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Abstract. We present a general framework for constructing non-interactive universally composable
(UC) commitment schemes that are secure against adaptive adversaries in the non-erasure model under
a re-usable common reference string. Previously, such “fully-equipped” UC commitment schemes have
been known only in [11, 12], with expansion factor Ω(κ); meaning that to commit λ bits, communication
strictly requires Ω(λκ) bits, where κ denotes the security parameter. We introduce new abstraction,
called all-but-many encryption (ABME), and prove that it can be transformed to a fully-equipped UC
commitment scheme. We construct ABME from a variety of assumptions. In particular, we present an
ABME scheme related to the DCR assumption, which implies the first fully-equipped UC commitment
scheme with optimal expansion factor O(1). In addition, it turns out an all-but-many lossy trapdoor
function (ABM-LTF) [31] with a better lossy rate than [31].

Keywords: Public-key encryption, universally composable commitments, non-interactive, re-
usable, non-erasure and adaptive security, and all-but-many lossy trapdoor functions.

1 Introduction

1.1 Motivating Application: Fully-Equipped UC Commitments

Universal composability (UC) framework [10] guarantees that if a protocol is proven secure in
the UC framework, it remains secure even if it is run concurrently with arbitrary (even insecure)
protocols. This composable property gives a designer a fundamental benefit, compared to the classic
definitions, which only guarantee that a protocol is secure if it is run in the standalone setting. UC
commitments is an essential ingredient to construct high level UC-secure protocols, which imply
UC zero-knowledge protocols [11, 20] and UC oblivious transfer [12]. Therefore, any UC-secure
two-party and multi-party computations can be realized in the presence of UC commitments. Since
UC commitments cannot be realized without an additional set-up assumption [11], the common
reference string (CRS) model is widely used.

A commitment scheme consists of a two-phase protocol between two parties, a committer and
a receiver. In the commitment phase, a committer gives a receiver the digital equivalent of a sealed
envelope containing value x, and, in the opening phase, the committer reveals x in a way that the
receiver can verify it. From the original concept, it is required that a committer cannot change the
value inside the envelope (binding property), whereas the receiver can learn nothing about x (hiding
property) unless the committer helps the receiver open the envelope.

Informally, a UC commitment scheme maintains the above binding and hiding properties under
any concurrent composition with arbitrary protocols. To achieve this, a UC commitment scheme
requires equivocability and extractability at the same time. Informally, equivocability of UC com-
mitments in the CRS model can be interpreted as follows: An algorithm (called the simulator) that
takes the secret behind the CRS string can generate an equivocal commitment that can be opened



to any value. On the other hand, extractability can be interpreted as the ability of the simulator
extracting the contents of a commitment generated by any adversarial algorithm, even after the
adversary sees many equivocal commitments generated by the simulator.

Several factors as shown below feature UC commitments:

Interactivity. If an execution of a commitment scheme is completed, simply by sending each one
message from the committer to the receiver both in the commitment and opening phases, then
it is called non-interactive; otherwise, interactive. From a practical viewpoint, non-interactivity is
definitely favorable – non-interactive protocols are much easier to implement and more resilient to
real threats such as denial of service attacks. Even from a theoretical viewpoint, non-interactive
protocols generally make security proofs simpler.

CRS Re-Usability. The CRS model assumes that CRS strings are generated in a trusted way
and given to every party. For practical use, it is very important that a global single CRS string can
be fixed beforehand and it can be re-usable in an unbounded number of executions of cryptographic
protocols. Otherwise, a new CRS string must be set up in a trusted way every time when a new
execution of a protocol is invoked.

Adaptive Security. If an adversary decides to corrupt parities only before a protocol starts, it
is called a static adversary. On the other hand, if an adversary can decide to corrupt parties at
any point in the executions of protocols, it is called an adaptive adversary. The attacks of adaptive
adversaries are more realistic in the real world. So, adaptive UC security is more desirable.

Non-Erasure Model. When a party is corrupted, its complete inner state is revealed, including
the randomness being used. Some protocols are only proven UC-secure under the assumption that
the parties can securely erase their inner states at any point of an execution. However, reliable
erasure is a difficult task on a real system. So, it is desirable that a non-erasure protocol is proven
secure.

1.2 Previous Works

Canetti and Fischlin [11] presented the first UC secure commitment schemes. One of their proposals
is “fully-equipped”, i.e., non-interactive, adaptively UC secure in the non-erasure model under a
re-usable common reference string. By construction, this scheme requires Ω(λκ) bits when com-
mitting to λ-bit secret, where κ denotes the security parameter. Canetti et al. [12] constructed its
generalized version from (enhanced) trapdoor permutations, which is simply inefficient. Damg̊ard
and Nielsen [20] proposed the first adaptively UC secure commitment schemes in the non-erasure
model with expansion factor O(1), meaning that to commit to λ-bit secret, communication re-
quires only O(λ) bits. However, the commitment phase must take three round interactions between
a committer and a receiver. In addition, the CRS size grows linearly in the number of the parties.
Soon after, Damg̊ard and Groth [18] removed the dependency of the CRS size, using the simulation
sound trap-door commitments, but the improved proposal is still interactive.

The subsequent commitment schemes such as [39, 36, 23, 5] are adaptively UC secure with expan-
sion factor O(1) under a constant size CRS string, but still sacrifice at least one or two requirements
(See Table 1). Nisimaki, Fujisaki, and Tanaka [39] proposed non-interactive adaptively UC secure
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commitments, but the CRS is just one-time, i.e., one needs a new common-reference string for
each execution of the commitment protocol. Lindell [36] presented efficient static and adaptively
UC secure commitment schemes based on the DDH assumption. Later, Blazy et al.[5] improved
Lindell’s UC commitment schemes. However, those constructions require interaction and secure era-
sure. Fischlin, Libert, and Manulis [23] transformed Lindell’s static UC secure commitment scheme
and Camenish and Shoup verifiable encryption scheme [9], into non-interactive adaptively UC se-
cure commitment schemes, by removing the interaction in the sigma protocol using non-interactive
Groth-Sahai proofs [29]. The resulting protocols still require secure erasure.

Recently, there is a series of the works [26, 17, 13, 24], in which efficient UC commitments have
been proposed in the UC oblivious transfer (OT) hybrid model. The constuructions are fast and
compact except for the overhead of UC OT protocols. Using the OT extenstion techinique [1], one
can make the number of the execution of commitments independent of the number of the execution
of OT protocols. However, those scheme are only static UC-secure.

To the best of our knowledge, there is no “fully-equipped” UC commitment that breaks the
barrier of expansion factor Ω(κ). So far, efficient construction of a fully-equipped UC commitment
scheme is a long-standing open problem (even with strong assumptions).

Table 1. Comparison among UC Commitments

Scheme Expansion Rate of Non- Adaptive Non- Re-Usable Assumption(s)
Communication. Interactiveness Security Erasure CRS

[11] O(κ) X X X X DDH +CFP

[12] ω(κ5log κ) X X X X eTDP

[20] O(1) X X X? DCR

[18] O(1) X X DCR+SRSA+sOTS

[39] O(1) X X X DCR

[36] O(1) X X DDH+CRHF

[23] O(1) X X X DLIN+CRHF+Pairing

[5] O(1) X X DDH+CRHF

[26] O(1) - X UC OT

[17] 1 + o(1) X?? - X UC OT+PRG

[13] 1 + o(1) - X UC OT+PRG

[24] 1 + o(1) - X UC OT+PRG

Sec. 7 O(1) X X X X DCR+Assump. 6 and 7

Sec. 9 O(κ/log κ) X X X X DDH+CRHF

Sec. D O(κ/log κ) X X X X DDH

Sec. 10 O(κ3) X X X X eTDP

DDH: Decisional DH assumption. CFP: Claw-Free Permutations. eTDP: Enhanced Trap-Door Permutations. DCR:
Decisional Composite Residuosity assumption. SRSA: Strong RSA assumption. sOTS: Strong One-Time Signa-
tures. CRHF: Collision-Resistant Hash Family. DLIN: Decisional Linear assumption. Pairing: Pairing Groups. UC
OT: UC Oblivious Transfer Oracle. PRG: Pseudo Random Generator. ?: A CRS grows linearly with the number
of parties. ??: After the UC OT set-up phase.

1.3 Our Contribution

We introduce a new primitive, called all-but-many encryption (ABME), which implies “fully-equipped”
UC-secure commitments. There are a lot of obstacles to study the UC framework, due to compli-
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cated definitions and proofs with many subtleties. Therefore, we believe that it is desirable to
translate the essence of basic UC secure protocols into simple cryptographic primitives. To instan-
tiate ABME, we divide the functionality into two primitives. Then, we consider the case that the
primitives are suitably combined. We believe that this construction strategy would be helpful for
finding more constructions in the future. We remark that our construction of ABME is inspired by
that of all-but-many lossy trapdoor function (ABM-LTF) given by Hofheinz [31]. We will expose
the relation in Sections, 1.10 and E.

We present a compact ABME scheme related to the DCR assumption, i.e., the first fully-
equipped UC commitment scheme with expansion factor O(1), meaning that to commit to λ-bit
secret, it requires O(κ) bits with a constant number of modular exponentiations. Our DCR-based
ABME scheme can be transformed into an ABM-LTF scheme with a better lossy rate than [31]
under the same assumption. We also provide ABME from the DDH assumption with overhead
O(κ/log κ), which is slightly better than prior works with O(κ). We also present a fully-equipped
UC commitment scheme from weak ABME under a general assumption in which (enhanced) trap-
door permutations exist, which is far more efficient than the previous work [12] under the same
assumption.

In the following sections, we describe more details.

1.4 All-But-Many Encryption

All-but-many encryption (ABME) enables a party with a secret-key (i.e., the simulator in the UC
framework) to generate a fake ciphertext and to open it to any message with consistent randomness.
In the case that a party is not given the secret-key (i.e., the adversary in the UC framework), it
cannot distinguish a fake ciphertext from a real (honestly generated) ciphertext even after the
message and randomness are revealed. In addition, it cannot produce a fake ciphertext (on a fresh
tag) even after seeing many fake ciphertexts and their openings. We construct ABME from two
new primitives, denoted probabilistic pseudo random functions and extractable sigma protocols. The
former is a probabilistic version of a pseudo random function. The latter is a special type of a sigma
protocol [15] with some extractability.

1.5 Probabilistic Pseudo-Random Function.

A pPRF = (KG, Spl) is a probabilistic pseudo-random function associated with a key-generation
algorithm KG. Let Lpk(t) := {u|∃(sk, v) : u = Spl(pk, sk, t; v)}, where (pk, sk) is generated by KG
and v denotes random coins of Spl. Additionally, pPRF should be unforgeable – it is difficult to
sample u ∈ Lpk(t) for fresh t, if sk is not given. Sometimes, it should be unforgeable even on some

superset L̂pk(t).

1.6 Extractable Sigma Protocols

A sigma protocol Σ [15] on NP language L is a canonical 3-round public coin interactive proof
system, so that a prover can convince a verifier that he knows witness w behind common input
x ∈ L, where the prover first sends commitment a; the verifier sends back challenge (public-coin) e;
the prover responds with z; and the verifier finally accepts or rejects conversation (a, e, z) on x. A
sigma protocol is associated with simulation algorithm simPcom

Σ that takes x (regardless of whether
x ∈ L or not) and challenge e, and produces an accepting conversation (a, e, z) ← simPcom

Σ (x, e)
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without witness w. If x ∈ L, the distribution of (a, e, z) produced by simPcom
Σ (x, e) on random e

is statistically indistinguishable from the transcript generated between two honest parties, called
honest-verifier statistically zero knowledge (HVSZK). If x 6∈ L, for every a there is at most one e
such that (a, e, z) can be an accepting conversation on x, called special soundness.

An extractable sigma protocol Σext = (Σ,Ext) on Lpk is a special type of a sigma protocol,
associated with a DPT algorithm Ext, with the following properties:

– Σ is a sigma protocol on Lpk.

– There is a disjoint set Lco
pk such that Lpk ∩ Lco

pk = ∅ and for all pk, there is sk such that
Ext(sk, x, a) = e for all x ∈ Lco

pk and all a ∈ simPcom
Σ (x, e)1, where simPcom

Σ (x, e)1 is the first
output of simPcom

Σ (x, e).

Due to special soundness, for all (x, a) with x 6∈ Lpk, e is uniquely determined (if it exists). So,
the extraction algorithm is well defined. We will show how to construct extractable sigma protocols
in Sec. 1.8.

1.7 pPRF +Σext → ABME

We say that pPRF = (KG,Spl) and Σext = (Σ,Ext) are well-combined if:

– KG(1κ) outputs (pk, skspl, skext), where skspl is used as a secret key of Spl and skext is a secret
key of Ext.

– For each pk, there is a set Lco
pk such that Σext is an extractable sigma protocol on Lpk =

{(t, u)|∃(skspl, v) : u = Spl(pk, skspl, t; v)}, and has extractability on set Lco
pk with skext.

– pPRF is unforgeable on L̂pk := U ′pk\Lco
pk, where U ′pk is a universe.

For well-combined pPRF and Σext, one can construct an ABME scheme, by taking the similar
method to convert an ordinary sigma protocol to an instance-dependent commitment scheme [3,
32]. Here is the strategy.

– To encrypt message e on tag t, a sender picks random u, runs simPcom
Σ on instance (t, u) with

challenge e with random z, to compute (a, e, z) = simPcom
Σ (pk, (t, u), e; z), and finally outputs

(u, a) as a ciphertext. Here z is regard as the random coins of the ciphertext. Due to the
unforgeability condition of pPRF, it holds that (t, u) ∈ U ′pk\L̂pk(= Lco

pk) with an overwhelming
probability. Then, e is uniquely determined given ((t, u), a). By our precondition, we can decrypt
(t, u, a) using skext, as e = Ext(skext, (t, u), a) because (t, u) ∈ Lco

pk.

– To make a fake (equivocable) ciphertext on tag t, one picks up random v and compute u =
Spl(pk, skspl, t; v) using skspl. Then he computes a, as same as an honest prover computes the first
message on common input (t, u) with witness (skspl, v). To open a to arbitrary e, he produces the
response z in the sigma protocol. By construction, he can open a to any e because (t, u) ∈ Lpk.

We note that an adversary cannot distinguish a real ciphertext produced by a honest sender
from a fake ciphertext produced by a simulator, due to pseudo-randomness of pPRF. In addition,
an adversary cannot produce a fake ciphertext even after seeing many fake ciphertexts, due to
unforgeability (on L̂pk) of pPRF.
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1.8 Realizing Extractable Sigma Protocols.

Although sigma protocols (with HVSZK) exist on many NP languages, it is not known how to ex-
tract the challenge as discussed above. Here we observe that sigma protocols are often implemented
on Abelian groups associated with homomorphic maps, in which the first message of such sigma
protocols implies a system of linear equations with e and z. Hence, there is a matrix derived from
the linear systems. Due to completeness and special soundness, there is an invertible (sub) matrix
if and only if x 6∈ Lpk (provided that the linear system is defined in a finite field). Therefore, if one
knows the contents of the matrix, one can solve the linear systems when x 6∈ Lpk and obtain e if
its length is logarithmic. Suppose for instance that Lpk is the DDH language – it does not form a
pPRF, but a good toy example to explain how to extract the challenge. Let x = (g1, g2, h1, h2) 6∈ Lpk,
meaning that x1 6= x2 where x1 := logg1(h1) and x2 := logg2(h2). The first message (A1, A2) of a
canonical sigma protocol on Lpk implies linear equations(

a1
a2

)
=

(
1 x1
α αx2

)(
z
e

)
where A1 = ga11 , A2 = ga22 , and g2 = gα1 . The above matrix is invertible if and only if (g1, g2, h1, h2) 6∈
Lpk. We note that e is expressed as a linear combination of a1 and a2, i.e., (β1(detA)−1)a1 +
(β2(detA)−1)a2, where the coefficients are determined by the matrix. Therefore, if the decryption
algorithm takes (α, x1, x2) and the length of e is logarithmic, it can find e by checking whether

(gdetA1 )e = Aβ11 A
β2
2 or not. In a general case where a partial information on the values of the matrix

is given, the decryption algorithm can still find logarithmic-length e if the matrix is made so that e
can be expressed as a linear combination of unknown values – the unknown values do not appear
with a quadratic form or a more degree of forms in the equations.

In a good case, the decryption algorithm can invert homomorphic map f(a) = ga, using trapdoor
f−1. Then, one can obtain (a1, a2) as well as the entire values of the matrix and hence extract even
polynomial-length e. This corresponds to the case of our DCR based implementation, where the
corresponding linear system is defined on a finite ring, such as Znd . The matrix (say A) derived
from the linear system is invertible if and only if (detA)−1 mod nd exists, which corresponds to the
condition x 6∈ L̂pk for some superset L̂pk. We note that although x 6∈ Lpk iff detA 6= 0 (mod nd), it
does not suffice for the above because of the divisors. We require unforgeability not on Lpk but on

L̂pk, so that the output produced by an adversary can be forced in Lco
pk = U ′pk\L̂pk.

1.9 Instantiations.

We present ABME schemes from three different types of pPRFs. We first propose a pPRF from
Waters signature scheme [45] defined over a ring equipped with no bilinear map. As the associated
homomorphic map, we employ Damg̊ard-Jurik (DJ) PKE [19]. The output of the Waters based
probabilistic pseudo-random function looks pseudo random due to semantic security of DJ PKE.
The construction inherits unforgeability from Waters signature scheme under an analogue of the
DH assumption in the additive homomorphic encryption. Precisely, we require one more assumption
related to DJ PKE, because we require unforgeability on some superset of the language derived from
the Waters-like pPRF. we construct an extractable sigma protocol on it. Since the homomorphic
map is invertible using the secret key of DJ PKE, we can obtain a compact ABME scheme and
hence a fully-equipped UC commitment scheme with expansion factor O(1) with a constant number
of computational complexity.
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In Appendix D, we simply use as pPRF the Waters signature scheme on the prime order group
without bilinear map and provide the DDH version of the ABME scheme above. Although its
expansion factor is just O(κ/log κ), it is better than the prior work [11] (with O(κ)). This scheme
is helpful to understand our main proposal, because of the simpler construction. So, we recommend
the reader to read that section first, if the main proposal looks complicate.

In another construction, pPRF is given by combining a semantic secure PKE scheme with an
IND-CCA secure Tag-PKE scheme. We combine ElGamal PKE with tag-based Twin Cramer-Shoup
PKE [14] and construct an ABME scheme from pPRF under the DDH assumption. The expansion
factor of this scheme is also O(κ/log κ). One advantage of this scheme is that it has a short public
key (of a constant number of group elements), unlike the proposed schemes above.

We also provide a generic construction of pPRF from a pseudo random function family and a
semantically secure PKE scheme. We employ this type of pPRFs to construct a UC commitment
scheme from general assumptions.

1.10 Other Related Works

Fehr et al. [22] proposed a PKE scheme secure against simulation-based selective opening chosen-
ciphertext attack (SIM-SO-CCA). In general, the notion of SIM-SO-CCA secure PKE is related
to that of ABME, but both are incomparable. Indeed, Fehr et al. scheme [22] does not satisfy the
requirements of ABME, while ABME does not satisfy SIM-SO-CCA PKE in general, because it
does not support CCA security. Although [22] could be tailored to a fully-equipped UC commitment
scheme, it cannot overcome the barrier of expansion factor Ω(κ), because it strictly costs Ω(λκ)
bits to encrypt λ bit.

Hofheinz presented the notion of all-but-many lossy trapdoor function (ABM-LTF) [31], mainly
to construct indistinguishability-based selective opening CCA (IND-SO-CCA) secure PKE. ABM-
LTF is a lossy trapdoor function (LTF) [42] with (unbounded) many lossy tags. The relation between
ABM-LTF and ABME is a generalized analogue of LTF and lossy encryption [41, 2] with unbounded
many loss tags. However, unlike the lossy encryption, ABME always requires an efficient opening
algorithm that can open a ciphertext on a lossy tag to any message with consistent randomness. As
mentioned earlier, our construction idea of ABME is strongly inspired by that of ABM-LTF [31].
Hofheinz provided a matrix-based function Y = AX, where A denotes a square matrix and Y ,X
denote column vectors. The algorithm to produce lossy tags is pPRF in our definition. The lossy
tags are carefully embedded in matrix X so that the matrix can be non-invertible if tags are
lossy; otherwise invertible. Hofheinz proposed two instantiations. In the DCR-based ABM-LTF,
the lossy tags are an analogue of Waters signatures defined in DJ PKE, which is the same as our
DCR-based pPRF. Therefore, it is not surprising that our DCR-based ABME scheme requires the
same assumptions as the Hofheinz’s ABM-LTF counterpart does. In the latest e-print version [31],
Hofheinz has shown that the DCR-based ABM-LTF can be converted to SIM-SO-CCA PKE. To
realize this, an opening algorithm for ABM-LTF is essentially needed. So, he gave it by sacrificing
efficiency. We remark that ABM-LTF equipped with an opening algorithm meets the notion of
ABME. However, compared to our DCR-based ABME scheme in Sec. 7, Hofheinz’s ABM-LTF-
based ABME scheme is less efficient for practical use. Indeed, its expansion rate of ciphertext
length per message length is ≥ 31. In addition, you must use a modulus of ≥ n6. On the other
hand, our DCR-based ABME scheme has a small expansion rate of (5 + 1/d) and you can use
modulus of nd+1 for any d ≥ 1. On the contrary, our DCR-based ABME can be converted to
ABM-LTF, and is more efficient than Hofheniz’s ABM-LTF scheme. We compare them in Sec. 8.
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2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We denote by O,Ω, and ω the standard notations to
classify the growth of functions. We let negl(κ) to denote an unspecified function f(κ) such that
f(κ) = κ−ω(1), saying that such a function is negligible in κ. We write PPT and DPT algorithms
to denote probabilistic polynomial-time and deterministic poly-time algorithms, respectively. For
PPT algorithm A, we write y ← A(x) to denote the experiment of running A for given x, picking
inner coins r uniformly from an appropriate domain, and assigning the result of this experiment to
the variable y, i.e., y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N be probability ensembles such
that each Xκ and Yκ are random variables ranging over {0, 1}κ. The (statistical) distance between
Xκ and Yκ is Dist(Xκ, Yκ) , 1

2 · |Prs∈{0,1}κ [X = s]−Prs∈{0,1}κ [Y = s]|. We say that two probability

ensembles, X and Y , are statistically indistinguishable (in κ), denoted X
s
≈ Y , if Dist(Xκ, Yκ)

= negl(κ). We say that X and Y are computationally indistinguishable (in κ), denoted X
c
≈ Y , if for

every (non-uniform) PPT D (ranging over {0, 1}), it holds that {D(1κ, Xκ)}κ∈N
s
≈ {D(1κ, Yκ)}κ∈N.

Let A and B be PPT algorithms that both take x ∈ S(κ), where S(κ) is a set associated with each

κ ∈ N. We write {A(x)}κ∈N,x∈S(κ)
s
≈ {B(x)}κ∈N,x∈S(κ) to denote {A(xκ)}κ∈N

s
≈ {B(xκ)}κ∈N for

every sequence {xκ}κ∈N such that xκ ∈ S(κ).

3 Building Blocks: Definitions

We now formally define probabilistic pseudo random functions and extractable sigma protocols.

3.1 Probabilistic Pseudo Random Function (pPRF)

pPRF = (KG, Spl) consists of the following two algorithms:

– KG, the key generation algorithm, is a PPT algorithm that takes 1κ as input, creates (pk, sk).

– Spl, the sampling algorithm, is a PPT algorithm that takes (pk, sk) and t ∈ {0, 1}κ, picks up
inner random coins v ← COINspl, and outputs u = Spl(pk, sk, t; v). We often omit to write pk
and instead write this experiment as u← Splsk(t).

Let Lpk(t) = {u | ∃ sk, ∃ v : u = Spl(pk, sk, t; v)}, and let Lpk = {(t, u) | t ∈ {0, 1}κ and u ∈
Lpk(t)}. We assume that pk defines set Upk such that Lpk(t) ⊂ Upk for all t ∈ {0, 1}κ. Let U ′pk =
{(t, u) | t ∈ {0, 1}κ and u ∈ Upk}. We are interested in the case that Lpk(t) is so small in Upk, that
no one can sample an element from Lpk(t) by chance. We require that pPRFs satisfy the following
security requirements:

Efficiently samplable and explainable domain: For all pk given by KG and all t ∈ {0, 1}κ,
Upk is efficiently samplable and explainable [22], that is, there is an PPT sampling algorithm U
that takes (pk, t), picks up random coins R, and outputs u that is uniformly distributed in domain
Upk. In addition, for every pk, every t ∈ {0, 1}κ, and every u ∈ Upk, there is an efficient explaining
algorithm that takes (pk, t) and outputs random coins R behind u, where R is uniformly distributed
subject to U(pk, t;R) = u.
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Pseudo randomness: No adversaryA, given pk, can distinguish whether it has access to Spl(pk, sk, ·)
or U(pk, ·). Here U(pk, ·) denotes the uniform sampling algorithm mentioned above. We say that
pPRF is pseudo-random if, for all PPT A,

AdvprfpPRF,A(κ) =
∣∣∣Pr[ExptprfpPRF,A(κ) = 1]− Pr[ExptprfU,A(κ) = 1]

∣∣∣
is negligible in κ, where

ExptprfpPRF,A(κ):

(pk, sk)← KG(1κ)

b← ASpl(pk,sk,·)(pk)
return b.

ExptprfU,A(κ):

(pk, sk)← KG(1κ)

b← AU(pk,·)(pk)
return b.

We note that if Spl(pk, sk, ·) is deterministic, we change oracle U(pk, ·) as follows: Given fresh
t as input, it picks up random R and computes u = U(pk, t;R). It returns u and register (t, u).
Given the same query t, it outputs the same u.

Unforgeability: Let L̂pk(t) be some superset of Lpk(t). Let L̂pk = {(t, u) | t ∈ {0, 1}κ and u ∈
L̂pk(t)}. We define the game of unforgeability on L̂pk as follows: An adversary A takes pk generated

by KG(1κ) and may have access to Spl(pk, sk, ·). The aim of the adversary is to output (t∗, u∗) ∈ L̂pk
such that t∗ has not been queried. We say that pPRF is unforgeable on L̂pk if, for all PPT A,

Adveuf-L̂pPRF,A(κ) = Pr[Expteuf-L̂pPRF,A(κ) = 1] (where Expteuf-L̂pPRF,A is defined in Fig. 1) is negligible in κ.
In some application, we require a stronger requirement, where in the same experiment above,

it is difficult for the adversary to output (t∗, u∗) in L̂pk, which did not appear in the query/answer

list QA. We say that pPRF is strongly unforgeable on L̂pk if, for all PPT A, Advseuf-L̂pPRF,A(κ) =

Pr[Exptseuf-L̂pPRF,A(κ) = 1] (where Exptseuf-L̂pPRF,A is defined in Fig. 1) is negligible in κ.

Expteuf-L̂pPRF,A(κ):

(pk, w)← KGpprf(1κ)

(t∗, u∗)← ASpl(pk,w,·)(pk)
If t∗ has not been queried

and u∗ ∈ L̂pk(t∗),
return 1; otherwise 0.

Exptseuf-L̂pPRF,A(κ):

(pk, w)← KGpprf(1κ)

(t∗, u∗)← ASpl(pk,w,·)(pk)
(t∗, u∗) 6∈ QA

and u∗ ∈ L̂pk(t∗),
return 1; otherwise 0.

Fig. 1. The experiments of unforgeability (in the left) and strong unforgeability (in the right).

We remark that if Spl is a DPT algorithm and L̂pk = Lpk, unforgeability is implied by pseudo
randomness.

3.2 Extractable Sigma Protocol

We define extractable sigma protocols. Let L = {Lpk}pk be an NP language consisting of a collection
of set Lpk indexed by pk ∈ PK, where PK is an infinite sequence of pk. Let Rpk be the relation
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derived from Lpk. Let Σext = (Pcom
Σ ,Pans

Σ ,Vvrfy
Σ , simPcom

Σ ,Ext) be a tuple of algorithms (associated
with L) as follows:

– Pcom
Σ is a PPT algorithm that takes (x,w) ∈ Rpk, picks up inner coins ra, and outputs a =

Pcom
Σ (x,w; ra).

– Pans
Σ is a DPT algorithm that takes (x,w, ra, e) and outputs z = Pans

Σ (x,w, ra, e), where e is an
element in a specific domain determined by pk.

– Vvrfy
Σ is a DPT algorithm that accepts or rejects (x, a, e, z).

– simPcom
Σ is a PPT algorithm that takes (x, e) and outputs (a, e, z) = simPcom

Σ (x, e; rz), where rz is
inner coins. For our purpose,we additionally require that rz = z, i.e., (a, e, rz) = simPcom

Σ (x, e; rz).
We note that many sigma protocols satisfy this property.

– Ext is a DPT algorithm that takes (sk, x, a) and outputs e or ⊥, where sk is a string with
respects to pk.

We say that Σext is an extractable sigma protocol on L = {Lpk}pk, if for all pk, there is a set Lco
pk

such that Lpk ∩ Lco
pk = ∅, and it satisfies the following properties:

Completeness: For every (x,w) ∈ Rpk and every ra, e (in appropriate specified domains, respec-

tively), it always holds that Vvrfy
Σ (x,Pcom

Σ (x,w; ra), e,P
ans
Σ (x,w, ra, e)) = 1.

Special Soundness: For every x 6∈ L and every a, there is at most one e such that Vvrfy
Σ (x, a, e, z) =

1. This implies that if there are two different accepting conversations for the same a on x, i.e., (a, e, z)
and (a, e′, z′), with e 6= e′, it must hold that x ∈ L. We say that such a pair is a collision on x. We
require for our purpose that there is some superset U ′ such that L ⊂ U ′, and for every x ∈ U ′\L
and every e, there is an accepting conversation (a, e, z) on x.

Extractability: We write (pk, skext) ∈ Rext if it holds that Vvrfy
Σ (x, a, e′, z) = 1 for all x ∈ Lco

pk and

all a so that there are (e, z) such that Vvrfy
Σ (x, a, e, z) = 1, where e′ = Ext(skext, x, a). We call that

Σext has extractability on {Lco
pk}pk if for all pk ∈ PK, there exists skext such that (pk, skext) ∈ Rext.

We note that, combining with special soundness, we can say that for all x ∈ Lco
pk, all e, and

all z, it always holds that e = Ext(sk, x, simPcom
Σ (x, e; z)1), where simPcom

Σ (x, e; z)1 denotes the first
output of simPcom

Σ (x, e; z).

Enhanced Honest-Verifier Statistical Zero-Knowledgeness (eHVSZK): For all (pk, skext) ∈
Rext, all (x,w) ∈ Rpk, and all e in a specific domain, the following ensembles are statistically indis-
tinguishable in κ:

{simPcom
Σ (x, e; rz)}κ∈N, pk, (x,w)∈Rpk, e

s
≈{(Pcom

Σ (x,w; ra), e,P
ans
Σ (x,w, ra, e))}κ∈N, pk, (x,w)∈Rpk, e

Here the probability of the left-hand side is taken over random variable rz and the right-hand
side is taken over random variable ra. We remark that since (a, e, rz) = simPcom

Σ (x, e; rz) (by our
precondition), we have Vrfy(x, a, e, z) = 1 if and only if (a, e, z) = simPcom

Σ (x, e; z). Therefore, one
can instead use simPcom

Σ to verify (a, e, z) on x.
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We note that the concept of the extractable sigma protocol is not entirely new. A weaker notion,
called weak extractable sigma protocol, appears in [25] to construct (interactive) simulation sound
trapdoor commitment (SSTC) schemes (see [27, 38, 28] for SSTC). This paper requires a stronger
notion, which is used in a different way.

4 ABM Encryption

All-but-many encryption scheme ABM.Enc = (ABM.gen,ABM.spl,ABM.enc,ABM.dec,ABM.col) con-
sists of the following algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, skspl, skext), where pk defines a
universe U ′pk = {0, 1}κ×Upk, which contains two disjoint sets (as defined below), Ltd

pk and Lext
pk ,

i.e., Ltd
pk ∩ Lext

pk = ∅ and Ltd
pk ∪ Lext

pk ⊂ U ′pk.
– ABM.spl is a PPT algorithm that takes (pk, skspl, t), where t ∈ {0, 1}κ, picks up inner random

coins v ← COINspl, and computes u ∈ Upk. We let

Ltd
pk(t) = {u ∈ Upk | ∃ skspl, ∃ v : u = ABM.spl(pk, skspl, t; v)}.

We let Ltd
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Ltd

pk(t)}. Define L̂td
pk = U ′pk\Lext

pk . Since Ltd
pk ∩ Lext

pk = ∅,
we have Ltd

pk ⊆ L̂td
pk ⊂ U ′pk.

– ABM.enc is a PPT algorithm that takes pk, (t, u) ∈ U ′pk, and message x ∈ MSP, picks up inner

random coins r ← COINenc, and computes c = ABM.enc(t,u)(pk, x; r).
– ABM.dec is a DPT algorithm that takes skext, (t, u), and ciphertext c, and outputs x =

ABM.dec(t,u)(skext, c).
– ABM.col = (ABM.col1,ABM.col2) is a pair of PPT and DPT algorithms, respectively, such that

• ABM.col1 takes (pk, (t, u), skspl, v) and outputs (c, ξ) ← ABM.col
(t,u)
1 (pk, skspl, v), where v ∈

COINspl.

• ABM.col2 takes ((t, u), ξ, x), with x ∈ MSP, and outputs r ∈ COINenc.

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic pseudo random
function (pPRF) as defined in Sec. 3.1 with unforgeability on L̂td

pk(= U ′pk\Lext
pk ).

2. Dual mode property:

– (Decryption mode) For all κ ∈ N, all (pk, skext) ∈ ABM.gen(1κ), all (t, u) ∈ Lext
pk , and

every x ∈ MSP, it always holds that

ABM.dec(t,u)(skext,ABM.enc(t,u)(pk, x)) = x.

– (Trapdoor mode) Define the following random variables:

• distenc(pk, t, skspl, skext, x) denotes random variable (pk, t, u, c, r) defined as follows: v ←
COINspl; u = ABM.spl(pk, skspl, t; v); r ← COINenc; c = ABM.enc(t,u)(pk, x; r).
• distcol(pk, t, skspl, skext, x) denotes random variable (pk, t, u, c, r) defined as follows: v ←

COINspl; u = ABM.spl(pk, skspl, t; v); (c, ξ)← ABM.col
(t,u)
1 (pk, skspl, v); r = ABM.col

(t,u)
2 (ξ, x).
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Then, for all (pk, skspl, skext) ∈ ABM.gen(1κ), all t ∈ {0, 1}κ, all x ∈ MSP, the following
ensembles are statistically indistinguishable in κ:{

distenc(pk, t, skspl, skext, x)
}
κ∈N,(pk,skspl,skext)∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP

s
≈
{

distcol(pk, t, skspl, skext, x)
}
κ∈N,(pk,skspl,skext)∈ABM.gen(1κ),t∈{0,1}κ,x∈MSP

We say that a ciphertext c on (t, u) under pk is valid if there exist x ∈ MSP and r ∈ COINenc

such that c = ABM.enc(t,u)(pk, x; r). We say that a valid ciphertext c on (t, u) under pk is real if
(t, u) ∈ Lext

pk , otherwise fake. We remark that as long as c is a real ciphertext, regardless of how it

is generated, there is only one consistent x in MSP and it is equivalent to ABM.dec(t,u)(sk, c).
To suit actual instantiations, we assume that COINspl and MSP are defined by pk. We further

allow COINenc to depend on message x to be encrypted as well as pk, in order to be consistent with
our weak ABM encryption scheme from general assumption in Sec. 10.

5 ABME from Σext on Language derived from pPRF

Suppose a probabilistic pseudo random function pPRF = (KG,Spl) and an extractable sigma pro-
tocol Σext = (Σ,Ext) are well-combined. That is,

– KG(1κ) outputs (pk, skspl, skext). Later, skspl is used as a secret key of Spl and skext is used as
a secret key of Ext.

– For all pk, there is a set Lco
pk such that Lpk ∩ Lco

pk = ∅, where Lpk = {(t, u) | ∃(skspl, v) : u =

Spl(pk, skspl, t; v)}.
– Σext is an extractable sigma protocol on Lpk and has extractability on Lco

pk where skext is the
extractable key.

– pPRF is unforgeable on L̂pk := U ′pk\Lco
pk, where U ′pk is a universe (with respects to pk).

Here, an ABME scheme is constructed as in Fig. 2.

– ABM.gen(1κ) runs KG(1κ) to output (pk, skspl, skext).
– ABM.spl(pk, skspl, t; v) outputs u = Spl(pk, skspl, t; v).
– ABM.enc(t,u)(pk,m; r) outputs a such that (a,m, r) = simPcom

Σ (pk, (t, u),m; r).
– ABM.dec(t,u)(skext, c) outputs m = Ext(skext, (t, u), c).

– ABM.col
(t,u)
1 (pk, skspl, v; ra) outputs (c, ξ) such that c = Pcom

Σ (pk, (t, u), (skspl, v); ra), and ξ =
(pk, t, u, skspl, v, ra).

– ABM.col
(t,u)
2 (ξ,m) outputs r = Pans

Σ (pk, (t, u), skspl, v, ra,m), where ξ = (pk, t, u, skspl, v, ra).

Fig. 2. ABME from Σext on language derived from pPRF

By construction, the adaptive all-but-many property holds. The dual mode property also holds
because:
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– If (t, u) ∈ Lext
pk , the first output of simPcom

Σ (pk, (t, u),m) is perfectly binding to challenge m due

to special soundness (because Lext
pk ⊂ U ′pk\Ltd

pk, with Ltd
pk := Lpk), and m can be extracted given

(pk, (t, u), a) using skext due to extractability.

– If (t, u) ∈ Ltd
pk, ABM.col runs the real sigma protocol with witness (skspl, v). Therefore, it can

produce a fake commitment that can be opened in any way, while it is statistically indistinguish-
able from that of the simulation algorithm simPcom

Σ (that is run by ABM.enc), due to enhanced
HVSZK. We note that even given the same (fixed) skext to both algorithms, it does not affect
the statistical distance, because it is fixed.

Hence, the resulting scheme is ABME.

6 Fully-Equipped UC Commitment from ABME

We show that ABME implies fully-equipped UC commitment.
We work in the standard universal composability (UC) framework of Canetti [10]. We concen-

trate on the same model in [11] where the network is asynchronous, the communication is public
but ideally authenticated, and the adversary is adaptive in corrupting parties and is active in its
control over corrupted parties. Any number of parties can be corrupted and parties cannot erase any
of their inner state. We provide a brief description of the UC framework and the ideal commitment
functionality for multiple commitments, denoted FMCOM, in Appendix B.1.

To construct fully-equipped UC commitment, we first put public key pk of ABME in the common
reference string. A committer Pi takes tag t = (sid, ssid, Pi, Pj) and a message x committed to. It

then picks up random u from Upk and compute an ABM encryption c = ABM.enc(t,u)(pk, x; r) to
send (t, u, c) to receiver Pj , which outputs (receipt, sid, ssid, Pi, Pj). To open the commitment,

Pi sends (sid, ssid, x, r) to Pj and Pj accepts if and only if c = ABM.enc(t,u)(pk, x; r). If Pj accepts,
he outputs (open, t, x), otherwise do nothing. We formally describe our framework for constructing
a UC commitment scheme from ABME in Fig. 3.

Theorem 1. The proposed scheme in Fig.3 UC-securely realizes the FMCOM functionality in the
FCRS-hybrid model in the presence of adaptive adversaries in the non-erasure model.

Proof (Sketch). For simplicity, we remove the injective map ι : {0, 1}κ → MSP from the

scheme. The formal proof is given in Appendix B.2. We here sketch the essence. We consider the
man-in-the-middle attack, where we will show that the view of environment Z in the real world
(in the CRS model) can be simulated in the ideal world. Let C, R be honest players and let Pa
be a corrupted player controlled by adversary A. In the man-in-the-middle attack, Pa (i.e., A) is
simultaneously participating in the left and right interactions. In the left interaction, A interacts
with C, as playing the role of the receiver. In the right interaction, A interacts with R, as playing the
role of the committer. In the ideal world, simulator S simulates the task of C and R by interacting
with A.

In the left interaction: In the real world, Z chooses (commit, sid, ssid, C, Pa, x) and gives it
to C to start the commitment protocol with A. However, in the ideal world S cannot receive x until
the decommit phase, but must start the commitment protocol only with t = (sid, ssid, C, Pa). At
the decommit phase, S receives x for the first time and needs to open to x correctly.

More precisely, in both worlds, Z sends (commit, sid, ssid, C, Pa, x) to C, but in the ideal world
C simply conveys it from Z to FMCOM. Then, FMCOM sends (receipt, sid, ssid, C, Pa) to S so that
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Common reference string: pk where (pk, sk)← ABM.gen(1κ).
pk uniquely determines U ′pk = {0, 1}κ×Upk. We implicitly assume that there is injective map ι : {0, 1}κ → MSP such
that ι−1 is efficiently computable and ι−1(y) = ε for every y 6∈ ι({0, 1}κ), and also assume that (sid, ssid, Pi, Pj) ∈
{0, 1}κ.
The commitment phase:

– Upon input (commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}κ, party Pi proceed as follows: If a tuple
(commit, sid, ssid, Pi, Pj , x) with the same (sid, ssid) was previously recorded, Pi does nothing. Otherwise,
Pi sets t= (sid, ssid, Pi, Pj)∈ {0, 1}κ. It picks up u ← Upk and r ← COINenc, and encrypts message ι(x) to
compute c = ABM.enc(t,u)(pk, ι(x); r). Pi sends (t, u, c) to party Pj , and stores (sid, ssid, Pi, Pj , (t, u), x, r).

– Pj ignores the commitment if t 6= (sid, ssid, Pi, Pj), u 6∈ Upk, or a tuple (sid, ssid, . . . ) with the same (sid, ssid)
was previously recorded. Otherwise, Pj stores (sid, ssid, Pi, Pj , (t, u, c)) and outputs (receipt, sid, ssid, Pi, Pj).

The decommitment phase:

– Upon receiving input (open, sid, ssid), Pi proceeds as follows: If a tuple (sid, ssid, Pi, Pj , x, r) was previously
recorded, then Pi sends (sid, ssid, x, r) to Pj . Otherwise, Pi does nothing.

– Upon receiving input (sid, ssid, x, r), Pj proceeds as follows: Pj outputs (reveal, sid, ssid, Pi, Pj , x) if a tuple
(sid, ssid, Pi, Pj , (t, u, c)) with the same (sid, ssid, Pi, Pj) was previously recorded, and it holds that x ∈ {0, 1}κ,
r ∈ COINenc, and c = ABM.enc(t,u)(pk, ι(x); r). Otherwise, Pj does nothing.

Fig. 3. Fully-Equipped UC commitment from ABME

S can start the commit phase with A (without given x). In both worlds, Z sends (open, sid, ssid)
to activate C to start the decommit phase, but in the ideal world C simply sends it to FMCOM,
which sends (reveal, sid, ssid, C, Pa, x) to S so that S can start the decommit protocol with x
with A.

In the right interaction: In the real world, Z receives (open, sid′, ssid′, Pa, R, x
′) opened by

A from R at the decommit phase. In the ideal world, S must correctly extract x̃ from (t′, u′, c′) sent
by A, where t′ = (sid′, ssid′, Pa, R), and commit it to the ideal commitment functionality FMCOM

at the commit phase. At the decommit phase, when A correctly opens the commitment, S must
let FMCOM reveal stored x̃ to Z, instead of the value that A actually opened to.

More precisely, in the ideal world, when receiving (open, sid′, ssid′) (from S), FMCOM sends
(reveal, sid′, ssid′, Pa, R, x̃) to R, where x̃ is the stored value at the commit phase. R simply
conveys it from FMCOM to Z.

Adaptive corruption: In the real world, when C or R is corrupted, A may read their inner
state and start to fully control the parties. In the ideal world, the honest parties do nothing except
storing inputs to them. So, S simulates the inner state of the real-world honest party (after S read
the inner state of the ideal-world honest party when it is corrupted) and gives it to A as if it comes
from the real world. The inner state of the real-world honest party includes randomness it has used.
In the non-erasure model, honest parties cannot erase any of their state.

The view of Z: In the real world, Z have access to A to order many tasks, for instance, to
execute the right interaction with R with value x′, to corrupt either party, or to send the adversary’s
entire view in the left and right interactions. In the ideal world, Z instead have access to (the ideal-
world adversary) S, which tries to simulate the role of A. The view of Z consists of each interaction
with C, R, and the (real-world or ideal-world) adversary, as well as its inner state.

As usual, we consider a sequence of hybrid games on which the probability spaces are identical,
but we change the rules of games step by step. See Table 2 for summary.
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Ideal World: In the Ideal world, A interacts with simulator S in both interactions, where S simu-
lates the roles of C and R respectively. In the set-up, S generates (pk, skspl, skext)← ABM.gen(1κ),
puts pk in the common reference string, and keeps (skspl, skext). In the left interaction, S first
receives (receipt, sid, ssid, C, Pa) and starts the commitment phase with adversary A as the com-

mitter without given message x. S computes u = ABM.spl(pk, skspl, t; v) and (c, ξ)← ABM.col
(t,u)
1 (pk, skspl, v),

to send (commit, t, (u, c)) to adversary A, where t = (sid, ssid, C, Pa). At the decommit phase, S
receives (reveal, sid, ssid, C, Pa, x) and then computes r = ABM.col

(t,u)
2 (ξ, x) to send (t, x, r) to

A. In the right interaction, S receives (commit, t′, u′, c′) from A where t′ = (sid′, ssid′, Pa, R). S
then extracts x̃ = ABM.dec(t

′,u′)(sk, c′) and sends (commit, t′, x̃) to FMCOM. At the decommit phase
when A opens (t′, u′, c′) correctly with (x′, r′), S sends (open, sid, ssid) to FMCOM; otherwise,
do nothing. Upon receiving (open, sid, ssid), if the same (sid, ssid, ..) was previously recorded,
FMCOM reveals stored x̃ to environment Z; otherwise, do nothing.

In case of adaptive corruption of C after the commit phase but before the decommit phase, S
read x from the inner state of C and computes r as in the case of the decommit phase and compute
R such that Upk(t;R) = u, which can be efficiently computable because Upk is an explainable
domain. Finally it reveals (x, r,R).

Hybrid Game 1: In this game, the left interaction is modified so that S instead receives (commit, t, x)
where t = (sid, ssid, C, Pa). S then computes u← ABM.spl(pk, skspl, t) and c = ABM.enc(t,u)(pk, x; r)
where r ← COINenc, to send (commit, t, u, c) to adversary A. In the decommit phase when S receives
(open, t), it sends (t, x, r) to A.

In case of adaptive corruption of C after the commit phase but before the decommit phase, S
outputs (t, u, x, r, R) after computing R such that Upk(t;R) = u.

The view of Z in this game is statistically close to that in the ideal world, because

{distcol(pk, t, skspl, skext, x)}κ∈N

and

{distenc(pk, t, skspl, skext, x)}κ∈N,

defined in Sec. 4, are statistically indistinguishable in κ.

Hybrid Game 2: In this game, the right interaction is changed as follows. After receiving (t′, u′, c′),
where t′ = (sid′, ssid′, Pa, R), S sends (commit, t′, ε) to the ideal functionality. In the decommit
phase when A opens (t′, u′, c′) correctly with (x′, r′), S sends (open, sid′, ssid′, x′) to the ideal
functionality. Then, the ideal functionality reveals x′ (instead of ε) to Z.

In case of corruption of R before the decommit phase, S simply outputs (t′, u′, c′). We note that
R has no secret.

The difference of the views of Z between this game and the previous game is bounded by the
following event. Let BD denote the event that S receives a fake ciphertext (t′, u′, c′) from A in
the right intersection. Remember that ciphertext c is called fake if (t, u) ∈ Ltd

pk and c is a valid
ciphertext (which means that there is a pair of message/randomness consistent with c). If this
event does not occur, the views of Z in both games are identical. Hence, the difference of the views
of Z between the two games is bounded by Pr[BD]. Event BD occurs (in Hybrid Game 2) if and
only if A breaks unforgeability of (ABM.gen,ABM.spl) on L̂td

pk. Therefore, Pr[BD] is negligible in κ.
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Hybrid Game 3: In this game, the left interaction is modified again. At the commit phase, when
receiving input (commit, t, x) where t = (sid, ssid, C, Pa), S chooses random u = Upk(t;R) with

random R and computes c = ABM.enc(t,u)(pk, x; r), to send (t, u, c) to A. At the decommit phase,
upon receiving input (open, sid, ssid), S plays the same as in the previous game.

In case of corruption of C before the decommit phase, S simply reveals (x, r,R) (where u =
Upk(t;R)).

By construction, the difference of the two views of Z between this game and the previous game
is bounded by the advantage of pseudo-randomness of pPRF = (ABM.gen,ABM.spl).

HybridFcrs Game: It corresponds to the real world in the CRS model, where A interacts with
honest C and R respectively, and executes the man-in-the-middle attack. In the left interaction,
environment Z activates C to start the commit phase by sending (commit, t, x) to C where t =
(sid, ssid, C, Pa). Z activates C to start the decommit phase by sending (open, sid, ssid) to C. In
the right interaction, at the commit phase when R receives (t′, u′, c′) from A, it outputs (receipt, t′)
to Z where t′ = (sid′, ssid′, Pa, R). At the decommit phase, upon receiving (sid′, ssid′, x′, r′) from
A, R checks its consistency with (t′, u′, c′). If the opening is correct, it outputs (reveal, t′, x′) to
Z.

By construction, the two views of Z between this game and the previous game are identical.

Table 2. The man-in-the-midle attack in the hybrid games

Games C(S) Pa(A) R(S) FMCOM

u = ABM.spl(pk, skspl, t; v) Send to FMCOM (commit, t′, x̃) s.t.

Ideal (c, ξ)← ABM.col
(t,u)
1 (pk, skspl, v) x̃ = ABM.dec(t

′,u′)(skext, c′). x̃

r = ABM.col
(t,u)
2 (ξ, x) Send to FMCOM (open, sid′, ssid′)

if c′ = ABM.enc(t
′,u′)(pk, x′; r′).

u = ABM.spl(pk, skspl, t; v) Send to FMCOM (commit, t′, x̃) s.t.

Hybrid1 r ← COINenc x̃ = ABM.dec(t
′,u′)(skext, c′) x̃

c = ABM.enc(t,u)(pk, x; r) Send to FMCOM (open, sid′, ssid′)

if c′ = ABM.enc(t
′,u′)(pk, x′; r′).

u← ABM.spl(pk, skspl, t) Send to FMCOM (commit, t′, ε).
Hybrid2 r ← COINenc Send to FMCOM (open, sid′, ssid′, x′) x′

c = ABM.enc(t,u)(pk, x; r) if c′ = ABM.enc(t
′,u′)(pk, x′; r′).

u← Upk(t) Send to FMCOM (commit, t′, ε).
Hybrid3 r ← COINenc Send to FMCOM (open, sid′, ssid′, x′) x′

c = ABM.enc(t,u)(pk, x; r) if c′ = ABM.enc(t
′,u′)(pk, x′; r′).

u← Upk(t)
HybridFcrs r ← COINenc Output x′ to Z -

(Real world) c = ABM.enc(t,u)(pk, x; r) if c′ = ABM.enc(t
′,u′)(pk, x′; r′).

In the commit phase (of the left interaction of A), committer C sends (t, u, c) to corrupted party
Pa(A), where t = (sid, ssid, C, Pa). In the decommit phase, C opens (x, r) such that c =
ABM.enc(t,u)(pk, x; r). In the commit phase (of the right interaction of A), corrupted Pa(A) sends
(t′, u′, c′) to receiver R, where t′ = (sid′, ssid′, Pa, R). In the decommit phase, it opens (x′, r′). Upon
receiving (open, sid′, ssid′), FMCOM reveals the value in the entry to environment Z.
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7 Compact ABME from Damg̊ard-Jurik PKE

We present a DCR-based ABME scheme with compact ciphertexts. This is the first fully-equipped
UC commitment scheme with expansion factor O(1). We start by recalling Damg̊ard-Jurik public-
key encryption scheme (DJ PKE) [19].

Damg̊ard-Jurik PKE. Let Π = (K,E,D) be a tuple of algorithms of Damg̊ard-Jurik (DJ)
PKE [19]. A public key of DJ PKE is pkdj = (n, d) and the corresponding secret-key is skdj = (p, q)
where n = pq is a composite number of distinct odd primes, p and q, and 1 ≤ d < p, q is a positive
integer (when d = 1 it is Paillier PKE [40]). We often write Π(d) to clarify parameter d. We let

g := (1+n) throughout this paper. To encrypt message x ∈ Znd , one computes Epkdj(x;R) = gxRn
d

(mod nd+1) where R← Z×n 1. For simplicity, we write E(x) instead of Epkdj(x), if it is clear. DJ PKE
is enhanced additively homomorphic as defined in Appendix C.3. Namely, for every x1, x2 ∈ Znd and
every R1, R2 ∈ Z×n , one can efficiently compute R such that E(x1 + x2;R) = E(x1;R1) ·E(x2;R2).
Actually it can be done by computing R = gγR1R2 (mod n), where γ is an integer such that
x1 +x2 = γnd + ((x1 +x2) mod nd). It is known that Z×

nd+1 is isomorphic to Znd ×Z×n (the product

of a cyclic group of order nd and a group of order φ(n)), and, for any d < p, q, element g = (1 + n)
has order nd in Z×

nd+1 [19]. Therefore, Z×
nd+1 is the image of E(·; ·). We note that it is known that

Z×
nd+1 is efficiently samplable and explainable [20, 22]. It is also known that DJ PKE is IND-CPA if

the DCR assumption holds true [19].

Construction Idea. (ABM.gen,ABM.spl) below forms Waters-like signature scheme based on DJ
PKE, where there is no verification algorithm and the signatures look pseudo random assuming that
DJ PKE is IND-CPA. We then construct an extractable sigma protocol on the language derived
from (ABM.gen,ABM.spl), as discussed in Sec. 1.4. Here, the decryption algorithm works only when
the matrix below in (2) is invertible, which is equivalent to that (t, (ur, ut)) ∈ Lext

pk , where

Lext
pk = {(t, (ur, ut))|D(ut) 6≡ x1x2 + y(t)D(ur)(modp) ∧ D(ut) 6≡ x1x2 + y(t)D(ur)(modq)}.

Therefore, we require that (ABM.gen,ABM.spl) should be unforgeable on L̂td
pk(= U ′pk\Lext

pk ). To
prove this statement, we additionally require two more assumptions on DJ PKE, called the non-
multiplication assumption and the non-trivial divisor assumption. The first one is an analogue of the
DH assumption in an additively homomorphic encryption. If we consider unforgeability on Ltd

pk, this

assumption suffices, but we require unforgeability on L̂td
pk. Then we need one more assumption. We

define these assumptions in Appendix C. We note that these assumptions are originally introduced
in [31] to obtain the DCR-based ABM-LTF scheme.

7.1 ABME from Damg̊ard-Jurik with Optimal Expansion Factor O(1)

– ABM.gen(1κ): It gets (pkdj, skdj) ← K(1κ) (the key generation algorithm for DJ PKE), where
pkdj = (n, d) and skdj = (p, q). It computes g1 = E(x1;R1) and g2 = E(x2;R2) by picking
up randomly x1, x2 ← Znd and R1, R2 ← Z×

nd+1 . It chooses h̃ ← E(1) and y = (y0, . . . , yκ)

1 In the original scheme, R is chosen from Z×
nd+1 . However, since Z×n is isomorphic to the cyclic group of order nd in

Z×
nd+1 by mapping R ∈ Z×n to Rn

d

∈ Z×
nd+1 , we can instead choose R from Z×n .
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where yj ← Znd+1 for j = 0, 1, . . . , κ. It then computes h = (h0, . . . , hκ) such that hj := h̃yj .
Let H(t) = h0

∏κ
i=1 h

ti
i (mod nd+1) and let y(t) = y0 +

∑κ
i=1 yiti (mod nd), where (t0, . . . , tκ)

is the bit representation of t. We note that H(t) = h̃y(t). It outputs (pk, skspl, skext) where
pk := (n, d, g1, g2,h), skspl := x2, and skext := (p, q, y0,y), where U ′pk := {0, 1}κ × (Z×

nd+1)2 that

contains the disjoint sets of Ltd
pk and Lext

pk as described below.

– ABM.spl(pk, skspl, t; (r,Rr, Rt)) where skspl = x2: It chooses r ← Znd and outputs u := (ur, ut)
such that ur := E(r;Rr) and ut := gx21 E(0;Rt) ·H(t)r where Rr, Rt ← Z×

nd+1 . We let

Ltd
pk = {(t, (ur, ut)) | ∃(x2, (r,Rr, Rt)) : ur = E(r, ;Rr) and ut = gx21 E(0;Rt)H(t)r}.

We then define

Lext
pk = {(t, (ur, ut))|D(ut) 6≡ x1x2 + y(t)D(ur) mod p ∧ D(ut) 6≡ x1x2 + y(t)D(ur) mod q}.

Since (t, (ur, ut)) ∈ Ltd
pk holds if and only if D(ut) ≡ x1x2 + y(t)D(ur) (mod nd), it implies that

D(ut) ≡ x1x2 + y(t)D(ur) (mod n). Hence, Ltd
pk ∩ Lext

pk = ∅.
– ABM.enc(t,(ur,ut))(pk,m; (z, s,RA, Ra, Rb)): To encrypt message m ∈ Znd , it chooses z, s

U←
Znd and computes A := gz1H(t)sumt R

nd

A (mod nd+1), a := E(z;Ra) · gm2 (mod nd+1) and b :=

E(s;Rb) ·umr (mod nd+1), where RA, Ra, Rb
U← Z×

nd+1 . It outputs c := (A, a, b) as the ciphertext
of m on (t, (ur, ut)).

– ABM.dec(t,(ur,ut))(skext, c) where skext = (p, q, y0, . . . , yκ): To decrypt c = (A, a, b), it outputs

m :=
x1D(a) + y(t)D(b)−D(A)

x1x2 − (D(ut)− y(t)D(ur))
mod nd. (1)

– ABM.col
(t,(ur,ut))
1 (pk, skspl, (r,Rr, Rt)) where skspl = x2: It picks up ω, η

U← Znd , R′A, R′a, R′b
U←

Z×
nd+1 . It then computes A := gω1 ·H(t)η ·R′A

nd (mod nd+1), a := gωR′a
nd (mod nd+1), and b :=

gηR′b
nd (mod nd+1). It outputs c := (A, a, b) and ξ := (x2, (r,Rr, Rt), (ur, ut), ω, η,R

′
A, R

′
a, R

′
b).

– ABM.col2(ξ,m): To open c to m, it computes z = ω − mx2 mod nd, s = η − mr mod nd,
α = b(ω −mx2 − z)/ndc, and β = b(η −mr − s)/ndc. It then sets RA := R′A ·R

−m
t · gα1 ·H(t)β

(mod nd+1), Ra := R′a ·R−m2 · gα (mod nd+1), and Rb := R′b ·R−mr · gβ (mod nd+1). It outputs

(z, s,RA, Ra, Rb), where A = gz1H(t)sumt R
nd

A (mod nd+1), a = E(z;Ra) · gm2 (mod nd+1), and
b = E(s;Rb) · umr (mod nd+1).

We note that ABM.col runs a canonical sigma protocol on Ltd
pk to prove that the prover knows

(x2, (r,Rr, Rt)) such that ur = Epk(r;Rr) and ut = gx21 Epk(0;Rt)H(t)r. Hence, the trapdoor mode
works correctly when (t, (ur, ut)) ∈ Ltd

pk. On the contrary, ABM.enc runs a simulation algorithm of
the sigma protocol with message (challenge) m. Notice that (A, a, b) implies the following linear
system on Znd , D(A)

D(a)
D(b)

 =

x1 y(t) D(ut)
1 0 x2
0 1 D(ur)

 z
s
m

 (2)

The matrix is invertible if

D(ut) 6= (x1x2 + y(t)D(ur)) (mod p) and D(ut) 6= (x1x2 + y(t)D(ur)) (mod q),

which means that (t, (ur, ut)) ∈ Lext
pk . Hence, the decryption mode works correctly.
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Lemma 1 (Implicit in [31]). (ABM.gen,ABM.spl) is pPRF with unforgeability on L̂td
pk(= U ′pk\Lext

pk ),
under the assumptions, 5, 6 and 7.

The proof is given in Sec. C.4. By this lemma, we have:

Theorem 2. The scheme constructed as above is an ABME scheme if the DCR assumption (As-
sumption 5), the non-tirvial divisor assmuption (Assumption 6), and the non-multiplication as-
sumption (Assumption 7) hold true.

This scheme has a ciphertext consisting of only 5 group elements (including (ur, ut)) and optimal
expansion factor O(1). This scheme requires a public-key consisting of κ+ 3 group elements along
with some structure parameters.

8 ABM-LTF from DCR-based ABME and Vice Versa

Hofheinz [31] has presented the notion of all-but-many lossy trapdoor function (ABM-LTF). We
provide the definition in Appendix E. We remark that ABM-LTF requires that, in our words,
(ABM.gen, ABM.spl) be strongly unforgeable, whereas ABME only requires it be unforgeable. How-
ever, as shown in [31], unforgeable PPRF can be converted into strongly unforgeable PPRF via a
chameleon commitment scheme. Therefore, this difference is not important. We note that we can
regard Hofheinz’s DCR-based ABM-LTF (with only unforgeability) as a special case of our DCR-
based ABME scheme by fixing a part of the coin space as (RA, Ra, Rb) = (1, 1, 1). Although the
involved matrix of his original scheme is slightly different from ours, the difference is not essential.
In the end, we can regard Hofheinz’s DCR-based ABM-LTF as

ABM.eval(t,(ur,ut))(pk, (m, z, s)) := ABM.enc(t,(ur,ut))(pk,m; (z, s, 1, 1, 1)),

where (m, z, s) denotes a message. This ABM-LTF has ((d−3) log n)-lossyness. In the latest e-print
version [31], Hofheinz has shown that his DCR-based ABM-LTF can be converted to SIM-SO-CCA
PKE. To construct it, Hofheinz implicitly considered the following PKE scheme such that

ABM.enc(t,(ur,ut))(pk,M ; (m, z, s)) := (ABM.eval(t,(ur,ut))(pk, (m, z, s)),M ⊕H(m, z, s)),

where H is a suitable 2-universal hash function from (Znd)3 to {0, 1}κ (or Z/nZ). According to
his analysis in Sec. 7.2 in [31], if d ≥ 5, it can open an ciphertext arbitrarily using Barvinok’s
alogorithm, when (t, (ur, ut)) ∈ Lloss. Then it turns out ABME in our words. For practical use, it is
rather inefficient, because its expansion rate of ciphertext length per message length is ≥ 31, and
the modulus of ≥ n6 is required. The opening algorithm is also costly. Table 3 shows comparison.

On the contrary, our DCR-based ABME (strengthened with strong unforgeability) can be con-
verted to ABM-LTF 2. Remember that (A, a, b) = ABM.enc(t,(ur,ut))(pk,m; (z, s,RA, Ra, Rb)). It is
obvious that we can extract not only messagem but (z, s) by inverting the corresponding matrix, but
we point out that we can further retrieve (RA, Ra, Rb), too. This mean that our DCR based ABME

turns out ABM-LTF. Indeed, after extracting (m, z, s) from (A, a, b), we have (RA)n
d
, (Ra)

nd , (Rb)
nd

2 Our approach is specific to our DCR-based ABME scheme. On one hand, Hemenway and Ostrovsky [30] have
shown that if the message space of lossy encryption is one bit longer than the coin space, the lossy encryption can
be converted to a lossy trapdoor function (LTF). Although their method can be applied to our DCR based ABME
scheme, the resulting ABM-LTF is less efficient than ours.
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Table 3. Comparison among ABMEs

ABME expansion factor ciphertext-length message-length pk-length

ABME from [31] ≥ 31∗ (5(d+ 1) + 1) logn logn (κ+ 3)d logn

Sec. 7.1 (d ≥ 1) 5 + 1/d 5(d+ 1) logn d logn (κ+ 3)d logn

Sec. 9 5κ/log κ (5`+ 5) log q ` log κ 7 log q

∗ : d ≥ 5 is needed.

in Z×
nd+1 . We remark that RA, Ra, Rb lie not in Z×

nd+1 but in (Z/nZ)×. So, letting α = rn
d

mod nd+1

where r ∈ (Z/nZ)×, r = α(nd)−1
mod n is efficiently solved by φ(n). Thus, our DCR based ABME

turns out ABM-LTF with (d log n)-lossyness for any d ≥ 1, whereas Hofheinz’s DCR based ABM-
LTF is ((d− 3) log n)-lossy for any d ≥ 4.

Table 4. Comparison among ABM-LTFs

ABM-LTF expansion factor output-length input-length lossyness notes

[31] 5/3 (5(d+ 1) + 1) logn 3d logn (d− 3) logn d ≥ 4

ABM-LTF (Sec. 7) 5/3 (5(d+ 1) + 1) logn 3(d+ 1) logn d logn d ≥ 1

9 ABME from Twin Cramer-Shoup

We construct an ABME scheme from the DDH assumption. The expansion factor of this scheme is
not optimal but O(κ/log κ). However, this expansion rate is still better than the previous work [11]
(with O(κ)). We note that we provide an alternative ABME scheme with the same expansion factor
from the DDH assumption in Appendix D, which is the DDH version of the scheme in Sec. 7. So,
its public key includes O(κ) group elements. On the other hand, this scheme has a short public key
only with a constant number of group elements.

We consider the following pPRF. Let Πcpa be an IND-CPA (or even one-way) PKE scheme
and let Πcca be an IND-CCA Tag-based PKE scheme. Let pkcpa and pkcca be public keys of both
schemes, respectively. Then, see pk = (pkcpa, pkcca,Ecpa(ξ)) as the public key of pPRF, where ξ is a
random message. Then, we see Ecca(t, ξ) as the output of Spl on tag t, where skspl = ξ. This indeed
forms pPRF. We now describe a concrete construction by using El Gmal PKE and a tag-based
version of Twin-Cramer-Shoup PKE [16, 14] as ingredients, with a slight optimization.

Let CH = (CHGen,CHEval,CHColl) be a chameleon hash commitment scheme. Let g be a
generator of a multiplicative group G of prime order q, where we assume that G is efficiently
samplable and the DDH assumption holds on the group. Let TwinCS = (CS.gen, CS.enc, CS.dec).
be a tag-based version of Twin-Cramer-Shoup PKE [16, 14], where

– CS.gen(1κ): Via (pkcs, skcs) ← CS.gen(1κ), it picks up hash (pkCH, skCH) ← CHGen(1κ), gener-
ator g ← G×, and sets X = gx, X̂ = gx̂, Y = gy, and Ŷ = gŷ, where x, x̂, y, ŷ ← Z/qZ, and
finally outputs pkcs := (pkCH, g,X, X̂, Y, Ŷ ) and skcs := (pkcs, x, x̂, y, ŷ).
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– CS.enc(pkcs, t,m): Via c ← CS.enc(pkcs, t,m), where message m ∈ G, and tag t ∈ {0, 1}κ, it

outputs c = (r, d, e, πx, πy), by picking up r
U← COINCH, and computing d := gv, e := m ·Xv,

τ := CHEval(pkCH, (t, d, e); r), πx := (Xτ X̂)v, and πy := (Y τ Ŷ )v, where v
U← Z/qZ.

– CS.dec(skcs, t, c): Via m = CS.dec(skcs, t, c), where c := (r, d, e, πx, πy), it checks if πx
?
= dτx+x̂

and πy
?
= dτy+ŷ, where τ = CHEval(pkCH, (t, d, e); r) and outputs m := e · d−x if the above

equations both hold, otherwise m := ⊥.

TwinCS is an IND-CCA secure Tag-PKE scheme if the DDH assumption holds true and CH is
a chameleon commitment scheme. The proof is omitted.

pPRF = (Genspl,Spl) from TwinCS is constructed as follows:

– Genspl(1κ): It picks up (pkcs, skcs)← CS.gen(1κ), where pkcs = (pkCH, g,X, X̂, Y, Ŷ ) and skcs =

(x, x̂, y, ŷ). It picks up ζ
U← G×, v0

U← Z/qZ, and computes (d0, e0) = (gv0 , ζ−1Xv0). It finally
outputs pk := (pkcs, d0, e0) and skspl := ζ.

– Spl(pk, skspl, t): It takes (pk, skspl, t) and outputs u = (r, d, e, πx, πy) = CS.enc(pkcs, t, ζ; v) where

v
U← Z/qZ.

We let Ltd
pk :=

{(t, (r, d, e, πx, πy)) | ∃ (ζ, v0, v) : (d0, e0) = (gv0 , ζ−1Xv0) and (r, d, e, πx, πy) = CS.enc(pkcs, t, ζ; v)}.

and L̂td
pk :=

{(t, (r, d, e, πx, πy)) | ∃ (ṽ, v) : (d0d, e0e) = (gṽ, X ṽ) and (d, πx, πy) = (gv, (Xτ X̂)v, (Y τ Ŷ )v)},

where τ = CHEval(pkCH, (t, d, e); r). We note that Ltd
pk = L̂td

pk. Hence, Lext
pk = U ′pk\Ltd

pk, where

U ′pk := {0, 1}κ × COINCH ×G4.

Lemma 2. The scheme obtained above is a PPRF with unforgeability on L̂td
pk if the DDH assump-

tion holds true and CH is a chameleon commitment scheme.

Proof. By construction, it is obvious that the above scheme satisfies pseudo randomness. The
unforgeability follows from the following analysis.

Let us define G0 as the original unforgeability game, in which the challenger sets up all secrets
and public parameter pk = (pkcs, d0, e0). The challenger returns (d, e, πx, πy) ← CS.enc(pkcs, t, ζ)
for every query t that the adversary A submits as query. Let ε0 be the advantage of A in game G0,
i.e., the probability that it outputs (d′, e′, π′x, π

′
y) ∈ CS.enc(pkcs, t

′, ζ) where t′ is not queried.
We consider a sequence of q + 1 games, G1,0, . . . ,, G1,q, where q denotes the number of queries

that A submits. We define Game G1,0 as G0. Let t1, . . . , tq be a sequence of queries from A. In
game G1,i, where i ∈ {0, . . . , q}, the challenger returns (d, e, πx, πy) ← CS.enc(pkcs, tj , 0

|ζ|) for
j ≤ i, whereas returns (d, e, πx, πy) ← CS.enc(pkcs, tj , ζ) for j > i. Let ε1,i be the advantage of A
in game G1,i, i.e., the probability that it outputs (d′, e′, π′x, π

′
y) ∈ CS.enc(pkcs, t

′, ζ) where t′ is not
queried.

The difference of the adversary’s advantage, ε1,i − ε1,i+1, between each two games, G1,i and
G1,i+1, for every i ∈ {0, . . . , q−1}, is evaluated by the advantage of IND-CCA security for TwinCS.
Namely, we construct an algorithm B using A as oracle that breaks IND-CCA security for TwinCS.
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B takes pkcs and chooses ζ
U← G× and sets (d0, e0) := (gv0 , ζ−1Xv0) where v0

U← Z/qZ. For
the first j queries of A, with j ≤ i, B returns CS.enc(pkcs, tj , 0

|ζ|). When A submits the i + 1-
th query ti+1, B submits (0|ζ|, ζ) to the encryption oracle, and receives the challenge ciphertext
(d∗, e∗, π∗x, π

∗). For the remaining queries, B returns CS.enc(pkcs, tj , ζ) where i+ 1 < j.
When A outputs c′ = (d′, e′, π′x, π

′
y) for a fresh tag t′, B queries c′ to the decryption ora-

cle. If the decryption oracle returns ζ, B outputs bit 0; otherwise 1. By construction, we have
ε1,i(κ)− ε1,i+1(κ) ≤ Advind-ccaTwinCS,A(κ), for every i ∈ {0, . . . , q− 1}, which is negligible in κ if the DDH
assumption holds on G and CH is a chameleon hash commitment scheme. We note that B needs
the decryption oracle only once, to check that c′ is a ciphertext of ζ.

In Game G2, the challenger behaives as follows: It is given pkcs and |ζ| as input, chooses a
random tag t, and obtains ciphertext (d, e, πx, πy) of a random message ζ−1 on tag t. It then sets
(d0, e0) := (d, e). Here, the challenger is not given ζ. For every query ti of A, 1 ≤ i ≤ q, the
challenger returns CS.enc(pkcs, ti, 0

|ζ|). Let ε2 be the advantage of A in game G2. Since this change
is conceptual from G1,q ε1,q = ε2.

Game G3 is the same game as G2 except that when A finally outputs c′ = (d′, e′, π′x, π
′
y) on

a fresh tag t′, the challenger submits it to the decryption oracle and outputs its reply. We note
that the challenger did not reveal any information on t to A, because it feeds only (d0, e0) to A.
Hence, it holds that t′ 6= t with probability 1− q

2κ . If c′ is a ciphertext of ζ, the challenger results
in decrypting c = (d, e, πx, πy) on tag t, which is bounded by the advantage of an adversary that
breaks one-wayness of TwinCS in the chosen-ciphertext attack. The advantage is bounded by twice
of that of IND-CCA security of TwinCS.

Hence, we have ε0(κ) ≤ (q + 2)Advind-ccaTwinCS,B(κ) + q
2κ .

We now construct an ABME scheme from the Twin-Cramer-Shoup based pPRF scheme .

– ABM.gen(1κ): It gets (pkcs, skcs)← CS.gen(1κ) (the key generation algorithm of Twin Cramer-

Shoup), where pkcs = (pkCH, g,X, X̂, Y, Ŷ ) and skcs = (x, x̂, y, ŷ). It chooses ξ
U← G×, v0

U←
Z/qZ, and computes d0 := gv0 , and e0 := ξ−1Xv0 . It sets λ = O(log κ). It finally outputs
pk, skspl, skext), where pk := (pkcs, d0, e0, λ), skext := skcs, and skspl := ζ. We let U ′pk := {0, 1}κ×
COINCH ×G4 that contains the disjoint sets, Ltd

pk and Lext
pk , as defined below.

– ABM.spl(pk, skspl, t; v): It takes (pk, skspl, t) where skspl = ζ, picks up v
U← Z/qZ, and outputs

u := (r, d, e, πx, πy) = CS.enc(pkcs, ζ; v), where τ := CHEval(pkCH, (t, d, e); r). Here we define

Ltd
pk = L̂td

pk =

{(t, (r, d, e, πx, πy)) | ∃ (ṽ, v) : d0d = gṽ, e0e = hṽ, d = gv, πx = (Xτ X̂)v, and πy = (Y τ Ŷ )v}.

We note that ṽ = v0 + v. We define Lext
pk = U ′pk\L̂td

pk.

– ABM.enc(t,u)(pk,m; (ẑ, z)): To encrypt message m ∈ {0, 1}n, it parses m as (m1, . . . ,m`) where

` = n/λ and mi ∈ {0, 1}λ. It picks up vectors, z̃, z
U← G`, where z̃ = (z̃1, . . . , z̃`) and z =

(z1, . . . , z`), and computes 2-by-` matrix A 3-by-` matrix B such that

A =

(
g d0d
X e0e

)(
z̃1 . . . z̃`
m1 . . . m`

)
, and B =

 g d

Xτ X̂ πx
Y τ Ŷ πy

( z1 . . . z`
m1 . . . m`

)
. (3)

It finally outputs c = (A,B).
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– ABM.dec(t,u)(skext, c): Let A = (a1, . . . ,a`) and B = (b1, . . . , b`), where ai = (a1,i, a2,i)
T and

bi = (b1,i, b2,i, b3,i)
T. For all i ∈ [`], it searches “consistent” mi ∈ {0, 1}λ such that

(a1,i)
x

a2,i
=
((d0d)x

e0e

)mi
if e0e 6= (d0d)x,

(b1,i)
τx+x̂

b2,i
=
(dτx+x̂

πx

)mi
if πx 6= dτx+x̂,

and
(b1,i)

τy+ŷ

b3,i
=
(dτy+ŷ

πy

)mi
if πy 6= dτy+ŷ, where τ = H(t, d, e). (4)

It aborts if it find no mi or “inconsistent” one for some i ∈ [`]; otherwise outputs m =
(m1, . . . ,m`) ∈ {0, 1}n.

– ABM.col
(t,u)
1 (pk, t, skspl, v; (w̃,w)): It picks up w̃i, wi

U← Z/qZ for i ∈ [`]. It sets a1,i := gw̃i ,
a2,i := Xw̃i , b1,i := dwi , b2,i := (Xτ X̂)wi , and b3,i := (Y τ Ŷ )wi , where τ = H(t, u, e). It finally
outputs c = (A,B) and ξ = (v0, v, w̃,w), where w̃ = (w̃1, . . . , w̃l) and w = (w1, . . . , wl).

– ABM.col
(t,u)
2 (ξ,m): To open c = (A,B) to m, it parses m as (m1, . . . ,m`) and computes, for all

i ∈ [`], z̃i := w̃i −mi · ṽ mod q and zi := wi −mi · v mod q, where ṽ = v0 + v. It finally outputs
(z̃, z), consistent with m in Equation (3).

Suppose that (t, (r, d, e, πx, πy)) ∈ Ltd
pk. Each column vector ai = (a1,i, a2,i)

T in A from ABM.col1
can be seen as the first message in a canonical sigma protocol on common input (d0d, e0e) to prove
that logg (d0d) = logX(e0e), and z̃i from ABM.col2 corresponds to the response on challenge mi.
Hence, (A,m, z̃) is the accepting conversation of the parallel execution of the sigma protocol with
parallel challenge m = (m1, . . . ,m`), where mi ∈ {0, 1}λ. Similarly, (B,m, z) is the accepting
conversation of the parallel execution of a sigma protocol on common input (d, πx, πy) with parallel
challenges m to prove that logg (d) = logXτ X̂ (πx) = logY τ Ŷ (πy). By construction, the trapdoor
mode works correctly.

The decryption mode works as follows: We note that (t, (r, d, e, πx, πy)) ∈ Ltd
pk if and only if

rank(A(t, u)) = 1 and rank(B(t, u)) = 1, where A(t, u) :=

(
g d0d
X e0e

)
and B(t, u) :=

 g d

Xτ X̂ πx
Y τ Ŷ πy

 .

So, when (t, (r, d, e, πx, πy)) ∈ Lext
pk (= U ′pk\Ltd

pk), rank(A(t, u)) = 2 or rank(B(t, u)) = 2. Hence,
each mi can be retrieved by checking either of equations in (4). We note that if rank(A(t, u)) =
rank(B(t, u)) = 2, the linear system (3) is overdetermined. Then, one should check if m is incon-
sistent to the system (that is, there is no solution in the system), using the other equations. If so,
the decryption is rejected.

We note, however, that the “consistency check” is unnecessary for our motivating application
(fully-equipped UC commitments), because it suffices that the simulator can decrypt valid cipher-
texts correctly, because an adversary cannot correctly open an invalid ciphertext on (t, u) ∈ Lext

pk .

Theorem 3. The scheme constructed as above is an ABME scheme if the DDH assumption on G
holds true and CH is a chameleon hash commitment scheme.

This scheme has a ciphertext consisting of 5` + 4 group elements plus |COINCH|-bit string
(including u = (r, d, e, πx, πy)), for encrypting message m ∈ {0, 1}`λ, with a public-key consisting of
7 group elements along with structure parameters. Therefore, the expansion factor of this scheme
is 5κλ . = O( κ

log κ). Since the UC commitment from [11] consists of two Cramer-Shoup encryptions
plus the output of a claw-free permutation per one-bit message, its expansion factor is 8κ plus the
length of the trap door commitment. This expansion factor in [11] is strict, by construction, which
cannot be improved.
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10 Fully-Equipped UC Commitment from Trapdoor Permutations

If we can construct an ABME scheme from trapdoor permutation (family), it is done, but we have
no idea how to construct it. We instead construct a weak ABME scheme. The only difference of
weak ABME from standard ABME is that in the trapdoor mode, distenc(pk, t, skspl, skext, x) is not
statistically but computationally indistinguishable from distcol(pk, t, skspl, skext, x). Namely,{(

ABM.spl(pk, skspl, t; v), c, ABM.col
(t,u)
2 (ξ, x)

)}
c
≈{(

ABM.spl(pk, skspl, t; v), ABM.enc(t,u)(pk, x; r), r
)}

for every (pk, (sk, w)) ∈ ABM.gen(1κ), every x ∈ MSP, every t ∈ {0, 1}κ, where v ← COINspl,

(c, ξ)← ABM.col
(t,u)
1 (pk, skspl, v), and r ← COINenc. We construct a weak ABME scheme from two

independent trapdoor permutations as follows.
Let F = {(f, f−1) | f : {0, 1}κ → {0, 1}κ}κ∈N be a trapdoor permutation family and let b :

{0, 1}κ → {0, 1} be a hard-core predicate for a trapdoor permutation f . Let Π = (K,E,D) be
the Blum-Goldwasser cryptosystem [6] that is a semantic secure public key encryption scheme,
derived from the following encryption algorithm Ef (x; r) = f (k+1)(r) || (x1 ⊕ b(r)) || . . . || (xk ⊕
b(f (k)(r))), where (x1, . . . , xκ), xi ∈ {0, 1}, denotes the bit representation of x. r ∈ {0, 1}κ denotes
inner randomness of this encryption and f (k) denotes k times iteration of f . We note that this
public key encryption scheme has efficiently samplable and explainable presumable ciphertext space
{0, 1}κ+k [11, 22]. Let us denote by F : {0, 1}κ × {0, 1}κ → {0, 1}κ a pseudo-random function
(constructed from f in a standard way).

– ABM.gen(1κ): It draws two trapdoor permutations, (f, f−1) and (f ′, f ′−1), over {0, 1}κ uni-
formly and independently from F . Let Π = (K,E,D) be the Blum-Goldwasser cryptosystem
mentioned above. Let F be a pseudo random function derived from f ′. It then picks up random
s← {0, 1}κ and encrypt it to e′ = Ef ′(s; r). It outputs (pk, skspl, skext), where pk = (F, f, f ′, e′),
skspl = (s, r), and skext = f−1. We define U ′pk = {0, 1}κ × {0, 1}k.

– ABM.spl(pk, skspl, t): It takes tag t ∈ {0, 1}κ and outputs u = Fs(t) where skspl = (s, r). We
define

Ltd
pk = L̂td

pk = {(t, u) | ∃(s, r) such that e′ = Ef ′(s; r) and u = Fs(t)}.

– ABM.enc(t,u)(pk, x): It takes (t, u) and one bit message x ∈ {0, 1} along with pk, and first
obtains a graph G (of q nodes) so that finding a Hamiltonian cycle in G is equivalent to finding
(s, r) such that u = Fs(t) and e′ = Ef ′(s; r), by using the NP-reduction. We note that one can
find such G without knowing (s, r). In addition, if such (s, r) does not exist for given (t, u), G
so obtained does not have a Hamiltonian cycle.

• To encrypt 0, it picks a random permutation π = (π1, . . . , πq) of q nodes, where πi ∈
{0, 1}log q, and encrypts every πi and all the entries of the adjacency matrix of the permuted
graphH = π(G). It outputs {Ai}i∈[q] and {Bi,j}i,j∈[q], such that Ai = Ef (πi) (∈ {0, 1}κ+log q)
and Bi,j = Ef (ai,j) (∈ {0, 1}κ+1) where ai,j ∈ {0, 1} denotes the (i, j)-entry of the adjacency
matrix of H.

• To encrypt 1, it picks q random (κ+log q)-bit string Ai (i ∈ [q]). It then chooses a randomly
labeled Hamiltonian cycle, and for all the entries in the adjacency matrix corresponding
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to edges on the Hamiltonian cycle, it encrypts 1’s. For all the other entries, it picks up
random κ+ 1-bit strings. It outputs {Ai}i∈[q] and {Bi,j}i,j∈[q], where a Hamiltonian cycle is
embedded in {Bi,j}i,j∈[q], but the other strings are merely random strings.

This encryption procedure is the same as the adaptive Hamiltonian commitment protocol in
[12], except that a commitment in our scheme is encrypted under a public key f independent
of F .

– ABM.dec(t,u)(sk, c): To decrypt c = ({Ai}i∈[q], {Bi,j}i,j∈[q]), it firstly decrypts all elements to
retrieve π and matrix H, using sk = f−1. Then it checks that H = π(G). If it holds, it outputs
0; otherwise, 1.

– ABM.col
(t,u)
1 (pk, skspl, v): It first obtains a graph G (of q nodes) so that finding a Hamiltonian

cycle in G is equivalent to finding skspl = (s, r) such that u = Fs(t) and e′ = Ef ′(s; r), by using
the NP-reduction. It picks a random permutation π = (π1, . . . , πq) of q nodes and computes H =
π(G). It encrypts under f all πi’s and all the entries of the adjacency matrix of the permutated
graph H = π(G). It outputs (c, ξ) where c = ({Ai}i∈[q], {Bi,j}i,j∈[q]) and ξ = ((t, u), ζ, π). Here
ζ denotes the Hamiltonian cycle of G.

– ABM.col2(ξ, x): If x = 0, it opens π and every entry of the adjacency matrix, otherwise if x = 1,
it opens only the entries corresponding to the Hamiltonian cycle ζ in the adjacency matrix.

Then, we apply this weak ABME scheme to our framework (Fig. 3).

Theorem 4. The scheme in Fig.3 obtained by applying the above weak ABME UC-securely realizes
the FMCOM functionality in the FCRS-hybrid model in the presence of adaptive adversaries in the
non-erasure setting.

Proof. The only difference from the proof of Theorem 1 is when we compare the ideal world with
Hybrid Game 1. In the proof of Theorem 1, in the trapdoor mode when (t, u) ∈ Ltd

pk, the output of
ABM.col is statistically indistinguishable from that of ABM.enc. However, this case only guarantees
computational difference. To show that the environment views in both games are computationally
indistinguishable, we need to construct, for contradiction, a distinguisher that can distinguish the
output of ABM.col from the output of ABM.enc without knowing skspl, while it can extract the
values committed to by corrupted parties at the same time. Fortunately, in this construction, the
decryption key skext = f−1 is independent of the equivocable key skspl = (s, r). It is not the case of
the rest of our constructions, in which one can obtain skspl if one knows skext. Therefore, we require
statistical closeness in there. Hence, we can construct a distinguisher that takes skext = f−1 and
starts either with the ideal world or Hybrid Game 1. Here, the environment views in both games
are bounded by the distinguisher’s advantage, which is negligible.

We note that if the common reference string must strictly come from the uniform distribution,
we require trapdoor permutations with dense public descriptions.

We note that parallel k executions of this weak ABME scheme with one bit message space
yields a weak ABME scheme with k-bit message space, by sending parallel ciphertexts of the same
message on the same tag under the same public key. Then, the scheme is also transformed into a
fully-equipped UC-secure commitment scheme with k-bit message space.

This construction does not require non-interactive zero-knowledge proof systems. To the best of
our knowledge, the most efficient non-interactive zero-knowledge proofs from trapdoor permutations
is given by Kilian and Petrank [34], which requires a CRS size of ω(|C|κ2 log κ) and a proof size
of ω(|C|κ2 log κ), where |C| is the circuit size of the statement. We compare our construction with
the previous result [12] with the most efficient NIZK proof system in Table 5.
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Table 5. Fully-Equipped UC commitments (to λ bit secret) from general assumptions (enhanced trapdoor permu-
tations).

schemes CRS size communication complexity of each user

CLOS02 [12] ω(κ3 log(κ)) ω(λ · q2κ3 log κ) λq2TNP + ω(λq2Ttdp(κ3 log κ))

Sec. 10 O(κ) O(λ · q2κ) TNP + λq2Ttdp(κ)

TNP denotes the cost of one NP reduction from one-way function to a Hamiltonian
graph. Ttdp(κ) denotes the cost of computing one execution of trapdoor permutation
over {0, 1}k. q denotes the number of the vertices of the Hamiltonian graph.
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A Definitions

A.1 Collision-Resistant Hash Function Family

Let H = {Hι}ι∈I be a keyed hash family of functions Hι : {0, 1}∗ → {0, 1}κ indexed by ι ∈
Iκ (= I ∩ {0, 1}κ). A keyed hash-function family H is called collision-resistant (CR) if, for every
non-uniform PPT adversary C, Pr[ι← Iκ; (x, y)← Cκ(Hι) : x 6= y ∧ Hι(x) = Hι(y)] = negl(κ).

A.2 Chameleon Commitment

A chameleon commitment CH = (CHGen,CHEval,CHColl) consists of three algorithms: CHGen is a
PPT algorithm that takes as input security parameter 1κ and outputs a pair of public and trapdoor
keys (pk, tk). CHEval is a PPT algorithm that takes as input pk and message x ∈ {0, 1}κ, drawing
random r from coin space COINpk, and outputs chameleon hash value c = CHEval(pk, x; r). Here
COINpk is uniquely determined by pk. CHColl is a DPT algorithm that takes as input (pk, tk), x, x′

∈ {0, 1}κ and r ∈ COINpk, and outputs r′ ∈ COINpk such that CHEval(pk, x; r) = CHEval(pk, x′; r′).
We require that for every (pk, tk) generated by CHGen(1κ), every x, x′ ∈ {0, 1}κ, and every r ∈
COINpk, there exists a unique r′ ∈ COINpk such that CHEval(pk, x; r) = CHEval(pk, x′; r′), and
CHColl(pk, tk, x, x′, r) always computes r′ in time poly(κ+ |x|+ |x′|). In addition, for any x, x′, if r
is uniformly distributed, then so is r′. We require CH is collision-resistance in the following sense:
For every non-uniform PPT adversary A,

Pr

[
(pk, tk)← CHGen(1κ); (x1, x2, r1, r2)← A(pk) :
CHEval(pk, x1; r1) = CHEval(pk, x2; r2) ∧ (x1 6= x2)

]
= negl(κ).
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A.3 Tag-Based PKEs

A Tag-PKE Π = (Tag.Gen,Tag.Enc,Tag.Dec) is a tag-based PKE [43, 37, 35] that consists of three
polynomial-time algorithms: Tag.Gen, the key-generation algorithm, is a PPT algorithm which on
input 1n outputs a pair of the public and secret keys, (pk, sk). Tag.Enc, the encryption algorithm,
is a PPT algorithm that takes public key pk, a tag t ∈ {0, 1}p(κ) for some fixed polynomial p and

message m ∈ MSP, and produces c ← Tag.Enc(pk, t,m; r), picking up r
U← COIN, where MSP and

COIN denote the message space and the coin space determined by pk, respectively. Tag.Dec, the
decryption algorithm, is a deterministic polynomial-time algorithm that takes a secret key sk, t, and
a ciphertext c ∈ {0, 1}∗, and outputs Tag.Dec(sk, t, c). We require that for (sufficiently large) every
k ∈ N, every t ∈ {0, 1}p(κ) every (pk, sk) generated by Tag.Gen(1k), and every message m ∈ MSP,
it always holds Tag.Dec(sk, t,Tag.Enc(pk, t,m)) = m.

IND-CCA Security We recall CCA security for Tag-PKEs [37], called weak CCA security [35].
We simply call it IND-CCA (for Tag-PKEs), because we only consider tag-PKEs.

We define IND-CCA security for tag-PKEs as follows. To an adversary A = (A1, A2) and
b ∈ {0, 1}, we associate the following experiment Exptind-ccaΠ,A,b (κ).

Exptind-ccaΠ,A,b (κ):

(pk, sk)← Tag.Gen(1κ)

(t∗,m0,m1, st)← ADsk
1 (pk)

c∗ ← Tag.Enc(pk, t∗,mb)

b′ ← A
Tag.Decsk
2 (st, t∗, c∗)

Return b′.

The adversary A2 is restricted not to query decryption oracle Tag.Dec(sk, ·, ·) with (t∗, ?). We define
the advantage of A in the experiment as

Advind-ccaΠ,A (κ) = Pr[Exptind-ccaΠ,A,1 (κ) = 1]− Pr[Exptind-ccaΠ,A,0 (κ) = 1].

We say that Π is IND-CCA secure if Advind-ccaΠ,A (κ) = negl(κ) for every PPT A.

B UC Framework and Fully-Equipped UC Commitments from ABME

B.1 UC framework and Ideal Commitment Functionality

The UC framework defines a non-uniform probabilistic poly-time (PPT) environment machine
Z that oversees the execution of a protocol in one of two worlds. In both worlds, there are an
adversary and honest parties (some of which may be corrupted by the adversary). In the ideal
world, there additionally exists a trusted party (characterized by ideal functionality F) that carries
out the computation of the protocol, instead of honest parties. In the real world, the real protocol
is run among the parties. The environment adaptively chooses the inputs for the honest parties,
interacts with the adversary throughout the computation, and receives the honest parties’ outputs.
Security is formulated by requiring the existence of an ideal-world adversary (simulator) S so that
no environment Z can distinguish the real world where it runs with the real adversary A from the
ideal world where it runs with the ideal-model simulator S.
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In slightly more detail, the task of honest parties in the ideal world is only to convey inputs
from the environment to the ideal functionality and vice versa (i.e., the honest parties in the ideal
world communicate only with the environment and ideal functionalities). The environment may
order the adversary to corrupt any honest party in any timing during the execution of the protocol
(adaptive corruption), and it may receive the inner state of the honest party from the adversary.
Therefore, the ideal-world simulator must simulate the inner state of the real-world honest party
as if it comes from the real world, because the honest parties in the ideal world do nothing except
storing inputs to them). The inner state of the real-world honest party includes randomness it has
used. We insist that honest parties cannot erase any of its state (non-erasure model).

We denote by IdealF ,SA,Z(κ, z) the output of the environment Z with input z after an ideal
execution with the ideal adversary (simulator) S and functionality F , with security parameter κ. We
will only consider black-box simulator S, and so we denote the simulator by SA that means that it
works with the adversary A attacking the real protocol. Furthermore, we denote by Realπ,A,Z(κ, z)
the output of environment Z with input z after a real execution of the protocol π with adversary
A, with security parameter κ.

Our protocols are executed in the common reference string (CRS) model. This means that the
protocol π is run in a hybrid model where the parties have access to an ideal functionality Fcrs that
chooses a CRS according to the prescribed distribution and hands it to any party that requests
it. We denote an execution of π in such a model by HybridFcrs

π,A,Z(κ, z). Informally, a protocol π
UC-realizes a functionality F in the Fcrs hybrid model if there exists a PPT simulator S such that
for every non-uniform PPT environment Z every PPT adversary A, and every polynomial p(·), it
holds that

{IdealF ,SA,Z(κ, z)}κ∈N,z∈{0,1}p(κ)
c
≈{HybridFcrs

π,A,Z(κ, z)}κ∈N,z∈{0,1}p(κ) .

The importance of the universal composability framework is that it satisfies a composition theo-
rem that states that any protocol that is universally composable is secure when it runs concurrently
with many other arbitrary protocols. For more details, see [10].

We consider UC commitment schemes that can be used repeatedly under a single common ref-
erence string (re-usable common reference string). The multi-commitment ideal functionality FMCOM

from [12] is the ideal functionality of such commitments, which is given in Figure 4.

Functionality FMCOM

FMCOM proceeds as follows, running with parties, P1, . . . , Pn, and an adversary S:

– Commit phase: Upon receiving input (commit, sid, ssid, Pi, Pj , x) from Pi, proceed as follows:
If a tuple (commit, sid, ssid, . . . ) with the same (sid, ssid) was previously recorded, does
nothing. Otherwise, record the tuple (sid, ssid, Pi, Pj , x) and send (receipt, sid, ssid, Pi, Pj)
to Pj and S.

– Reveal phase: Upon receiving input (open, sid, ssid) from Pi, proceed as follows: If a tuple
(sid, ssid, Pi, Pj , x) was previously recorded, then send (reveal, sid, ssid, Pi, Pj , x) to Pj and
S. Otherwise, does nothing.

Fig. 4. The ideal multi-commitment functionality
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As in many previous works, the UC framework we use assumes authenticated communication.
If it is not assumed, our protocols is executed in Fcrs and Fauth hybrid models. For simplicity and
conciseness, we simply assume communication between parties are authenticated.

B.2 Proof of Theorem 1

Theorem 1 (restated) The proposed scheme in Fig.3 UC-securely realizes the FMCOM function-
ality in the FCRS-hybrid model in the presence of adaptive adversaries in the non-erasure model.

For simplicity, we assume {0, 1}κ ⊂ MSP, without loss of generality, which enables us to remove
the injective map ι : {0, 1}κ → MSP from the scheme. The description of the simulator’s task is
described as follows:

The ideal-world adversary (simulator) S:

– Initialization step: S chooses (pk, sk)← ABM.gen(1κ) and sets CRS to be pk (along with Upk
and U ′ = {0, 1}κ × Upk).

– Simulating ideal functionality FCRS: Since S simulates FCRS, every request (even from a
honest party) to achieve a common reference string comes to S, it returns the above-chosen
CRS to the requested party.

– Simulating the communication with Z: Every input value that S receives from Z is written
on A’s input tape (as if coming from Z) and vice versa.

– Simulating the commit phase when Pi is honest: Upon receiving from FMCOM the receipt
message (receipt, sid, ssid, Pi, Pj), S generates u = ABM.spl(pk, skspl, t; v) so that (t, u) ∈
Ltd
pk, where t = (sid, ssid, Pi, Pj), and computes (c, ξ) = ABM.col

(t,u)
1 (pk, skspl, v), namely, c is

a fake ciphertext on (t, u). S sends (sid, ssid, (t, u, c)) to adversary A, as it expects to receive
from Pi. S stores (sid, ssid, Pi, Pj , (t, u, c), ξ).

– Simulating the decommit phase when Pi is honest: Upon receiving from FMCOM the mes-

sage (open, sid, ssid, Pi, Pj , x), S computes r = ABM.col
(t,u)
2 (ξ, x) and sends (sid, ssid, x, r)

to adversary A.

– Simulating adaptive corruption of Pi after the commit phase but before the decom-
mit phase: When Pi is corrupted, S immediately read Pi’s stored value (sid, ssid, Pi, Pj , x),

whose value previously came from Z and was sent to FMCOM, and then computes r = ABM.col
(t,u)
2 (ξ, x)

and R such that u = Upk(t;R), which can be efficiently computable because Upk is an explainable
domain. Finally, it reveals (x, r,R) to A.

– Simulating the commit phase when the committer Pi is corrupted and the receiver
Pj is honest: Upon receiving (sid, ssid, (t, u), c) fromA, S decrypts x = ABM.dec(t,u)(skext, c).
If the decryption is invalid, then S sends a dummy commitment (commit, sid, ssid, Pi, Pj , ε)
to FMCOM. Otherwise, S sends (commit, sid, ssid, Pi, Pj , x) to FMCOM.

– Simulating the decommit stage when the committer Pi is corrupted and the receiver
Pj is honest: Upon receiving (sid, ssid, x′, r′) from A, as it expects to send to Pj , S sends
(open, sid, ssid) to FMCOM. (FMCOM follows its codes: If a tuple (sid, ssid, Pi, Pj , x) with the
same (sid, ssid) was previously stored by FMCOM, FMCOM sends (sid, ssid, Pi, Pj , x) to Pj
and S.)

– Simulating adaptive corruption of Pj after the commit phase but before the decom-
mit phase: When Pj has been corrupted, S simply reveals (sid, ssid, (t, u, c)) to adversary A
as if it comes from Pj .
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We remark that in the ideal world, honest parties simply convey inputs from environment Z to
the ideal functionalities and vice versa. Therefore, when FMCOM sends something to honest Pj , it
is immediately sent to Z.

We will prove that there is an ideal-world simulator S such that for every Z, every A, and every
polynomial p(·),

{IdealFMCOM,SA,Z(κ, z)}κ∈N,z∈{0,1}p(κ)
c
≈{HybridFcrs

π,A,Z(κ, z)}κ∈N,z∈{0,1}p(κ) .

To prove this, we then consider a sequence of the following games on which the probability
spaces are identical, but we change the rules of games step by step.

Hybrid Game 1: In this game, the ideal commitment functionality, denoted F1
MCOM, and the sim-

ulator, denoted S1, work exactly in the same way as FMCOM and S do respectively, except for the
case that Pi is honest: In Hybrid Game 1, at the beginning of the commit phase, F1

MCOM gives simula-
tor S1 the committed value x together with (receipt, sid, ssid, Pi, Pj). S1 then sets up (t, u) ∈ Ltd

pk

in the same way as S does (using skspl), but S1 instead computes c as c = ABM.enc(t,u)(pk, x; r), by

picking up r
U← COINenc. When simulating the decommit phase or simulating adaptive corruption

of Pi before the decommit phase, S1 reveals (u, x, r, R) after computing R such that u = Upk(t;R).
Consider the simulation that honest Pi opens commitment (t, u, c) in both games. The distri-

bution of (u, c, r) on t = (sid, ssid, Pi, Pj) as generated in Hybrid Game 1 is statistically indistin-
guishable from those on the same t as generated in the ideal world, because the two distribution
ensembles, {distcol(pk, t, skspl, skext, x)}κ∈N and {distenc(pk, t, skspl, skext, x)}κ∈N, defined in Sec. 4,
are statistically indistinguishable in κ. So, we have

{IdealFMCOM,SA,Z(κ, z)}κ∈N,z∈{0,1}p(κ)κ∈N
s
≈{Hybrid1

F1
MCOM,S

A
1 ,Z

(κ, z)}κ∈N,z∈{0,1}p(κ) .

Hybrid Game 2: In this game, the ideal commitment functionality F2
MCOM and the simulator

S2 work exactly in the same way as the counterparts do in Hybrid Game 1, except for the case
that Pi is corrupted and Pj is honest in the commit phase: At the commit phase in Hybrid Game 2,
when S2 receives (t, u, c) from Pi controlled by adversary A where t = (sid, ssid, Pi, Pj), S2 sends
a dummy commitment (commit, sid, ssid, Pi, Pj , ε) to F2

MCOM. At the decommit phase, when S2
receives (sid, ssid, x′, r) from Pi controlled by adversaryA, S2 ignores if c 6= ABM.enc(t,u)(pk, x′; r);
otherwise, it sends (open, sid, ssid, x′) to F2

MCOM. Then, F2
MCOM replaces the stored value ε with

value x′ and sends (reveal, sid, ssid, Pi, Pj , x
′) to Pj and S2.

Let us define BDI as each event in Hybrid Game I, where I = 1, 2, that the simulator receives
a fake ciphertext c on (t, u) from Pi controlled by adversary A. Remember that ciphertext c is
called fake if (t, u) ∈ Ltd

pk and c is a valid ciphertext (which means that there is a pair of mes-
sage/randomness consistent with c). The hybrid games, 1 and 2, may differ only when BD1 and
BD2 occur in each game, which means that ¬BD1 = ¬BD2 and thus, BD1 = BD2. So, we use the
same notation BD to denote the event such that the simulator receives a fake ciphertext from the
adversary in the hybrid games, 1 and 2, namely, BD := BD1 = BD2.

By a simple evaluation such that Pr[A]− Pr[C] ≤ Pr[B] if Pr[A ∧ ¬B] = Pr[C ∧ ¬B], we have

Dist
(
Hybrid1

F1
MCOM,S

A
1 ,Z

(κ, z), Hybrid2
F2

MCOM,S
A
2 ,Z

(κ, z)
)
≤ Pr[BD],
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where the output of Z is a bit.
We now show that Pr[BD] is negligible in κ.

Lemma 3. Event BD occurs at most with probability qAε
euf , where qA denotes the total number

of A sending the commitments to honest parties and εeuf denotes the maximum advantage of an
adversary breaking unforgeability of pPRF = (ABM.gen,ABM.spl) on L̂td

pk.

Proof. Since BD occurs with the same probability in both games, we consider the probability
in Hybrid Game 2. We construct the following algorithm B0 that takes pk from ABM.gen and
simulates the roles of S2 and F2

MCOM perfectly, interacting Z and A, by having access to oracle
ABM.spl(pk, skspl, ·) as follows:

In the case when Pi is honest: In the commit phase when Z sends (commit.sid, ssid, Pi, Pj , x)
to F2

MCOM (via honest Pi), B0 submits t = (sid, ssid, Pi, Pj) to ABM.spl(pk, skspl, ·) to obtain u

such that (t, u) ∈ Ltd
pk. Then B0 computes fake ciphertext c← ABM.enc(t,u)(pk, x) as a commitment

in the same way as S2 (= S1) does.
In the case where Pi is corrupted and Pj is honest: In the commit phase when corrupted

Pi controlled by A sends a commitment (t, u, c) to S2 as it expects to send to honest Pj , B0 simply
plays the roles of S2 and F2

MCOM. Later, in the opening phase when corrupted Pi controlled by A
sends (sid, ssid, x′, r) to S2 as it expects to send to honest Pj , B0 simply plays the role of F2

MCOM.
S2 uses skspl only when it computes u ← ABM.spl(pk, skspl, t) in the commit phase when Pi is

honest. B0 instead may have access to oracle ABM.spl(pk, skspl, ·), and simulates the roles of S2 and
F2
MCOM identically without knowing skspl.

We now construct an algorithm Bχ, where χ ∈ [qA], that is the same as B0 except that it aborts
and outputs (t, u) when A generates χ-th (in total) commitment (t, u, c) to a honest party. Here,
qA denotes the total number of A sending the commitments to honest parties. We note that

Pr[BD] ≤
qA∑
i=1

Pr[(t, u)← Bi(pk)ABM.spl(sk,·),Z,A : (t, u) ∈ L̂td
pk]

The probability of Bi outputting (t, u) ∈ L̂td
pk is bounded by εeuf . Therefore, we have Pr[BD] ≤

qAε
euf . �

By this lemma, we have

{Hybrid1
F1

MCOM,S
A
1 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N
c
≈{Hybrid2

F2
MCOM,S

A
2 ,Z

(κ, z)}z∈{0,1}p(κ),κ∈N

Hybrid Game 3: In this game, F3
MCOM works exactly in the same way as F2

MCOM does. S3
works exactly in the same way as S2 does except for the case that Pi is honest in the com-
mit phase: In the commit phase when receiving (receipt, sid, ssid, Pi, Pj , x) from F3

MCOM, S3
picks up u = Upk(t;R) with random R, instead of generating u ← ABM.spl(pk, skspl, t) where
t = (sid, ssid, Pi, Pj). With an overwhelming probability, (t, u) ∈ Ltd

pk. S3 then computes c =

ABM.enc(t,u)(pk, x; r).
In case of adaptive corruption of Pi after the commit phase but before the decommit phase, S3

simply reveals (x, r,R) to A.
We note that in Hybrid Game 2, S2 makes use of skspl only when it computes u← ABM.spl(pk, skspl, t),

whereas in Hybrid Game 3, S3 does not use skspl any more. The difference of the views of Z between
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these two games is bounded by pseudo-randomness of (ABM.gen,ABM.spl), because we can con-
struct a distinguisher D, using Z and A as oracle with having access to either of ABM.spl(skspl, ·) or
Upk(·). When D has access to ABM.spl(skspl, ·), it simulates Hybrid Game 2; otherwise, it simulates
Hybrid Game 3. Therefore, we have

{Hybrid2
F2

MCOM,S
A
2 ,Z

(κ, z)}κ∈N,z∈{0,1}p(κ)
c
≈{Hybrid3

F3
MCOM,S

A
3 ,Z

(κ, z)}κ∈N,z∈{0,1}p(κ) .

HybridFcrs
π,A,Z Game: This is the real world in the CRS model (or in the CRS hybrid model),

where a honest party activated for the commitment functionality follows the code of the protocol
in Fig. 3. The common reference string functionality FCRS parameterized by ABM.gen is given in
Figure 5.

Functionality FCRS

FCRS parameterized by ABM.gen proceeds as follows:

– FCRS runs (pk, skspl, skext)← ABM.gen(1κ); and sets CRS to be pk. Upon receiv-
ing message (common-reference-string, sid) with any sid, FCRS returns the
same CRS to the activating party.

Fig. 5. The common reference string functionality

It is obvious by construction that two worlds are identical.

{Hybrid3
F3

MCOM,S
A
3 ,Z

(κ, z)}κ∈N,z∈{0,1}p(κ) ≡ {HybridFcrs
π,A,Z(κ, z)}κ∈N,z∈{0,1}p(κ) .

In the end, we have

{IdealFMCOM,SA,Z(κ, z)}κ∈N,z∈{0,1}p(κ)
c
≈ {HybridFcrs

π,A,Z(κ, z)}κ∈N,z∈{0,1}p(κ) .

C PPRF from Damg̊ard-Jurik PKE

In this section, we provide the formal proof of Lemma 1. Although the proof is implicitly shown in
[31], we provide it for completeness.

To prove the statement, we require two more assumptions related to DJ PKE, along with
the standard DCR assmption, called the non-multiplication assumption and the non-trivial divisor
assumption, which originally appeared in [31]. We first prove that our target scheme is a PPRF
with unforgeability on Ltd

pk (not on L̂td
pk) under the DCR assumption and the non-multiplication

assumption. We prove this in a generalized case that DJ PKE is replaced with an arbitrary en-
hanced additive homomorphic encryption scheme. We then prove that the resulting scheme has
unforgeability on L̂pk, additionally assuming the non-divisor assumption.
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C.1 Assumptions and Some Useful Lemmas

Let us write Π(d) to denote DJ PKE with parameter d.

Assumption 5. We say that the DCR assumption holds if for every PPT A, there exists a key
generation algorithm K such that AdvdcrA (κ) =

Pr[Exptdcr−0A (κ) = 1]− Pr[Exptdcr−1A (κ) = 1]

is negligible in κ, where

Exptdcr−0A (κ) :

n← K(1κ); R
U← Z×

n2

c = Rn mod n2

return A(n, c).

Exptdcr−1d,A (κ) :

n← K(1κ); R
U← Z×

n2

c = (1 + n)Rn mod n2

return A(n, c).

Assumption 6 ([31]). We say that the non-trivial divisor assumption holds on Π(d) if for every
PPT A, Advdivisor

A,Π(d)(κ) = negl(κ) where

Advdivisor
A,Π(d)(κ) = Pr[(pk, sk)← K(1κ); A(n) = c : 1 < gcd(D(c), n) < n].

This assumes that an adversary cannot compute an encryption of a non-trivial divisor of n, i.e.,
E(p), under given public-key pkdj only. Since the adversary is only given pkdj, the assumption is
plausible.

Lemma 4. If A is an adversary against Π(d), there is adversary A′ against Π(1) such that

Advdivisor
A,Π(d)(κ) ≤ Advdivisor

A′,Π(1)(κ).

Assumption 7 ([31]). We say that the non-multiplication assumption holds on DJ PKE Π(d) if
for every PPT adversary A, the advantage of A, Advmult

A,Π(d)(κ) = negl(κ), where

Advmult
A,Π(d)(κ) = Pr[(pk, sk)← K(1κ); c1, c2 ← Z×

nd+1 ; c∗ ← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1)·Dsk(c2)].

This assumes that an adversary cannot compute E(x1 · x2) for given (pkdj,E(x1),E(x2)). If the
multiplicative operation is easy, DJ PKE turns out a fully-homomorphic encryption (FHE), which
is unlikely. Although breaking the non-multiplication assumption does not mean that DJ PKE
turns out a FHE, this connection gives us some feeling that this assumption is plausible.

Lemma 5. If A is an adversary against DJ PKE Π(d), there is an adversary A′ against Π(1) such
that

Advmult
A,Π(d)(κ) ≤ Advmult

A′,Π(1)(κ).

Lifting-Up and Re-Randomization. We give very useful lemmas below, which are implicitly used in
[19] to prove that Π(d) for any d ≥ 1 is IND-CPA secure under the DCR assumption. In order to
prove Lemmas, 4 and 5, these lemmas are essential.

Lemma 6 (from [19, 31]). Let n be a public key of both DJ PKE Π(d), where d ≥ 1, and DJ PKE
Π(1). We let τ : Z×n2 → Z×

nd+1 be the canonical embedding map defined by τ(c) = c mod nd+1 where

c ∈ Z×n2 is canonically interpreted as an integer in {0, . . . , n2 − 1}. We let π : Z×
nd+1 → Z×

n2 be the

canonical homomorphism defined by π(ĉ) = ĉ mod n2 where ĉ ∈ Z×
nd+1 is canonically interpreted as

an integer in {0, . . . , nd+1 − 1}. We then have:
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– π ◦ τ is the identity map over Z×
n2.

– For every c ∈ Z×
n2, D(1)(c) ≡ D(d)(τ(c)) (mod n).

– For every ĉ ∈ Z×
nd+1, D(1)(π(ĉ)) ≡ D(d)(ĉ) (mod n).

Based on Lemma 6, we have the following lemma.

Lemma 7 (from [19, 31]). There is an algorithm B that takes any public-key pk = (n, d) (d > 1)
and any ciphertext c ∈ Z×

n2 for Π(1), and efficiently samples random ĉ ∈ Z×
nd+1 conditioned on

D(1)(π(ĉ)) = D(1)(c) (mod n).

Proof. B is constructed as follows: Given c ∈ Z×
n2 , choose random y

U← {0, 1, . . . , nd−1 − 1}; set

ĉ = τ(c) ·E(d)(yn); output ĉ.

τ(c) ∈ Z×
nd+1

re-randomize
=⇒ ĉ = τ(c) ·E(yn) ∈ Z×

nd+1

τ ↑ ↓ π

c ∈ Z×
n2

D(1)(c)=D(1)(π(ĉ))⇐⇒ π(ĉ) ∈ Z×
n2

Fig. 6. Diagram of Lifting up and Re-Randomization

C.2 Proof of Lemmas, 4 and 5

By using algorithm B, random instances given to adversary A are converted into proper random
instances given to adversary A′. Letting the output of A′ be ĉ, we output π(ĉ) as the output of A,
which obtains the lemmas, 4 and 5.

C.3 PPRF from Waters Signature on Additively Homomorphic Encryptions

We define enhanced additive homomorphic encryptions, which is a generalization of Damg̊ard-Jurik
PKE.

Let Π = (K,E,D) be a public-key encryption scheme in the standard sense. For given (pk, sk)
generated by K(1κ), let X be the message space and R be the coin space, with respects to pk. Let
Y be the image of Epk, i.e., Y = Epk(X;R). Here we assume that X is a commutative finite ring
equipped with an additive operation + and an multiplication operation ×. We also assume Y is a
finite Abelian group with ? operation.

We say that Π is an additively homomorphic public key encryption scheme if for every pk
generated by K, every x1, x2 ∈ X, and every r1, r2 ∈ R, there exists r ∈ R such that

Epk(x1; r1) ?Epk(x2; r2) = Epk(x1 + x2; r).

In particular, we say that that Π is enhanced additively homomorphic if Π is additively homo-
morphic and r ∈ R must be efficiently computable, given pk, and (x1, x2, r1, r2).
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The mapping above is homomorphic in the mathematical sense – Namely, Epk(x1)? · · ·?Epk(xn)
∈ Y for every n ∈ Z and every x1, . . . , xn ∈ X. We write cz ∈ Y , for c ∈ Y and z ∈ Z, to denote

z︷ ︸︸ ︷
c ? · · · ? c.

What we want to assume is that Π is additively homomorphic, but not equipped with any
efficient multiplicative operation � such that Epk(x1) � Epk(x2) = Epk(x1 × x2) for any given
Epk(x1) and Epk(x2). Formally, we define this property as follows:

Assumption 8 (Non-Multiplication Assumption). Let Π be an additively homomorphic pub-
lic key encryption scheme along with a ring (X,+,×) as the message space w.r.t. pk and a group
(Y, ?) as the image of Epk. We say that the non-multiplication assumption holds on Π if for every
non-uniform PPT algorithm A, Advmult

A (κ) = negl(κ), where Advmult
A (κ) ,

Pr[(pk, sk)← K(1κ); c1, c2 ← Y ; c∗ ← A(pk, c1, c2) : Dsk(c
∗) = Dsk(c1) ·Dsk(c2)].

This assumption is a generalized version of Assumption 7.
We now construct a PPRF (Genspl, Spl). Let Π = (K,E,D) be an enhanced additively ho-

momorphic public-key encryption scheme. Let X, R, and Y be the same as mentioned above. In
addition, let group (X,+) be cyclic, i.e., (X,+) ' Z/nZ for some integer n. Let x1, x2 ∈ X. Let
g1 ∈ Epk(x1) and g2 ∈ Epk(x2). Let h0, h1, . . . , hκ ∈ Y . Let us define H(t)= h0 ?

∏κ
i=1 h

t[i] ∈ Y ,
where t = (t[1], . . . , t[κ]) ∈ {0, 1}κ is the bit representation of t. Let us define Lpk(t) such that

Lpk(t) = {(ur, ut) ∈ Y 2 | r = Dsk(ur) and x1 × x2 = Dsk(ut ? H(t)−r)}.

We let S = {0, 1}κ × Y 2 and L = {(t, (ur, ut)) | t ∈ {0, 1}κ and (ur, ut) ∈ Lu(t)}.
A PPRF (Genspl,Spl) is constructed as follows:

– Gen(1κ): It runs K(1κ) and obtain (pk, sk). It generates x1, x2 ← X and h0, h1, . . . , hκ ← Y
uniformly. Set d = x1 × x2 ∈ X. It generates g1 ← Epk(x1) and g2 ← Epk(x2). It outputs
PK= (pk, g1, g2, h0, . . . , hκ) and SK = (PK, d).

– Spl(SK, t; r): It picks up r ← X, generates ur ← Epk(r) and ut ← Epk(d) ? H(t)r, and then
outputs u = (ur, ut).

Theorem 9. Let Π be an enhanced additively homomorphic public-key encryption scheme men-
tioned above. Suppose that Π is IND-CPA and the non-multiplication assumption holds on Π.
Then, the above (Genspl,Spl) is a PPRF with unforgeability on Lpk.

Proof. The proof of pseudo randomness is almost straightforward: Suppose that pk is generated by
K(1κ). Let S be a simulator such that it breaks IND-CPA of Π using A, where A is an adversary
to output 1 when it decides that it has access to a PPRF. We run S on pk. It picks up at random
x1, x2 ← X, h0, h1, . . . , hκ ← Y , and sets g1 ← Epk(x1) and g2 ← Epk(x2). It sends (m0,m1)
to the challenger, where m0 = 0, and m1 = x1 × x2 ∈ X. It then receives Epk(mb), where b is
a random bit chosen by the challenger. It then runs adversary A on PK = (pk, g1, g2,h), where
h = (h0, h1, . . . , hκ). For any query t, the simulator picks up random r ← X and returns (ur, ut)
such that ur = Epk(r) and ut = Epk(mb)? (H(t))r. Finally, the simulator outputs the same bit that
A outputs.

When b = 0, (ur, ut) is computationally indistinguishable from a uniform distribution over
Y 2, because Epk(0) is computationally indistinguishable from a uniform distribution over Y . On
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the other hand, when b = 1. Since S outputs the same bit that A outputs, Advind-cpaΠ S(κ) =
Pr[S = 1 | b = 1] − Pr[S = 1 | b = 0] = Pr[A = 1 | b = 1] − Pr[A = 1 | b = 0] = AdvpprfA(κ).

Therefore, AdvpprfA(κ) = Advind-cpaΠ S(κ) = negl(κ).
The proof of unforgeability on this scheme is substantially similar to that in [7, 45, 4]. We provide

a sketch of the proof.
Let G0 be the original unforgeability game, in which PK = (pk, g1, g2,h) ← Gen(1κ); A takes

PK, queries, m1, . . . ,mqs , to Spl(sk, ·), and tries to output m0 along with u ∈ Lu(m0) and m0 6∈
{m1, . . . ,mqs}. Let us denote by ε0 the advantage of A in G0.

In game G1, we modify the choice of h as follows: Recall now that (X,+,×) is a finite com-
mutative ring such that (X,+) ' Z/nZ for some integer n. Let Gen1 be the generator in game
G1. Let θ = O( qsε0 ), where qs denotes the maximum number of queries A submits to Spl. Gen1

picks up (pk, g1, g2) as Gen does. It then picks up a0, a1, . . . , aκ ← Z/nZ. It picks up y1, . . . , yκ
← [0, · · · , (θ − 1)] and y0 ∈ [0, . . . , κ(θ − 1)]. It finally outputs PK = (pk, g1, g2,h), by setting
hi = gaigyi2 for i ∈ [0, · · · , κ]. Since (X,+) ' Z/nZ and Epk is additively homomorphic, Y ⊂ Z/nZ.
Hence, the distribution of h is identical to that in the previous game, and this change is conceptual.
Therefore, the advantage of A in G1, ε, is equal to ε0.

For t ∈ {0, 1}κ, let a(t) = a0 +
∑
t[i] · ai (mod n) and y(t) = y0 +

∑
t[i] · yi ∈ Z. Then we have

H(t) = ga(t)g
y(t)
2 .

Let γy : ({0, 1}κ)qs+1 → {0, 1} be a predicate such that γy(t) = 1 if and only if y(t0) = 0
and ∧qsi=1y(ti) 6= 0, where t = (t0, . . . , tqs) ∈ ({0, 1}κ)qs+1. Let Q(t) be the event that at the end of
game G1, adversary A queries, t1, . . . , tqs and outputs t0 as the target message, on which A tries to
generate the output of Spl(sk, t0).

We now borrow the following lemmas due to [4].

Lemma 8. [4]. Let Q(t) be the event in game G1 mentioned above. Then,

Pr[Q(t) ∧ (γy(t) = 1)] = Pr[Q(t)] Pr[γy(t) = 1].

Here the probability is taken over A, Gen1, and Spl.

Lemma 9. [4]. Let n, θ, κ be positive integers, such that κθ < n. Let y0, y1, . . . , yκ be elements in
the domains mentioned above and let y(t) = y0 +

∑
ti · yi ∈ Z. Then, for every t0, . . . , tκ ∈ {0, 1}κ,

we have
1

κ(θ − 1) + 1

(
1− qs

θ

)
≤ Pr
y

[γy(t) = 1] ≤ 1

κ(θ − 1) + 1
,

where the probability is taken over random variable y = (y0, y1, . . . , yκ) uniformly distributed over
the specified domain mentioned above.

Now, in game G2 we modify the challenger as follows: When the event that γy(t) 6= 1 occurs in
game G2, the challenger aborts the game. Let ε2 be the advantage of A in game G2. It immediately
follows from the above lemmas that ε1 ·mint{Pry[γy(t) = 1]} ≤ ε2.

In game G3, the challenger is given (pk, g1, g2) where pk ← K(1κ) and g1, g2 ← Y . It picks
up a and y as in game G2. When A queries t, it picks up r′ ← X (' Z/nZ) and selects ur ←

g
− 1
y(t)

1 ?Epk(r
′) and ut ← g

−a(t)
y(t)

1 ?Epk(0) ? (H(t))r
′
.

Let r = Dsk(ur)= − x1
y(t) + r′. Then, it holds that for y(t) 6= 0, there is v ∈ R such that

ut = Epk(x1 × x2; v) ? (H(t))r, because the decryption of the righthand side under sk is

x1x2 + (a(t) + y(t)x2)r = x1x2 + (a(t) + y(t)x2) ·
(
− x1
y(t)

+ r′
)

= −a(t)

y(t)
· x1 + (a(t) + y(t)x2) · r′.
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Therefore, the righthand side is g
−a(t)
y(t)

1 ? Epk(0; v) ? (H(t))r
′

for some v ∈ R. This is substantially
equivalent to the technique of all-but-one simulation technique in [7]. As in game G2, the simulator
always abort if γy(t) = 1 holds. Hence, the advantage of A in this game, denoted ε3, is equivalent
to ε2.

In the final game, we construct a simulator S that breaks the non-multiplication assumption.
Let (pk, sk) ← K(1κ) and c1, c2 ← Y . S takes (pk, c1, c2) as input. Then, it sets g1 := c1 and
g2 := c2 and runs the challenger and adversary A in game G3 on (pk, g1, g2).

We note that when A outputs (ur(t0), ut(t0)) ∈ Lu(t0) in this game, it holds that Dsk(ut(t0)) =
x1 × x2 + r · (a(t0) + y(t0)x2) · r where r = Dsk(ur(t0)) ∈ Z/nZ and r · (a(t0) + y(t0)x2) denotes∑r

i=1(a(t0) + y(t0)x2). Since y(t0) = 0, S has now

ut(t0) = Epk(x1 × x2) ? (ur)
a(t0).

Finally, S outputs Epk(x1 × x2) by computing ut(t0)

u
a(t0)
r

. By construction, it is obvious that the advan-

tage of S is equivalent to ε3.

C.4 Proof of Lemma 1

We now complete the proof of Lemma 1. We note that we have already shown in Theorem 9 that the
proposed scheme is unforgeable on Ltd

pk under Assumption 5 and Assumption 7, since Assumption 8
is a generalized version of Assumption 7. We now show the following.
Lemma 1 (restated) pPRF = (ABM.gen,ABM.spl) is a PPRF with unforgeability on L̂td

pk as
defined above, under the assumptions, 5, 6 and 7.

Proof. Let pPRF = (ABM.gen,ABM.spl) be defined on Π(d). For pk generated by ABM.gen and
integer f ≥ 1, we let

L
(f)
pk :=

{
(t, (ur, ut)) | D(ut) ≡ x1x2 + y(t)D(ur) (mod nf )

}
,

where D is the decryption algorithm of Π(d). By construction, it is clear that L
(d)
pk = Ltd

pk. We note

that Ltd
pk ⊂ L

(1)
pk . We remark that L̂td

pk is the union of disjoint sets, L
(1)
pk and Ldivisor such that

Ldivisor :=

{
(t, (ur, ut)) | 1 < gcd

(
D

(
ut

gx21 u
y(t)
r

)
, n

)
< n

}
.

We first show that our target PPRF has unforgeability on L
(1)
pk . In the proof of Theorem 9,

we change the proof as follows: In the final game, the simulator instead takes (pkdj, c1, c2) where
pkdj = (n, 1) is a public key of DJ PKE Π(1) and (c1, c2), where ci ∈ Z×

n2 , is an instance of

the non-multiplication problem on Π(1). The simulator sets pk′dj := (n, d) and lifts up (c1, c2)

to (g1, g2) ∈ (Z×
nd+1)2 using algorithm B in Lemma 6. Then the simulator start game G3 with

(pk′dj, g1, g2) by playing the role of the challenger. When adversary A outputs (t0, (ur, ut)) ∈ L(1)
pk , the

simulator can solve the non-multiplication problem on Π(1) by computing ut(t0)

u
α(t0)
r

mod n. Therefore,

the probability of A outputting such pairs is negligible; otherwise, it contradicts Assumption 7.
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We next prove that our target PPRF has unforgeability on Ldivisor. We directly construct an
algorithm C that breaks the non-trivial divisor assumption on Π(d). We let C take pkdj from Π(d).
Then, C sets up all public parameter consistent with pkdj and the corresponding secret key except
skdj. We note that C can sample (ur, ut) on arbitrary t under the public key, because skdj is not
needed to sample (ur, ut). C runs adversary A and finally obtain (t∗, (u∗r , u

∗
t )) ∈ Ldivisor. Then, it

outputs c∗ :=
u∗t

g
x2
1 (u∗r)

y(t∗) . (t∗, (u∗r , u
∗
t )) ∈ Ldivisor, means that 1 < gcd(Dskdj(c

∗), n) < n. Therefore,

the probability that (t∗, (u∗r , u
∗
t )) ∈ Ldivisor is negligible; otherwise, it contradicts Assumption 6.

D Instantiation of ABME from Waters Signature based on DDH

In this section, we describe an ABME scheme from Waters based pPRF over a prime cyclic group
without bilinear map. In the construction, the message length is restricted to λ = Ω(log κ). There-
fore, this scheme requires Ω(κ/log κ) expansion factor.

D.1 PPRF from Waters Signature in Non-Bilinear Group of Prime Order

The idea behind the construction is to use Waters signature [45] as a pPRF in a group equipped
with no bilinear map. Let g be a generator of a multiplicative group G of prime order q, on which
the DDH assumption holds. For κ + 1 elements in G, let us define H(t)= h0

∏κ
i=1 h

ti , where
t = (t1, . . . , tκ)∈ {0, 1}κ in which ti ∈ {0, 1} denotes i-th bit representation of string t.

– Genspl(1
κ) picks up g, h0, . . . , hκ

U← G and x1, x2
U← Z/qZ to set g1 = gx1 , g2 = gx2 . It outputs

pk = (G, g, q, λ, g1, g2, h0, . . ., hκ), and sk = x2, where U := G×G.
– Spl(pk, sk, t; r) takes t ∈ {0, 1}κ and outputs u = (ur, ut), by computing ur = gr and ut =

gx21 (H(t))r where r
U← Z/qZ.

Theorem 10. The above construction is pPRF under the DDH assumption.

Proof. Spl is the same as Waters signature scheme when applied to a non-pairing group. So, un-
forgeability is immediately guaranteed if the computational DH assumption holds true. Pseudo-
randomness also holds under the DDH assumption because (gr, H(t)r) is computationally indis-
tinguishable from two independent random elements in G: To explain more details, suppose that
(g, ĝ, h, ĥ) is a tuple of four group elements in G, which is either a DDH instance or a random tuple.
To break the DDH problem, a simulator sets g1 := gx1 , g2 := gx2 , K := gx1x2 , and hi := ĝai , where
x1, x2, a0, . . . , aκ ← G. It then runs adversary A on the above parameters, where A is an adversary
to break pseudo-randomness. For any query t, the simulator picks up random s, v ← Z/qZ and
returns (ur, ut) such that ur = gshv and ut = K · (ĝa0)s(ĥa0)v

∏
i≥1(ĝ

ai)sti(ĥai)vti . We note that

ur = gs+logg(h)v and ut = KH(t)s+logĝ(ŷ)v. Hence, (ur, ut) is a Waters signature if (g, ĝ, h, ĥ) is a
DDH tuple; otherwise it is a pair of two random elements. The simulator outputs the same bit that
A outputs. The simulator’s advantage is the same as that of A. Under the DDH assumption, its
advantage is bounded by a negligible (in κ) function. Therefore, it also satisfies pseudo-randomness.
Hence, the scheme above is an instantiation of pPRF if the DDH assumption holds true.

D.2 ABME from Waters Signature without Pairing

We consider Waters signature [45] in a cyclic group equipped with no bilinear map and the DDH
assumption holds on the group. Let g be a generator of a multiplicative group G of prime order q,
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where we assume that G is efficiently samplable. We let gi = gxi (i = 1, 2) and h = (h0, . . . , hκ) with
hj = gyj , where x1, x2, y0, y1, . . . , yκ ← Z/qZ. We write t = (t1, . . . , tκ)∈ {0, 1}κ where ti ∈ {0, 1}
(i ∈ [κ]). We let y(t)= y0 +

∑κ
i=1 tiyi (mod q) and define H(t)= h0

∏κ
i=1 h

ti
i , that is, H(t) = gy(t).

We let U ′pk = {0, 1}κ ×G2. Then we define the set of Waters signature under pk = (g, g1, g2,h) as

Ltd
pk = {(t, u) | (t, u) ∈ {0, 1}κ × Lpk(t)} such that

Ltd
pk(t) = {(uv, ut) | ∃(x2, v) : uv = gv, ut = gx21 H(t)v, and g2 = gx2}.

We let L̂td
pk = Ltd

pk and so, Lext = U ′pk\Ltd
pk. We note that as mentioned above, the Waters signature

defined on a cyclic group on which the DDH assumption holds constructs a PPRF. We then
construct an ABME scheme as follows.

– ABM.gen(1κ): It generates g, (x1, x2), and y = (y0, . . . , yκ) independently and uniformly from
the above domains, respectively. It then computes g1, g2, h = (h0, . . . , hκ) as above. It outputs
pk = (G, g, q, λ, g1, g2,h), skspl = x2, and skext = (x1,y), where λ = Ω(log κ).

– ABM.spl(sk, t; v): It picks up at random v← Z/qZ, and computes uv = gv and ut = gx21 (H(t))v.
It then outputs u = (uv, ut).

– ABM.enc((t,u)(pk,m; (z, s)): To encrypt message m ∈ {0, 1}λ, where λ = Ω(log κ), it picks up
z, s← Z/qZ independently, and then computes A = gz1H(t)sumt , a = gzgm2 , and b = gsumv . It
outputs c = (A, a, b) as ciphertext.

– ABM.dec(t,u)(skext, c) where skext = (x1,y): To decrypt c = (A, a, b), it searches m ∈ {0, 1}λ
such that

ax1by(t)

A
=

(
gx12

utu
−y(t)
v

)m
.

It aborts if it cannot find such x in a-priori bounded time T = Ω(2λ).

– ABM.col
(t,u)
1 (skspl, v) where skspl = x2: It picks up at random ω, η ← Z/qZ and computes

A = gω1H(t)η, a = gω, and b = gη. It outputs c = (A, a, b) and ξ = (x2, t, u, v, ω, η).
– ABM.col2(ξ, x): To open c to x ∈ {0, 1}λ, it computes z = ω−mx2 mod q and s = η−mv mod q

and outputs (z, s).

We note that ABM.enc runs the simulation algorithm of a canonical sigma protocol on Ltd
pk

with message (challenge) m and ABM.col runs the real protocol of the sigma protocol on Ltd
pk with

witness (x2, v).
In the trap-door mode when (t, u) ∈ Ltd

pk, we can consider a canonical sigma protocol so that
the prover knows (x2, v) such that ut = gx21 H(t)v, g2 = gx2 , and uv = gv. Then, the first message
of the canonical sigma protocol is (A, a, b), where A = gω1H(t)η, a = gω, and b = gη over randomly
chosen ω, η ∈ Z/qZ. For any challenge m ∈ {0, 1}κ, the answer can be computed by z = ω −mx2
and s = η −mv. It is verified as A = gz1H(t)sumt , a = gzgm2 , and b = gsumv .

In the decryption mode when (t, u) ∈ Lext
pk (= U ′pk\Ltd

pk), the first message (A, a, b) from the
simulator for the above canonical sigma protocol commits to m in the perfect binding manner. We

now define ω, η, v as a = gω, b = gη, and uv = gv. Then, x′2 is uniquely defined as ut = g
x′2
1 H(t)v.

If (A, a, b) can be opened with (z, s,m), it implies that logg A

ω
η

 =

x1 y(t) x1x
′
2 + y(t)v

1 0 x2
0 1 v

 z
s
m


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Since (t, u) 6∈ Ltd
pk, x

′
2 6= x2 and hence, the determinant of the matrix above is non-zero and

(z, s,m) is unique.

Notice that x1ω + y(t)η − logg A = x1(x2 − x′2)m. Since g
x′2
1 = utuv

−y(t),

ax1by(t)

A
=

(
gx12

utu
−y(t)
v

)m
Therefore, the decryptor can find secret m ∈ {0, 1}λ in Ω(2λ) steps, where λ = O(log κ).

Since (ABM.gen,ABM.spl) is pPRF (under the DDH assumption), the proposed scheme is an
ABME scheme.

Theorem 11. The scheme as above is an ABME if the DDH assumption holds true.

E All-But-Many Lossy Trapdoor Functions

We recall all-but-many lossy trapdoor functions (ABM-LTF) [31], by slightly modifying the notation
to fit our purpose.

All-but-many lossy trapdoor function ABM.LTF = (ABM.gen,ABM.spl,ABM.eval,ABM.inv) con-
sists of the following algorithms:

– ABM.gen is a PPT algorithm that takes 1κ and outputs (pk, skspl, skext), where pk defines a set
Upk. We let U ′pk = {0, 1}κ × Upk. pk also determines two disjoint sets, Lloss

pk and Linj
pk, such that

Lloss
pk ∪ L

inj
pk ⊂ U

′
pk.

– ABM.spl is a PPT algorithm that takes (pk, skspl, t), where t ∈ {0, 1}κ, picks up inner random
coins v ← COINspl, and computes u ∈ Upk. We write Lloss

pk (t) to denote the image of ABM.spl on
t under pk, i.e.,

Lloss
pk (t) := {u ∈ Upk | ∃ skspl, ∃ v : u = ABM.spl(pk, skspl, t; v)}.

We require Lloss
pk = {(t, u) | t ∈ {0, 1}κ and u ∈ Lloss

pk (t)}. We set L̂loss
pk := U ′pk\L

inj
pk. Since Lloss

pk ∩
Linj
pk = ∅, we have Lloss

pk ⊆ L̂loss
pk ⊂ U ′pk.

– ABM.eval is a DPT algorithm that takes pk, (t, u), and message x ∈ MSP and computes c =
ABM.eval(t,u)(pk, x), where MSP denotes the message space uniquely determined by pk.

– ABM.inv is a DPT algorithm that takes skext, (t, u), and c, and computes x= ABM.inv(t,u)(skext, c).

We require that all-but-many encryption schemes satisfy the following properties:

1. Adaptive All-but-many property: (ABM.gen,ABM.spl) is a probabilistic pseudo random
function (PPRF), as defined in Sec. 3.1, with strongly unforgeability on L̂loss

pk = U ′pk\L
inj
pk. Strong

unforgeability in this paper is called evasiveness in [31].
2. Inversion For every κ ∈ N, every (pk, skspl, skext)) ∈ ABM.gen(1κ), every (t, u) ∈ Linj

pk, and
every x ∈ MSP, it always holds that

ABM.inv(t,u)(skext,ABM.eval(t,u)(pk, x)) = x.

3. `-Lossyness For every κ ∈ N, every (pk, skspl, skext) ∈ ABM.gen(1κ), and every (t, u) ∈ Lloss
pk ,

the image set ABM.eval(t,u)(pk,MSP) is of size at most |MSP| · 2−`.

Here Lloss
pk (resp. Linj

pk) in ABM-LTFs corresponds to Ltd
pk (resp. Lext

pk ) in ABMEs. We remark that
ABM-LTFs [31] require that (ABM.gen,ABM.spl) should be strongly unforgeable, whereas ABMEs
requires that (ABM.gen,ABM.spl) be only unforgeable.

42


