1,138 research outputs found

    Ultrafast WDM logic

    Get PDF
    Ultrafast all-optical logic gates that accept optical inputs in which wavelength designates bit position within the overall byte are proposed and demonstrated. Four-wave mixing is shown to provide a conditional test function that can be used to construct any multi-input logic gate. Polarization provides the logic state for each bit. Implementations that use semiconductor optical amplifiers as the four-wave mixing medium can be monolithic and compact

    High Speed All Optical Switching and Encryption using Ultrafast Devices

    Get PDF
    The next generation of fiber-optic communication system demands ultra-high speed data processing and switching components. Conventional electro-optical parts have reached their bottleneck both speed-wise and efficiency-wise. The idea of manipulating high speed data in all-optical domain is gaining more popularity. In this PhD dissertation, I showed the design and performance analysis of two kinds of ultra-fast all-optical latches, Set-Reset latch and D-flip-flop, based on two different schemes: (1) cross gain and phase modulation (XGM and XPM) in quantum dot semiconductor optical amplifiers (QD-SOA) and (2) two-photon absorption (TPA) in bulk semiconductor optical amplifiers. Design and simulation of a scheme to realize high speed all-optical encryption and decryption using key-stream generators and XOR gates based on QD-SOA are included in this dissertation. We also proposed and simulated all-optical Boolean logic functions with improved output quality using binary phase shift keyed signal based on QD-SOA. A fiber ring laser system with charcoal nano-particles as saturable absorber inside the cavity has been designed and experimentally demonstrated. This fiber ring laser system can generate optical pulse train @ 20Gb/s with improved stability and smaller pulse width comparing with the system without nano-particles in the cavity

    All-Optical Logic Gates and Wavelength Conversion Via the Injection-Locking of a Fabry-Perot Semiconductor Laser

    Get PDF
    This work investigates the implementation of all-optical wavelength conversion and logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode (MMFP-LD), and a optical band-pass filter (BPF). The DFB lasers are externally modulated to represent logic inputs into the cavity of the MMFP-LD slave laser. The master lasers\u27 wavelengths are aligned with the longitudinal modes of the MMFP-LD slave laser and their optical power is used to modulate the injection conditions in the slave laser. The optical BPF is used to select the longitudinal mode that is suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter -- a key component in advanced wavelength-division multiplexing networks. The result of this experimental investigation is a more comprehensive understanding of the locking parameters concerning the injection of multiple lasers into a multi-mode cavity. Attention is placed on the turn-on/turn-off transition dynamics, along with the maximum achievable bit rates. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser

    Electron Spin for Classical Information Processing: A Brief Survey of Spin-Based Logic Devices, Gates and Circuits

    Full text link
    In electronics, information has been traditionally stored, processed and communicated using an electron's charge. This paradigm is increasingly turning out to be energy-inefficient, because movement of charge within an information-processing device invariably causes current flow and an associated dissipation. Replacing charge with the "spin" of an electron to encode information may eliminate much of this dissipation and lead to more energy-efficient "green electronics". This realization has spurred significant research in spintronic devices and circuits where spin either directly acts as the physical variable for hosting information or augments the role of charge. In this review article, we discuss and elucidate some of these ideas, and highlight their strengths and weaknesses. Many of them can potentially reduce energy dissipation significantly, but unfortunately are error-prone and unreliable. Moreover, there are serious obstacles to their technological implementation that may be difficult to overcome in the near term. This review addresses three constructs: (1) single devices or binary switches that can be constituents of Boolean logic gates for digital information processing, (2) complete gates that are capable of performing specific Boolean logic operations, and (3) combinational circuits or architectures (equivalent to many gates working in unison) that are capable of performing universal computation.Comment: Topical Revie

    M-ary Optical Computing

    Get PDF
    The era of cloud computing has fuelled the increasing demand on data centers for high-performance, high-speed data storage and computing. Digital signal processing may find applications in future cloud computing networks containing a large sum of data centers. Addition and subtraction are considered to be fundamental building blocks of digital signal processing which are ubiquitous in microprocessors for arithmetic operations. However, the processing speed is limited by the electronic bottleneck. It might be valuable to implement high-speed arithmetic operations of addition and subtraction in the optical domain. In this chapter, recent results of M-ary optical arithmetic operations for high base numbers are presented. By exploiting degenerate and nondegenerate four-wave mixing (FWM) in highly nonlinear fibers (HNLFs), graphene-assisted optical devices, and silicon waveguide devices, various types of two-/three-input high-speed quaternary/octal/decimal/hexadecimal optical computing operations have been demonstrated. Operation speed up to 50 Gbaud of this computing approach is experimentally examined. The demonstrated M-ary optical computing using high base numbers may facilitate advanced data management and superior network performance

    Optical Logic Devices Based on Photonic Crystal

    Get PDF

    Photonic logic-gates: boosting all-optical header processing in future packet-switched networks

    Full text link
    Las redes ópticas de paquetes se han convertido en los últimos años en uno de los temas de vanguardia en el campo de las tecnologías de comunicaciones. El procesado de cabeceras es una de las funciones más importantes que se llevan a cabo en nodos intermedios, donde un paquete debe ser encaminado a su destino correspondiente. El uso de tecnología completamente óptica para las funciones de encaminamiento y reconocimiento de cabeceras reduce el retardo de procesado respecto al procesado eléctrico, disminuyendo de ese modo la latencia en el enlace de comunicaciones. Existen diferentes métodos de procesado de datos para implementar el reconocimiento de cabeceras. El objetivo de este trabajo es la propuesta de una nueva arquitectura para el procesado de cabeceras basado en el uso de puertas lógicas completamente ópticas. Estas arquitecturas tienen como elemento clave el interferómetro Mach-Zehnder basado en el amplificador óptico de semiconductor (SOA-MZI), y utilizan el efecto no lineal de modulación cruzada de fase (XPM) en los SOAs para realizar dicha funcionalidad. La estructura SOA-MZI con XPM es una de las alternativas más atractivas debido a las numerosas ventajas que presenta, como por ejemplo los requisitos de baja energía para las señales de entrada, su diseño compacto, una elevada relación de extinción (ER), regeneración de la señal y el bajo nivel de chirp que introducen. Este trabajo se ha centrado en la implementación de la funcionalidad lógica XOR. Mediante esta función se pueden realizar diversas funcionalidades en las redes ópticas. Se proponen dos esquemas para el reconocimiento de cabeceras basados en el uso de la puerta XOR. El primer esquema utiliza puertas en cascada. El segundo esquema presenta una arquitectura muy escalable, y se basa en el uso de un bucle de realimentación implementado a la salida de la puerta. Asimismo, también se presentan algunas aplicaciones del procesado de cabeceras para el encaminamiento de paquetes basadas en el uso dMartínez Canet, JM. (2006). Photonic logic-gates: boosting all-optical header processing in future packet-switched networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1874Palanci
    corecore