47 research outputs found

    All-But-Many Lossy Trapdoor Functions

    Get PDF
    We put forward a generalization of lossy trapdoor functions (LTFs). Namely, all-but-many lossy trapdoor functions (ABM-LTFs) are LTFs that are parametrized with tags. Each tag can either be injective or lossy, which leads to an invertible or a lossy function. The interesting property of ABM-LTFs is that it is possible to generate an arbitrary number of lossy tags by means of a special trapdoor, while it is not feasible to produce lossy tags without this trapdoor. Our definition and construction can be seen as generalizations of all-but-one LTFs (due to Peikert and Waters) and all-but-N LTFs (due to Hemenway et al.). However, to achieve ABM-LTFs (and thus a number of lossy tags which is not bounded by any polynomial), we have to employ some new tricks. Concretely, we give two constructions that employ ``disguised\u27\u27 variants of the Waters, resp. Boneh-Boyen signature schemes to make the generation of lossy tags hard without trapdoor. In a nutshell, lossy tags simply correspond to valid signatures. At the same time, tags are disguised (i.e., suitably blinded) to keep lossy tags indistinguishable from injective tags. ABM-LTFs are useful in settings in which there are a polynomial number of adversarial challenges (e.g., challenge ciphertexts). Specifically, building on work by Hemenway et al., we show that ABM-LTFs can be used to achieve selective opening security against chosen-ciphertext attacks. One of our ABM-LTF constructions thus yields the first SO-CCA secure encryption scheme with compact ciphertexts (O(1) group elements) whose efficiency does not depend on the number of challenges. Our second ABM-LTF construction yields an IND-CCA (and in fact SO-CCA) secure encryption scheme whose security reduction is independent of the number of challenges and decryption queries

    Cumulatively All-Lossy-But-One Trapdoor Functions from Standard Assumptions

    Get PDF
    International audienceChakraborty, Prabhakaran, and Wichs (PKC'20) recently introduced a new tag-based variant of lossy trapdoor functions, termed cumulatively all-lossy-but-one trapdoor functions (CALBO-TDFs). Informally, CALBO-TDFs allow defining a public tag-based function with a (computationally hidden) special tag, such that the function is lossy for all tags except when the special secret tag is used. In the latter case, the function becomes injective and efficiently invertible using a secret trapdoor. This notion has been used to obtain advanced constructions of signatures with strong guarantees against leakage and tampering, and also by Dodis, Vaikunthanathan, and Wichs (EUROCRYPT'20) to obtain constructions of randomness extractors with extractor-dependent sources. While these applications are motivated by practical considerations, the only known instantiation of CALBO-TDFs so far relies on the existence of indistinguishability obfuscation. In this paper, we propose the first two instantiations of CALBO-TDFs based on standard assumptions. Our constructions are based on the LWE assumption with a sub-exponential approximation factor and on the DCR assumption, respectively, and circumvent the use of indistinguishability obfuscation by relying on lossy modes and trapdoor mechanisms enabled by these assumptions

    Compact Lossy Trapdoor Functions and Selective Opening Security From LWE

    Get PDF
    Selective opening (SO) security is a security notion for public-key encryption schemes that captures security against adaptive corruptions of senders. SO security comes in chosen-plaintext (SO-CPA) and chosen-ciphertext (SO-CCA) variants, neither of which is implied by standard security notions like IND-CPA or IND-CCA security. In this paper, we present the first SO-CCA secure encryption scheme that combines the following two properties: (1) it has a constant ciphertext expansion (i.e., ciphertexts are only larger than plaintexts by a constant factor), and (2) its security can be proven from a standard assumption. Previously, the only known SO-CCA secure encryption scheme achieving (1) was built from an ad-hoc assumption in the RSA regime. Our construction builds upon LWE, and in particular on a new and surprisingly simple construction of compact lossy trapdoor functions (LTFs). Our LTF can be converted into an “all-but-many LTF” (or ABM-LTF), which is known to be sufficient to obtain SO-CCA security. Along the way, we fix a technical problem in that previous ABM-LTF-based construction of SO-CCA security

    Simulation-Based Selective Opening Security for Receivers under Chosen-Ciphertext Attacks

    Get PDF
    Security against selective opening attack (SOA) for receivers requires that in a multi-user setting, even if an adversary has access to all ciphertexts, and adaptively corrupts some fraction of the users to obtain the decryption keys corresponding to some of the ciphertexts, the remaining (potentially related) ciphertexts retain their privacy. In this paper, we study simulation-based selective opening security for receivers of public key encryption (PKE) schemes under chosen-ciphertext attacks (RSIM-SO-CCA). Concretely, we first show that some known PKE schemes meet RSIM-SO-CCA security. Then, we introduce the notion of master-key SOA security for identity-based encryption (IBE), and extend the Canetti-Halevi-Katz (CHK) transformation to show generic PKE constructions achieving RSIM-SO-CCA security. Finally, we show how to construct an IBE scheme achieving master-key SOA security

    SO-CCA Secure PKE in the Quantum Random Oracle Model or the Quantum Ideal Cipher Model

    Get PDF
    Selective opening (SO) security is one of the most important security notions of public key encryption (PKE) in a multi-user setting. Even though messages and random coins used in some ciphertexts are leaked, SO security guarantees the confidentiality of the other ciphertexts. Actually, it is shown that there exist PKE schemes which meet the standard security such as indistinguishability against chosen ciphertext attacks (IND-CCA security) but do not meet SO security against chosen ciphertext attacks. Hence, it is important to consider SO security in the multi-user setting. On the other hand, many researchers have studied cryptosystems in the security model where adversaries can submit quantum superposition queries (i.e., quantum queries) to oracles. In particular, IND-CCA secure PKE and KEM schemes in the quantum random oracle model have been intensively studied so far. In this paper, we show that two kinds of constructions of hybrid encryption schemes meet simulation-based SO security against chosen ciphertext attacks (SIM-SO-CCA security) in the quantum random oracle model or the quantum ideal cipher model. The first scheme is constructed from any IND-CCA secure KEM and any simulatable data encapsulation mechanism (DEM). The second one is constructed from any IND-CCA secure KEM based on Fujisaki-Okamoto transformation and any strongly unforgeable message authentication code (MAC). We can apply any IND-CCA secure KEM scheme to the first one if the underlying DEM scheme meets simulatability, whereas we can apply strongly unforgeable MAC to the second one if the underlying KEM is based on Fujisaki-Okamoto transformation

    Non-malleability under Selective Opening Attacks: Implication and Separation

    Get PDF
    We formalize the security notions of non-malleability under selective opening attacks (NM-SO security) in two approaches: the indistinguishability-based approach and the simulationbased approach. We explore the relations between NM-SO security notions and the known selective opening security notions, and the relations between NM-SO security notions and the standard non-malleability notions

    All-But-Many Encryption: A New Framework for Fully-Equipped UC Commitments

    Get PDF
    We present a general framework for constructing non-interactive universally composable (UC) commitment schemes that are secure against adaptive adversaries in the non-erasure model under a re-usable common reference string. Previously, such ``fully-equipped\u27\u27 UC commitment schemes have been known only in [CF01,CLOS02], with strict expansion factor O(k); meaning that to commit L bits, communication strictly requires O(Lk)$ bits, where k denotes the security parameter. Efficient construction of a fully-equipped UC commitment scheme is a long-standing open problem. We introduce new abstraction, called all-but-many encryption (ABME), and prove that it captures fully-equipped UC commitment schemes. We propose the first fully-equipped UC commitment scheme with optimal expansion factor O(1) from our ABME scheme related to the DCR assumption. We also provide an all-but-many lossy trapdoor function (ABM-LTF)[Hof12] from our DCR-based ABME scheme, with a better lossy rate than [Hof12]

    Simulation-Based Bi-Selective Opening Security for Public Key Encryption

    Get PDF
    Selective opening attacks (SOA) (for public-key encryption, PKE) concern such a multi-user scenario, where an adversary adaptively corrupts some fraction of the users to break into a subset of honestly created ciphertexts, and tries to learn the information on the messages of some unopened (but potentially related) ciphertexts. Until now, the notion of selective opening attacks is only considered in two settings: sender selective opening (SSO), where part of senders are corrupted and messages together with randomness for encryption are revealed; and receiver selective opening (RSO), where part of receivers are corrupted and messages together with secret keys for decryption are revealed. In this paper, we consider a more natural and general setting for selective opening security. In the setting, the adversary may adaptively corrupt part of senders and receivers \emph{simultaneously}, and get the plaintext messages together with internal randomness for encryption and secret keys for decryption, while it is hoped that messages of uncorrupted parties remain protected. We denote it as Bi-SO security since it is reminiscent of Bi-Deniability for PKE. We first formalize the requirement of Bi-SO security by the simulation-based (SIM) style, and prove that some practical PKE schemes achieve SIM-Bi-SO\text{SO}-CCA security in the random oracle model. Then, we suggest a weak model of Bi-SO security, denoted as SIM-wBi-SO\text{SO}-CCA security, and argue that it is still meaningful and useful. We propose a generic construction of PKE schemes that achieve SIM-wBi-SO\text{SO}-CCA security in the standard model and instantiate them from various standard assumptions. Our generic construction is built on a newly presented primitive, namely, universalÎş_{\kappa} hash proof system with key equivocability, which may be of independent interest

    SoK: Public Key Encryption with Openings

    Get PDF
    When modelling how public key encryption can enable secure communication, we should acknowledge that secret information, such as private keys or the randomness used for encryption, could become compromised. Intuitively, one would expect unrelated communication to remain secure, yet formalizing this intuition has proven challenging. Several security notions have appeared that aim to capture said scenario, ranging from the multi-user setting with corruptions, via selective opening attacks (SOA), to non-committing encryption (NCE). Remarkably, how the different approaches compare has not yet been systematically explored. We provide a novel framework that maps each approach to an underlying philosophy of confidentiality: indistinguishability versus simulatability based, each with an a priori versus an a posteriori variant, leading to four distinct philosophies. In the absence of corruptions, these notions are largely equivalent; yet, in the presence of corruptions, they fall into a hierarchy of relative strengths, from IND-CPA and IND-CCA at the bottom, via indistinguishability SOA and simulatability SOA, to NCE at the top. We provide a concrete treatment for the four notions, discuss subtleties in their definitions and asymptotic interpretations and identify limitations of each. Furthermore, we re-cast the main implications of the hierarchy in a concrete security framework, summarize and contextualize other known relations, identify open problems, and close a few gaps. We end on a survey of constructions known to achieve the various notions. We identify and name a generic random-oracle construction that has appeared in various guises to prove security in seemingly different contexts. It hails back to Bellare and Rogaway\u27s seminal work on random oracles (CCS\u2793) and, as previously shown, suffices to meet one of the strongest notions of our hierarchy (single-user NCE with bi-openings)
    corecore