +ENC
e Exodus - SpeedUp B
<END oNNB § ¥ 3§ 8§ 8§ 8 3§
14 _ R .
* HF - RNN L] " o B] [] [l
135 . . .
- RNE
s 5 5 B 8
13 ce .
125
L
12
115
& & & ¥ ¥ v 5 &8
11 - s L S
105
1
2 4 6 8 10 12 1 16 s 10 12 14 16 6 8 1 12 14 1|2 4 & 8 10 12 14 1] 2 4 6 8 1 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Individual
Independent Substrate Generation
15
< EBC + ENC
a5 Exodus - SpeedUp e L
<END ©oNNB 8 8 5 9 e 2 3 3
LS S S SR SRR |
14 T : .
z < 3] z
HERNN LI I - T
v ox y
135 - X 2 ¥
- RNE LI R T
H
13 *] §
1.25
A
12 ok x o<
115
& & g PO
" LI T T
1.05
1
2 4 s 8 10 12 4 1 s 10 12 14 16 6 8 10 12 1 1|z 4 6 8 10 12 14 1|2 4 65 & 1 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Region
Independent Substrate Generation

Figure A.11: Removal approaches with independent substrate generation for Exodus

105

< EBC
Telstra - SpeedUp P
19 “ENC R
18 xEND . S S R x x N X x_n
x . .. o x
5 NNB . . N ¢] ° .
o HFE o i ° o - -
16 o0 .o, — e — ¢
-RNN - . * - o - -
. M o . e - . - -
15 x ° o + - - - ~ -
-RNE x B - -
14 x . tox . - I - -
x sz - - - - -
13 % © 3 o
L
12 e e e,
.. xx o o
L I T TR
11 s
o o o o
1 ° 8 o o 5o 5o o 0 o 0
2 4 6 8 1 12 14 162 4 s 10 12 14 16 4 6 8 10 12 14 1|2 4 6 8 10 12 14 1|2 4 6 8 10 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Block
Cumulative Substrate Generation
2
< EBC
o Telstra - SpeedUp .
- +ENC x .
18 *x END . x . .
o NNB c . . N N - x
17 . . < . x
«HF . . . ; o - x
16 . .- . . xxox . . X x
- . . . R N N o - + © ° ° °
RNN I i, .
15 * X T - - + -
- RNE <k ko x . S - ...
14 . Lo S = T I -
° ° 3 i iz & 8 oo oo a
. PR . a
13 oo
PR CI 5 o . G
s P o o o
. s o R
12 . L s o o
LI T |
» B 8 8
1
2 4 6 8 10 12 14 1|2 4 s 10 12 14 16 4 6 8 10 12 14 1|2 4 & 8 10 12 14 1|2 4 6 8 1 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Bucket
Cumulative Substrate Generation
2
9 EBC
Telstra - SpeedU
19 VENC P p .o
18 xEND . . °
o NNB c, . * N
17 .
*HF . - % 2 % 2 % 2
6 : S . . - -
-RNN . i & & & & & & & T -
15 . - - -
- RNE - R
14 . ® ¥ s s 8 % I A - -
h - - - - - o o o o o o o o a a a a a a a a
13 o o o o o o o
PR PR .
1 e e o o - - -
| J T T T T T T
14
1
2 4 6 8 10 12 14 16| 2 4 8 10 12 14 16 4 s 8 10 12 14 1|2 4 & 8 10 12 14 1|2 4 & 8 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores. 32 Cores
Individual
Cumulative Substrate Generation
22
* EBC
Telstra - SpeedUp
~ENC
: END
3]
P s x
] 3 2 x H
a ¥ “ .
e N L T x . e s
e < HF n M T L . L. b EEE
+ L T T . PO
. : s .
-RNN . N . ¢ . R
16 s P . - .
-RNE o, L T B B _ - - B
LA S S P - - - - T -
14 oo I — _ - - - ;
e CE
x CE a a
- L. a ° o
o o = - - - o o o o o o o o “
12 e e e e S
s o B a a
[IS, R -
5 6 5
1
2 4 6 8 10 12 14 162 4 5 10 12 14 16 4 6 8 10 12 14 1|2 4 6 8 1 12 14 6|2 4 6 8 1 12 14 16
2Cores 4 Cores 8 Cores 16 Cores 32 Cores
Region
Cumulative Substrate Generation

Figure A.12: Removal approaches with cumulative

substrate

generation for Telstra

< EBC
Telstra - SpeedUp
+ENC
2 . P
<END L. P |
=] = o - x
= NNB - -] o]
18 R 8 ° = 533
*HF . . N - o
-RNN o e o o B g 2oe s ¢ f o: oz ot 11
16 Y
-RNE o [T T T
° o 5w *
4 . x . . a o ¥ H) + s s 5 3
¢ ¢ o o 3 x
. : R T
12 I
E - [T S
.
2 4 s 10 12 14 15| 2 6 8 1 12 1 1]z 4 6 8 1 12 14 1]z 4 6 8 10 12 14 1]z 4 6 8 10 12 14 1
2 Cores 4 Cores 8 Cores. 16 Cores 32 Cores.
Block
Independent Substrate Generation
22
°*EBC
Telstra - SpeedUp
+ENC
2 . oot
«END . . °
oNNB
18 L —
«HF PR .
-RNN T I
e ee e e, ;
-RNE 5 3 & ® ¥ B K X
14 . 58 F & 8 B B B
i & 8 8 8 & 8
12 e e
L1 8 ® 8 a @
1
2 4 s 10 12 14 1|2 c s 1 12 1 1|2z 4 6 8 1 12 14 1]z 4 & 8 1w 12 14]2z 4 & 8 10 12 14 1w
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Bucket
Independent Substrate Generation
22
< EBC
Telstra - SpeedUp
+ENC
2 . . - . . >
xEND .. .
oNNB
18
*HF - . * .
-RNN .-
. P T 8 § 8 § ¥ ¥ @
16 . .
~RNE § % s % § 0§ § %
» . A x a m m m o om
H LI
12 P
[PR
)
) s 10 12 14 1| 2 ¢ 8 1 12 1 1|2 4 & 8 1 12 1 1] 2 4 & 8 10 12 1 1]z 4 & 8 10 12 1 1
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Individual
Independent Substrate Generation
22
< EBC
Telstra - SpeedUp
+ENC
2 P
x END . LI B R
L . H -
[P X x
= NNB . " o
18 I R
«HF F R .
-RNN DT) - FEEE
P .. sos oz ozo:o= s
16) . o
- RNE + + + * x x x . - = = - - o
P S SN °
e L S LIS S SR R R
. “ o o
|4 8 8 8 ;5
12
L .
1
2 4 6 8 10 12 1w |2 € s 1 12 1 1|2 4 6 8 1 12 14 1|2 4 6 8 10 1 14 1|2 4 s 8 10 12 1 1
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Region
Indopendent Substrate Generation

Figure A.13: Removal

approaches with independent substrate generation

for Telstra

107

28
<EBC +ENC R .
Je Tiscali - SpeedUp .
: xEND oNNB
241 «HF -RNN
224 -RNE . o,
S T
2 x ° + R
. B T x
18 r X — — - e - x
16 x * = = . 3 - -
- - - - ° ° - -
) HEE - - - - -
14 == 9 e 2
= %« & 2 & 2 & 9z
12 o = °
L o o o
: =
2 4 6 8 10 12 14 18] 2 4 & 8 10 12 14 1|2 4 6 8 10 12 14 16| 2 4 6 &8 1 12 14 1|2z 4 6 8 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Block
Cumulative Substrate Generation
28
< EBC +ENC . - .
ve Tiscali - SpeedUp .
~END o NNB <, . M
24 «HF -RNN L . . .
22 - RNE . .
2 . . B . .
18 + et + ¢
- N B - - H o - -
e FRRCEE S S S S -
N 3 3 3 3 - - - - o - - -
14 8 % & & 3 3 % f o oe g
. = = - 2 2 2 . o o o N . . R R o o o o o o
121 e . B . —~--aes: e e
B 5 &8 8 8 & & §
1
2 4 6 8 1 12 14 1|2 4 6 8 1 12 14 1|2 4 6 8 1 12 14 1|2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 15
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Bucket
Cumulative Substrate Generation
28
<EBC +ENC . . .
be Tiscali - SpeedUp .
xEND oNNB <, . N
2491 <HF -RNN L . . .
22 - RNE . . .
2
18 - - -
N 0 s ¥ ¥ ¥ ¥ ¥ ¥
16 R S T e T -
T T - . 7 - o o o o & 8 o B
12 - . . - = o = o :
5 8 8 8 8 8 § #
1
2 4 6 8 1 1 14 1|2 4 6 8 1 12 14 1|2 4 6 8 1 12 14 1|2 4 6 8 1 12 14 1] 2 4 6 8 10 12 14 15
2Cores 4Cores 8 Cores 16 Cores 32 cores
Individual
Cumulative Substrate Generation
28
<EBC +ENC R .o
2o Tiscali - SpeedUp .
. xEND oNNB N . N
24 .
*HF - RNN . .
.« . ° ° L R .
. N s . . . * . o M
221 _RNE . LR S S - * :
. x x ¥ ¥ @ B ¥ x * M
FER S S S $ % ¥
: PR S T DR S
° e ° ° ° ° N . - - - -
18 * ¥ x X x x . -
16 . ~ _ - - - R
14 - - = = = = B B - o
- v o o o o o a o
- - = = = = o o o o o o
121 e : = 2 ° o o o o o : 2 °
s IR
1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
2Cores 4cCores 8 Cores 16 Cores 32Cores
Region
Cumulative Substrate Generation

Figure A.14: Removal approaches

with cumulative substrate generation

for Tiscali

108

26
°EBC -ENC ;
Tiscali - SpeedUp N
24 ~END o NNB . P
22] *HF -RNN B N
- RNE . N
2 - . . . o o T
N e
o L
R a o ¢ s 3 Cog
v a FRE S S TR
o o . - - - o
16 o o a R e T L)
. o
° s
. [T T H
14 . o o “ 8 * ® L L
- .
- L ® H 7 H
a o
12{ e« = 9 = . . °
s & & s 8 & & 3
1
2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16]2 4 6 8 1 12 14 16| 2 4 6 8 1 12 14 16
2 Cores 4Cores 8 Cores 16 Cores 32 Cores
Block
Independent Substrate Generation
26
°EBC +ENC . .
Tiscali - SpeedUp e e e
241 XEND oNNB . Lo
221 <HF -RNN J
- RNE R
) < e
e IR S ST S -
ER 5 o o B8 ©
, % = & 2 2 gz =
16 i 5 &8 o 0o o 9 0O
. g & B &8 8 8§ & @
14 .
s 8 E 5 F B FB 8
12 . - . .
¥ & & 8 8 & b 3
H 8 8
1
2 4 6 8 1 12 14 6|2 4 6 & 1 12 14 6|2 4 6 8 1 12 14 16| 2 4 6 & 1 12 14 16| 2 4 6 & 10 12 14 16
2Cores 4Cores 8 Cores 16 Cores 32 Cores
Bucket
Independent Substrate Generation
26
©EBC +ENC . .
Tiscali - SpeedUp ...
24 ~END oNNB . P R
22 *HF -RNN _._.,'
- RNE .
. Coe
18 == - - - -
16 i s 8 § § § ¥ %
. L
14 .
I | I | B8
12 . - 3
g 8 8 B 8 8 8 B8
|
2 4 6 8 10 12 14 1|2 4 6 8 10 12 14 1|2 4 6 8 1 12 14 6|2 4 6 8 1 12 1 6|2 4 6 8 10 12 14 16
2 Cores 4 Cores 8 Cores. 16 Cores 32 Cores
Individual
Independent Substrate Generation
26
©EBC +ENC . i
Tiscali - SpeedUp e e e e
241 XEND oNNB . 3 .
3 & e T % %
b s
s X
22| <HF -RNN B e
. N R . . * * % % . . N
- RNE L © o
B - . x x
A T T o
o o o © © © - - - - _ -
18 o M % M ¥ N . - - - - - -
- -1 1T e
16 ; M - - o
M N _ - - - o o B o o o o
. x - - - N N N
14 . o 8 8 o =&
- = = o= = ° o o o
.
124 8 * D o o o
LI 3 :o
1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
2Cores 4 Cores. 8 Cores. 16 Cores 32 Cores
Region
Independent Substrate Generation

Figure A.15: Removal approaches with independent substrate generation for Tiscali

109

A.3 Substrate Characteristics

AboveNet - Average Node Degree ° HF +EBC
. . . “NBC *CC
LE P oDC <EVC
f8gs., N HCC - PRC
gt
HED L]
b éwzo% @5
LR .
f i
B x
R
Tas
QAQQ$
§ *eg
a I R e
aE“ %y T

Cra
d’“mee@w

45

40

35

30

25

20

ol bd kd 22 bA bd bd b [ol J2l [af fef Tel hd hd b e e led bd 2 e ed bdw‘

cumulative subgraph generation

AboveNet - Maximum Node Degree oHF +EBC »NBC
= = =
xCC oDC 4EVC
Y =
Baganx ' N HCC - PRC
+*eg00 g o
DaxEmmSnggxxxxxx 5 e
B aaa2%00, a e
sE@Ex L axe x
trreee gt +
Bat Tttt sac000000 ir. 54
sosanmmannfRRRi2R2R2883% B O R A E L0000 BEapAL oo,
DX XX XXXX XX sxi¥iig ° 6000000 % x
@ - aann b xEBesarea2°° @ Ths++s, oo
oo X a e @
ccmesa - cee Fratgo a AT
o % x x x Bt
oe ama as °
x °°f5teeg

T T T To o T o T o o T o T o b o R R |

cumulative subgraph generation

AboveNet - Clustering Coefficient
° %
X x *x * o
x X XEEOAYT N gk . oo o L
AQAuuéégéggggigggEgEg:oxg;: Aﬁigggjzxxzo: ooo — AQggzgiou]
ggubpaiiion atoe pos cog° 00’ gyt §igooe
LEEBETE AT s, S, EF0L s LA “ oo o
oHF +EBC xNBC A L, °o B .
B, e, 0 °
*xCC o©oDC =sEVC 4, . °
*++++++ + *++ + o
HCC - PRC e, L.
.
1 4
of [zl fal ol fsl kbl 14 hel e o b2 2 bl el kol ol [2] la] le] To| o fid i e hel b lea bo s 2d ko [of Io] [a] o] [sl e el d el i 2ol bl fod bl bd o
2 6 10
cumulative subgraph generation

Figure A.16: Substrate changes with cumulative generation for AboveNet

110

AboveNet - Average Node Degree

. A — - YT T sE0EEERPEIERRETE
BRSAEREERERERINNEENAREARARRYRS ssgnaeaboboppaafiofgssaalil,i... cegaanazuRdfnt
LEEF S s s sssssssassssssssssans

o HF +EBC

»NBC xCC

oDC s EVC
HCC ~ PRC

of Tal Tal 1ol Tol Hol il hd il Tl oo b b T oo bol Jol Tol Taf Tol Tol T hd Bl T hd bd bl T b bd bl [ol Tel T Tol Tol hd Tl Tl hd hd b o od b e b |

independent subgraph generation

AboveNet - Maximum Node Degree

Was uxam o xmbam T1im cmn am.. waasxxndan as ma Teiiiiaoocacsl
+99%e1%9%006%0 00 oo 0000°%0 g 3 °
5 8 R T TR

oHF +EBC xNBC
*CC =oDC &sEVC
HCC - PRC

of Tel Tal Tol Tol Rl "id " " "l ed A "od "ol "ol "l o Tl Tl Tol Tl el o od "l "l "l o od "ol " Jol Tl Tl Tof Tol "l hd " "id "o " "o o d B |

independent subgraph generation

0.35
AboveNet - Clustering Coefficient
) 0 ©)
0.30 Exsoogo R B oo . §$g§$$x<>° L0°°%00 00200000 .
TR Qebijofapausiagbufas L R N R e R S N R ST s O e e S Y Y E R E IR T
0_25-06 sidfgRRjotagrungetintasafgan EHH Fra itifragfenaiiien. o8, itaz t49gid %u
4 T
0.20 -+
0.15
oHF +EBC *NBC
0.10
*xCC oDC sEVC
0.05
HCC - PRC
0.00

of Io Taf 1ol To| hd hal hd b hd 2ol b bd ol bl

of Tol Taf 1ol ol hd ha i b h ool b b4 ol bl

independent subgraph generation

of Tel TaT Tal 1ol hd Tl T hd il Tl T od d B B |

Figure A.17: Substrate changes with independent generation for AboveNet

111

"
R o HF +EBC
10 Ebone - Average Node Degree “NBC—~CC
9-9®® LI = oDC 2EVC
. E;‘fg¢$¢ . H HCC - PRC
7
6
5)
. °
‘ By mtaax S T T N
3 : Traliills
ol .
2 oy 5 I
4 ‘
o Jof fal Tol lol i td T e hel 2ol b 24 ool bl 5 [of To] [a [o] lo] hol A b el e d bl bd 2 bl bd [of o] Jef fol o] hd bl fid d e bd 22 bd b e kd
2 6 10
cumulative subgraph generation
60 X °HF +EBC xNBC
Ebone - Maximum Node Degree
0" ¥ beay, 6000000000000 0 i " “Ct _obE EVE
BRERRIIRIIIIIII e TR R e iae.. HeC - PRC
%0 Pt +++HH+H+ ©foo00, +++ijjoooooooooo
°
2 +***++++++++++ +++++++++++joooo
e, %0,
o x x . o,
20 "Exa BAK oy °©
sEman LR .
i ’
-

Tt T o T T B S B B S B Tl T \d;\il o T B B B B o ot ot ot ol Rl o Tl B B R e

cumulative subgraph generation

Ebone - Clustering Coefficient
«HF +EBC =NBC
»
. xCC oDC sEVC
x s
P - Bx P HCC - PRC 80 x
iggoxtrygh PR Jra
xg e aamik N PRV g@*g
cepEitrake 500D o, gilB o0 Lty B
csgBiBa8o8088808 000008 ,0000000 LBEa®0C, o Egasooo
..93»6 E +++++++++++++++ﬁm++++++zﬁ‘++++++iiaooo & +++++Doo
+,%00 g oo
+**+++3°°00 ttioo
Py +90

b 38 22T 19

of fel faf Tel fel hd b2 b b il bl kd W&o&gbd bd

cumulative subgraph generation

FUTSTIrI ,

of fel fal fo] fef hd }d \:4+\1d\«4 bl b b ol b i

Figure A.18: Substrate changes with cumulative generation for Ebone

112

Ebone - Average Node Degree

N) T . g hEhA, L. ogyERRRAARRAARAAA
spbfens@asvannnannapnndgena et L gypgplfettantaag it " gg&@52°s?!émﬁ
s x th8BfYscetessrsessasssetsasonaa
N 5

oHF +EBC

*NBC =CC

oDC 2 EVC

HCC +PRC

60

50

40

30

20

)

"ol Tal Tl Tol Tol b el bl bd d o el [ol Tel ol Tol ol bl il el il bl ed o e o ol Jol Tl Tal Tol ol il bl ol el el o ed od Tod e o |

independent subgraph generation

Ebone - Maximum Node Degree

'é¥5*‘?’ggfﬁ’éa’QEE§:¥E55!§U':g:'33§93géifzi’igfffg?‘?5;5;5%§§°f':f5§§33?§gf?ﬁgééféﬁﬁﬁﬁﬁﬁﬁﬁééﬁﬁﬁ
oHF +EBC ~NBC : B a e) .
xCC ©oDC sEVC o
. HCC - PRC)

of Tol TaT Tol Tol ol T hd "id el T b o e o b ol ToT Tal Tof Tol T id "hd Tl il b B o o ol bl Jol Tol Tl Tol Tel "l Tl i il bl T o oo b o |

10

independent subgraph generation

Ebone - Clustering Coefficient
a
u %o 0o AEoy 0,02°80,° 2088909392, 3%:200
s EE g x § K ¥ 298 ,Qeozﬂo§eww‘aoK ngg®m
-fa:-éwﬁamﬁgs@mvageﬂawm-*~Négé-?%Smé*%ﬁﬂ;?mfs%;é--geééaﬁaﬁﬁizgyétf‘ﬁ—~”;;'ﬁ“
* + 4+

°HF +EBC xNBC

*xCC oDC 4EVC

HCC +PRC

of Tal TaT el Tol hd hel id " hd T Ted od Tod B |

10

of Izl Tal Tl sl hd hal e fe hel oo bd 24 kel b b [of [2] [a] o] fef id fd hid el 1ol o A od bl bd b

independent subgraph generation

Figure A.19: Substrate changes with independent generation for Ebone

113

Exodus - Average Node Degree °zgo +(E:BCC
" x x
* ¥ 2DC s EVC
- HCC +PRC
83 g
ﬁg% ¥
afg, o1
oEEeo, Oa
u&At+ o mz:
L) e
A« Fe, @x$3
g, ®220, cx K .
¢ x .
Iy TTRerest Tes TTtTesoe. e,

30

25

20

)

"ol Tl Tal ToT Tal b b hd il bl bl Tl o e ol bl ol Tl Tal Tol Tal b d id bl i bl ol o o ol B ol Tl Tl Tl Tel hd id id hd bl el T o e bl |

cumulative subgraph generation

0.80
0.75
0.70
0.65
0.60
0.55
0.50
045
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Exodus - Maximum Node Degree °HF +EBC xNBC
*xCC oDC sEVC
= = =
HCC - PRC
o+ 44+ @ ®
N
mEmEmE e L =n
smmasmasnanac o TrrrrEer Cemamaa s A
cco0o0000000008 56 T R
DoBBwxxzxx¥yyyy saffess sresees N
GeexsmamaAnEE xaaai’’oocooosesoooo nmeoobe
coosmesEoo aa coeeoax o cmEa $0%0000000
XxBxXXxEEX xmax e @ x e o,
sessona @mx v PRI S
- 8 B
of ol Tal Tl o[hd il d kel il b &d o b bd ld [ol Io[[al o] lo] ol il fid Tl el bd oA bd bd kel b Jol [ol [a] o] Tef id fd b i e d odf bd b el kd
2 6 10
cumulative subgraph generation

oHF +EBC xNBC o Exodus - Clustering Coefficient o
o o
xCC oDC sEVC - 00
o 0<>oooo°o . e Loo L,ca00°
HCC + PRC R . N . o B
o s X & xox g, xxo° cmao .
x 8 O x % % Q0 oo 88K
s N atg 9 +
P N et By a4+ +
N éﬁél}ga‘v“é?fEI);éﬁéooooooo ¢f§§§zAix T e AN ﬁ§§;§§ N +*+++++ <
ST EEEH RS EELER AR RN "afagiac? 5 B * LE EEEA DR .
v K .

of lol Taf fo] o] hd ha bl b ha 2ol bl bd ol 2l bl Jol [2] [a] o] Tef il hd Fid hel id b A o 2d bd bd

cumulative subgraph generation

o Tol TaT Tal 1ol hd Tl T hd il Tl T ol o o |

Figure A.20: Substrate changes with cumulative generation for Exodus

114

Exodus - Average Node Degree
FRERERRERY

°
sesssoeloe

"shasnecmnaadigndhbewEeangRangyE”

e
+o »a
+o

sseubodifysboyeufadped

o HF +EBC

*NBC xCC

oDC s EVC
HCC - PRC

of Tal Tal 1ol Tol Bl d il il Tl oo b b e o bol Jol T2 Taf Tol Tol T d Bl Tl hd bd bl T b bd bl [of Tel T Tol Tol hd Tl Tl hd hd bl b od b e o |

independent subgraph generation

% Exodus - Maximum Node Degree
25i AEENEENKEENEEAE CEENENAA AN IR RN AN EXNEEAKNEDEBEABE+ BXSHKNSEEAEASAARE OB *EBEAR+ AR KXNESYEASARSA AR SA RS
“913391335iiE;é:Li;@E%i;T;é'o xmasamixzxsamxsozs 0p O BEEms xa EmxcxamscsOncoEBscEnEsshames
00 0 ° ° ° e ° st © 05 tco4e o Tioe 77 W iiedtiiiy +
° o oa ° SSrrtrress AT iSermrserarararas
= = o 20°%0000 o o000 ®Booo o0 o0oocoooo
15 o o o
10 °oHF +EBC =NBC
5 *xCC ©DC =sEVC
HCC - PRC
o ‘
of [of Tal To Ts| hd il a he hel bl b o4 bl e ool [of |o[T4l [s] To] ol el fid ha hel bd 24 o b kel ol [ol I2] [a To] Te] ol id fid Tl e d 22 od bl d
2 6 10
independent subgraph generation
0.35
030 § UG ExmXganX 5 < iagm am BB _$sraoxo.BBfy .o 88880 éng-aﬁﬁs gT, 483, - 0000090
N R I T A O M LR P T T S SR B T EE
o2s{ % e et v) coe s s - ¥++
0.20
Exodus - Clustering Coefficient
018 °HF +EBC <NBC
0.10
*xCC oDC sEVC
005 HCC - PRC
0.00 1l
of T2l fal Tel fol b hal ra e ia ol bl bd ol b bl ol T2 Tal Tel [s| hd hal hd i e ool bd 2 b el kol ol [o] Tal To| Ta| ol ra fid ie fd oo bd 2d be ool sd
2 6 10
independent subgraph generation

Figure A.21: Substrate changes with independent generation for Exodus

115

1

°HF +EBC
10 <NBC *CC Telstra - Average Node Degree
9] obDC aEVC

HCC + PRC
8
7 - -
6 ®TQXZ®®¢° Te x 0o
] TTEBIgra i tiilieenesenllilire Thyageelt,, TN

SRITT e HiE Eerteyn, ooy -
4 *xREg . x 2 B *900, 3 3300 oo o oo
s Dé‘“a‘ ?; R ET U 2 x R, pet 0, L, o
2 Cgagaiiil.. R 4
1 ‘
of Tol Tal Tel Ts[“hol fd it hel bd b e b kel sd [of 2] [a] Tol Ts| o i el e hel bo o bd ol bd kol ol [o] [al o] Ts] fid hd fd e bl bl led b ool e d
2 6 10
cumulative subgraph generation
100
00 1% - Telstra - Maximum Node Degree . °eHF +EBC <NBC
AR T T P ‘oo, . £CC oDC 4EVC
L ccoocoo Toeeal,, . too.,,
70 oo .
T . o ° HCC - PRC
60 + .
jz R ++++++++++ 000000 ++++++o°oooo
e 12999 gy R R T P
% . . i,
20 g;g . :é’ +3$‘$Q
10 LLI LI
3

o

0.80
0.75
0.70
0.65
0.60
0.55

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

cumulative subgraph generation

Telstra - Clustering Coefficient
P o °HF +EBC xNBC :
L kxt et - K c b %
aodar ¥R Ax ey *CC oDC +EVC v o
saodgowEx sEo® =
LR x xaR07 L}
pifa 5% * % 3o s HCC - PRC L
= ¥
E .) £ 5 .
I et N
Xt tox +
,®°.e¢¢¢3630035¢¢$§oooooDooooooo.¢¢®°®o°o°°°$g;++:ag¢+6 PR R
o oo °
i ®

s
%o
$iesoe

of ol Tal lel fef fid i g e hel bol b d fd ool d

cumulative subgraph generation

39 $9900)
of o] Tal lo] fsl ol fid e hel fid ko bd b 2ol bl bd AP EARRRT AP AT AR A= =y vy pnpn

Figure A.22: Substrate changes with cumulative generation for Telstra

~

116

o HF +EBC

Telstra - Average Node Degree

«NBC =CC 9 9

oDC s EVC

HCC ~ PRC

LAoooDDooDoDooDoDooo

. § 588848 558 " eI TISEEESRESRERS
cE80bhpaapfinesBaadplabbiadpdatan 20 o 2 Bt ihg,EgRilt xgx SEEL. SEEEAREEEERARE

Paagaey ?“Qaﬁuﬁougge’“’gg”‘”%%””“’ Qgﬁas@Ué%gzcg@@@@@@@&ﬁ&&ﬁe@@eee
= L] 3

100
%0
80
70
60
50
40
30
20

o

of Tel Tal Tol Tol hd d hd e e o o o e el il Jol Tol Tol Tol Tal bl T hd el Tl ol o ol b bl Jol Tol Tl Tol Tl Bl Bl Tl e i Bd b Tod Bd ol B |

R e T T TP L L LT L (YT T TR PR e T LTI

Telstra - Maximum Node Degree
°oHF +EBC =*NBC

xCC oDC sEVC

L HCC +PRC]]

of Tel Tal Tol Tol " i Tl bl el el el ol bl B " ol Tel Taf Tol Tol "l il ol el el el el od "o Bd "o ol Tel Taf Tol Tol " i T "l el el bl d o Bd ' |

independent subgraph generation

. Telstra - Clustering Coefficient . °oHF +EBC =NBC

xCC oDC »EVC

HCC - PRC
M A Ugﬁ viazrii¥d + p@®fosoceocecEnomn
. - _ X EE D + GeE=§ 5
S T R S A P TR TR HHE BB R
x B ay a8 O% x

of fel [al Tol fel i b b il bl kol 2ol ool o 2d b Jol Jof Tl Tl Tel o hd hd e bl b bl bl bl bl

independent subgraph generation

of fel fal fel fel fd b ha he bl oo 2ol od T 2d bd

Figure A.23: Substrate changes with independent generation for Telstra

350

300

250

200

150

100

ol - o HF +EBC
Tiscali - Average Node Degree CNBC -CC
", " . °DC sEVC
Tee,, . . HCC - PRC
RSN i 5
oottty o4 °,
°3“"an” owt\y Qt+
oy I Serie, i, .
"‘"‘éméx ' °°°3$m3ioooooooooo * °03¢iooooo°°° °o°ooooo°°
TRagy, . L] e, X, e,
XﬂﬁgAAgi\A * Ba," Ty, *a T,
“Eige . s e,
- 9 Q LRI
o
of T2 fal Tol lef ol i T4 Tl el 2o 2 o el =l b [of [2f Ta] [e] [s| hd hal [he el bol A o4 bl bel ol [ol I2] [a] o] Tof ol fd fd id b fool 2d od g ol ud
2 6 10
cumulative subgraph generation
Tiscali - Maximum Node Degree
‘®w$¢wg$oooo0000000000000000000 ‘9@0000 H“’oo
+++ + o 4 °
., . . +
+++++ . °o00 4 o
R R Frasrrrlcosg, Trrfooo,
+ oy + o
°HF +EBC <NBC e oy + o
o °
<CC ©oDC sEVC e, Ce,, e,
T, oy Ty oo
HCC - PRC telle e
oo
Yo,

REREO e e s myy

T T T ol R T o B B T o e e o R T o B B B BB o o o o T T W W T B B B B

cumulative subgraph generation

Tiscali - Clustering Coefficient
oHF +EBC *NBC

x X4 & e T
x x xCC oDC sEVC B

Ggxo & o

o, 9 o

Txio# x4 s x

PR ; e 0t et i HCC - PRC o
apfisféytiiaiog. ~ s62817 N
IR e + o+ o+
l®e®¢¢¢333000000oo:::::*++++++++-®5300133 Bellt,

&5 % s
©00000000 CEEEE L by, Tt

Tt

of Jof Tal l6] [l hd fa id el ha d ol oo e 2ol kol ol I2] [a [o] ol hol il id f hel =d bd 4 bd%z*&*\;d* T T o Wwd bl " e Tl Tl |

cumulative subgraph generation

Figure A.24: Substrate changes with cumulative generation for Tiscali

118

Tiscali - Average Node Degree
x PR - I . @ooooooooooooo
ogpdaEasEsEERAdAlEREREREESRBRBEY o Awhgnaan“em“f?énn ~!Q§55‘§‘a§EAXQQQ§9Q§§Q§§Q
sbidasenelilisfesssssssssssasna Zéiggéé N, .
. sresssate sessdan
! H o HF +EBC i
*~NBC *CC
=DC sEVC
HCC ~ PRC

450

400

350

300

250

200

150

100

of Tel Tal Tol Tol bl il hd bl bl oo b bl o o bl Jof Tzl Tal Tol Tel hd hd Tl hd hd bl o od bd T b Jof ToT Tal Tol Tl Tl d hd bl T bd Tl Td e bl B |

independent subgraph generation

Tiscali - Maximum Node Degree
-e35;g;gavnigngwswgxsg:agnsiag;a-ogg‘SQQBQQEQi!ggg’S%E§§§$;§%%§*Q'®3§§%§&Sgg?§§§;
N H

°oHF +EBC *NBC
*xCC oDC sEVC
HCC -PRC

ol Tl Tal Tol ol el "l el el el ol o e Tel ol i "id "Rl "Rl ol el e e ol ol Tl Taf Tef Tl el el el T o ed d el el |

independent subgraph generation

°HF +EBC xNBC

o

*xCC ©oDC 4EVC
Tiscali - Clustering Coefficient
HCC -PRC

. A IR
wgn“a“nnanawgga“umnn“”g!g“gs;ah%sms%%gE;H:%@@'o“géﬂeggé%ﬁifﬁggggggggggggggg

of Jel Tal lo] [el b fd bl hel el d ol 2d eel e ol [of 2] [af fo] o] Fd b2l i bl el ool 2l b e sl od

independent subgraph generation

of Tol Tal Tol Tol hd hd Tl Tl el o bl o e o |

Figure A.25: Substrate changes with independent generation for Tiscali

1]

2]

[5]

119

Bibliography

S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. Volley:
Automated data placement for geo-distributed cloud services. In NSDI, pages
17-32, 2010.

D. Agrawal, S. Das, and A. El Abbadi. Big data and cloud computing: Current
state and future opportunities. In Proceedings of the 14th International Con-
ference on Extending Database Technology, EDBT/ICDT ’11, pages 530-533,
New York, NY, USA, 2011. ACM.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: theory, algo-
rithms, and applications. 1993.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker. pfabric: Minimal near-optimal datacenter transport. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 435-446. ACM,
2013.

W. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. Dumitrescu, I. Raicu,
and I. Foster. The Globus striped GridF'TP framework and server. In Proceed-
ings of ACM/IEEFE conference on Supercomputing, page 54, 2005.

J. E. Anderson. The gravity model. Annu. Rev. Econ., 3(1):133-160, 2011.

M. Balman and T. Kosar. Dynamic adaptation of parallelism level in data
transfer scheduling. In Complex, Intelligent and Software Intensive Systems,

2009. CISIS’09. International Conference on, pages 872-877. IEEE, 2009.

C. Barakat, E. Altman, and W. Dabbous. On tcp performance in a hetero-
geneous network: a survey. Communications Magazine, IEEFE, 38(1):40-46,
2000.

S. Barré, O. Bonaventure, C. Raiciu, and M. Handley. Experimenting with
multipath tcp. ACM SIGCOMM Computer Communication Review, 41(4):443—
444, 2011.

[10]

[11]

[18]

[19]

[20]

[21]

[22]

120

M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an open source software for
exploring and manipulating networks. ICWSM, 8:361-362, 20009.

V. Betz, J. Swartz, and V. Gouterman. Method and apparatus for performing
parallel routing using a multi-threaded routing procedure, Sept. 10 2013. US
Patent 8,533,652.

B. W. Boehm. A spiral model of software development and enhancement. Com-
puter, 21(5):61-72, 1988.

L. Bolc and J. Cytowski. Search methods for artificial intelligence. Academic
Press, 1992.

R. Bolla, R. Bruschi, and P. Lago. Energy adaptation in multi-core software
routers. Computer Networks, 65:111-128, 2014.

J. E. Burns, T. J. Ott, A. E. Krzesinski, and K. E. Miiller. Path selection and
bandwidth allocation in {MPLS} networks. Performance Evaluation, 52(2—
3):133 — 152, 2003. Internet Performance and Control of Network Systems.

M. Calder, R. Miao, K. Zarifis, E. Katz-Bassett, M. Yu, and J. Padhye. Don’t
drop, detour! In Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pages 503-504. ACM, 2013.

K. Cameron, E. M. Eschen, C. T. Hoang, and R. Sritharan. The list partition
problem for graphs. In Proceedings of the fifteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 391-399. Society for Industrial and Applied
Mathematics, 2004.

V. Cerf, Y. Dalal, and C. Sunshine. Specification of internet transmission control
program rfc 675. 1974.

Y. Chen, S. Jain, V. K. Adhikari, Z.-L.. Zhang, and K. Xu. A first look at inter-
data center traffic characteristics via yahoo! datasets. In INFOCOM, 2011
Proceedings IEEE, pages 1620-1628. IEEE, 2011.

A. CloudFront. Amazon cloudfront. URL: http://aws. amazon. com/cloudfront,
2014.

G. Consortium et al. Gephi. Computer program/(version 0.8. 2 Beta)
http://gephi. github. io/. Accessed, 14, 2014.

C.Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving datacenter performance and robustness with multipath tcp. In Pro-
ceedings of ACM SIGCOMM, pages 266277, 2011.

23]

[24]

[25]

[28]

[29]

[30]

[31]

121

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107-113, 2008.

D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H.-I. Hsiao,
and R. Rasmussen. The gamma database machine project. Knowledge and
Data Engineering, IEEE Transactions on, 2(1):44-62, 1990.

J. Duan, Z. Wang, and C. Wu. Responsive multipath tcp in sdn-based data-
centers. In Communications (ICC), 2015 IEEE International Conference on,
pages 5296-5301. IEEE, 2015.

P. Eardley. Survey of mptcp implementations. 2013.

N. Egi, G. lannaccone, M. Manesh, L. Mathy, and S. Ratnasamy. Improved
parallelism and scheduling in multi-core software routers. The Journal of Su-
percomputing, 63(1):294-322, 2013.

N. Farrington and A. Andreyev. Facebook’s data center network architecture.
In IEEFE Opt. Interconnects Conf, pages 5—7. Citeseer, 2013.

A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. Tcp extensions for mul-
tipath operation with multiple addresses. RFC, (6824), January 2013.

T. Ganegedara and V. Prasanna. 1004 gbps ipv6 packet forwarding on multi-
core platforms.

Y. Ganjali and A. Keshavarzian. Load balancing in ad hoc networks: single-path
routing vs. multi-path routing. In INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, volume 2,
pages 1120-1125. IEEE, 2004.

J. J. Garcia-Luna-Aceves, M. Mosko, and C. E. Perkins. A new approach to
on-demand loop-free routing in networks using sequence numbers. Computer
Networks, 50(10):1599-1615, 2006.

M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. wh
freeman New York, 2002.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete
graph problems. Theoretical computer science, 1(3):237-267, 1976.

P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data cen-
ters: measurement, analysis, and implications. In ACM SIGCOMM Computer
Communication Review, volume 41, pages 350-361. ACM, 2011.

[36]

[37]

[41]

[42]

[43]

[44]

[45]

122

[. Gojmerac, T. Ziegler, F. Ricciato, and P. Reichl. Adaptive multipath routing
for dynamic traffic engineering. In Proceedings of IEEE Global Communications
Conference (GLOBECOM), San Francisco, CA, November 2003.

S. Grover. Using Multicore to Accelerate Network Routing Protocols. North
Carolina State University, 2013.

M. Hilbert and P. Lépez. The world’s technological capacity to store, commu-
nicate, and compute information. Science, 332(6025):60-65, 2011.

C. J. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal of the
ACM (JACM), 60(6):45, 2013.

C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer. Achieving high utilization with software-driven wan. In Pro-
ceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 15-26.
ACM, 2013.

D. Howe, M. Costanzo, P. Fey, T. Gojobori, L.. Hannick, W. Hide, D. P. Hill,
R. Kania, M. Schaeffer, S. St Pierre, et al. Big data: The future of biocuration.
Nature, 455(7209):47-50, 2008.

T. C. Hu. Multi-commodity network flows. Operations Research, 11(3):344-360,
1963.

V. Jacobson, R. Braden, D. Borman, M. Satyanarayanan, J. Kistler, L. Mum-
mert, and M. Ebling. Rfc 1323: Tcp extensions for high performance, 1992.

J.Raju and J. Garcia-Luna-Aceves. A new approach to on-demand loop-free
multipath routing. In International Conference on Computer Communications
and Networks (ICCCN), pages 522-527, 1999.

H. T. Karaoglu, M. Yuksel, and M. H. Gunes. On the scalability of path ex-
ploration using opportunistic path-vector routing. In 2011 IEEE International
Conference on Communications (ICC), pages 1-5. IEEE, 2011.

R. M. Karp. Reducibility among combinatorial problems. pages 85-103, 1972.

H. Kellerer, U. Pferschy, and D. Pisinger. Introduction to NP-Completeness of
knapsack problems. Springer, 2004.

C. H. Kingsley and G. L. McHugh. Parallel signal routing, Feb. 26 2013. US
Patent 8,386,983.

[49]

[63]

123

T. Kosar, E. Arslan, B. Ross, and B. Zhang. Storkcloud: Data transfer schedul-
ing and optimization as a service. In Proceedings of the Jth ACM workshop on
Scientific cloud computing, pages 29-36. ACM, 2013.

D. L. Kreher and D. R. Stinson. Combinatorial algorithms: generation, enu-
meration, and search, volume 7. CRC press, 1998.

L. Lan, L. Li, and C. Jianya. A multipath routing algorithm based on ospf
routing protocol. In Semantics, Knowledge and Grids (SKG), 2012 Eighth
International Conference on, pages 269-272. IEEE, 2012.

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter bulk
transfers with netstitcher. In Proceedings of ACM SIGCOMM, 2011.

N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-datacenter bulk
transfers with netstitcher. ACM SIGCOMM Computer Communication Review,
41(4):74-85, 2011.

M. Laubach and J. Halpern. Rfc 2225: Classical ip and arp over atm. Newbridge
Networks, 1998.

S.-J. Lee and M. Gerla. Split multipath routing with maximally disjoint paths
in ad hoc networks. In Communications, 2001. ICC 2001. IEEE International
Conference on, volume 10, pages 3201-3205. IEEE, 2001.

T. LHC Study Group et al. The large hadron collider, conceptual design. Tech-
nical report, CERN/AC/95-05 (LHC) Geneva, 1995.

S. Lohr. The age of big data. New York Times, 11, 2012.

L. Lovész. Combinatorial problems and exercises, volume 361. American Math-
ematical Soc., 1993.

C. Lynch. Big data: How do your data grow? Nature, 455(7209):28-29, 2008.
G. Malkin. Rfc 2453: Rip version 2. Request for Comments, 2453, 1998.

J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H.
Byers. Big data: The next frontier for innovation, competition, and productiv-
ity. 2011.

M. K. Marina and S. R. Das. On-demand multipath distance vector routing in

ad hoc networks. In Network Protocols, 2001. Ninth International Conference
on, pages 14-23. IEEE, 2001.

R. Miller. Google data center faq. Datacenter Knowledge, 27, 2008.

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

124

S. Molnar, B. Sonkoly, and T. A. Trinh. A comprehensive tcp fairness analysis
in high speed networks. Computer Commaunications, 32(13):1460-1484, 2009.

J. Moy. rfc 2328: Ospf version 2, 1998.

J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul. Spain: Cots
data-center ethernet for multipathing over arbitrary topologies. In NSDI, pages
265-280, 2010.

J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary. Netlord:
a scalable multi-tenant network architecture for virtualized datacenters. ACM
SIGCOMM Computer Communication Review, 41(4):62-73, 2011.

S. Murthy and J. Garcia-Luna-Aceves. Congestion-oriented shortest multipath
routing. In INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE
Computer Societies. Networking the Next Generation. Proceedings IEEE, vol-
ume 3, pages 1028-1036. IEEE, 1996.

A. Nasipuri and S. R. Das. On-demand multipath routing for mobile ad hoc net-
works. In Computer Communications and Networks, 1999. Proceedings. Fight
International Conference on, pages 64-70. IEEE, 1999.

S. Nelakuditi and Z. Zhang. On selection of paths for multipath routing. In Pro-
ceedings of IEEE/IFIP International Workshop on Quality of Service (IWQoS),
pages 170-186, 2001.

R. G. Ogier, V. Rutenburg, and N. Shacham. Distributed algorithms for com-
puting shortest pairs of disjoint paths. Information Theory, IEEE Transactions
on, 39(2):443-455, 1993.

S. Okada. Fuzzy shortest path problems incorporating interactivity among
paths. Fuzzy Sets and Systems, 142(3):335-357, 2004.

C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring
mobile/wifi handover with multipath tcp. In Proceedings of the 2012 ACM
SIGCOMM workshop on Cellular networks: operations, challenges, and future
design, pages 31-36. ACM, 2012.

M. R. Pearlman, Z. J. Haas, P. Sholander, and S. S. Tabrizi. On the impact of
alternate path routing for load balancing in mobile ad hoc networks. In Mobile
and Ad Hoc Networking and Computing, 2000. MobiHOC. 2000 First Annual
Workshop on, pages 3-10. IEEE, 2000.

L. L. Peterson and B. S. Davie. Computer networks: a systems approach.
Elsevier, 2007.

[76]

[31]

[82]
[83]

[84]

[85]

[36]

[87]

8]

[89]

125

C. Pluntke, L. Eggert, and N. Kiukkonen. Saving mobile device energy with
multipath tcp. In Proceedings of the sizth international workshop on MobiArch,
pages 1-6. ACM, 2011.

J. Postel. Rfc 791: Internet protocol. 1981.
J. Postel. Transmission control protocol (tcp)-rfc 793, 1981.

R. Potharaju and N. Jain. When the network crumbles: An empirical study of
cloud network failures and their impact on services. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 15. ACM, 2013.

C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,
and M. Handley. How hard can it be? designing and implementing a deployable
multipath tcp. In Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation, pages 29-29. USENIX Association, 2012.

. Recommendation. 200 (1994)— iso/iec 7498-1: 1994. Information technology—
Open Systems Interconnection—Basic Reference Model: The basic model.

Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). 1995.

T. Rentsch. Object oriented programming. ACM Sigplan Notices, 17(9):51-57,
1982.

E. Rosen et al. Rfc 3031: Mpls architecture. IETFE Request of Comments, 2001.

E. Rosen, A. Viswananthan, and R. Callon. Multiprotocol label switching ar-
chitecture. IETF RFC 3031, February 2001.

J. B. Rothnie Jr, P. A. Bernstein, S. Fox, N. Goodman, M. Hammer, T. A.
Landers, C. Reeve, D. W. Shipman, and E. Wong. Introduction to a system
for distributed databases (sdd-1). ACM Transactions on Database Systems
(TODS), 5(1):1-17, 1980.

J. Rozas, J. Sanchez-Delbarrio, X. Messeguer, and R. Rozas. Dnasp, dna
polymorphism analyses by the coalescent and other methods. Bioinformatics,
19:2496-2497, 2003.

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Transactions on Computer Systems (TOCS), 2(4):277-288, 1984.

Y. Shintani, M. Inagi, S. Nagayama, and S. Wakabayashi. A multithreaded par-
allel global routing method with overlapped routing regions. In Digital System
Design (DSD), 2013 Euromicro Conference on, pages 591-597. IEEE, 2013.

[90]

126
K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th
Symposium on, pages 1-10. IEEE, 2010.

H. Smit and T. Li. Is-is extensions for traffic engineering. 2008.

A. Soran, F. M. Akdemir, and M. Yuksel. Parallel routing on multi-core routers
for big data transfers. In Proceedings of the 2013 workshop on Student workhop,
pages 35-38. ACM, 2013.

N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with rock-
etfuel. In Proc. of ACM SIGCOMM, pages 133—145, 2002.

T. Thorsen, S. J. Maerkl, and S. R. Quake. Microfluidic large-scale integration.
Science, 298(5593):580-584, 2002.

B. Tierney, E. Kissel, M. Swany, and E. Pouyoul. Efficient data transfer pro-
tocols for big data. In E-Science (e-Science), 2012 IEEE 8th International
Conference on, pages 1-9. IEEE, 2012.

R. van der Pol, M. Bredel, A. Barczyk, B. Overeinder, N. van Adrichem, and
F. Kuipers. Experiences with mptcp in an intercontinental multipathed open-

flow network. In Proceedings of the 29th Trans Furopean Research and FEduca-
tion Networking Conference, D. Foster, Ed. TERENA, 2013.

S. Vutukury and J. Garcia-Luna-Aceves. Mdva: A distance-vector multipath
routing protocol. In Proceedings of IEEE INFOCOM, 2001.

H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg. Cope:
traffic engineering in dynamic networks. In ACM SIGCOMM Computer Com-
munication Review, volume 36, pages 99-110. ACM, 2006.

Y. Wang, S. Su, A. X. Liu, and Z. Zhang. Multiple bulk data transfers schedul-
ing among datacenters. Computer Networks, 2014.

Y. Xu, B. Leong, D. Seah, and A. Razeen. mpath: High-bandwidth data
transfers with massively multipath source routing. Parallel and Distributed
Systems, IEEE Transactions on, 24(10):2046-2059, 2013.

E. Yildirim, E. Arslan, J. Kim, and T. Kosar. Application-level optimization
of big data transfers through pipelining, parallelism and concurrency. [EFEE
Transactions on Cloud Computing, 4(1):63-75, 2016.

[102]

[103]

[104]

127
W. T. Zaumen and J. Garcia-Luna-Aceves. Loop-free multipath routing using
generalized diffusing computations. In INFOCOM’98. Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEFE, volume 3, pages 1408-1417. IEEE, 1998.

J. C. Zheng Wang. Analysis of shortest-path routing algorithms in a dynamic
network environment. Computer Communication Review, 22(2):63-71, 1992.

7. 7Zhu, W. Lu, L. Zhang, and N. Ansari. Dynamic service provisioning in elastic
optical networks with hybrid single-/multi-path routing. Lightwave Technology,
Journal of, 31(1):15-22, 2013.

