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Abstract

The era of cloud computing has fuelled the increasing demand on data centers for high-
performance, high-speed data storage and computing. Digital signal processing may 
find applications in future cloud computing networks containing a large sum of data 
centers. Addition and subtraction are considered to be fundamental building blocks of 
digital signal processing which are ubiquitous in microprocessors for arithmetic opera-
tions. However, the processing speed is limited by the electronic bottleneck. It might 
be valuable to implement high-speed arithmetic operations of addition and subtraction 
in the optical domain. In this chapter, recent results of M-ary optical arithmetic opera-
tions for high base numbers are presented. By exploiting degenerate and nondegenerate 
four-wave mixing (FWM) in highly nonlinear fibers (HNLFs), graphene-assisted optical 
devices, and silicon waveguide devices, various types of two-/three-input high-speed 
quaternary/octal/decimal/hexadecimal optical computing operations have been demon-
strated. Operation speed up to 50 Gbaud of this computing approach is experimentally 
examined. The demonstrated M-ary optical computing using high base numbers may 
facilitate advanced data management and superior network performance.

Keywords: high-base optical signal processing, multilevel modulation format, four-
wave mixing, wavelength conversion, optical computing

1. Introduction

The great progress of fiber-optic communication has driven the success in transmitting/receiv-

ing very high-speed data signals in optical fiber links [1–5]. Recently, the era of cloud comput-

ing has fuelled the increasing demand on data centers for high-performance, high-speed data 

storage and computing. Optical interconnection is considered to be a promising technology 

for data interconnection in data centers. In future cloud computing networks containing a 
large sum of data centers, optical technology will play an important part [6–8]. For inter-data 
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center communication, modern optical communication links will be used. Advanced modula-

tion formats and wavelength division multiplex (WDM) can be used to enhance the transmis-

sion capacity of inter-data center links. And for intra-data center links, low-cost short-reach 
optical interconnection technologies, such as vertical-cavity surface-emitting laser (VCSEL) 
and multimode fiber, will be adopted. The rapid development of optical interconnection 
in data centers has also promoted increasing interest for digital signal processing used in 

data centers for wavelength management or routing. Among various digital signal process-

ing operations, two important arithmetic modules, i.e., addition and subtraction, are consid-

ered to be fundamental building blocks of digital signal processing which are ubiquitous in 
microprocessors for arithmetic operations. However, the processing speed is limited by the 
electronic bottleneck. It might be valuable to implement high-speed arithmetic operations of 
addition and subtraction in the optical domain.

Remarkably, nonlinear optics has offered great potential to develop high-speed optical sig-

nal processing using optical nonlinearities [9–21]. Multitudinous optical signal processing 
functionalities have been demonstrated. Commonly used optical signal processing function-

alities include wavelength (de)multiplexing, wavelength conversion, data exchange, optical 
addressing, optical switching, optical logic gate and computing, optical format conversion, 
optical equalization, tunable optical delay, optical regeneration, optical coding/decoding, and 
more [22–54]. As depicted in Figure 1, the material platforms for nonlinear optical signal 

processing mainly include highly nonlinear fiber (HNLF) [51, 55–57], semiconductor optical 

amplifier (SOA) [58–60], periodically poled lithium niobate (PPLN) waveguide [32, 35, 36, 61, 

62], chalcogenide (As
2
S

3
) waveguide [63], silicon waveguide [64–66], and graphene-assisted 

device [67]. Previously, optical arithmetic or optical logic operations have been reported in 
these material systems. It is noted that most of previous research efforts are dedicated to opti-
cal computing for binary modulation formats such as on-off keying (OOK) and binary phase-
shift keying (BPSK). Despite favorable operation performance achieved for binary operation, 
it suffers the limited bit rate and low spectral efficiency because each symbol for binary modu-

lation formats only carries single-bit information.

Figure 1. Material classification for nonlinear optical signal processing.
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The use of M-ary phase-shift keying (m-PSK) and M-ary quadrature amplitude modulation 
(m-QAM) in coherent systems has become a key technique for efficient increase of the transmis-

sion capacity and spectral efficiency of optical communication systems. For instance, quadra-

ture phase-shift keying (QPSK) with 2-bit information in one symbol has been extensively 
used in high-speed optical fiber transmission systems [68, 69]. Multilevel modulation format 
containing multiple constellation points in the constellation diagram can also be used to rep-

resent M-ary numbers. Taking QPSK as an example, four constellation points (i.e., four-phase 
levels) in the constellation diagram of QPSK signal can donate a quaternary base number (i.e., 
0, 1, 2, 3), as shown in Figure 2. Similarly, 8 PSK (16 PSK) signal which has 8 (16) points in 
its constellation plane can represent an octal (hexadecimal) base number. The related optical 
signal processing functions to multilevel modulation formats could be addition and subtrac-

tion of high base numbers. In this scenario, a laudable goal would be to perform addition and 
subtraction of high base numbers because (i) high capacities might be achievable, (ii) optical 
spectra might be utilized efficiently, and (iii) processing throughput might be improved.

In this chapter, we tend to provide a comprehensive report of our recent research works on 
M-ary optical computing for multilevel modulation formats by exploiting optical nonlinearities 
[70–75]. Various material platforms, including HNLFs, graphene-assisted optical devices, and 
silicon waveguide devices, are adopted to performing high-speed M-ary addition and subtrac-

tion. First, we report the experimental results of optical addition and subtraction using HNLFs. 
Functionalities of quaternary addition/subtraction are examined. Second, we show the graphene-
enhanced optical nonlinearities in graphene-assisted optical devices and its application in optical 
computing. Finally, we present the latest results of high-speed optical computing using ultra-

compact on-chip silicon waveguides. Quaternary/hexadecimal hybrid optical computing is suc-

Figure 2. Schematic constellations of advanced multilevel modulation formats representing M-ary (quaternary, octal, 
hexadecimal) numbers (QPSK, 8PSK, 16PSK).
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cessfully demonstrated in a complementary metal oxide semiconductor (CMOS)-compatible 
platform, which can be potentially integrated with standard CMOS large-scale integrated circuit.

2. Binary optical logic

In the last two decades, binary optical computing has been widely studied. Up to now, 
many schemes have been demonstrated to realize various elementary optical logic opera-

tions, including AND, OR, NOT, XOR, XNOR, NAND, and NOR [32, 55, 61, 62, 76–85]. By 

combining multiple elementary optical logic operations, advanced logic operations such as 
half-adder, half-subtractor, full-adder, and full-subtractor have also been proposed and dem-

onstrated [36, 86–91]. Figure 3 shows an example of simultaneous half-adder, half-subtractor, 
and OR logic gate [36].

Despite favorable operation performance of the binary operation, it still suffers from the lim-

ited bit rate and low spectral efficiency. Owing to the great success of advanced modulation 
format and coherent detection in optical communication, the implementation of M-ary optical 
computing becomes possible. Since the multiple constellation points in the complex plane of 
multilevel modulation format can be used to represent M-ary numbers, it is easy to extend 
binary optical computing to M-ary.

3. M-ary optical computing using HNLF

We propose and demonstrate M-ary optical computing of advanced multilevel modulation 
signals based on degenerate/nondegenerate FWM in HNLFs.

We first demonstrate high-speed two-input high-base optical computing (addition/subtrac-

tion/complement/doubling) of quaternary numbers using optical nonlinearities and (differ-

ential) quadrature phase-shift keying ((D)QPSK) signals. Figure 4 illustrates the concept and 

Figure 3. Digital gate-level diagram and logical truth table for simultaneous half-adder, half-subtractor, and OR logic 
gate.
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operation principle of the proposed quaternary addition/subtraction/complement/doubling. 
Four-phase levels of (D)QPSK signal represent quaternary numbers. Three nondegenerate 
FWMs and three degenerate FWMs in an HNLF are exploited to simultaneously implement 
multiple arithmetic functions. The input of the HNLF contains two (D)QPSK signals (A, B) 
and one continuous wave (CW) pump. Six converted idlers (idlers 1–6) are generated by three 
nondegenerate FWMs (idlers 1–3) and three degenerate FWMs (idlers 4–6). The relationships 
between the electrical field (E) and optical phase (Φ) under non-depletion approximation are 
expressed as
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Figure 4. (a) Concept and (b) principle of two-input high-base optical computing (quaternary addition/subtraction/
complement/doubling) using a single nonlinear device and (D)QPSK signals.
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Owing to the phase wrap characteristic with a periodicity of 2π, it is implied from Eqs. 
(1) to (6) that idlers 1–6 carry out modulo four operations of quaternary addition (A + 
B), dual-directional subtraction (A − B, B − A), complement (−A, −B), and doubling (2B), 
respectively.

Shown in Figure 5 are measured spectra. Two 100-Gbit/s 27-1 RZ-(D)QPSK signals (A, 1546.6 
nm; B, 1555.5 nm), and a CW pump (1553.2 nm), are launched into a 460-m HNLF. The low 
and flat dispersion of HNLF enables multiple FWM processes, and thus six idlers are obtained. 
The six idlers correspond to addition (A + B), subtraction (A − B, B − A), complement (−A, −B), 
and doubling (2B) of quaternary numbers (A, B), respectively.

We measured waveforms and balanced eyes of the demodulated in-phase (I) and quadra-

ture (Q) components of two input 100-Gbit/s (D)QPSK signals and six converted idlers. The 
100-Gbit/s (D)QPSK signal is demodulated using a delay-line interferometer (DLI) with a 20 
ps delay difference between two arms. The obtained results are shown in Figures 6 and 7, 

which confirm the successful implementation of 50-Gbaud quaternary addition (A+B), dual-
directional subtraction (A−B, B−A), complement (−A, −B), and doubling (2B) based on FWM 
in an HNLF.

Figure 8 shows the bit error rate (BER) curves. The power penalty is about 4 dB for addition, 
while 3 dB for subtraction, 2 dB for complement, and 3.1 dB for doubling at a BER of 10−9. The 

measured constellations using an optical complex spectrum analyzer are shown in Figure 9. 

One can clearly see that addition (A+B) and subtraction (A−B, B−A) have four-phase levels (0, 
π/2, π, 3π/2), while doubling (2B) has only two-phase levels (0, π).

Figure 5. Measured spectra for 50-Gbaud two-input quaternary addition/subtraction/complement/doubling (a) before 
and (b) after HNLF.
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Figure 6. Demodulated waveforms and balanced eyes for 50-Gbaud two-input quaternary addition and dual-directional 
subtraction using 100-Gbit/s (D)QPSK signals.
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Figure 7. Demodulated waveforms and balanced eyes for 50-Gbaud quaternary complement and doubling using 
100-Gbit/s (D)QPSK signals.

Figure 8. Measured BER curves for input/output signals (A, B), quaternary addition (A+B), dual-directional subtraction 
(A−B, B−A), complement (−A, −B), and doubling (2B).
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4. Graphene-enhanced optical nonlinearity for M-ary optical computing

Graphene as a purely two-dimensional material with only one-carbon-atom thickness has 
received great interest since it features many interesting and useful electrical, optical, chemical, 
and mechanical properties [92, 93]. Over the last decade, many remarkable optical properties 
of graphene have been discovered, such as self-luminosity, tunable optical absorption, strong 
nonlinearity, saturable absorption, etc. [94–96]. Recently, optical nonlinearities have been 
observed in graphene in various configurations, e.g., slow-light graphene-silicon photonic crys-

tal waveguide [97], graphene optically deposited onto fiber ferrules [98], and graphene based 

on microfiber [99]. The large absorption and Pauli blocking effect in graphene, together with 
the ultrafast carrier dynamics and strong optical nonlinearity with a fast response time, make 
graphene-based photonic devices suitable for performing efficient nonlinear functions. Very 
recently, an experimental observation of FWM-based wavelength conversion of a 10-Gb/s non-
return-to-zero (NRZ) signal was reported [100]. In this section, we introduce our recent prog-

ress in optical M-ary computing functions using a graphene-assisted nonlinear optical device.

Figure 10 illustrates the fabrication process of the graphene-assisted nonlinear optical device. 
First, a monolayer graphene was grown on a Cu foil by the chemical vapor deposition 
(CVD) method. Poly(methyl methacrylate) (PMMA) film was next spin coated on the surface 

Figure 9. Measured constellations for 50-Gbaud two-input quaternary addition, dual-directional subtraction, 
complement, and doubling using 100-Gbit/s (D)QPSK signals.

M-ary Optical Computing
http://dx.doi.org/10.5772/67351

79



of the  graphene-deposited Cu foil, and the Cu foil was etched away with 1 M FeCl
3
 solution. The 

resultant PMMA/graphene film (5 mm × 5 mm) was then washed in deionized water several times 
and transferred to deionized water solution or Si/SiO

2
 substrate. Then, the floating PMMA/gra-

phene sheet was mechanically transferred onto the fiber pigtail cross section and dried in a cabinet. 
After drying at room temperature for about 24 hours, the carbon atoms could be self-assembled 

onto the fiber end facet. The PMMA layer was finally removed by boiling acetone. By connecting 
this graphene-on-fiber component with another clean and dry fiber connector, the nonlinear opti-
cal device was thereby constructed for nonlinear optical signal processing applications.

Figure 11(a) depicts the optical microscope (OM) image of the grown graphene film trans-

ferred on a 300-nm SiO
2
/Si substrate. Figure 11(b) shows a scanning electron microscopy 

(SEM) image of the graphene sheet transferred on silicon-on-insulator (SOI). One can clearly 
see the evidence of the uniformity of the graphene. The Raman spectrum of the graphene, 
as displayed in Figure 11(c), shows a weak D peak and a strong 2D peak. The D to G peak 
intensity ratio is ~0.08, which indicates that the graphene formed on a SiO

2
/Si substrate was 

almost defect-free.

Figure 10. Fabrication process of the graphene-assisted nonlinear optical device.

Figure 11. (a) Optical microscope (OM) image of graphene transferred on a SiO
2
/Si substrate. (b) SEM image of graphene 

transferred on silicon-on-insulator (SOI). (c) Typical Raman spectrum of single-layer graphene on a SiO
2
/Si substrate 

(excitation wavelength: 532 nm).
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We first examine the wavelength conversion of the graphene-assisted nonlinear optical device. 
Figure 12(a) shows a typical output FWM spectrum obtained after the CVD single-layer gra-

phene-coated fiber device. In the experiment, the signal wavelength is fixed at 1550.12 nm. 
A newly converted idler at 1546.88 nm is generated when the pump is set to be 1548.49 nm. 
We also measure the output spectrum without graphene for reference under the same experi-
mental conditions. As clearly shown in the inset of Figure 12(a), the power of converted idler 
without graphene is observed to be ~5.5 dB lower than the one with graphene. That is, under 
the same experimental conditions, the converted idler without graphene is ~71.9% lower than 
the one with graphene. Hence, the degenerate FWM in graphene contributes more in the 
wavelength conversion process. The insets of Figure 12(a) also depict measured QPSK con-

stellations of the converted idler and the input signal. We also present a comparison of the 
FWM conversion efficiency as a function of the pump power with and without graphene. As 
shown in Figure 12(b), the pump wavelength is fixed at λ

pump
 = 1548.49 nm and the signal is 

λ
signal

 = 1550.12 nm. One can clearly see that the conversion efficiency increases with the pump 
power. When the pump power varies from 23 dBm to 33 dBm, the enhanced FWM conversion 
efficiency by graphene changes from 4.7 dB to 7.5 dB.

Figure 13(a) plots the converted idler wavelength as a function of the pump wavelength when 
the pump power is fixed at 31 dBm. A linear wavelength relationship between the converted 
idler and pump is observed. The measured FWM conversion efficiency of tunable wavelength 
conversion with and without graphene is shown in Figure 13(b). The signal wavelength is 
fixed at 1550.12 nm and the pump wavelength is tuned from 1547 to 1553 nm. When using 
graphene-coated fiber device, the conversion efficiency varies about 1.7 dB within a ~6 nm 
wavelength range. By comparing the measured pump wavelength-dependent conversion effi-

ciency with and without graphene, one can clearly see that the FWM conversion efficiency 
with graphene is enhanced more than 5 dB within the tuning range of pump wavelength.

To characterize the performance of QPSK wavelength conversion, we further measure the 
BER curve as a function of the received observed OSNR for B-to-B signal and converted idler. 

Figure 12. (a) Measured FWM spectra with (circle) and without (square) graphene. (b) Measured conversion efficiency 
of FWM with and without graphene when pump power is tuned from 23 to 33 dBm.
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Figure 14 plots measured BER performance for tunable QPSK wavelength conversion with 
the converted idler generated at 1546.88, 1539.92, and 1557.90 nm, respectively. The measured 
conversion efficiencies for converted idlers at 1546.88, 1539.92, and 1557.90 nm are −36.2, −48.2, 
and −39.8 dB, respectively. As shown in Figure 14, the observed OSNR penalty is around 1 dB 
at a BER of 1×10−3 (7% forward error correction (FEC) threshold) for QPSK wavelength conver-

sion with the converted idler at 1546.88 nm. The received OSNR penalties of ∼2.2 dB at a BER 
of 1×10−3 are observed for converted idlers at 1539.92 and 1557.90 nm. The increased OSNR 
penalty is mainly due to the reduced conversion efficiency for converted idlers at 1539.92 and 
1557.90 nm. The right insets of Figure 14 depict corresponding constellations of the B-to-B 

signals and converted idlers. The obtained results shown in Figures 11–14 imply favorable 
performance achieved for tunable wavelength conversion of QPSK signal using a fiber pigtail 
cross section coated with a single-layer graphene.

Figure 13. (a) Converted idler wavelength versus pump wavelength. (b) Measured FWM conversion efficiency with and 
without graphene when pump wavelength is tuned from 1547 to 1553 nm. Pump power: 31 dBm.

Figure 14. Measured BER versus received OSNR for wavelength conversion of QPSK signal. Insets show constellations 
of QPSK.
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We then show the results of optical computing based on the fabricated graphene-assisted non-

linear optical device. Figure 15 illustrates the concept and principle of two-input hybrid quater-

nary arithmetic functions. From the constellation in the complex plane (Figure 15(a)), it is clear 
that one can use four-phase levels (π/4, 3π/4, 5π/4, 7π/4) of (D)QPSK to represent quaternary 
base numbers (0, 1, 2, 3). To implement two-input hybrid quaternary arithmetic functions, the 
aforementioned graphene-assisted nonlinear optical device is employed. Two-input quaternary 
numbers (A, B) are coupled into the nonlinear device, and then two converted idlers (idler 1, idler 
2) are simultaneously generated by two degenerate FWM processes. Figure 15(b) illustrates the 

degenerate FWM process. We derive the electrical field (E) and optical phase (Ф) relationships 
of two degenerate FWM processes under the pump non-depletion approximation expressed as
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where the subscripts A, B, i1, and i2 denote input signal A, signal B, converted idler 1, and idler 
2, respectively. Owing to the phase wrap characteristic with a periodicity of 2π, it is implied 
from the linear phase relationships in Eqs. (7) and (8) that idler 1 and idler 2 carry out modulo 4 
operations of hybrid quaternary arithmetic functions of doubling and subtraction (2A−B, 2B−A).

Figure 16 depicts measured typical spectrum obtained after the CVD single-layer graphene-
coated fiber device. Two 10-Gbaud NRZ-(D)QPSK signals at 1550.10 (A) and 1553.60 nm (B) 
are employed as two inputs. The power of two input signals (A, B) is about 32 dBm. The con-

version efficiency is measured to be around −36 dB. One can clearly see that two converted 
idlers are obtained by two degenerate FWM processes with idler 1 at 1546.60 nm (2A−B) and 
idler 2 at 1557.20 nm (2B−A). The resolution of the measured spectrum is set to 0.02 nm. The 
steps in the measured spectrum are actually the modulation sidebands of two NRZ-(D)QPSK 
carrying signals. In order to verify the hybrid quaternary arithmetic functions, we measure 
the phase of symbol sequence for two input signals and two converted idlers, as shown in 
Figure 17. By carefully comparing the quaternary base numbers for two input signals and 
two converted idlers, one can confirm the successful implementation of two-input hybrid 
quaternary arithmetic functions of 2A−B and 2B−A.

Figure 15. (a) Concept and (b) principle of hybrid quaternary arithmetic functions (2A−B, 2B−A) using degenerate FWM 
and (D)QPSK signals.
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We further investigate the BER performance for the proposed optical two-input hybrid qua-

ternary arithmetic functions. The OSNR penalties at a BER of 2×10−3 for hybrid quaternary 
arithmetic functions are measured to be about 7.4 dB for 2A−B and 7.0 dB for 2B−A. The insets 
in Figure 18(a) show constellations of the last point of the BER curves of output Sig. B and 
2A−B. The constellation of Sig. B is measured under an OSNR of 12.6 dB, while the constella-

tion of 2A−B is observed under an OSNR of 19.6 dB. To clearly show the differences between 
these two constellations, we also assess the EVM of these two constellations, i.e., EVM = 
27.61% for output Sig. B and EVM = 30.09% for output 2A−B. The significant performance 
degradations for the two-input hybrid quaternary arithmetic functions (2A−B, 2B−A) might 

Figure 16. Measured spectrum for 10-Gbaud two-input hybrid quaternary arithmetic functions.

Figure 17. Measured phase of symbol sequence with coherent detection for 10-Gbaud two-input hybrid quaternary 
arithmetic functions.
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be ascribed to the relatively low conversion efficiency for two converted idlers at 1546.60 nm 
and 1557.20 nm and accumulated distortions transferred from two input signals (A, B). It is 
possible to further enhance the conversion efficiency by appropriately increasing the number 
of graphene layers employed in the experiment. Figure 18(b) depicts the BER performance as 
a function of the relative time offset between two signals (signal offset) under an OSNR of ~20 
dB. It is found that the BER is kept below enhanced forward error correction (EFEC) threshold 
when the signal offset/symbol time is within 15 ps, which indicates a favorable tolerance to 
the signal offset.

We also propose an approach to performing three-input optical addition and subtraction of 
quaternary base numbers using multiple nondegenerate FWM processes based on graphene-
assisted device.

Figure 19 illustrates the concept and working principle of the proposed graphene-assisted 
three-input high-base optical computing. Three input (D)QPSK signals (A, B, C) are launched 
into the nonlinear device, in which three converted idlers (idler 1, idler 2, idler 3) are simulta-

neously generated by three nondegenerate FWM processes. Quaternary hybrid addition and 
subtraction of A+B−C, A+C−B, and B+C−A are obtained simultaneously.

In the experiment, the wavelengths of three input signals A, B, and C are fixed at 1548.52, 
1550.12, and 1552.52 nm, respectively. Figure 20 depicts measured typical optical spectrum 

obtained after the single-layer graphene-coated fiber device. One can clearly see that three 
converted idlers are generated by three nondegenerate FWM processes with idler 1 at 1546.13 
nm (A+B−C), idler 2 at 1550.92 nm (A+C−B), and idler 3 at 1554.13 nm (B+C−A), respectively. 
The conversion efficiencies of three nondegenerate FWM processes are measured to be larger 
than −34 dB. In order to verify the quaternary optical computing functions, we measure the 
phase of symbol sequence for three input signals and three converted idlers, as shown in 

Figure 18. Measured BER curves for two-input hybrid quaternary arithmetic functions of 2A−B and 2B−A; (b) BER 
versus signal offset.
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Figure 21. By carefully comparing the quaternary base numbers for three input signals and 
three converted idlers, one can confirm the successful implementation of graphene-assisted 
three-input quaternary optical computing (i.e., quaternary hybrid addition and subtraction) 
functions of A+B−C, A+C−B, and A+C−B.

To characterize the performance of the proposed graphene-assisted three-input high-base 
optical computing functions, we further measure the BER curves as a function of the received 
OSNR for B-to-B signals and three converted idlers. Figure 22 depicts measured BER curves 
for 10-Gbaud three-input quaternary hybrid addition and subtraction of A+B−C, A+C−B, 
and B+C−A. As shown in Figure 22, the observed OSNR penalties of three-input quaternary 
hybrid addition and subtraction are accessed to be less than 7 dB at a BER of 2×10−3 (7% EFEC 
threshold). The increased OSNR penalties might be mainly due to the relatively low conver-

sion efficiency for converted idlers and accumulated distortions transferred from three input 
signals (A, B, C). The insets in Figure 22 depict corresponding constellations of the B-to-B 

signals and converted idlers. The BER curves and constellations of three output signals (A, B, 
C) after graphene are also shown in Figure 22 for reference.

Figure 19. (a) Concept and (b) principle of graphene-assisted three-input (A, B, C) quaternary hybrid addition and 
subtraction (A+B−C, A+C−B, B+C−A) using nondegenerate FWM and (D)QPSK signals.
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Figure 20. Measured spectrum for 10-Gbaud three-input quaternary hybrid addition and subtraction.

Figure 21. Measured phase of symbol sequence by coherent detection for 10-Gbaud three-input quaternary hybrid 
addition and subtraction.
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5. On-chip M-ary optical computing

Silicon photonics has become one of the most promising photonic integration platforms 
for its ultrahigh level of integration, low power consumption, and CMOS compatibility. 
In addition, nonlinear interaction will also be enhanced in silicon waveguides due to its 
tight light confinement. Thus, SOI is also considered to be a favorable nonlinear optics plat-
form. To minimize the footprint of the computing building block and lower the power con-
sumption, we demonstrate on-chip M-ary optical computing by adopting silicon photonics 
technology.

We first experimentally demonstrate all-optical two-input (A, B) optical quaternary doubling/
subtraction (2A−B, 2B−A) using a silicon waveguide. The silicon waveguide used in the exper-
iment is shown in Figure 23.

Figure 22. Measured BER curves for 10-Gbaud three-input quaternary hybrid addition and subtraction of A+B−C, A−
C−B, and B+C−A. Insets show constellations of (D)QPSK signals.
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Figure 24 shows the measured symbol sequence for two-input optical quaternary hybrid dou-

bling/subtraction. It can be confirmed from Figure 24 that simultaneous quaternary hybrid 
doubling/subtraction (2A−B, 2B−A) are successfully implemented using QPSK, degenerate 
FWM, and coherent detection.

We also experimentally demonstrate three-input (A, B, C) optical quaternary addition/sub-

traction (A+C−B, A+B−C, B+C−A) using such a silicon waveguide. Figure 25 shows the mea-

sured symbol sequence for three-input optical quaternary addition/subtraction.

It is relatively difficult to experimentally demonstrate higher-order computing using a pure 
silicon waveguide due to the large OSNR penalty. Thus, we simulate hexadecimal optical 
computing using nonlinear interactions in a silicon-organic hybrid slot waveguide [101]. 

Figure 26(a) shows the structure of a silicon-organic hybrid slot waveguide. It features a 

Figure 23. Photomicrograph of the silicon waveguide.

Figure 24. Measured symbol sequence for two-input optical quaternary addition/subtraction (2A−B, 2B−A).

Figure 25. Measured symbol sequence for (a)–(c) three-input optical quaternary signal and their (c)–(e) addition/
subtraction.
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 sandwich structure with a low-refractive-index PTS [polymer poly (bis para-toluene sulfo-

nate)] layer surrounded by two high refractive index silicon layers. The TM mode profile and 
its power density along x/y directions are depicted in Figure 26(b)–(d). Tight light confine-

ment is observed in the nanoscale nonlinear organic slot region, which offers high nonlinear-

ity and instantaneous Kerr response. We assess the effective mode area and nonlinearity to be 
7.7 × 10−14 m2 and 5500 w−1m−1, which can potentially facilitate efficient optical signal process-

ing (e.g., hexadecimal addition/subtraction).

Figure 27 depicts simulation results for three-input multicasted 40-Gbaud (160-Gbit/s) hexa-

decimal addition/subtraction. Twenty symbol sequences are plotted in Figure 27, which con-

firms the successful implementation of three-input hexadecimal addition/subtraction (A + 
B − C, A + C − B, B + C − A, A + B + C, A − B − C, B − A − C). The constellations are also shown 
in Figure 28.

Figure 26. (a) 3D structure, (b) mode distribution, (c) and (d) normalized power density along x and y directions of a 
silicon-organic hybrid slot waveguide.
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Figure 27. Simulated symbol sequence for three-input multicasted 40-Gbaud (160-Gbit/s) hexadecimal addition/
subtraction using a silicon-organic hybrid slot waveguide.

Figure 28. Simulated constellations for three-input multicasted 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction 
using a silicon-organic hybrid slot waveguide.
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We further investigate the EVM of input signals and output idlers as functions of the OSNR of 
input signals. The results are shown in Figure 29(a) and (b). The EVM penalties are less than 
4.5 for hexadecimal addition/subtraction under a 28-dB OSNR. EVM of hexadecimal addi-
tion/subtraction as a function of input signal power are shown in Figure 30. EVM increases 
slightly (<0.8 dB) with input signal power <50 mW, which implies a large available dynamic 
range (~27 dB).

6. Conclusion

In this chapter, we have reviewed recent research efforts toward M-ary optical computing by 
adopting multilevel modulation signals and exploiting optical nonlinearities.

Figure 29. Simulated EVM versus OSNR for 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using a silicon-
organic hybrid slot waveguide.

Figure 30. Simulated dynamic range of signal power for 40-Gbaud (160-Gbit/s) hexadecimal addition/subtraction using 
a silicon-organic hybrid slot waveguide.
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1. M-ary optical computing using HNLF: By adopting 100-Gbit/s two-input (D)QPSK signals 
(A, B) and exploiting three degenerate FWM processes and three nondegenerate FWM 
processes in an HNLF, simultaneous 50-Gbaud two-input quaternary addition (A+B), du-

al-directional subtraction (A−B, B−A), complement (−A, −B), and doubling (2B) have been 
demonstrated in the experiment.

2. Graphene-enhanced optical nonlinearity for M-ary optical computing: We experimentally 
demonstrated hybrid two-/three-input quaternary addition/subtraction optical computing 
in a graphene-assisted nonlinear devices.

3. On-chip M-ary optical computing: To minimize the footprint of the computing building block 
and lower the power consumption, we demonstrate on-chip M-ary optical computing by 
adopting silicon photonics technology. We experimentally demonstrated on-chip quaternary 
addition/subtraction optical computing in a silicon waveguide. On-chip hexadecimal addition/
subtraction is also numerically investigated using a silicon-organic hybrid slot waveguide.

Addition and subtraction are considered to be fundamental building blocks of digital sig-

nal processing. Optical signal processing technology opens a new world for ultrahigh-speed 
arithmetic operations. With future improvements, other different optical nonlinearities on 
various nonlinear optical device platforms would also be employed to flexibly manipulate 
the amplitude and phase information of advanced multilevel modulation signals. In addition, 
more complicated computing functionalities can be introduced, which might open diverse 
interesting applications in robust optical computing operation.
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