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Abstract. Selective opening attacks (SOA) (for public-key encryption,
PKE) concern such a multi-user scenario, where an adversary adaptively
corrupts some fraction of the users to break into a subset of honestly
created ciphertexts, and tries to learn the information on the messages
of some unopened (but potentially related) ciphertexts. Until now, the
notion of selective opening attacks is only considered in two settings:
sender selective opening (SSO), where part of senders are corrupted and
messages together with randomness for encryption are revealed; and re-
ceiver selective opening (RSO), where part of receivers are corrupted and
messages together with secret keys for decryption are revealed.

In this paper, we consider a more natural and general setting for selective
opening security. In the setting, the adversary may adaptively corrupt
part of senders and receivers simultaneously, and get the plaintext mes-
sages together with internal randomness for encryption and secret keys
for decryption, while it is hoped that messages of uncorrupted parties
remain protected. We denote it as Bi-SO security since it is reminiscent
of Bi-Deniability for PKE.

We first formalize the requirement of Bi-SO security by the simulation-
based (SIM) style, and prove that some practical PKE schemes achieve
SIM-Bi-SO-CCA security in the random oracle model. Then, we suggest
a weak model of Bi-SO security, denoted as SIM-wBi-SO-CCA security,
and argue that it is still meaningful and useful. We propose a generic
construction of PKE schemes that achieve SIM-wBi-SO-CCA security in
the standard model and instantiate them from various standard assump-
tions. Our generic construction is built on a newly presented primitive,
namely, universalκ hash proof system with key equivocability, which may
be of independent interest.

Keywords: Public Key Encryption, Multi-User Security, Selective Open-
ing Security, Simulation-Based Security, Chosen-Ciphertext Security



1 Introduction

Public key encryption (PKE) is a fundamental tool to protect messages
sent over a public channel. Usually, a PKE scheme is used in an open
system with multi-users. The system contains multiple, say n, users, each
with a public key/secret key pair, i.e., there are n public keys in the
system. Anyone (even not registered in the system) can send messages
over the public channel to a user securely via encrypting the message
under the user’s public key. Thus, each public key will be used for multiple,
say k, times during the lifetime of the system.

Selective Opening Attacks. Currently, the standard security for P-
KE schemes is the so-called “Chosen-ciphertext attack (CCA) security”,
which allows the attacker to learn the decryption of its selected cipher-
texts. Generally, PKE schemes are designed to guarantee security of all
messages in the system against a CCA attacker under the assumption
that internal status of all users are properly protected. This assumption,
however, will be challenged in some real-world scenarios:

– The attacker may corrupt the senders and learn their messages and
the encryption randomness.

– The attacker may corrupt the receivers and learn their secret keys.
With the receivers’ secret keys, the attacker is able to decrypt all
ciphertexts sent to the receivers and obtain the messages.

While it is hopeless to protect those opened messages, one natural ques-
tion is whether the unopened messages are still well protected. The above
attacks are called selective opening attacks. Surprisingly, it is proved that
standard security notion (i.e., CCA security) is not able to guarantee se-
curity against selective opening attacks (SO security) [2,19,18].

The notion of SO security for PKE was firstly formalized by Bellare
et al. [3] at EUROCRYPT 2009. To date, two settings have been con-
sidered for SO security: sender corruption [3] and receiver corruption [2].
In the sender corruption setting, part of senders are corrupted, with the
corruption exposing their coins and messages. In the receiver corruption
setting, part of receivers are corrupted, with corruption exposing their se-
cret keys and messages. We denote SO security in the sender-corruption
setting and in the receiver-corruption setting by SSO security and RSO
security, respectively.

Furthermore, for each setting, there are two types of definitions for
SO security: indistinguishability-based (IND) SO security and simulation-
based (SIM) SO security. IND-SO security requires that no efficient ad-
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versary can distinguish the uncorrupted users’ ciphertexts from the en-
cryption of fresh messages, which are sampled according to a conditional
probability distribution (conditioned on the opened ciphertexts, which
means the ciphertexts of the corrupted parties). In other words, IND-
SO security requires that the considered message distributions should be
efficiently conditionally re-samplable [3]. SIM-SO security requires that
anything, which can be computed efficiently from the ciphertexts, the
opened messages as well as the corrupted information, can also be com-
puted efficiently only with the opened messages. SIM-SO security imposes
no limitation on the message distributions.

Motivations. Previous works on SIM-SO-CCA secure PKE schemes on-
ly provide either sender selective opening security [3,10,17,21,27,15,26,28,22],
or receiver selective opening security [2,13,24,20,12,33]. However, it is
rarely possible to predict whether the attacker will corrupt the senders
or the receivers beforehand in practice. Moreover, most of the previous
works about RSO security only focused on the single-challenge setting,
i.e., each public key can only be used once to produce a single ciphertext.
This is very unrealistic in practice.4

Based on the above facts, the following question is raised naturally:
How to define security models to capture the practical requirements of
selective opening security in the multi-user scenario, and provide secure
PKE schemes in the new models?

Our Contributions. In this paper, for a multi-user system with multi-
ple public keys where each public key will be used multiple times, we give
a new security definition of SO security, denoted as SIM-Bi-SO-CCA se-
curity. In the security model, the adversary may adaptively corrupt some
fraction of senders and receivers simultaneously, and get the plaintex-
t messages together with internal randomness for encryption and secret
keys for decryption, while it is hoped that messages of uncorrupted par-
ties remain protected. (The definition is reminiscent of Bi-Deniability [30]
for PKE.) We prove that some practical PKE schemes achieve SIM-Bi-
SO-CCA security in the random oracle model.

Then, we suggest a weak model of SIM-Bi-SO-CCA security, denoted
as SIM-wBi-SOk-CCA security (k ∈ N), where (i) the adversary has to
specify whether it is going to corrupt the senders or the receivers after
receiving the public keys and before seeing the challenge ciphertexts, and

4 Very recently, Yang et al. [33] formalized the notion of RSO security in the multi-
challenge setting. But their work only considers the receiver corruption setting.
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(ii) if the adversary chooses to corrupt some fraction of the receivers, it
is just allowed to corrupt the receivers whose public keys are employed
for encryption at most k times. We stress that the weak model is still
meaningful and useful because it provides the original SIM-SSO-CCA se-
curity and SIM-RSO-CCA security simultaneously. Furthermore, we show
that SIM-wBi-SOk-CCA security is strictly stronger than SIM-SSO-CCA
security and SIM-RSO-CCA security. We also stress that the recently
proposed SIM-RSOk-CCA security notion [33] is a special case of our
SIM-wBi-SOk-CCA security.

Finally, we propose a generic construction of PKE that achieves SIM-
wBi-SOk-CCA security in the standard model and instantiate it from
various standard assumptions. Our generic construction is built on a new
variant of hash proof system (HPS), which should additionally satisfy the
universalk+1 property and key equivocability. The technical overview of
the generic construction is given in Sec. 4.1. We also explore the existence
of universalk+1 HPS with key equivocability and provide instantiations
from either the DDH assumption or the DCR assumption.

Related works. Since proposed by Bellare et al. in [3], selective opening
secure PKE has been extensively studied.

For SSO security, Bellare et al. in [3] firstly showed that any lossy
encryption is IND-SSO-CPA secure. IND-SSO-CCA secure PKE schemes
were constructed from All-But-N lossy trapdoor functions [14] or All-
But-Many lossy trapdoor functions [17,26,5,22]. If this lossy encryption
has an efficient opener, then the resulting PKE scheme can be proven to
be SIM-SSO-CCA secure as shown in [3]. Fehr et al. [10] showed an ap-
proach, employing extended hash proof system and cross-authentication
code (XAC), to build SIM-SSO-CCA secure PKE schemes. As pointed out
in [21], a stronger property of XAC is needed to make the proof rigorous.
Following this line of research, a generic construction of SIM-SSO-CCA
seucre PKE, from a special kind of key encapsulation mechanism (KEM)
and a strengthened XAC, was proposed in [27] and then extended to
achieve tight security in [28]. As showed in [15,16], some practical PKE
constructions also enjoy SIM-SSO-CCA security.

For RSO security, Hazay et al. [13] showed that SIM-RSO-CPA secure
PKE can be built from non-committing encryption for receiver (NCER)
[6], and IND-RSO-CPA secure PKE can be built from a tweaked variant
of NCER. IND-RSO-CCA secure PKE schemes were proposed in [24].
SIM-RSO-CCA secure PKE was constructed using indistinguishability
obfuscation (iO) in [23], and constructed based on standard computation-
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al assumptions in [12,20]. Recently, Yang et al. [33] formalized the notion
of multi-challenge RSO security (RSOk security), proved that SIM-RSO
security is not enough to guarantee SIM-RSOk security (k > 1), and
showed SIM-RSOk-CPA/CCA secure PKE constructions.

Roadmap. In the rest part of this work, we give some preliminaries in
Sec. 2. We introduce the formal definitions for SIM-Bi-SO-CCA security
and SIM-wBi-SOk-CCA security (k ∈ N), and show that SIM-wBi-SOk-
CCA security is strictly stronger than SIM-SSO-CCA and SIM-RSO-CCA
security in Sec. 3. Next, we introduce the main building block, namely,
universalκ HPS with key equivocability, and present a generic construc-
tion of PKE scheme that achieves SIM-wBi-SOk-CCA security in the
standard model in Sec. 4. Finally, we show that some practical PKE
schemes achieve SIM-Bi-SO-CCA security in the random oracle model,
in Sec. 5.

2 Preliminaries

Notations. Throughout this paper, let λ ∈ N denote the security pa-
rameter. For n ∈ N, let [n] denote the set {1, 2, · · · , n}. For a finite set S,
we use |S| to denote the size of S; we use s← S to denote the process of
sampling s uniformly from S. For a distribution Dist, x ← Dist denotes
the process of sampling x from Dist.

We use boldface to denote vectors, e.g., x. We use x[i] to denote the
i-th component of x.

For a probabilistic algorithm A, let RA denote the randomness space
of A. We let y ← A(x; r) denote the process of running A on input x and
inner randomness r ∈ RA and outputting y. We write y ← A(x) for y ←
A(x; r) with uniformly chosen r ∈ RA. We write PPT for probabilistic
polynomial-time. For a function f(λ), we write that f(λ) ≤ negl(λ) if it
is negligible.

For two distributions Dist1 and Dist2, the statistical distance between
Dist1 and Dist2 is defined as

∆(Dist1,Dist2) :=
1

2

∑
x

| Pr
X1←Dist1

[X1 = x]− Pr
X2←Dist2

[X2 = x]|.

We say that Dist1 and Dist2 are statistically indistinguishable (denoted

by Dist1
s≈ Dist2), if ∆(Dist1,Dist2) is negligible.
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Collision-resistant hash. We recall the definition of collision-resistant
hash function here.

Definition 1. (Collision-resistant hash function). A family of collision-
resistant hash function H, with domain Dom and range Rge, is a family
of functions having the following property: for any PPT algorithm A, its
advantage AdvCR

H,A(λ) := Pr[H ← H; (x, x′) ← A(H) : x ̸= x′
∧

H(x) =
H(x′)] is negligible.

Efficiently samplable and explainable domain. In this paper, some
of the domains are required to be efficiently samplable and explainable
[10]. We recall its definition as follows.

Definition 2. (Efficiently samplable and explainable domain). We
say that a domain Dom is efficiently samplable and explainable, if there
are two PPT algorithms (Sample,Explain):

– Sample(Dom; r): On input a domain Dom with uniformly sampled r ←
RSample, Sample outputs an element which is uniformly distributed
over Dom.

– Explain(Dom, x): On input Dom and x ∈ Dom, Explain outputs r which
is uniformly distributed over the set {r ∈ RSample | Sample(Dom; r) =
x}.

This notion can be relaxed by allowing a negligibly small error probabil-
ity (which includes that sampling algorithms may produce near-uniform
output).

Cross-authentication code. The notion of ℓ-cross-authentication code
(XAC) was proposed by Fehr et al. [10], and later adapted to strong and
semi-unique XAC in [25].

Definition 3. (ℓ-Cross-authentication code). For ℓ ∈ N, an ℓ-cross-
authentication code (ℓ-XAC) XAC, associated with a key space XK and
a tag space XT , consists of three PPT algorithms (XGen, XAuth, XVer).
Algorithm XGen(1λ) generates a uniformly random key K ∈ XK, deter-
ministic algorithm XAuth(K1, · · · ,Kℓ) produces a tag T ∈ XT , and de-
terministic algorithm XVer(K,T ) outputs b ∈ {0, 1}. The following prop-
erties are required:

• Correctness: For all i ∈ [ℓ], failXAC(λ) := Pr[XVer(Ki,XAuth(K1,
· · · , Kℓ)) ̸= 1] is negligible, where K1, · · · ,Kℓ ← XGen(1λ) in the
probability.
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• Security against impersonation and substitution attacks: AdvIMP
XAC(λ)

and AdvSUB
XAC(λ) as defined below are both negligible: AdvIMP

XAC(λ) :=
max
i,T ′

Pr[K ← XGen(1λ) : XVer(K,T ′) = 1], where the max is over all

i ∈ [ℓ] and T ′ ∈ XT , and

AdvSUB
XAC(λ) := max

i,K ̸=i,F
Pr

Ki ← XGen(1k)
T = XAuth((Kj)j∈[ℓ])

T ′ ← F (T )
: T ′ ̸= T

∧
XVer(Ki, T

′) = 1

 ,

where the max is over all i ∈ [ℓ], all K̸=i := (Kj)j ̸=i ∈ XKℓ−1 and all
possibly randomized functions F : XT → XT .

Definition 4. (Strong and semi-unique ℓ-XAC). For ℓ ∈ N, we say
that an ℓ-XAC XAC is strong and semi-unique, if it has the following two
properties:

• Strongness: There is a PPT algorithm ReSamp, which takes i ∈
[ℓ], K ̸=i and T as input (where K1, · · · ,Kℓ ← XGen(1λ) and T =
XAuth((Kj)j∈[ℓ])) and outputs K ′i, such that K ′i and Ki are statisti-
cally indistinguishable, i.e.,

StDSTRN
XAC (λ) := ∆(K ′i,Ki)

=
1

2

∑
K∈XK

∣∣Pr[K ′i = K|(K ̸=i, T )]− Pr[Ki = K|(K̸=i, T )]
∣∣

is negligible, where the probabilities are taken over Ki ← XGen(1λ),
conditioned on (K ̸=i, T ), and the randomness of ReSamp.

• Semi-uniqueness: The key space XK can be written as Ka × Kb.
Given a tag T ∈ XT and Ka ∈ Ka, there is at most one Kb ∈ Kb such
that XVer((Ka,Kb), T ) = 1.

3 Bi-SO Security for PKE

Previous security notions of SOA for PKE only consider either sender
corruption setting or receiver corruption setting. We consider a more
natural and general setting for selective opening security. In the setting,
the adversary may adaptively corrupt part of senders and receivers si-
multaneously. We denote it as Bi-SO security since it is reminiscent of
Bi-Deniability [30] for PKE.

For a multi-user system with multiple public keys where each public
key will be used many times, we firstly give the most natural security
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notion of Bi-SO security, denoted as SIM-Bi-SO-CCA security. Then, we
suggest a weak model of SIM-Bi-SO-CCA security, denoted as SIM-wBi-
SOk-CCA security (k ∈ N). The weak model is still meaningful and useful
because it provides the original SIM-SSO-CCA security and SIM-RSO-
CCA security simultaneously. Finally, for completeness, we show that
SIM-wBi-SOk-CCA security is strictly stronger than SIM-SSO-CCA and
SIM-RSO-CCA security.

3.1 Security Definitions

Simulation-based Bi-SO security. In the Bi-SO setting, some of the
senders and some of the receivers may be corrupted simultaneously, and
each public key may be used to encrypt multiple messages. The formal
definition is as follows.

Definition 5. (SIM-Bi-SO-CCA). We say that a PKE scheme PKE =
(Setup,Gen,Enc,Dec)5 is SIM-Bi-SO-CCA secure, if for any PPT adver-
sary A, there exists a PPT simulator S, such that for any PPT distin-
guisher D,

AdvSIM-Bi-SO-CCA
PKE,A,S,D (λ) := |Pr[D(ExpBi-SO-real

PKE,A (λ)) = 1]

− Pr[D(ExpBi-SO-ideal
PKE,S (λ)) = 1]|

is negligible, where both ExpBi-SO-real
PKE,A (λ) and ExpBi-SO-ideal

PKE,S (λ) are defined
in Fig. 1.

Note that in the real experiment, the total number of public keys
and the times that each public key is used for encryption are completely
determined by the adversary.

Remark 1 One can generalize both SIM-Bi-SO-CCA and SIM-wBi-SOk-
CCA security to a new version that the adversary is allowed to make
multiple selective opening queries adaptively. We stress that all the PKE
constructions presented in this paper also achieve the generalized security.

5 Note that both SIM-Bi-SO-CCA and SIM-wBi-SOk-CCA security capture the se-
curity requirements in a multi-user scenario, where multiple public/secret key pairs
are involved. In this setting, some global information is needed to be generated by
a global algorithm Setup, as done in previous works about multi-user security, such
as [1].
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ExpBi-SO-real
PKE,A (λ):

pp← Setup(1λ); n := 0

C = ∅; (M, s1)← AMkRec,Dec
1 (pp)

M := (m1, · · · ,mn)←M
For i = 1 to n:

For j = 1 to |mi|:
ri[j]←R
ci[j]← Enc(pki,mi[j]; ri[j])

C := C ∪ {(i, ci[j])}
(IS , IR, s2)← ADec

2 ((c1, · · · , cn), s1)
out← ADec

3 ((ri[j],mi[j])(i,j)∈IS ,

(ski,mi)i∈IR , s2)

Return (M ,M, IS , IR, out)

MkRec():

n := n+ 1; (pkn, skn)← Gen(pp)

Return pkn

ExpBi-SO-ideal
PKE,S (λ):

(M, s1)← SSimMkRec1 (1λ)

M := (m1, · · · ,mn)←M
len := ((|m∗i |, |m∗i [1]|, · · · , |m∗i [|m∗i |]|)i∈[n])

(IS , IR, s2)← S2(len, s1)
out← S3((mi[j])(i,j)∈IS , (mi)i∈IR , s2)

Return (M ,M, IS , IR, out)

SimMkRec():

n := n+ 1

Return ⊥

Dec(i, c):

If (i > n) ∨ ((i, c) ∈ C): return ⊥
Return Dec(ski, c)

Fig. 1 Experiments for defining SIM-Bi-SO-CCA security of PKE. In these two ex-

periments, we require that IS ⊂ {(i, j) | i ∈ [n], j ∈ [|mi|]} and IR ⊂ [n].

Simulation-based weak Bi-SO security. Now we introduce a weak
model of SIM-Bi-SO-CCA security, which we denote as SIM-wBi-SOk-
CCA security (k ∈ N). The differences between these two security models
are that in the real experiment of SIM-wBi-SOk-CCA security: (i) the
adversary has to specify whether it is going to corrupt some fraction of
the senders or the receivers, before seeing the challenge ciphertexts; (ii) if
the adversary chooses to corrupt some fraction of the receivers, it is just
allowed to corrupt the receivers whose public keys are used for encryption
at most k times. The formal definition is as follows.

Definition 6. (SIM-wBi-SOk-CCA). For any k ∈ N, we say that a
PKE scheme PKE = (Setup,Gen,Enc,Dec) is SIM-wBi-SOk-CCA secure,
if for any PPT adversary A, there exists a PPT simulator S, such that
for any PPT distinguisher D,

Adv
SIM-wBi-SOk-CCA
PKE,A,S,D (λ) := |Pr[D(ExpwBi-SO-real

PKE,A,k (λ)) = 1]

− Pr[D(ExpwBi-SO-ideal
PKE,S,k (λ)) = 1]|
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is negligible, where both ExpwBi-SO-real
PKE,A,k (λ) and ExpwBi-SO-ideal

PKE,S,k (λ) are de-
fined in Fig. 2.

ExpwBi-SO-real
PKE,A,k (λ):

pp← Setup(1λ); n := 0

C = ∅; (β,M, s1)← AMkRec,Dec
1 (pp)

M := (m1, · · · ,mn)←M
For i = 1 to n:

For j = 1 to |mi|:
ri[j]←R
ci[j]← Enc(pki,mi[j]; ri[j])

C := C ∪ {(i, ci[j])}
(I, s2)← ADec

2 ((c1, · · · , cn), s1)
If β = 0: Open := (ri[j],mi[j])(i,j)∈I

If β = 1: Open := (ski,mi)i∈I

out← ADec
3 (Open, s2)

Return (β,M ,M, I, out)

MkRec():

n := n+ 1; (pkn, skn)← Gen(pp)

Return pkn

ExpwBi-SO-ideal
PKE,S,k (λ):

(β,M, s1)← SSimMkRec1 (1λ)

M := (m1, · · · ,mn)←M
len := ((|m∗i |, |m∗i [1]|, · · · , |m∗i [|m∗i |]|)i∈[n])

(I, s2)← S2(len, s1)
If β = 0: Open := (mi[j])(i,j)∈I
If β = 1: Open := (mi)i∈I

out← S3(Open, s2)

Return (β,M ,M, I, out)

SimMkRec():

n := n+ 1

Return ⊥

Dec(i, c):

If (i > n) ∨ ((i, c) ∈ C): return ⊥
Return Dec(ski, c)

Fig. 2 Experiments for defining SIM-wBi-SOk-CCA security. Here in both

ExpwBi-SO-real
PKE,A,k (λ) and ExpwBi-SO-ideal

PKE,S,k (λ), we require that (i) β ∈ {0, 1}, and (ii) when

β = 0, I ⊂ {(i, j) | i ∈ [n], j ∈ [|mi|]}, and when β = 1, I ⊂ {i ∈ [n] | |mi| ≤ k}.

In both ExpwBi-SO-real
PKE,A,k (λ) and ExpwBi-SO-ideal

PKE,S,k (λ), we use β = 0 (resp.
β = 1) to represent that adversary A/simulator S chooses to corrupt
some of the senders (resp. receivers). We stress that in ExpwBi-SO-real

PKE,A,k (λ),
when A1 outputs β = 0, the parameter k puts no restrictions on sender
corruptions I; and when A1 outputs β = 1, A2 is allowed to corrupt the
receivers whose public keys are used for encryption at most k times (i.e.,
I ⊂ {i ∈ [n] | |mi| ≤ k}).

Note that the original SIM-SSO-CCA security [14,10] and SIM-RSO-
CCA security [12,20] are both special cases of SIM-wBi-SOk-CCA securi-
ty. Specifically, the original SIM-SSO-CCA security is SIM-wBi-SOk-CCA
security when A1 always outputs β = 0 and queries the MkRec oracle on-
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ly once6, and the original SIM-RSO-CCA security is SIM-wBi-SOk-CCA
security when A1 always outputs β = 1 and |m1| = · · · = |mn| = 1 (note
that the latter implicitly suggests k = 1). Hence, for a SIM-wBi-SOk-
CCA secure PKE scheme, it achieves the original SIM-SSO-CCA and
SIM-RSO-CCA (and even SIM-RSOk-CCA) security simultaneously.

Very recently, Yang et al. [33] introduced an enhanced security notion
of RSO, SIM-RSOk-CCA security (k ∈ N), for PKE. We notice that
their SIM-RSOk-CCA security is a special case of SIM-wBi-SOk-CCA
security as well. Specifically, SIM-RSOk-CCA security is SIM-wBi-SOk-
CCA security when A1 always outputs β = 1.

3.2 Separation of SIM-wBi-SOk-CCA and SIM-SSO-CCA &
SIM-RSO-CCA

Now we show that SIM-wBi-SOk-CCA security is strictly stronger than
SIM-SSO-CCA security and SIM-RSO-CCA security. Our conclusion is
derived from the fact that SIM-wBi-SOk-CCA security implies SIM-SSO-
CCA and SIM-RSO-CCA security simultaneously, and SIM-SSO-CCA
and SIM-RSO-CCA security do not imply each other. Actually, we have
stronger conclusions:

(1) Supposing that the κ-Linear assumption holds (κ ∈ N), SIM-SSO-
CCA security does not imply SIM-RSO-CPA security;

(2) Supposing that the DDH or DCR assumption holds, SIM-RSO-CCA
security does not imply SIM-SSO-CPA security.

SIM-SSO-CCA;SIM-RSO-CPA. Bellare et al. [2] introduced the
notion of decryption verifiability for PKE, and showed that assuming the
existence of a family of collision-resistant hash functions, which can be
constructed under the discrete-logarithm assumption [11], any decryption-
verifiable PKE scheme is not SIM-RSO-CPA secure [2, Theorem 5.1]7.

Informally, a PKE scheme PKE = (Setup,Gen,Enc,Dec) is called
decryption-verifiable, if it is infeasible to generate (pk, sk0, sk1, c,m0,m1)
such that (i) m0 ̸= m1, (ii) both sk0 and sk1 are valid secret keys cor-
responding to pk, and (iii) Dec(sk0, c) = m0 and Dec(sk1, c) = m1. We

6 The SIM-SSO-CPA security notion presented in [4] allows the adversary to query
the MkRec oracle multiple times.

7 Both [2, Theorem 5.1] and [2, Theorem 4.1] only hold in the the auxiliary input model
(i.e., in the experiments defining SIM-RSO-CPA and SIM-SSO-CPA security, both
the adversary and the simulator get an auxiliary input). So do our counterexamples
in this section. These counterexamples may be modified with the technique proposed
in [2, Sec. 6] to drop the auxiliary inputs.
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note that (i) and (iii) implicitly suggest that sk0 ̸= sk1. In other words,
for any PKE scheme, if each of its public key uniquely determines its
corresponding secret key, then it must be decryption-verifiable.

We notice that the κ-Linear-based SIM-SSO-CCA secure PKE scheme
proposed by Liu and Paterson [27] is such a decryption-verifiable P-
KE scheme. Generally, a public key of the κ-Linear-based Liu-Paterson
scheme is of the form (gy, (gxθ , gxθαθ , gxθβθ)θ∈[κ]), where g is a generator
of a cyclic group G of prime order q and (y, (xθ, αθ, βθ)θ∈[κ]) ∈ (Zq)3κ+1,

and the corresponding secret key is (αθ, βθ, x
−1
θ y)θ∈[κ]. It’s obvious that

the public key uniquely determines its corresponding secret key. So the
κ-Linear-based Liu-Paterson scheme is decryption-verifiable. According
to [2, Theorem 5.1], we conclude that assuming the existence of a fam-
ily of collision-resistant hash functions, the κ-Linear-based Liu-Paterson
scheme is not SIM-RSO-CPA secure.

For completeness, we recall the formal definition of decryption verifi-
ability [2] and the κ-Linear-based Liu-Paterson scheme [27] in Appendix
B and C respectively.

SIM-RSO-CCA;SIM-SSO-CPA. As pointed out in [2, Theorem
4.1], the DDH-based Cramer-Shoup scheme [7] is not SIM-SSO-CPA se-
cure. On the other hand, Huang et al. [20] and Hara et al. [12] showed
that this PKE scheme (for single-bit message) achieves SIM-RSO-CCA
security. This fact suggests that when the DDH assumption holds, SIM-
RSO-CCA security does not imply SIM-SSO-CPA security. With similar
analysis, this conclusion can be extended to the case that the DCR as-
sumption holds.

4 PKE with SIM-wBi-SOk-CCA Security

In this section, we propose a PKE scheme achieving SIM-wBi-SOk-CCA
security. We firstly introduce a new primitive, universalκ HPS with key
equivocability for any polynomially bounded function κ, and provide con-
crete constructions for it from the DDH assumption and the DCR assump-
tion respectively. Then, with this new primitive as a building block, we
show our PKE construction and prove that it meets SIM-wBi-SOk-CCA
security in the standard model.

In order to make our idea more understandable, we firstly provide a
technique overview before going into the details.
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4.1 Technique Overview

In the real experiment of SIM-wBi-SOk-CCA security, the bit β is used
to indicate whether the adversary wants to corrupt some fraction of the
senders (β = 0) or the receivers (β = 1), and the adversary does not
specify the value of β until it sees public keys (pki)i∈[n] via querying the
oracle MkRec. Hence, to prove SIM-wBi-SOk-CCA security, when β = 0,
we need to somehow generate malformed ciphertexts for (pki)i∈[n], such
that they can be opened in the sense of SSO (i.e., exposing the messages
and the corresponding randomness to the adversary); and when β = 1,
we need to somehow generate malformed ciphertexts for (pki)i∈[n], such
that they can be opened in the sense of RSO (i.e., exposing the messages
and the corresponding secret keys to the adversary).

Our scheme, encrypting ℓ-bit messages, is inspired by the works of
[10,21,25]. The public/secret key pair is ℓ pairs of public and secret keys
(i.e., (hpkγ , hskγ)γ∈[ℓ]) of a hash proof system (HPS) HPS [8]. Informal-

ly, to encrypt a message m = (m1, · · · ,mℓ) ∈ {0, 1}ℓ, the encryption
algorithm sets that for each γ ∈ [ℓ],{

If mγ = 0 : xγ ← X ; Kγ ← Ksp
If mγ = 1 : xγ ← L; Kγ = PubEv(hpkγ , xγ , wγ)

where L ⊂ X and X are both finite sets generated with a hard subset
membership problem, PubEv is the public evaluation algorithm of HPS,
wγ is a witness for xγ ∈ L, and Ksp is the range of PubEv. Then, we
use a strengthened cross-authentication code (XAC) to “glue” x1, · · · , xℓ
together, obtaining a XAC tag T . So the generated ciphertext correspond-
ing to m is c = (x1, · · · , xℓ, T ). To decrypt a ciphertext c = (x1, · · · , xℓ,
T ), the decryption algorithm firstly computes that (Kγ = SecEv(hskγ ,
xγ))γ∈[ℓ], where SecEv is the secret evaluation algorithm of HPS, and
then for each γ ∈ [ℓ], sets mγ = 1 if and only if T is verified correctly by
Kγ (via the verification algorithm of XAC).

Now we turn to the security proof. In order to prove SIM-wBi-SOk-
CCA security, we need to construct a PPT simulator S, such that the
ideal experiment and the real experiment are indistinguishable. In partic-
ular, we need to generate some malformed ciphertexts (before seeing the
real messages), such that they are computationally indistinguishable from
the real challenge ciphertexts, and meanwhile can be efficiently opened
according to the value of β.

If β = 0, we need to generate malformed ciphertexts c = (x1, · · · , xℓ,
T ), and then open them according to the real messagesm = (m1, · · · ,mℓ),
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by providing random coins which can be used to encrypt the real mes-
sages to recover the malformed ciphertexts. We generate the malformed
ciphertexts with encryptions of ℓ ones, i.e., for each γ ∈ [ℓ], xγ ← L ⊂ X
and Kγ = PubEv(hpkγ , xγ , wγ) ⊂ Ksp. Hence, after generating these mal-
formed ciphertexts, to open a ciphertext, for each γ ∈ [ℓ], if the real
message bit mγ = 1, the random coin (i.e., wγ) employed to generate (xγ ,
Kγ) can be returned directly; if mγ = 0, return the random coin which
is generated by explaining xγ as a random element sampled from X , and
explaining Kγ as a random key sampled from Ksp.

Now, we show that a real challenge ciphertext can be substituted
with the malformed ciphertext without changing the adversary’s view
significantly. For γ = 1 to ℓ,

1) We modify the decryption procedure of the decryption oracle, such
that it does not make use of hskγ . More specifically, for a decryption
query c′ = (x′1, · · · , x′ℓ, T ′), if x′γ /∈ L, the decryption oracle directly
sets mγ = 0. The statistical properties of HPS and strengthened XAC
guarantee that this modification does not change the adversary’s view
significantly.

2) Ifmγ = 0, the randomly sampledKγ is replaced withKγ = SecEv(hskγ ,
xγ). The perfect universality of HPS guarantees that this change is
imperceptible to the adversary.

3) If mγ = 0, Kγ is updated again via the resampling algorithm of
strengthened XAC. The statistical property of strengthened XAC
guarantees that this modification does not change the adversary’s view
significantly.

4) The decryption procedure of the decryption oracle is changed to work
with the original decryption rules. The statistical properties of HPS
and strengthened XAC guarantee that this modification is impercep-
tible to the adversary.

5) If mγ = 0, xγ ← L instead of uniformly sampling from X . The under-
lying subset membership problem of HPS guarantees that this change
is also imperceptible to the adversary.

Note that these substitutions only consider the situation that a single
public key is used to encrypt a single message. Fortunately, we can extend
it to the situation that there are n public keys (for any n ∈ N), and each
public key is employed to encrypt multiple messages.

If β = 1, we need to generate malformed ciphertexts, and then open
them according to the real messages, by providing valid secret keys which
can be used to decrypt the malformed ciphertexts to obtain the messages.
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Note that a public key of this scheme is of the form pk = (hpk1, · · · ,
hpkℓ), and the corresponding secret key is sk = (hsk1, · · · , hskℓ). Hence,
informally, what we need is to generate a malformed ciphertext without
seeing the message, such that for any message m = (m1, · · · ,mℓ) ∈ {0,
1}ℓ, we can generate some secret key sk′ = (hsk′1, · · · , hsk′ℓ) satisfying
that (i) sk′ is a valid secret key corresponding to pk (i.e., for all γ ∈ [ℓ],
hsk′γ is a valid HPS secret key corresponding to hpkγ); (ii) decrypting the
malformed ciphertext with sk′ will lead to m.

We try to generate such a malformed ciphertext c = (x1, · · · , xℓ, T ).
For each γ ∈ [ℓ], if xγ ∈ L (with a witness wγ), all the HPS secret

keys corresponding to hpkγ will lead to the same K̃γ = PubEv(hpkγ , xγ ,
wγ) = Kγ . In other words, for any fixed ciphertext (· · · , xγ , · · · , T ), no
matter what the secret key is, the decryption of this ciphertext will lead
to the same mγ . So it’s impossible to open the malformed ciphertext
successfully when mγ = 1−mγ . Hence, our malformed ciphertexts focus
on the case c = (x1, · · · , xℓ, T ) that x1, · · · , xℓ ∈ X \L. On the other hand,
if Kγ is uniformly sampled, it seems unlikely to decrypt the ciphertext to
recover the original message when mγ = 1 due to the property of XAC. So
our malformed ciphertexts further focus on the case c = (x1, · · · , xℓ, T )
that for all γ ∈ [ℓ], xγ ∈ X \ L and Kγ = SecEv(hskγ , xγ).

We stress that in the real experiment of SIM-wBi-SOk-CCA security,
the adversary is just allowed to corrupt the receivers whose public keys
are used for encryption at most k times. So for simplicity, here we only
consider the case that pk = (hpk1, · · · , hpkℓ) is used to encrypt exactly
k messages (i.e., mj = (mj,1, · · · ,mj,ℓ) ∈ {0, 1}ℓ (j ∈ [k])). More specif-
ically, for each γ ∈ [ℓ], hskγ is used k times (note that we use sk to
generate the malformed ciphertexts), generating k ciphertext parts (i.e.,
K1,γ = SecEv(hskγ , x1,γ), · · · ,Kk,γ = SecEv(hskγ , xk,γ)). In other words,
to generate the k malformed ciphertexts, for each γ ∈ [ℓ], we need to

(i) compute SecEv(hskγ , x1,γ), · · · , SecEv(hskγ , xk,γ) for some x1,γ , · · · ,
xk,γ ∈ X \ L before seeing the messages;

(ii) generate a HPS secret key hsk′γ such that SecEv(hsk′γ , xj,γ) = SecEv(hskγ ,
xj,γ) if mj,γ = 1, and SecEv(hsk′γ , xj,γ) ̸= SecEv(hskγ , xj,γ) if mj,γ =
0.

However, there is no algorithm for HPS which can generate two HPS se-
cret keys (i.e. hskγ and hsk′γ) meeting the above requirements. Therefore,
we introduce the following new property, which we call “key equivocabil-
ity”, of HPS. Informally, we require that there is an efficient algorithm
SampHsk and a trapdoor td, such that for any x1, · · · , xk ∈ X \ L, the

15



following two distribution ensembles, Distk0 and Distk1, are statistically in-
distinguishable:

Distk0 : = {(hsk,K1, · · · ,Kk, hpk)
∣∣hsk ← SK; hpk = µ(hsk);

∀j ∈ [k] :

Kj ← Ksp if mj = 0;

Kj = SecEv(hsk, xj) if mj = 1}, (1)
Distk1 : = {(hsk′,K1, · · · ,Kk, hpk)

∣∣hsk ← SK; hpk = µ(hsk);

(Kj = SecEv(hsk, xj))j∈[k];

hsk′ ← SampHsk(hsk, td, {xj}j∈[k])}.(2)

We stress that this property requires that no information about hsk be-
yond hpk is leaked. Similar to the proof of case β = 0, we introduce a
modification to the decryption oracle before employing the key equivo-
cability of HPS in order to make sure that nothing about hsk beyond
hpk is leaked. For any decryption query (x′1, · · · , x′ℓ, T ′) and any γ, if
x′γ ∈ X \L, the decryption oracle sets mγ = 0 directly. However, we note
that in the SIM-wBi-SOk-CCA security model, each public key is used to
encrypt k messages. As a result, hsk may be employed k times, i.e., to
compute SecEv(hsk, x1), · · · , SecEv(hsk, xk) for some x1, · · · , xk. So the
perfect universality2 of HPS [8] is not enough to guarantee that the modi-
fication to the decryption oracle is imperceptible to the adversary. To solve
this problem, we introduce another property, perfect universalityk+1, for
HPS. Roughly speaking, HPS is called perfectly universalk+1, if for any
x1, · · · , xk+1 ∈ X \ L and any K ′ ∈ Ksp, even given (hpk,SecEv(hsk,
x1), · · · ,SecEv(hsk, xk)), the probability that SecEv(hsk, xk+1) = K ′ is

1
|Ksp| .

With the help of this new variant of HPS, we can use algorithm
SampHsk to open the aforementioned equivocable ciphertexts c = (x1,
· · · , xℓ, T ) where for each γ ∈ [ℓ], xγ ∈ X \ L and Kγ = SecEv(hskγ , xγ),
successfully. Now, we show that a real challenge ciphertext can be sub-
stituted with the malformed ciphertext without changing the adversary’s
view significantly. A high-level description of the substitution is presented
as follows.

1) We use the secret keys to generate the challenge ciphertexts, instead
of the public keys. The statistical property of HPS guarantees that
this change is imperceptible to the adversary.

2) All the xj,γ (j ∈ [k], γ ∈ [ℓ]) are sampled from X \L, instead of being
sampled from L (when mj,γ = 1). The underlying subset membership
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problem of HPS guarantees that this change is also imperceptible to
the adversary.

3) Note that sk = (hsk1, · · · , hskℓ) is employed to encrypt mj = (mj,1,
· · · ,mj,ℓ) ∈ {0, 1}ℓ (j ∈ [k]), and specifically, for each γ ∈ [ℓ], hskγ is
used to handle m1,γ , · · · ,mk,γ , as shown in Fig. 3. For each γ ∈ [ℓ],
employ hskγ to compute Kj,γ when mj,γ = 0 (for all j ∈ [k]). The
key equivocability of HPS guarantees that this modification does not
change the adversary’s view significantly.

Fig. 3 Relations among sk and m1, · · · ,mk

4.2 Universalκ Hash Proof System with Key Equivocability

Now we introduce the main building block, namely, universalκ HPS with
key equivocability, for any polynomially bounded κ, and show concrete
constructions for it.

The definition. For any polynomially bounded function κ, we provide
a definition of universalκ HPS with key equivocability, which enhances
the standard HPS [8] with key equivocability and universalκ property. It
works on a strengthened version of subset membership problem SSMP,
which defines some additional languages and provides a trapdoor to rec-
ognize elements from these languages.

Definition 7 (Strengthened Subset Membership Problem). A strength-
ened subset membership problem (SSMP) SSMP consists of five PPT al-
gorithms (SSmpG, SSmpX, SSmpL,SSmpLS, SSmpChk):

– SSmpG(1λ, k): On input 1λ and polynomially bounded k > 0, algorith-
m SSmpG outputs a system parameter prm and a trapdoor td. The
parameter prm defines 2k + 2 sets (X ,L,L1, · · · ,L2k), where X is an
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efficiently recognizable finite set, L ⊂ X , and L1, · · · ,L2k are distinct
subsets of X \ L. For simplicity of notation, we write

prm = (X ,L,L1, . . . ,L2k)

when employing HPS for SSMP to construct PKE schemes.
– SSmpX(prm): On input prm, SSmpX outputs a uniformly chosen x←X .
– SSmpL(prm): On input prm, SSmpL samples x←L with randomness

w ∈ RSSmpL, and outputs (x,w). We say that w is a witness for x ∈ L.
– SSmpLS(prm, i ∈ [2k]): On input prm and i ∈ [2k], SSmpLS outputs a

uniformly chosen xi←Li.
– SSmpChk(prm, td, x): On input prm, td and x, SSmpChk outputs an

integer [0, 2k] or an abort symbol ⊥.

Also, it satisfies the following properties:

– Hardness. For all i ∈ [2k], for any PPT distinguisher D, the follow-
ing advantages are all negligible,

AdvHARD-1
SSMP,D,i(λ) := |Pr[D(prm, xX ) = 1]− Pr[D(prm, xi) = 1]|,

AdvHARD-2
SSMP,D,i(λ) := |Pr[D(prm, xL) = 1]− Pr[D(prm, xi) = 1]|,

where the probabilities are over prm← SSmpG(1λ, k), xX ← SSmpX(prm),
(xL, w)← SSmpL(prm), and xi ← SSmpLS(prm, i). 8

– Sparseness. The probability

SparSSMP(λ) := Pr[(prm, td)← SSmpG(1λ, k);xX ← SampX(prm) : xX ∈ L]

is negligible.
– Explainability. The finite set X is an efficiently samplable and ex-

plainable domain (as defined in Definition 2).
– Sampling Correctness. Let (prm, td) ← SSmpG(1λ, k). Then the

distributions of the outputs of SSmpX(prm), SSmpL(prm), and SSmpLS(prm,
i) (i ∈ [2k]) are statistically indistinguishable from uniform distribu-
tions over X , L and Li (i ∈ [2k]) respectively.

– Checking Correctness. For any (prm, td) generated by SSmpG, if
x ∈ L, then SSmpChk(prm, td, x) = 0; if there exists i ∈ [2k] s.t.
x ∈ Li, then SSmpChk(prm, td, x) = i; otherwise, SSmpChk(prm, td,
x) =⊥.

8 Note that a hard SSMP is also a hard SMP, since a simple hybrid argument shows
that for any PPT distinguisher D, |Pr[D(prm, xX ) = 1] − Pr[D(prm, xL) = 1]| ≤
AdvHARD-1

SSMP,D,1(λ) + AdvHARD-2
SSMP,D,1(λ).
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Remark 2 The additional trapdoor, generated by SSmpG, will also be
used in the key equivocability property (see Definition 10) of HPS.

Definition 8 (Hash Proof System [8]). A hash proof system HPS for
a SSMP SSMP consists of three PPT algorithms (PrmG, PubEv, SecEv):

– PrmG(prm): Given prm, which is generated by SSmpG(1λ, k) and de-
fines 2k + 2 sets (X ,L,L1, . . . ,L2k), algorithm PrmG outputs a pa-
rameterized instance prmins := (Ksp,SK,PK, Λ(·), µ), where Ksp, SK,
PK are all finite sets, Λ(·) : X → Ksp is a family of hash functions
indexed with secret hash key hsk ∈ SK, and µ : SK → PK is an
efficiently computable function.

– SecEv(hsk, x): On input hsk ∈ SK and x ∈ X , the deterministic secret
evaluation algorithm SecEv outputs a hash value K = Λhsk(x) ∈ Ksp.

– PubEv(hpk, x, w): On input hpk = µ(hsk) ∈ PK, x ∈ L and a witness
w for x ∈ L, the deterministic public evaluation algorithm PubEv
outputs a hash value K = Λhsk(x) ∈ Ksp.

Also, it should be

– Projective. For any hsk ∈ SK and any x ∈ L with witness w, the
hash value Λhsk(x) is uniquely determined by hpk = µ(hsk) and x,
concretely, we require that SecEv(hsk, x) = PubEv(hpk, x, w).

– Perfectly Universal. For all prm generated by SSmpG(1λ), all pos-
sible prmins ← PrmG(prm), all hpk ∈ PK, all x ∈ X \ L, and all
K ∈ Ksp, the probability Pr[Λhsk(x) = K | µ(hsk) = hpk] = 1

Ksp
,

where the probability is over hsk ← SK.

Definition 8 is the same as the original definition of HPS in [8]. In our
PKE construction, we further require that Ksp is efficiently samplable and
explainable. Besides, we require HPS to have the following two properties.

Definition 9 (Perfectly Universalκ). For any polynomial κ, we say
that HPS is perfectly universalκ, if for all prm generated by SSmpG(1λ,
k), all possible prmins← PrmG(prm), all hpk ∈ PK, all pairwise different
x1, · · · , xκ ∈ X \ L, and all K1, · · · ,Kκ ∈ Ksp,

Pr

[
Λhsk(xκ) = Kκ

∣∣∣∣ µ(hsk) = hpk
Λhsk(x1) = K1, · · · , Λhsk(xκ−1) = Kκ−1

]
= 1
|Ksp| ,

where the probability is over hsk ← SK.
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Definition 10 (Key Equivocability). We say that HPS is key equiv-
ocable, if there is a PPT algorithm SampHsk, which takes (hsk, td, x1,
· · · , x2k) as input and outputs another secret key hsk′, such that for all
possible (prm, td) ← SSmpG(1λ, k), all possible prmins = (Ksp,SK,PK,
Λ(·), µ) ← PrmG(prm), all permutations P : [2k] → [2k], and all (x1, · · · ,
x2k) ∈ X 2k satisfying that xi ∈ LP(i), ∆(Dist0,Dist1) is negligible, where
Dist0 and Dist1 are defined in Fig. 4.

Dist0: Dist1:

hsk ← SK; hpk = µ(hsk) hsk ← SK; hpk = µ(hsk)

For i = 1 to k : For i = 1 to 2k :

Ki = SecEv(hsk, xi) Ki = SecEv(hsk, xi)

For i = k + 1 to 2k : hsk′ ← SampHsk(hsk, td, x1, · · · , x2k)

Ki ← Ksp Return (hsk′, hpk,K1, · · · ,K2k)

Return (hsk, hpk,K1, · · · ,K2k)

Fig. 4 Distributions for defining key equivocability of HPS.

Instantiation from DDH. Now we present our instantiation of universalκ
HPS with key equivocability from the DDH assumption. The definition
of the DDH assumption will be recalled in Appendix A.

Let λ be the security parameter and let k, κ be positive integers that
are polynomial in λ. Let G be a multiplicative cyclic group of prime
order q and let g be a generator of G. Let Γ : G2k+1 → Z2k+1

q be an
injective function, which can be extended from the injective function in
the constructions of HPS in [8] directly.

We construct a strengthened subset membership problem SSMP1 =
(SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) as follows:

– SSmpG. On input a security parameter λ and an integer k, the param-
eter generation algorithm first samples ai←Zq and computes gi = gai

for i ∈ [2k + 1]. Then it sets:

X = {u1, . . . , u2k+1 | ∀i ∈ [2k + 1], ui ∈ G}

L = {gw1 , . . . , gw2k+1 | w ∈ Zq}

and for i ∈ [2k], it sets:

Li = {gw1
1 , . . . , g

w2k+1

2k+1 | w,w
′ ∈ Zq, w ̸= w′,
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wi = w′, ∀j ∈ [2k + 1]\{i}, wj = w}

The public parameter prm = (G, q, g, g1, . . . , g2k+1) and the trapdoor
td = (a1, . . . , a2k+1)

– SSmpX. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1),
the algorithm samples ui←G for i ∈ [2k+1] and outputs x = (u1, . . . ,
u2k+1).

– SSmpL. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1),
the algorithm samples w←Zq and outputs x = (gw1 , . . . , g

w
2k+1) and

the witness w.
– SSmpLS. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1)

and an integer i ∈ [2k], the algorithm samples w←Zq and w′←Zq s.t.
w ̸= w′. Then it computes uj = gwj for j ∈ [2k + 1]\{i} and ui = gw

′
i

and outputs (u1, . . . , u2k+1).
– SSmpChk. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1),

a trapdoor td = (a1, . . . , a2k+1), and x = (u1, . . . , u2k+1), the algo-

rithm first computes vj = u
a−1
j

j for j ∈ [2k + 1]. It outputs 0 if
v1 = v2 = . . . = v2k+1. It outputs j if there exists some j ∈ [2k]
s.t. vȷ = vȷ′ for all ȷ, ȷ′ ∈ [2k]\{j} and vj ̸= v2k+1. Otherwise, it
outputs ⊥.

Also, we construct the HPS HPS1 = (PrmG,PubEv, SecEv, SampHsk)
for SSMP1 as follows:

– PrmG. On input a public parameter prm = (G, q, g, g1, . . . , g2k+1),

the algorithm defines Ksp = G, SK = Z(2k+1)×κ×(2k+1)
q , and PK =

G(2k+1)×κ.
Then for any hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] ∈ SK and any x = (u1,
. . . , u2k+1) ∈ X , it defines the map Λ from SK × X to Ksp as

Λhsk(x) =
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

u
sh,i,j ·αi−1

h
j

where (α1, . . . , α2k+1) = Γ (x). Also, for any hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] ∈
SK, it defines the map µ from SK to PK as

µ(hsk) = (ph,i)h∈[2k+1],i∈[κ] = (
∏

j∈[2k+1]

g
sh,i,j
j )h∈[2k+1],i∈[κ]

– SecEv. On input a secret key hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] ∈ SK
and x = (u1, . . . , u2k+1) ∈ X , the secret evaluation algorithm outputs
K = Λhsk(x).
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– PubEv. On input a public key hpk = (ph,i)h∈[2k+1],i∈[κ] ∈ PK, x = (u1,
. . . , u2k+1) ∈ L and a witness w, the public evaluation algorithm com-

putes (α1, . . . , α2k+1) = Γ (x) and outputs K =
∏
h∈[2k+1],i∈[κ] p

w·αi−1
h

h,i .
– SampHsk. On input a secret key hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1], a

trapdoor td = (a1, . . . , a2k+1), and 2k inputs (xℓ = (uℓ,1, . . . , uℓ,2k+1))ℓ∈[2k],
the algorithm works as follows:

1. For ℓ ∈ [2k], it computes p[ℓ] = SSmpChk(prm, td, xℓ).
2. It outputs ⊥ if there exists ℓ ∈ [2k] s.t. p[ℓ] ̸∈ [2k] or there exist

distinct ℓ1, ℓ2 ∈ [2k] s.t. p[ℓ1] = p[ℓ2].
3. For h ∈ [2k + 1], i ∈ [κ], j ∈ {p[1], . . . ,p[k]}, it sets s′h,i,j = sh,i,j .
4. For h ∈ [2k + 1], i ∈ [κ], j ∈ {p[k + 1], . . . ,p[2k]}, it samples

s′h,i,j←Zq.
5. For h ∈ [2k + 1], i ∈ [κ], it sets s′h,i,2k+1 = (

∑
j∈[2k+1] ajsh,i,j −∑

j∈[2k] ajs
′
h,i,j) · a

−1
2k+1.

6. It outputs hsk′ = (s′h,i,j)h∈[2k+1],i∈[κ],j∈[2k+1].

Theorem 1. Assuming the DDH assumption holds, SSMP1 is a strength-
ened subset membership problem with hardness, sparseness, explainability,
and correctness.

Theorem 2. HPS1 is a perfect universalκ HPS with key equivocability.

Proofs of Theorem 1 and Theorem 2 are provided in Appendix D.

Instantiation from DCR. We present our instantiation of universalκ
HPS with key equivocability from the DCR assumption as follows. The
definition of the DCR assumption will be recalled in Appendix A.

Let λ be the security parameter and let k, κ be positive integers that
are polynomial in λ. We construct a strengthened subset membership
problem SSMP2 = (SSmpG, SSmpX,SSmpL, SSmpLS, SSmpChk) as fol-
lows:

– SSmpG. On input a security parameter λ and an integer k, the parame-
ter generation algorithm first samples primes p′, q′, p, q s.t. p = 2p′+1
and q = 2q′ + 1. Then it computes N = pq and N ′ = p′q′. Let
Z∗N2 = GN · GN ′ · G2 · T, where GN ,GN ′ ,G2,T are defined as in
Appendix A. Define X = GN · GN ′ · T and L = GN ′ · T. Define
χ : ZN2 → ZN as χ(a) = ⌊a/N⌋. Let Γ : X2k → Z2k

⌊N2/2⌋ be an
injective function, which can be extended from the injective function
in the constructions of HPS in [8] directly. Also, let g ∈ Z∗N2 be a fixed
generator of L.
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Then it sets:

X = {u1, . . . , u2k | ∀j ∈ [2k], uj ∈ X},

L = {gr1 , . . . , gr2k | ∀j ∈ [2k], rj ∈ Z2N ′},

and for i ∈ [2k], it sets:

Li = {u1, . . . u2k | ui ∈ X\L, ∀j ∈ [2k]\{i}, rj ∈ Z2N ′ , uj = grj}.

The public parameter prm = (N, g) and the trapdoor td = N ′.

– SSmpX. On input a public parameter prm = (N, g), the algorithm
samples uj←X for j ∈ [2k] and outputs x = (u1, . . . , u2k).

– SSmpL. On input a public parameter prm = (N, g), the algorithm
samples rj←Z⌊N/2⌋ for j ∈ [2k] and outputs x = (gr1 , . . . , gr2k) and
the witness (r1, . . . , r2k).

– SSmpLS. On input a public parameter prm = (N, g) and an integer
i ∈ [2k], the algorithm samples rj←Z⌊N/2⌋ for j ∈ [2k]\{i} and ui←X.
Then it computes uj = grj for j ∈ [2k]\{i} and outputs x = (u1, . . . ,
u2k).

– SSmpChk. On input a public parameter prm = (N, g), a trapdoor
td = N ′, and x = (u1, . . . , u2k), the algorithm first computes vj = u2N

′
j

for j ∈ [2k]. It outputs 0 if v1 = v2 = . . . v2k = 1. It outputs j if there
exists j ∈ [2k] s.t. vȷ = 1 for all ȷ ∈ [2k]\{j} and vj ̸= 1. Otherwise,
it outputs ⊥.

Also, we construct the HPS HPS2 = (PrmG,PubEv, SecEv, SampHsk)
for SSMP2 as follows:

– PrmG. On input a public parameter prm = (N, g), the algorithm de-

fines KSP = ZN , SK = Z(2k)×(κ)×(2k)
⌊N2/2⌋ , and PK = L(2k)×(κ)×(2k). Then

for any hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k] ∈ SK and any x = (u1, . . . ,
u2k) ∈ X , it defines the map Λ from SK × X to Ksp as

Λhsk(x) = χ(
∏

h∈[2k],i∈[κ],j∈[2k]

u
sh,i,j ·αi−1

h
j )

where (α1, . . . , α2k) = Γ (x). Also, for any hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k] ∈
SK, it defines the map µ from SK to PK as

µ(sk) = (ph,i,j)h∈[2k],i∈[κ],j∈[2k] = (gsh,i,j )h∈[2k],i∈[κ],j∈[2k].

23



– SecEv. On input a secret key hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k] ∈ SK and
x = (u1, . . . , u2k) ∈ X , the secret evaluation algorithm outputs K =
Λhsk(x).

– PubEv. On input a public key hpk = (ph,i,j)h∈[2k],i∈[κ],j∈[2k] ∈ PK,
x = (u1, . . . , u2k) ∈ L and a witness (r1, . . . , r2k), the public eval-
uation algorithm computes (α1, . . . , α2k) = Γ (x) and outputs K =

χ(
∏
h∈[2k],i∈[κ],j∈[2k] p

rj ·αi−1
h

h,i,j ).
– SampHsk. On input a secret key hsk = (sh,i,j)h∈[2k],i∈[κ],j∈[2k], a trap-

door td = N ′, and 2k inputs (xℓ = (uℓ,1, . . . , uℓ,2k))ℓ∈[2k], the algorithm
works as follows:
1. For ℓ ∈ [2k], it computes p[ℓ] = SSmpChk(prm, td, xℓ).
2. It outputs ⊥ if there exists ℓ ∈ [2k] s.t. p[ℓ] ̸∈ [2k] or there exist

distinct ℓ1, ℓ2 ∈ [2k] s.t. p[ℓ1] = p[ℓ2].
3. For h ∈ [2k], i ∈ [κ], j ∈ {p[1], . . . ,p[k]}, it sets s′h,i,j = sh,i,j .
4. For h ∈ [2k], i ∈ [κ], j ∈ {p[k+1], . . . ,p[2k]}, it samples t←ZN and

uses the Chinese remainder theorem to compute s′h,i,j ∈ Z2NN ′ s.t.
s′h,i,j = t mod N and s′h,i,j = sh,i,j mod 2N ′.

5. It outputs hsk′ = (s′h,i,j)h∈[2k],i∈[κ],j∈[2k].

Theorem 3. Assuming the DCR assumption holds, SSMP2 is a strength-
ened subset membership problem with hardness, sparseness, explainability,
and correctness.

Theorem 4. HPS2 is a perfect universalκ HPS with key equivocability.

Proofs of Theorem 3 and Theorem 4 are similar to proofs of Theorem
1 and Theorem 2. So, we omit the details here. Note that SSMP2 only
achieves a statistical sampling correctness while SSMP1 achieves a perfect
sampling correctness.

4.3 SIM-wBi-SOk-CCA Secure PKE Construction

For any polynomially bounded function k > 0, we propose a PKE scheme
achieving SIM-wBi-SOk-CCA security. Our construction is built from a
perfectly universalk+1 HPS with key-equivocability, and a strong and
semi-unique XAC. The details are as follows.

Let SSMP = (SSmpG, SSmpX, SSmpL, SSmpLS, SSmpChk) be a hard
SSMP. Let HPS = (PrmG,PubEv, SecEv, SampHsk) be a perfectly universalk+1

and key equivocable HPS for SSMP, such that all the Ksp generated by
PrmG can be written as Ka × Kb. For ℓ ∈ N and any prmins = (Ksp,
SK,PK, Λ(·), µ) generated by PrmG, let XACprmins = (XGen,XAuth, XVer,
ReSamp) be a strong and semi-unique (ℓ+1)-XAC with key space XK =
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Ksp = Ka×Kb and tag space XT , andHprmins : (X×PK)ℓ → Kb be a fam-
ily of collision-resistant hash functions. Our PKE scheme PKE = (Setup,
Gen,Enc,Dec) (for ℓ-bit messages) is defined in Fig. 5.

Setup(1λ) :

(prm := (X ,L,L1, · · · ,L2k), td)← SSmpG(1λ, k)

prmins = (Ksp = Ka ×Kb,SK,PK, Λ(·), µ)← PrmG(prm); H← Hprmins; Ka ← Ka

Return pp := (prm, prmins,H,Ka)

Gen(pp) :

Parse prmins = (Ksp,SK,PK, T , Λ(·), µ)

(hskγ)γ∈[ℓ] ← (SK)ℓ; (hpkγ = µ(hskγ))γ∈[ℓ]; pk := (hpkγ)γ∈[ℓ]; sk := (hskγ)γ∈[ℓ]

Return (pk, sk)

Enc(pk = (hpkγ)γ∈[ℓ],m) :

Parse m = (m1, · · · ,mℓ) ∈ {0, 1}ℓ

r := (r
(X )
γ , r

(K)
γ , wγ)γ∈[ℓ] ← (RSSmpX ×RSample ×RSSmpL)

ℓ

For γ = 1 to ℓ :

If mγ = 0: xγ ← SSmpX(prm; r
(X )
γ ); Kγ ← Sample(Ksp; r

(K)
γ )

If mγ = 1: xγ ← SSmpL(prm;wγ); Kγ = PubEv(hpkγ , xγ , wγ)

Kb = H(pk, x1, · · · , xℓ); Kℓ+1 = (Ka,Kb); T = XAuth(K1, · · · ,Kℓ+1)

Return c = (x1, · · · , xℓ, T )

Dec(sk = (hskγ)γ∈[ℓ], c = (x1, · · · , xℓ, T )) :

Kb = H(pk, x1, · · · , xl)

If XVer((Ka,Kb), T ) = 0: m1 = · · · = mℓ = 0; return m = (m1, · · · ,mℓ)

For γ = 1 to ℓ :

Kγ = SecEv(hskγ , xγ); mγ = XVer(Kγ , T )

Return m = (m1, · · · ,mℓ)

Fig. 5 Construction of PKE.

Correctness. For γ ∈ [ℓ], if mγ = 1, then Kγ = Kγ by completeness of
HPS, so mγ = Xver(Kγ , γ, T ) = 1 except with probability failXAC(λ) by
correctness of XAC. On the other hand, if mγ = 0, subset sparseness of
SSMP and perfect universality of HPS guarantee that with overwhelming
probability, Kγ is uniformly random, even given pk, c and m. In this
case, mγ = XVer(Kγ , T ) = 0 except with probability AdvIMP

XAC(λ). So,
correctness of PKE follows by a union bound over γ ∈ [ℓ].

Security. Formally, we have the following theorem, the formal proof of
which will be given in Appendix E.
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Theorem 5. For any polynomial function k > 0, PKE is SIM-wBi-SOk-
CCA secure.

5 PKE with SIM-Bi-SO-CCA Security

In [15], Heuer et al. showed that a generic construction of DHIES [32]
meets SIM-SSO-CCA security in the random oracle model. In this section,
we show that a variant of the generic construction actually achieves SIM-
Bi-SO-CCA security in the random oracle model.

Building blocks. We simply recall the definitions of key encapsulation
mechanism (KEM) and message authentication code (MAC) as follows.

Key Encapsulation Mechanism. A KEM scheme, associated with a ses-
sion key space KKEM and a ciphertext space CKEM, is a tuple of PPT
algorithms KEM = (KemGen,Encap,Decap). The key generation algo-
rithm KemGen takes 1λ as input, and outputs a public/secret key pair
(pk, sk). The encapsulation algorithm Encap takes pk as input, outputs
(K, c) ∈ KKEM × CKEM. The decapsulation algorithm Decap, taking sk
and c as input, outputs a value in KKEM ∪ {⊥}. Standard correctness is
required. Similar to [15], without loss of generality we assume that Encap
uniformly samples K ← KKEM. We also assume that |KKEM| ≥ 2λ and
|CKEM| ≥ 2λ.

We say that KEM has unique encapsulations, if for any (pk, sk) gen-
erated by KemGen, and for any ciphertexts c, c′ satisfying Decap(sk, c) =
Decap(sk, c′) ̸= ⊥, c = c′.

The security notion, one-way security in the presence of a plaintext-
checking oracle (OW-PCA security) [29], is recalled in Appendix F.

Message Authentication Code. A MAC scheme, associated with a key
space KMAC, is a tuple of PPT algorithms MAC = (MacGen,Auth,Verf).
The key generation algorithmMacGen takes 1λ as input and outputs a key
K ∈ KMAC. The authentication algorithm Auth takes K and a message m
as input, outputs a tag t. On input (K,m, t), the verification algorithm
Verf outputs a bit b′ ∈ {0, 1}. Standard correctness is also required here.

MAC is called deterministic, if Auth is deterministic. For a determin-
istic MAC, MAC is called injective, if Auth is an injective function (i.e.,
for any K ∈ KMAC and any m ̸= m′, Auth(K,m) ̸= Auth(K,m′)).

The security notion of strong unforgeability under one-time chosen
message attacks (sUF-OT-CMA security) is recalled in Appendix F.

PKE Construction. Let KEM = (KemGen,Encap,Decap) be an OW-
PCA secure KEM scheme, having unique encapsulations, associated with
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Setup(1λ) :

Return pp := 1λ

Gen(pp = 1λ) :

(pkkem, skkem)← KemGen(1λ); pk := pkkem; sk := (pkkem, skkem)

Return (pk, sk)

Enc(pk = pkkem,m) :

r ←REncap; (K, ckem)← Encap(pkkem; r); (Ksym,Kmac) = HRO(K)

csym = Ksym ⊕m; t = Auth(Kmac, (pkkem, ckem, csym))

Return c = (ckem, csym, t)

Dec(sk = (pkkem, skkem), c = (ckem, csym, t)) :

K = Decap(skkem, ckem); (K
sym

,K
mac

) = HRO(K)

If Verf(K
mac

, (pkkem, ckem, csym), t) = 0: return ⊥
Return m = csym ⊕K

sym

Fig. 6 Construction of PKEK-M.

a session key space KKEM and a ciphertext space CKEM, where Encap uni-
formly samples K, |KKEM| ≥ 2λ and |CKEM| ≥ 2λ. Let MAC = (MacGen,
Auth,Verf) be a deterministic, injective MAC scheme, associated with a
key space KMAC, achieving sUF-OT-CMA security. Let HRO : KKEM → {0,
1}ℓ×KMAC be a hash function. Our PKE scheme PKEK-M = (Setup,Gen,
Enc,Dec), associated with a message space {0, 1}ℓ, is defined in Fig. 6.

The correctness analysis of this scheme is trivial. Now we turn to its
security analysis. Formally, we have the following theorem. Note that, in
our construction, a valid ciphertext contains a tag t generated on (pkkem,
ckem, csym), where in [15], the tag t is only generated on csym. We stress
that this crucial modification makes our construction achieve SIM-Bi-SO-
CCA security. The intuition for the security proof and details are given
in Appendix G.

Theorem 6. If KEM has unique encapsulations and is OW-PCA secure,
MAC is deterministic, injective and sUF-OT-CMA secure, and HRO is
modeled as a random oracle, then PKEK-M is SIM-Bi-SO-CCA secure in
the random oracle model.
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A Cryptographic Assumptions

The DDH Assumption. Let G be a cyclic group of prime order q with
a generator g. The DDH assumption requires that it is hard to distinguish
(ga, gb, gc) and (ga, gb, gab), where a, b, c←Zq.

The DCR Assumption. Now, we recall the Decision Composite Resid-
uosity (DCR) assumption [31] and some useful facts about it shown in
[8].

Let p, q, p′, q′ be primes such that p = 2p′ + 1 and q = 2q′ + 1. Let
N = pq and N ′ = p′q′. Then the group Z∗N2 can be decomposed as the
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direct product GN · GN ′ · G2 · T, where GN ′ and G2 are cyclic groups
of order N ′ and order 2 respectively; GN is a cyclic group of order N
generated by ξ = (1 + N) mod N2; and T is the order-2 subgroup of
Z∗N2 generated by (−1 mod N2). Note that ξa = (1 + aN) mod N2 for
a ∈ {0, 1, · · · , N}.

The DCR assumption requires that it is hard to distinguish a random
element in Z∗N2 and a random element in GN ′ ·G2 · T.

Next, define X = GN · GN ′ · T. The set X is an efficiently samplable
and explainable domain, where the sample algorithm and the explain
algorithm work as follows:

– Sample: The sample algorithm proceeds as follows:
1. For i ∈ [1, 160]:

(a) x←ZN2

(b) If the Jacobi symbol ( xN ) = 1: output x.
2. Output ⊥.

– Explain: on input an element x ∈ X, the explain algorithm proceeds
as follows:
1. Set r to be an empty string.
2. For i ∈ [1, 160]:

(a) Sample b←{0, 1}.
(b) If b = 1, append x to r and outputs r.
(c) Otherwise, sample an element x′←ZN2 s.t. the Jacobi symbol

(x
′

N ) = −1 and append x′ to r.
3. Output ⊥.

Note that as |X|
|Z∗

N2 |
= 1/2, the expected repetition in the sample algorithm

is about 2 and the probability that the sample algorithm outputs ⊥ is
1

2160
, which is negligible. Also, it is easy to see the probability that the

explain algorithm outputs ⊥ is also 1
2160

, which is negligible.
Also, define χ : ZN2 → ZN as χ(a) = ⌊a/N⌋. For any fixed x ∈ X,

χ(xξc) is uniform in ZN if c←ZN .
Finally, define L = GN ′ · T. It is easy to create a generator g for

L by first sampling a random element µ ∈ Z∗N2 and then computing
g = −µ2N . Besides, the DCR assumption implies that a random element
in X is computationally indistinguishable from a random element in L.

B The Definition of Decryption Verifiability

We recall the definition of decryption verifiability for PKE, which is pro-
posed in [2].
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Let PKE = (Setup,Gen,Enc,Dec) be a PKE scheme. A decryption
verifier for PKE is a deterministic polynomial-time algorithm V, which
takes (1λ, pp, pk, sk, c,m) as input and returns a single bit b ∈ {0, 1}.
We require that for all λ ∈ N, all pp generated by Setup(1λ), all (pk, sk)
generated by Gen(pp), all r ∈ REnc and all valid message m ∈ {0, 1}∗,

V(1λ, pp, pk, sk,Enc(pk,m; r),m) = 1.

V is called canonical if V(1λ, pp, pk, sk,Enc(pk,m; r),m) always returns
(Dec(sk,Enc(pk,m; r)) = m).

Definition 11. (Decryption verifiability)[2]. We say that a PKE scheme
PKE = (Setup,Gen,Enc,Dec) is decryption-verifiable with decryption ver-
ifier V, if for any PPT adversary A,

AdvDec-Ver
PKE,V,A(λ) := Pr[ExpDec-Ver

PKE,V,A(λ) = 1]

is negligible, where ExpDec-Ver
PKE,V,A(λ) is defined in Fig. 7.

ExpDec-Ver
PKE,V,A(λ):

pp← Setup(1λ); (pk, c,m0,m1, sk0, sk1)← A(pp)
b0 ← V(1λ, pp, pk, sk0, c,m0); b1 ← V(1λ, pp, pk, sk1, c,m1)

Return ((b0 = 1) ∧ (b1 = 1) ∧ (m0 ̸= m1))

Fig. 7 Experiment for defining decryption verifiability (with decryption verifier V) for
PKE.

Bellare et al. [2, Theorem 5.1] pointed out that any decryption-verifiable
PKE scheme is not SIM-RSO-CPA secure. We recall their conclusion as
follows.

Theorem 7. [2, Theorem 5.1] Let PKE = (Setup,Gen,Enc,Dec) be a P-
KE scheme. Assuming the existence of a family of collision-resistant hash
functions H, there exists a PPT adversary A′, such that for any PPT sim-
ulator S, there is a PPT distinguisher D′ satisfying that AdvRSO-CCA

PKE,H,A′,S,D′(λ)

≥ 1− negl(λ) for a negligible function negl(λ).9

9 The advantage AdvRSO-CCA
PKE,H,A′,S,D′(λ), whose subscript includes H, is the advantage

of the SIM-RSO-CCA adversary A′ in the auxiliary input model [2]. We refer the
readers to [2] for the formal definition and the details.
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C The κ-Linear-Based Liu-Paterson PKE Scheme in [27]

In this appendix, we recall the κ-Linear-Based SIM-SSO-CCA secure P-
KE scheme, which was proposed by Liu and Paterson in [27].

Let G be a cyclic group of prime order q and g be a generator of
G. Let F : Gℓ → (Kb)s be an injective function, where s ∈ N and Kb is
some key space. Let XAC = (XGen,XAuth, XVer,ReSamp) be a strong and
semi-unique (ℓ + s)-XAC with key space XK = Ksp = Ka × Kb and tag
space XT . Let HTCR : Gκ → Zq be a family of target collision-resistant
hash functions for some κ ∈ N. The κ-Linear-based Liu-Paterson scheme
PKELP = (Setup,Gen,Enc,Dec) (for ℓ-bit messages) [27] is recalled in Fig.
8.

D Deterred Proofs for the Instantiation in Sec. 4.2

We provide the proof for Theorem 1 and Theorem 2 in this section.

Proof. For any i ∈ [2k], indistinguishability between a uniform element in
L and a uniform element in Li comes from the DDH assumption directly;
also, indistinguishability between a uniform element in X and a uniform
element in Li can be reduced to the DDH assumption by a simple hybrid
argument. For a uniform x in X , the probability that it falls in L is only
1/q2k, which is negligible. It is easy to see that X and Ksp are efficiently
samplable and explainable. Also, it is easy to check that SSmpChk and
the sampling algorithms are correct. Thus, SSMP1 is a strengthened sub-
set membership problem with hardness, sparseness, explainability, and
correctness.

Next, we prove that HPS1 is a projective and perfect universalκ HPS
with key equivocability.

Projective. For any hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] ∈ SK and any
x = (gw1 , g

w
2 , . . . , g

w
2k+1) ∈ L, let hpk = (ph,i)h∈[2k+1],i∈[κ] = µ(hsk) and
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Setup(1λ) :

HTCR ←HTCR; (Ka1 , · · · ,Kas )← (Ka)s

Return pp := (F,HTCR, (Ka1 , · · · ,Kas ), (G, q, g))
Gen(pp) :

y ← Zq ; h := gy

For θ = 1 to κ :

(xθ, αθ, βθ)← (Zq)3; gθ := gxθ ; wθ := x−1
θ y; uθ := g

αθ
θ ; vθ := g

βθ
θ

pk := (h, (gθ, uθ, vθ)θ∈[κ]); sk := ((αθ, βθ, wθ)θ∈[κ], pk)

Return (pk, sk)

Enc(pk = (h, (gθ, uθ, vθ)θ∈[κ]),m) :

Parse m = (m1, · · · ,mℓ) ∈ {0, 1}ℓ

For γ = 1 to ℓ :

If mγ = 0 :

Kγ ← K; (rγ,1, · · · , rγ,κ+1)← (Zq)κ; ψγ := (grγ,1 , · · · , grγ,κ+1 )

If mγ = 1 :

For θ = 1 to κ : rγ,θ ← Zq ; cγ,θ := g
rγ,θ

θ

tγ := HTCR(cγ,1, · · · , cγ,κ); πγ :=
∏κ

θ=1(u
tγ
θ vθ)

rγ,θ

Kγ := hrγ,1+···+rγ,κ ; ψγ := (cγ,1, · · · , cγ,κ, πγ)
(Kb1 , · · · ,Kbs ) = F (ψ1, · · · , ψℓ); Kℓ+1 := (Ka1 ,Kb1 ); · · · ; Kℓ+s := (Kas ,Kbs )

T = XAuth(K1, · · · ,Kℓ+s)

Return c = (ψ1, · · · , ψℓ, T )

Dec(sk, c = (ψ1, · · · , ψℓ, T )) :

For γ = 1 to ℓ : mγ := 0

(Kb1 , · · · ,Kbs ) = F (ψ1, · · · , ψℓ); Kℓ+1 := (Ka1 ,Kb1 ); · · · ; Kℓ+s := (Kas ,Kbs )

If
∧s

η=1(XVer(Kℓ+η , T ) = 1) :

For γ = 1 to ℓ :

Parse ψγ = (cγ,1, · · · , cγ,κ, πγ)
tγ := HTCR(cγ,1, · · · , cγ,κ)
If

∏κ
θ=1(cγ,θ)

αθtγ+βθ ̸= πγ : mγ = 0

Else: Kγ =
∏κ

θ=1(cγ,θ)
wθ ; mγ = XVer(Kγ , T )

Return m = (m1, · · · ,mℓ)

Fig. 8 Construction of PKELP.

(α1, . . . , α2k+1) = Γ (x), then

Λhsk(x) =
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

u
sh,i,j ·αi−1

h
j

=
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

g
w·sh,i,j ·αi−1

h
j

=
∏

h∈[2k+1],i∈[κ]

(
∏

j∈[2k+1]

g
sh,i,j
j )w·α

i−1
h

=
∏

h∈[2k+1],i∈[κ]

(ph,i)
w·αi−1

h
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which is determined by hpk and x, and is exactly the output of PubEv on
input hpk, x and w.

Perfect Universalκ. For any hpk = (ph,i)h∈[2k+1],i∈[κ] ∈ PK, any dis-
tinct (xℓ = (uℓ,1, . . . , uℓ,2k+1))ℓ∈[κ] ∈ (X\L)κ, and any (Kℓ)ℓ∈[κ] ∈ Kκsp, we
show that

Pr

[
Λhsk(xκ) = Kκ :

µ(hsk) = hpk,
Λhsk(x1) = K1, · · · , Λhsk(xκ−1) = Kκ−1

]
=

1

|Ksp|
.

First, as xκ ∈ X\L, there exists j1, j2 ∈ [2k + 1] that u
a−1
j1
κ,j1
̸= u

a−1
j2
κ,j2

.
Without loss of generality, we assume j1 = 1 and j2 = 2. Next, we will
prove the following stronger argument

Pr

Λhsk(xκ) = Kκ :

µ(hsk) = hpk,
Λhsk(x1) = K1, · · · , Λhsk(xκ−1) = Kκ−1

hsk = (∗, ∗, sh,i,3, . . . , sh,i,2k+1)h∈[2k+1],i∈[κ]

 =
1

|Ksp|
.

(3)

Let ph,i = gb
′
h,i and let bh,i = b′h,i−(

∑
j∈[3,2k+1] ajsh,i,j) for h ∈ [2k+1],

i ∈ [κ]. Also, for ℓ ∈ [κ]:

– Let uℓ,1 = gwℓ,1 and uℓ,2 = gwℓ,2 . Note that a−11 wκ,1 ̸= a−12 wκ,2.
– Let αℓ = (αℓ,1, . . . , αℓ,2k+1) = Γ (xℓ). Here, αℓ1 ̸= αℓ2 for any ℓ1 ̸= ℓ2.

– Let K ′ℓ = Kℓ/(
∏
h∈[2k+1],i∈[κ],j∈[3,2k+1] u

sh,i,jα
i−1
ℓ,h

ℓ,j ) and define K ′ℓ = gzℓ .

Then, we can transform Equation (3) into

Pr



wκ,1 ·
∑

h∈[2k+1],i∈[κ](sh,i,1 · α
i−1
κ,h )

+ wκ,2 ·
∑

h∈[2k+1],i∈[κ](sh,i,2 · α
i−1
κ,h ) = zκ :

∀h ∈ [2k + 1], i ∈ [κ], bh,i = a1sh,i,1 + a2sh,i,2
∀ℓ ∈ [κ− 1], zℓ = wℓ,1 ·

∑
h∈[2k+1],i∈[κ](sh,i,1 · α

i−1
ℓ,h )

+ wℓ,2 ·
∑

h∈[2k+1],i∈[κ](sh,i,2 · α
i−1
ℓ,h )


=

1

|Ksp|

(4)
where the probability is taken over the random choice of (sh,i,1, sh,i,2)h∈[2k+1],i∈[κ].

Let z′ℓ = zℓ − wℓ,1a
−1
1 ·

∑
h∈[2k+1],i∈[κ](bh,i · α

i−1
ℓ,h ) and ∆ℓ = wℓ,2 −

wℓ,1a
−1
1 a2, note that ∆κ ̸= 0. Then for all ℓ ∈ [κ] that ∆ℓ ̸= 0, let

z∗ℓ = z′ℓ/∆ℓ. Then, we can transform Equation (3) into

Pr


∑

h∈[2k+1],i∈[κ](sh,i,2 · α
i−1
κ,h ) = z∗κ :

∀ℓ ∈ [κ− 1] s.t. ∆ℓ ̸= 0,
∑

h∈[2k+1],i∈[κ](sh,i,2 · α
i−1
ℓ,h ) = z∗ℓ

 =
1

|Ksp|

(5)
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where the probability is taken over the random choice of (sh,i,2)h∈[2k+1],i∈[κ].

Define vℓ,h = (1, αℓ,h, . . . , α
κ−1
ℓ,h ) and define vℓ = (vℓ,1∥ . . . ∥vℓ,2k+1).

Since ακ ̸= αℓ for ℓ ∈ [κ− 1], we have vκ linear independent of (v1, . . . ,
vκ−1), and Equation (5) follows. This completes the proof of perfect universalκ.

Key Equivocability. Let hsk = (sh,i,j)h∈[2k+1],i∈[κ],j∈[2k+1] be a random
secret key in SK. Let hpk = (ph,i)h∈[2k+1],i∈[κ] = µ(hsk). Let (xℓ = (uℓ,1,
. . . , uℓ,2k+1))ℓ∈[2k] be elements from different Li, and w.l.o.g., we assume
that xℓ ∈ Lℓ for ℓ ∈ [2k]. Then we can write

xℓ = (gwℓ
1 , . . . , gwℓ

ℓ−1, g
w′ℓ
ℓ , gwℓ

ℓ+1, . . . , g
wℓ
2k+1),

where wℓ and w′ℓ are distinct integers in Zq, and define ∆ℓ = w′ℓ − wℓ.
Let (αℓ,1, . . . , αℓ,2k+1) = Γ (xℓ) for ℓ ∈ [2k]. Let hsk′ ← SampHsk(hsk, td,
x1, . . . , x2k) and write it as hsk′ = (s′h,i,j)h∈[2k+1],i∈[κ],j∈[2k+1]. Then for
h ∈ [2k + 1], i ∈ [κ], we have

– s′h,i,j = sh,i,j for j ∈ [k];
– s′h,i,j←Zq for j ∈ [k + 1, 2k];

– s′h,i,2k+1 = (
∑

j∈[2k+1] ajsh,i,j −
∑

j∈[2k] ajs
′
h,i,j) · a

−1
2k+1.

First, note that

µ(hsk′) = (
∏

j∈[2k+1]

g
s′h,i,j
j )h∈[2k+1],i∈[κ]

= (g
∑

j∈[2k+1] ajs
′
h,i,j )h∈[2k+1],i∈[κ]

= (g
∑

j∈[2k+1] ajsh,i,j )h∈[2k+1],i∈[κ]

= hpk.

Also, for ℓ ∈ [k],

Kℓ =
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

u
sh,i,j ·αi−1

ℓ,h

ℓ,j

=
∏

h∈[2k+1],i∈[κ]

(g
∆ℓ·sh,i,ℓ·αi−1

ℓ,h

ℓ ·
∏

j∈[2k+1]

g
wℓ·sh,i,j ·αi−1

ℓ,h

j )

=
∏

h∈[2k+1],i∈[κ]

(g
∆ℓ·sh,i,ℓ·αi−1

ℓ,h

ℓ · p
wℓ·αi−1

ℓ,h

h,i )

=
∏

h∈[2k+1],i∈[κ]

(g
∆ℓ·s′h,i,ℓ·α

i−1
ℓ,h

ℓ · p
wℓ·αi−1

ℓ,h

h,i )

35



=
∏

h∈[2k+1],i∈[κ]

(g
∆ℓ·s′h,i,ℓ·α

i−1
ℓ,h

ℓ ·
∏

j∈[2k+1]

g
wℓ·s′h,i,j ·α

i−1
ℓ,h

j )

=
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

u
s′h,i,j ·α

i−1
ℓ,h

ℓ,j

= Λhsk′(xℓ).

Thus, (hsk, hpk,K1, . . . ,Kk) and (hsk′, hpk,K1, . . . ,Kk) are identically
distributed.

Next, we will show that (Kk+1, . . . ,K2k) is uniform in Kksp given (hsk′,
hpk,K1, . . . ,Kk). For all ℓ ∈ [k + 1, 2k],

Kℓ =
∏

h∈[2k+1],i∈[κ],j∈[2k+1]

u
sh,i,j ·αi−1

ℓ,h

ℓ,j

=
∏

h∈[2k+1],i∈[κ]

(g
∆ℓ·sh,i,ℓ·αi−1

ℓ,h

ℓ ·
∏

j∈[2k+1]

g
wℓ·sh,i,j ·αi−1

ℓ,h

j )

=
∏

h∈[2k+1],i∈[κ]

(g
∆ℓ·sh,i,ℓ·αi−1

ℓ,h

ℓ · p
wℓ·αi−1

ℓ,h

h,i ),

which are uniformly distributed in Ksp since each (sh,i,k+1, . . . , sh,i,2k) is
uniform in Zkq and is independent of (hsk′, hpk,K1, . . . ,Kk). This com-
pletes the proof of key equivocability. ⊓⊔

E Deterred Proof of Theorem 5

Proof (of Theorem 5). For any PPT adversary A, in the real experiment
ExpwBi-SO-real

PKE,A,k (λ), we denote the challenge ciphertexts and their corre-
sponding messages by (c∗i )i∈[n] and (m∗i )i∈[n], respectively. More specif-
ically, for each i ∈ [n] and j ∈ [|m∗i |], we write m∗i [j] = (m∗i,j,1, · · · ,
m∗i,j,ℓ) ∈ {0, 1}ℓ, r∗i [j] = (r

∗(X )
i,j,γ , r

∗(K)
i,j,γ , w

∗
i,j,γ)γ∈[ℓ], and c∗i [j] = (x∗i,j,1, · · · ,

x∗i,j,ℓ, T ∗i,j). For each i ∈ [n], j ∈ [|m∗i |] and γ ∈ [ℓ], we write K∗i,j,γ ,
K∗b,i,j = H(pki, x

∗
i,j,1, · · · , x∗i,j,ℓ) and K∗i,j,ℓ+1 = (Ka,K

∗
b,i,j) similarly. For

each i ∈ [n], we write pki = (hpki,γ)γ∈[ℓ], and ski = (hski,γ)γ∈[ℓ]. In

ExpwBi-SO-real
PKE,A,k (λ), we additionally define a finite set Iop as follows. At the

beginning of this game, let Iop := ∅, and when A submits its selective
opening query I, update that Iop = I.

Without loss of generality, we assume that A always makes qd de-
cryption queries and n MkRec queries, where qd and n are both some
polynomial functions.
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We proceed in a series of games.
Game G0: G0 is the real experiment ExpwBi-SO-real

PKE,A,k (λ), i.e.,

G0 = ExpwBi-SO-real
PKE,A,k (λ). (6)

Game G1: G1 is the same as G0, except that we abort this game (with
output ⊥) as soon as there exists some (i, γ) ̸= (i′, γ′) such that hski,γ =
hski′,γ′ . By a union bound, we obtain that for any PPT distinguisher D,

|Pr[D(G1) = 1]− Pr[D(G0) = 1]| ≤ nℓ(nℓ− 1)

2|SK|
. (7)

Game G2: G2 is the same as G1, except for the decryption oracle.
Specifically, if A submits a decryption query (i, c = (x1, · · · , xℓ, T )), such
that there exists some j ∈ [|mi|] satisfying that (x∗i,j,1, · · · , x∗i,j,ℓ) ̸= (x1,
· · · , xℓ) and H(pki, x

∗
i,j,1, · · · , x∗i,j,ℓ) = H(pki, x1, · · · , xℓ), then we abort

this game (with output ⊥). Since H is collision-resistant, we derive that
for any PPT distinguisher D,

|Pr[D(G2) = 1]− Pr[D(G1) = 1]| ≤ AdvCR
Hprmins,AH

(λ) (8)

for a suitable PPT adversary AH.
From now on, for each game we consider two cases: β = 0 and β = 1.
We firstly look at the case of β = 0.

Game G3|β=0: G3|β=0 is the same as G2 when β = 0, except that

we abort this game (with output ⊥) as soon as there exist some (i′, j′,
γ′) ̸= (i′′, j′′, γ′′) such that x∗i′,j′,γ′ = x∗i′′,j′′,γ′′ . By a union bound, we
obtain that for any PPT distinguisher D,

∣∣Pr[D(G3|β=0) = 1]− Pr[D(G2) = 1 | β = 0]
∣∣ ≤ nk̃ℓ(nk̃ℓ− 1)

2|L|
, (9)

where k̃ := maxni=1 |m∗i |.
Game Gs

(1,1,0): For convenience, we write that

Gs
(1,1,0) := G3|β=0. (10)

Now, for any i ∈ [n] and j ∈ [|m∗i |], let

Gs
(i,j+1,0) := Gs

(i,j,ℓ), (11)

Gs
(i+1,1,0) := Gs

(i,|m∗i |,ℓ)
, (12)

and for any γ ∈ [ℓ], we consider game Gs
(i,j,γ) as follows.

37



Game Gs
(i,j,γ) (i ∈ [n], j ∈ [|m∗i |], γ ∈ [ℓ]): Gs

(i,j,γ) is the same asGs
(i,j,γ−1),

except for the generation and the related selective opening procedure of
(x∗i,j,γ ,K

∗
i,j,γ), which corresponds to c∗i [j] = (x∗i,j,1, · · · , x∗i,j,ℓ, T ∗i,j). Specif-

ically, in Gs
(i,j,γ),

• During the generation of (x∗i,j,γ ,K
∗
i,j,γ): The challenger samples w∗i,j,γ ←

RSSmpL, and computes x∗i,j,γ ← SSmpL(prm;w∗i,j,γ) and K∗i,j,γ = PubEv
(hpki,γ , x

∗
i,j,γ , w

∗
i,j,γ), no matter whether m∗i,j,γ is 0 or 1.

• To answer the selective opening query I: If (i, j) /∈ I, the selec-
tive opening procedure in Gs

(i,j,γ) is the same as that in Gs
(i,j,γ−1).

So we only need to consider the case that (i, j) ∈ I. We assume
that m∗i,j,γ = 0 (otherwise Gs

(i,j,γ) and Gs
(i,j,γ−1) are identical). For

any (i′, j′) ∈ I satisfying that (i′, j′) ̸= (i, j), the challenger extract-
s and generates the corresponding randomness as that in Gs

(i,j,γ−1).

Then, the challenger samples ŵ∗i,j,γ ← RSSmpL, computes r̂
∗(X )
i,j,γ ←

Explain(X , x∗i,j,γ), updates K∗i,j,γ ← ReSamp(γ,K∗i,j,̸=γ , T
∗
i,j), and com-

putes r̂
∗(K)
i,j,γ ← Explain(XK, K∗i,j,γ). (r̂

∗(X )
i,j,γ , r̂

∗(K)
i,j,γ , ŵ

∗
i,j,γ) is the random-

ness (for (i, j)) returned to the adversary.

Now, we present the following lemma with a postponed proof.

Lemma 1. For any i ∈ [n], any j ∈ [|m∗i |], any γ ∈ [ℓ], and any PPT
distinguisher D,∣∣∣Pr[D(Gs

(i,j,γ)) = 1 | β = 0]− Pr[D(Gs
(i,j,γ−1)) = 1 | β = 0]

∣∣∣Pr[β = 0] ≤ negl(λ).

With the above lemma and Eq. (10)-(12), we obtain that

G3|β=0 = Gs
(1,1,0) ≈ · · · ≈ Gs

(1,1,ℓ)

= Gs
(1,2,0) ≈ · · · ≈ Gs

(1,|m∗1|,ℓ)
= Gs

(2,1,0) ≈ · · · ≈ Gs
(n,|m∗n|,ℓ). (13)

Game G4|β=0: Let G4|β=0 := Gs
(n,|m∗n|,ℓ). So we have that for any PPT

distinguisher D,∣∣Pr[D(G4|β=0) = 1]− Pr[D(G3|β=0) = 1]
∣∣Pr[β = 0] ≤ negl(λ). (14)

Next, we turn to the case of β = 1.
Game G3|β=1: G3|β=1 is the same as G2 when β = 1, except that

(c∗i )i∈{i′∈[n]||m∗i′ |≤k}
are generated with (ski)i∈{i′∈[n]||m∗

i′ |≤k}
, instead of

(pki)i∈{i′∈[n]||m∗
i′ |≤k}

. Specifically, during the generation of (c∗i )i∈{i′∈[n]||m∗i′ |≤k}
in G3|β=1, for all i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k}, all j ∈ [|m∗i |] and all γ ∈ [ℓ], if
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m∗i,j,γ = 1, then the challenger computes K∗i,j,γ = SecEv(hski,γ , x
∗
i,j,γ), in-

stead of PubEv(hpki,γ , x
∗
i,j,γ , w

∗
i,j,γ). The projective property of HPS guar-

antees that the view of A in G3|β=1 are identical to that in G2 when
β = 1. So we derive that

G3|β=1 = G2 (when β = 1). (15)

Note that the modification introduced in G1 ensures that during the
generation of (c∗i )i∈[n] in G3|β=1, for all i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k} and all
γ ∈ [ℓ], hski,γ is employed at most k times, and for any i ∈ {i′ ∈ [n] |
|m∗i′ | > k}, hski,γ has never been used.
Game G3.1|β=1: G3.1|β=1 is the same as G3|β=1, except for the sam-

pling process of (x∗i,j,γ)i∈{i′∈[n]||m∗i′ |≤k},j∈[|m
∗
i |],γ∈[ℓ] during the generation

of (c∗i )i∈{i′∈[n]||m∗i′ |≤k}
. In G3.1|β=1, for all i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k} and

j ∈ [|m∗i |], x∗i,j,1, · · · , x∗i,j,ℓ are all sampled from Lj , no matter whether
m∗i,j,γ (where γ ∈ [ℓ]) is 1 or 0. Specifically, during the generation of
(c∗i )i∈{i′∈[n]||m∗i′ |≤k}

inG3.1|β=1, (x
∗
i,j,γ)i∈{i′∈[n]||m∗i′ |≤k},j∈[|m

∗
i |],γ∈[ℓ] are sam-

pled as shown in Fig. 9.

For i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k},
For j = 1 to |m∗i |,

For γ = 1 to ℓ,

x∗i,j,γ ← SSmpLS(prm, j)

Fig. 9 The sampling process of (x∗i,j,γ)i∈{i′∈[n]||m∗
i′ |≤k},j∈[|m∗

i |],γ∈[ℓ] in G3.1|β=1.

A simple hybrid argument shows that for any PPT distinguisher D,∣∣Pr[D(G3.1|β=1) = 1]− Pr[D(G3|β=1) = 1]
∣∣Pr[β = 1]

≤ nkℓ(AdvHARD-1
SSMP,D (λ) + AdvHARD-2

SSMP,D (λ)). (16)

Game G3.2|β=1: G3.2|β=1 is the same as G3.1|β=1, except for the decryp-

tion oracle. In G3.2|β=1, for any decryption query (i, c = (x1, · · · , xℓ, T ))
satisfying ((i, c) /∈ C)

∧
(i /∈ Iop)

∧
(i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k}), where

C denotes the set of the challenge ciphertexts and their corresponding
public keys (in Fig. 2), the challenger firstly checks whether XVer((Ka,
H(pki, x1, · · · , xℓ)), T ) = 0. If so, it sets that m1 = · · · = mℓ = 0 and
returns m = (m1, · · · ,mℓ). Otherwise, for each γ ∈ [ℓ], the challenger sets
mγ = 0 directly if xγ /∈ L, and behaves just as in G3.1|β=1 if xγ ∈ L (i.e.,

it computes Kγ = SecEv(hski,γ , xγ) and sets mγ = XVer(Kγ , T )).
We present the following lemma with a postponed proof.
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Lemma 2. For any (even unbounded) distinguisher Ds,∣∣Pr[Ds(G3.2|β=1) = 1]− Pr[Ds(G3.1|β=1) = 1]
∣∣ ≤ qdℓmax{AdvIMP

XAC(λ), Adv
SUB
XAC(λ)}.

(17)

Note that the decryption oracle inG3.2|β=1 is inefficient, and it doesn’t
leak any information on hski,γ beyond hpki,γ for any i ∈ {i′ ∈ [n] | |m∗i′ | ≤
k} and any γ ∈ [ℓ].
Game Gr

(1,0,0): For convenience, we write that

Gr
(1,0,0) := G3.2|β=1. (18)

Note that in game Gr
(1,0,0), for any i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k}, ski =

(hski,γ)γ∈[ℓ] is used to encrypt

m∗i [1] = (m∗i,1,1, · · · ,m∗i,1,ℓ),
...

m∗i [|m∗i |] = (m∗i,|m∗i |,1
, · · · ,m∗i,|m∗i |,ℓ).

More specifically, for any γ ∈ [ℓ], hski,γ is employed to handle

m∗i,1,γ ,m
∗
i,2,γ , · · · ,m∗i,|m∗i |,γ .

For all i ∈ {i′ ∈ [n] | |m∗i′ | > k}, let

Gr
(1,i−1,0) = Gr

(1,i−1,1) = · · · = Gr
(1,i−1,ℓ) = Gr

(1,i,0), (19)

and for all i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k}, let

Gr
(1,i,0) := Gr

(1,i−1,ℓ). (20)

Now for any i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k} and any γ ∈ [ℓ], we consider
game Gr

(1,i−1,γ) as follows.

Game Gr
(1,i−1,γ) (i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k}, γ ∈ [ℓ]):Note that for each j ∈

[|m∗i |], we write c∗i [j] = (x∗i,j,1, · · · , x∗i,j,ℓ, T ∗i,j), where T ∗i,j = XAuth(K∗i,j,1,
· · · ,K∗i,j,ℓ+1). Game Gr

(1,i−1,γ) is the same as Gr
(1,i−1,γ−1), except for the

generation and the corresponding selective opening procedure of (K∗i,1,γ ,
· · · ,K∗i,|m∗i |,γ). Specifically, in Gr

(1,i−1,γ),

• During the generation of (K∗i,1,γ , · · · ,K∗i,|m∗i |,γ): For all j ∈ [|m∗i |],
if m∗i,j,γ = 0, the challenger computes K∗i,j,γ = SecEv(hski,γ , x

∗
i,j,γ),

instead of uniformly sampling K∗i,j,γ from Ksp.
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• To answer the selective opening query I: If i /∈ I, the selective opening
procedure in Gr

(1,i−1,γ) is the same as that in Gr
(1,i−1,γ−1). So we only

need to consider the case that i ∈ I. The challenger firstly generates
(yi,1,γ , · · · , yi,2k,γ) as follows: for each j ∈ [|m∗i |],
- ifm∗i,j,γ = 1, then it sets yi,j,γ = x∗i,j,γ , and yi,j+k,γ ← SSmpLS(prm,
j + k);

- ifm∗i,j,γ = 0, then it sets yi,j+k,γ = x∗i,j,γ , and yi,j,γ ← SSmpLS(prm,
j + k);

and for each j ∈ {|m∗i |+ 1, · · · , k} (if |m∗i | ≤ k),
- it sets that yi,j,γ ← SSmpLS(prm, j) and yi,j+k,γ ← SSmpLS(prm,
j + k).

Then, the challenger computes

hsk′i,γ ← SampHsk(hski,γ , td, yi,1,γ , · · · , yi,2k,γ),

and updates hski,γ = hsk′i,γ (which means that from now on, the
challenger will use the updated hski,γ to answer the selective opening
query and the decryption queries).

Key equivocability of HPS guarantees that for any (even unbounded)
distinguisher Ds,∣∣∣Pr[Ds(Gr

(1,i−1,γ)) = 1]− Pr[Ds(Gr
(1,i−1,γ−1)) = 1]

∣∣∣ ≤ negl(λ). (21)

Therefore, we obtain that

G3.2|β=1 = Gr
(1,0,0)

s≈ · · · s≈ Gr
(1,0,ℓ) = Gr

(1,1,0)

s≈ · · · s≈ Gr
(1,1,ℓ)

= Gr
(1,2,0)

s≈ · · · s≈ Gr
(1,k,ℓ). (22)

Game G3.3|β=1: Let G3.3|β=1 = Gr
(1,k,ℓ). Combining Eq. (20)-(22), we

derive that for any (even unbounded) Ds,∣∣Pr[Ds(G3.3|β=1) = 1]− Pr[Ds(G3.2|β=1) = 1]
∣∣ ≤ negl(λ). (23)

We emphasize that in G3.3|β=1, for all i ∈ {i′ ∈ [n] | |m∗i′ | ≤ k}, all
j ∈ [|m∗i |] and all γ ∈ [ℓ], K∗i,j,γ is computed with the original hski,γ when
m∗i,j,γ = 0, and if i ∈ I, ski = (hski,1, · · · , hski,ℓ) will be updated.
Game G4|β=1: G4|β=1 is the same as G3.3|β=1, except that the decryp-

tion oracle works with the original decryption rule. In other words, in
G4|β=1, for any decryption query (i, c = (x1, · · · , xℓ, T )), the challenger
firstly checks whether XVer((Ka,H(pki, x1, · · · , xℓ)), ℓ+1, T ) = 0. If so, it
sets that m1 = · · · = mℓ = 0 and returns m = (m1, · · · ,mℓ). Otherwise,
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for each γ ∈ [ℓ], the challenger computes Kγ = SecEv(hski,γ , xγ), sets
mγ = XVer(Kγ , γ, T ), and finally returns m = (m1, · · · ,mℓ).

We present the following lemma, the proof of which is the same as
that of Lemma 2.

Lemma 3. For any (even unbounded) distinguisher Ds,∣∣Pr[Ds(G4|β=1) = 1]− Pr[Ds(G3.3|β=1) = 1]
∣∣ ≤ qdℓmax{AdvIMP

XAC(λ), Adv
SUB
XAC(λ)}.

(24)

Notice that the decryption oracle in game G4|β=1 is efficient again.
Combining Eq. (16), (17), (23) and (24), we derive that for any PPT

distinguisher D,∣∣Pr[D(G4|β=1) = 1]− Pr[D(G3|β=1) = 1]
∣∣Pr[β = 1]

≤
∣∣Pr[D(G3.1|β=1) = 1]− Pr[D(G3|β=1) = 1]

∣∣Pr[β = 1]

+
∣∣Pr[D(G3.2|β=1) = 1]− Pr[D(G3.1|β=1) = 1]

∣∣
+

∣∣Pr[D(G3.3|β=1) = 1]− Pr[D(G3.2|β=1) = 1]
∣∣

+
∣∣Pr[D(G4|β=1) = 1]− Pr[D(G3.3|β=1) = 1]

∣∣
≤ nkℓ(AdvHARD-1

SSMP,D (λ) + AdvHARD-2
SSMP,D (λ))

+ 2qdℓmax{AdvIMP
XAC(λ), Adv

SUB
XAC(λ)}+ negl(λ). (25)

Now, we can construct a PPT simulator S as shown in Fig. 10.10

Obviously,

ExpwBi-SO-ideal
PKE,S,k (λ) (when β = 0) = G4|β=0, (26)

ExpwBi-SO-ideal
PKE,S,k (λ) (when β = 1) = G4|β=1. (27)

So we can write that

G4 := ExpwBi-SO-ideal
PKE,S,k (λ). (28)

Combining Eq. (9), (14), (15) and (25), we obtain that

|Pr[D(G2) = 1]− Pr[D(G4) = 1]|
= |(Pr[D(G2) = 1 | β = 0]Pr[β = 0] + Pr[D(G2) = 1 | β = 1]Pr[β = 1])

− (Pr[D(G4) = 1 | β = 0]Pr[β = 0] + Pr[D(G4) = 1 | β = 1]Pr[β = 1])|
(29)

10 In Fig. 10, for consistency we abuse the notation “n” by using it to mean the current
number of receivers in the game simulated by S, analogous to Fig. 2.
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SSimMkRec1 (1λ) :

(prm := (X ,L,L1, · · · ,Lk), td)← SmpG(1λ)

prmins = (Ksp = Ka ×Kb,SK,PK, Λ(·), µ)← PrmG(prm); H← Hprmins; Ka ← Ka

pp := (prm, prmins,H, Ka); n := 0; C := ∅; (β,M, s1)← A
MkRec,Dec
1 (pp)

If ∃ (i, γ) ̸= (i′, γ′) s.t. hski,γ = hski′,γ′ : abort

s̃1 := (pp, (pki, ski)i∈[n], C, β,M, s1)

Return (β,M, s̃1)

S2(len = ((|m∗
i |, ℓ)i∈[n]), s̃1 = (pp, (pki, ski)i∈[n], C, β,M, s1)) :

For i = 1 to n:

For j = 1 to |m∗
i |:

For γ = 1 to ℓ:

If β = 0:

w∗
i,j,γ ← RSSmpL; x∗

i,j,γ ← SSmpL(prm;w∗
i,j,γ); K∗

i,j,γ = PubEv(hpki,γ , x∗
i,j,γ , w∗

i,j,γ)

If β = 1:

If |m∗
i | ≤ k:

x∗
i,j,γ ← SSmpLS(prm, j); K∗

i,j,γ = SecEv(hski,γ , x∗
i,j,γ)

If |m∗
i | > k:

If m∗
i,j,γ = 0: (r

∗(X)
i,j,γ , r

∗(K)
i,j,γ )← RSSmpX ×RSample; x∗

i,j,γ ← SSmpX(prm; r
∗(X)
i,j,γ );

K∗
i,j,γ ← Sample(Ksp; r

∗(K)
i,j,γ )

If m∗
i,j,γ = 1: w∗

i,j,γ ← RSSmpL; x∗
i,j,γ ← SSmpL(prm;w∗

i,j,γ);

K∗
i,j,γ = PubEv(hpki,γ , x∗

i,j,γ , w∗
i,j,γ)

K∗
b,i,j = H(pki, x

∗
i,j,1, · · · , x

∗
i,j,ℓ); K∗

i,j,ℓ+1 = (Ka, K∗
b,i,j)

T∗
i,j = XAuth(K∗

i,j,1, · · · , K
∗
i,j,ℓ+1); c∗i [j] = (x∗

i,j,1, · · · , x
∗
i,j,ℓ, T

∗
i,j); C = C

∪
{(i, c∗i [j])}

If (β = 0) ∧ (∃ (i′, j′, γ′) ̸= (i′′, j′′, γ′′) s.t. x∗
i′,j′,γ′ = x∗

i′′,j′′,γ′′ ): abort

(I, s2)← ADec
2 ((c∗1 , · · · , c

∗
n), s1); s̃2 = (pp, (pki, ski)i∈[n], C, β, (c

∗
1 , · · · , c

∗
n), s2)

Return (I, s̃2)
S3((m

∗
i [j])(i,j)∈I , s̃2) : % When β = 0

Parse (m∗
i [j] = (m∗

i,j,1, · · · ,m
∗
i,j,ℓ) ∈ {0, 1}

ℓ)(i,j)∈I
For (i, j) ∈ I:

For γ = 1 to ℓ:

If m∗
i,j,γ = 0: ŵ∗

i,j,γ ← RSSmpL; r̂
∗(X)
i,j,γ ← Explain(X , x∗

i,j,γ);

K̂∗
i,j,γ ← ReSamp(γ,K∗

i,j,̸=γ , T∗
i,j); K∗

i,j,γ = K̂∗
i,j,γ ;

r̂
∗(K)
i,j,γ ← Explain(XK, K∗

i,j,γ)

If m∗
i,j,γ = 1: ŵ∗

i,j,γ = w∗
i,j,γ ; r̂

∗(X)
i,j,γ ← RSSampX; r̂

∗(K)
i,j,γ ← RSample

r̂∗i [j] = (r̂
∗(X)
i,j,γ , r̂

∗(K)
i,j,γ , ŵ∗

i,j,γ)γ∈[ℓ]

out← ADec
3 ((r̂∗i [j],m

∗
i [j])(i,j)∈I , s2)

Return out

S3((m∗
i )i∈I , s̃2) : % When β = 1

Parse (m∗
i [j] = (m∗

i,j,1, · · · ,m
∗
i,j,ℓ) ∈ {0, 1}

ℓ)i∈I,j∈[|m∗
i
|]

For i ∈ I:
For γ = 1 to ℓ:

For j = 1 to |m∗
i |:

If m∗
i,j,γ = 1: yi,j,γ = x∗

i,j,γ ; yi,j+k,γ ← SSmpLS(prm, j + k)

If m∗
i,j,γ = 0: yi,j+k,γ = x∗

i,j,γ ; yi,j,γ ← SSmpLS(prm, j + k)

If |m∗
i | < k:

For j = |m∗
i | + 1 to k: yi,j,γ ← SSmpLS(prm, j); yi,j+k,γ ← SSmpLS(prm, j + k)

hsk′
i,γ ← SampHsk(hski,γ , td, yi,1,γ , · · · , yi,2k,γ); hski,γ := hsk′

i,γ

ski = (hski,γ)γ∈[ℓ]

out← ADec
3 ((ski,m

∗
i )i∈I , s2)

Return out

(The description of oracles MkRec and Dec will be given in Fig. 11).

Fig. 10 Construction of simulator S.

= |(Pr[D(G2) = 1 | β = 0]Pr[β = 0] + Pr[D(G2) = 1 | β = 1]Pr[β = 1])

− (Pr[D(G4|β=0) = 1] Pr[β = 0] + Pr[D(G4|β=1) = 1] Pr[β = 1])| (30)
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MkRec() :

⊥ ← SimMkRec(); n := n + 1; (pkn = (hpkn,γ)γ∈[ℓ], skn = (hskn,γ)γ∈[ℓ])← Gen(pp)

Return pkn

Dec(i, c = (x1, · · · , xℓ, T )) :

If (i > n) ∨ ((i, c) ∈ C): return ⊥
Parse ski = (hski,γ)γ∈[ℓ]; Kb = H(pki, x1, · · · , xℓ)

If ∃ j ∈ [|m∗
i |], s.t. (x1, · · · , xℓ) ̸= (x∗

i,j,1, · · · , x
∗
i,j,ℓ) and Kb = K∗

b,i,j : abort

If XVer((Ka, Kb), ℓ + 1, T ) = 0: m1 = · · · = mℓ = 0; return m = (m1, · · · ,mℓ)

For γ = 1 to ℓ:

Kγ = SecEv(hski,γ , xγ); mγ = XVer(Kγ , T )

Return m = (m1, · · · ,mℓ)

Fig. 11 The oracles MkRec and Dec provided by simulator S in Fig. 10.

≤ |Pr[D(G2) = 1 | β = 0]− Pr[D(G4|β=0) = 1]|Pr[β = 0]

+ |Pr[D(G2) = 1 | β = 1]− Pr[D(G4|β=1) = 1]|Pr[β = 1] (31)

≤ (
∣∣Pr[D(G3|β=0) = 1]− Pr[D(G4|β=0) = 1]

∣∣+ nk̃ℓ(nk̃ℓ− 1)

2|L|
) Pr[β = 0]

+ |Pr[D(G3|β=1) = 1]− Pr[D(G4|β=1) = 1]|Pr[β = 1] (32)

≤
∣∣Pr[D(G3|β=0) = 1]− Pr[D(G4|β=0) = 1]

∣∣Pr[β = 0] +
nk̃ℓ(nk̃ℓ− 1)

2|L|
+ |Pr[D(G3|β=1) = 1]− Pr[D(G4|β=1) = 1]|Pr[β = 1] (33)

≤ negl(λ) +
nk̃ℓ(nk̃ℓ− 1)

2|L|
+ nkℓ(AdvHARD-1

SSMP,D (λ) + AdvHARD-2
SSMP,D (λ))

+ 2qdℓmax{AdvIMP
XAC(λ), Adv

SUB
XAC(λ)}+ negl(λ) (34)

≤ nk̃ℓ(nk̃ℓ− 1)

2|L|
+ nkℓ(AdvHARD-1

SSMP,D (λ) + AdvHARD-2
SSMP,D (λ))

+ 2qdℓmax{AdvIMP
XAC(λ), Adv

SUB
XAC(λ)}+ negl(λ), (35)

where k̃ = maxni=1 |m∗i |. Eq. (29)-(31) are trivial. Eq. (32) is justified by
Eq. (9) and (15). Eq. (33) is trivial. Eq. (34) is obtained via Eq. (14) and
(25). Eq. (35) is trivially obtaind from Eq. (34).

Hence, combining Eq. (6)-(8), (28) and (35), we obtain that for any
PPT distinguisher D,

Adv
SIM-wBi-SOk-CCA
PKE,A,S,D (λ)

=
∣∣∣Pr[D(ExpwBi-SO-real

PKE,A,k (λ)) = 1]− Pr[D(ExpwBi-SO-ideal
PKE,S,k (λ)) = 1]

∣∣∣
= |Pr[D(G0) = 1]− Pr[D(G4) = 1]|

≤ |Pr[D(G2) = 1]− Pr[D(G4) = 1]|+ nℓ(nℓ− 1)

2|SK|
+ AdvCR

Hprmins,AH
(λ)
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≤ nk̃ℓ(nk̃ℓ− 1)

2|L|
+ nkℓ(AdvHARD-1

SSMP,D (λ) + AdvHARD-2
SSMP,D (λ))

+ 2qdℓmax{AdvIMP
XAC(λ), Adv

SUB
XAC(λ)}+ negl(λ)

+
nℓ(nℓ− 1)

2|SK|
+ AdvCR

Hprmins,AH
(λ),

which is negligible.

Now we catch up with the proof of Lemma 1 and Lemma 2.

Proof (of Lemma 1). We prove this lemma with another series of games.

Game G
s(0)
(i,j,γ−1): For convenience, we write that

G
s(0)
(i,j,γ−1) = Gs

(i,j,γ−1). (36)

Game G
s(1)
(i,j,γ−1): G

s(1)
(i,j,γ−1) is identical to G

s(0)
(i,j,γ−1), except that if (i,

j) ∈ I and m∗i,j,γ = 0, instead of returning the original (r
∗(X )
i,j,γ , r

∗(K)
i,j,γ )

to answer the selective opening query, the challenger returns (Explain(X ,
x∗i,j,γ), Explain(XK,K∗i,j,γ)). Obviously,

G
s(1)
(i,j,γ−1) = G

s(0)
(i,j,γ−1). (37)

Game G
s(2)
(i,j,γ−1): G

s(2)
(i,j,γ−1) is identical to G

s(1)
(i,j,γ−1), except for the de-

cryption oracle. In game G
s(2)
(i,j,γ−1), for any decryption query (i, c = (x1,

· · · , xℓ, T )) satisfying that i ≤ n and (i, c) /∈ C, the challenger firstly
checks whether XVer((Ka,H(pki, x1, · · · , xℓ)), T ) = 0. If so, it sets that
m1 = · · · = mℓ = 0 and returns m = (m1, · · · ,mℓ). Otherwise, the chal-

lenger sets mγ = 0 directly if xγ /∈ L, and behaves just as in G
s(1)
(i,j,γ−1)

if xγ ∈ L (i.e., compute Kγ = SecEv(hski,γ , xγ) and set mγ = XVer(Kγ ,

T )); for any γ′ ̸= γ, the challenger generates mγ′ as in G
s(1)
(i,j,γ−1).

Note that the decryption oracle in G
s(2)
(i,j,γ−1) is inefficient, and it does-

n’t leak any information on hski,γ beyond hpki,γ .

Let BAD
(2)
i,j,γ (resp. BAD

(1)
i,j,γ) denote the event that in game G

s(2)
(i,j,γ−1)

(resp. G
s(1)
(i,j,γ−1)), adversary A submits a decryption query (i, c = (x1, · · · ,

xℓ, T )), such that i ≤ n, (i, c) /∈ C, XVer((Ka,H(pki, x1, · · · , xℓ)), T ) = 1,

xγ /∈ L and mγ = XVer(Kγ , T ) = 1. Note that G
s(2)
(i,j,γ−1) and G

s(1)
(i,j,γ−1)

are identical as long as the respective events BAD
(2)
i,j,γ and BAD

(1)
i,j,γ do not
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occur, and that Pr[BAD
(2)
i,j,γ ] = Pr[BAD

(1)
i,j,γ ]. So for any (even unbounded)

distinguisher Ds,∣∣∣Pr[Ds(Gs(2)
(i,j,γ−1)) = 1]− Pr[Ds(Gs(1)

(i,j,γ−1)) = 1]
∣∣∣ ≤ Pr[BAD

(2)
i,j,γ ].

Since xγ /∈ L and HPS is perfectly universalk+1, from A’s point
of view, Kγ = SecEv(hski,γ , xγ) is uniformly distributed over Ksp =
XK. Thus, security against impersonation attacks of XAC guarantees
that the probability that mγ = XVer(Kγ , T ) = 1 is at most AdvIMP

XAC(λ).
Considering that A always makes qd decryption queries, we have that

Pr[BAD
(2)
i,j,γ ] ≤ qdAdv

IMP
XAC(λ). Hence,∣∣∣Pr[Ds(Gs(2)

(i,j,γ−1)) = 1]− Pr[Ds(Gs(1)
(i,j,γ−1)) = 1]

∣∣∣ ≤ qdAdv
IMP
XAC(λ). (38)

Game G
s(3)
(i,j,γ−1): G

s(3)
(i,j,γ−1) is the same as G

s(2)
(i,j,γ−1), except for the gen-

eration of K∗i,j,γ during the generation of c∗i,j . Specifically, in G
s(3)
(i,j,γ−1), if

m∗i,j,γ = 0, set K∗i,j,γ = SecEv(hski,γ , x
∗
i,j,γ) and the corresponding random

coin of K∗i,j,γ is opened as Explain(XK,K∗i,j,γ).
Note that when m∗i,j,γ = 0, x∗i,j,γ is uniformly sampled from X . Sub-

set sparseness of SSMP implies that x∗i,j,γ /∈ L with probability 1 −
SparSSMP(λ). When x∗i,j,γ /∈ L, perfect universalityk+1 of HPS guaran-
tees that K∗i,j,γ is uniformly distributed over Ksp, which is the same as

that in G
s(2)
(i,j,γ−1). Hence, for any (even unbounded) distinguisher Ds,∣∣∣Pr[Ds(Gs(3)

(i,j,γ−1)) = 1]− Pr[Ds(Gs(2)
(i,j,γ−1)) = 1]

∣∣∣ ≤ SparSSMP(λ). (39)

Game G
s(4)
(i,j,γ−1): In this game, we modify the generation of K∗i,j,γ again.

Specifically, if m∗i,j,γ = 0, after generating c∗i,j = (x∗i,j,1, · · · , x∗i,j,ℓ, T ∗i,j) as
above, the challenger further updates K∗i,j,γ as

K∗i,j,γ ← ReSamp(γ,K∗i,j,̸=γ , T
∗
i,j).

Note that in this case, the corresponding opened random coin of K∗i,j,γ is
actually Explain(XK,ReSamp(γ,K∗i,j,̸=γ , T

∗
i,j)).

Strongness of XAC guarantees that the updated K∗i,j,γ in G
s(4)
(i,j,γ−1)

and the one in G
s(3)
(i,j,γ−1) are statistically indistinguishable, even given

K∗i,j,̸=γ and T ∗i,j . In other words, we have that for any (even unbounded)
distinguisher Ds,∣∣∣Pr[Ds(Gs(4)

(i,j,γ−1)) = 1]− Pr[Ds(Gs(3)
(i,j,γ−1)) = 1]

∣∣∣ ≤ StDSTRN
XAC (λ), (40)
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where StDSTRN
XAC (λ) is defined in Definition 4, which is actually the statis-

tical distance between the K∗i,j,γ in G
s(4)
(i,j,γ−1) and the one in G

s(3)
(i,j,γ−1).

Game G
s(5)
(i,j,γ−1): G

s(5)
(i,j,γ−1) is the same as G

s(4)
(i,j,γ−1), except that the de-

cryption oracle works with the original decryption rule. In other words,

in G
s(5)
(i,j,γ−1), for any decryption query (i, c = (x1, · · · , xℓ, T )) satisfying

that i ≤ n and (i, c) /∈ C, the challenger firstly checks whether XVer((Ka,
H(pki, x1, · · · , xℓ)), T ) = 0. If so, it sets that m1 = · · · = mℓ = 0 and
returns m = (m1, · · · ,mℓ). Otherwise, for any γ′ ∈ [ℓ], the challenger
computes Kγ′ = SecEv(hski,γ′ , xγ′), sets mγ′ = XVer(Kγ′ , T ), and re-
turns m = (m1, · · · ,mℓ).

Notice that the decryption oracle in game G
s(5)
(i,j,γ−1) is efficient again.

Similarly, let BAD
(5)
i,j,γ (resp. BAD

(4)
i,j,γ) denote the event that in game

G
s(5)
(i,j,γ−1) (resp. G

s(4)
(i,j,γ−1)), adversary A submits a decryption query (i,

c = (x1, · · · , xℓ, T )), such that i ≤ n, (i, c) /∈ C, XVer((Ka,H(pki, x1, · · · ,
xℓ)), T ) = 1, xγ /∈ L and mγ = XVer(Kγ , T ) = 1. Note that G

s(5)
(i,j,γ−1)

and G
s(4)
(i,j,γ−1) are identical as long as the respective events BAD

(5)
i,j,γ and

BAD
(4)
i,j,γ do not occur, and that Pr[BAD

(5)
i,j,γ ] = Pr[BAD

(4)
i,j,γ ]. So for any

(even unbounded) distinguisher Ds,∣∣∣Pr[Ds(Gs(5)
(i,j,γ−1)) = 1]− Pr[Ds(Gs(4)

(i,j,γ−1)) = 1]
∣∣∣ ≤ Pr[BAD

(4)
i,j,γ ].

We present the following claim with a postponed proof.

Claim 1. Pr[BAD
(4)
i,j,γ ] ≤ qdmax{AdvIMP

XAC(λ), Adv
SUB
XAC(λ)}.

Hence, we have that∣∣∣Pr[Ds(Gs(5)
(i,j,γ−1)) = 1]− Pr[Ds(Gs(4)

(i,j,γ−1)) = 1]
∣∣∣

≤ qdmax{AdvIMP
XAC(λ), Adv

SUB
XAC(λ)}. (41)

Game G
s(6)
(i,j,γ−1): G

s(6)
(i,j,γ−1) is the same as G

s(5)
(i,j,γ−1), except that during

the generation of c∗i [j], the challenger computes x∗i,j,γ ← SSampL(prm;w∗i,j,γ)
no matter whether m∗i,j,γ is 1 or 0. We stress that if m∗i,j,γ = 0, the cor-
responding random coin of x∗i,j,γ returned to A is Explain(X , x∗i,j,γ) since
the modification introduced in G

s(1)
(i,j,γ−1). Hence, we obtain that for any

PPT distinguisher D,∣∣∣Pr[D(Gs(6)
(i,j,γ−1)) = 1 | β = 0]− Pr[D(Gs(5)

(i,j,γ−1)) = 1 | β = 0]
∣∣∣Pr[β = 0]
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≤ AdvHARD-1
SSMP,DSSMP

(λ) + AdvHARD-2
SSMP,DSSMP

(λ), (42)

where DSSMP is a suitable PPT adversary built based on A (more specif-
ically, if A1 returns β = 1, DSSMP returns a uniformly chosen b′; else,

DSSMP simulates one of the two games G
s(5)
(i,j,γ−1) and G

s(6)
(i,j,γ−1)).

Game G
s(7)
(i,j,γ−1): G

s(7)
(i,j,γ−1) is the same as G

s(6)
(i,j,γ−1), except for the gen-

eration of K∗i,j,γ when m∗i,j,γ = 0. Specifically, in G
s(7)
(i,j,γ−1), if m

∗
i,j,γ = 0,

the challenger computes K∗i,j,γ = PubEv(hpki,γ , x
∗
i,j,γ , w

∗
i,j,γ), instead of

SecEv(hski,γ , x
∗
i,j,γ). The projective property of HPS guarantees that the

view of A in G
s(7)
(i,j,γ−1) are identical to that in G

s(6)
(i,j,γ−1).

Note that

Gs
(i,j,γ) = G

s(7)
(i,j,γ−1). (43)

So combining Eq. (36)-(43) finishes the proof of Lemma 1.

What remains is to prove Claim 1.

Proof (of Claim 1). Note that BAD
(4)
i,j,γ denotes the event that inG

s(4)
(i,j,γ−1),

A submits a decryption query (i, c = (x1, · · · , xℓ, T )), such that i ≤ n, (i,
c) /∈ C, XVer((Ka,H(pki, x1, · · · , xℓ)), T ) = 1, xγ /∈ L and mγ = XVer(Kγ ,
T ) = 1.

If xγ ̸= x∗i,j,γ , the perfect universalityk+1 of HPS implies that Kγ =
SecEv(hski,γ , xγ) is uniformly distributed over Ksp from A’s point of
view, since the only possible information A has on hski,γ beyond hpkiγ is
K∗i,j,γ , and K∗i,j,γ is not equal but related to SecEvl(hski,γ , x

∗
i,j,γ) in game

G
s(4)
(i,j,γ−1) (note that K∗i,j,γ has been updated with algorithm ReSamp in

G
s(4)
(i,j,γ−1)). In this case, the probability that BAD

(4)
i,j,γ occurs is at most

qdAdv
IMP
XAC(λ).

If xγ = x∗i,j,γ and T = T ∗i,j , then (x1, · · · , xℓ) ̸= (x∗i,j,1, · · · , x∗i,j,ℓ)
(otherwise (i, c) ∈ C). Because game G2 excludes hash collisions, we have
that Kb ̸= K∗b,i,j . Semi-uniqueness of XAC guarantees that m1 = · · · =
mℓ = 0, so in this case, BAD

(4)
i,j,γ does not occur.

If xγ = x∗i,j,γ but T ̸= T ∗i,j , then Kγ = SecEv(hski,γ , x
∗
i,j,γ), and

BAD
(4)
i,j,γ occurs only if XVer(Kγ , T ) = 1. Note that in this case, what

A knows about hski,γ beyond hpki,γ is given by (K∗i,j,1, · · · ,K∗i,j,ℓ) and
T ∗i,j . Since K∗i,j,γ is computed with ReSamp(γ,K∗i,j,̸=γ , T

∗
i,j), A’s informa-

tion about hski,γ beyond hpki,γ is actually from K∗i,j,̸=γ and T ∗i,j . Hence,
for each decryption query, the probability that A generates a T ̸= T ∗i,j
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such that XVer(Kγ , T ) = XVer(SecEv(hski,γ , x
∗
i,j,γ), T ) = 1 is at most

AdvSUB
XAC(λ). So in this case, the probability that BAD

(4)
i,j,γ occurs is at

most qdAdv
SUB
XAC(λ).

Therefore, Pr[BAD
(4)
i,j,γ ] ≤ qdmax{AdvIMP

XAC(λ), Adv
SUB
XAC(λ)}. ⊓⊔

⊓⊔

Proof (of Lemma 2). Let BAD3.2 (resp. BAD3.1) denote the event that in
game G3.2|β=1 (resp. G3.1|β=1), A submits a decryption query (i /∈ Iop,
c = (x1, · · · , xℓ, T )) /∈ C such that there is some γ ∈ [ℓ] satisfying that
xγ /∈ L but mγ = 1. Note that G3.2|β=1 and G3.1|β=1 are identical as
long as the respective events BAD3.2 and BAD3.1 do not occur, and that
Pr[BAD3.2] = Pr[BAD3.1]. So for any (even unbounded) distinguisher Ds,

| Pr[Ds(G3.2|β=1) = 1]− Pr[Ds(G3.1|β=1) = 1] |≤ Pr[BAD3.2]. (44)

Now we compute Pr[BAD3.2].

For any θ ∈ [qd] and any γ ∈ [ℓ], let BADθ,γ3.2 denote the event that the
xγ of A’s θ-th decryption query (i, c = (x1, · · · , xℓ, T )) makes BAD3.2 oc-

cur for the first time. So we have Pr[BAD3.2] ≤
∑

(θ,γ)∈[qd]×[ℓ] Pr[BAD
θ,γ
3.2 ].

Fix (θ, γ) ∈ [qd] × [ℓ]. For A’s θ-th decryption query (i, c = (x1, · · · ,
xℓ, T )), we assume that xγ /∈ L (as necessary for BADθ,γ3.2). Let F1 denote
the event that xγ /∈ {x∗i,1,γ , · · · , x∗i,|m∗i |,γ}, F2 denote the event that xγ =

x∗i,j′,γ and T = T ∗i,j′ for some j′ ∈ [|m∗i |], and F3 denote the event that
xγ = x∗i,j′,γ for some j′ ∈ [|m∗i |] but T ̸= T ∗i,j′ . Thus,

Pr[BADθ,γ3.2 ] = Pr[BADθ,γ3.2

∣∣F1] · Pr[F1] + Pr[BADθ,γ3.2

∣∣F2] · Pr[F2]
+ Pr[BADθ,γ3.2

∣∣F3] · Pr[F3]. (45)

When xγ /∈ {x∗i,1,γ , · · · , x∗i,|m∗i |,γ} and xγ /∈ L, since HPS is perfectly

universalk+1, Kγ = SEcEv(hski,γ , xγ) is uniformly distributed over Ksp =
XK from A’s point of view. Thus, security against impersonation attacks
of XAC guarantees that the probability that mγ = XVer(Kγ , T ) = 1 is at
most AdvIMP

XAC(λ). So we have

Pr[BADθ,γ3.2

∣∣F1] ≤ AdvIMP
XAC(λ). (46)

When there is some j′ ∈ [|m∗i |] such that xγ = x∗i,j′,γ and T = T ∗i,j′ ,
considering that the decryption oracle does not return ⊥, we derive that
(x1, · · · , xℓ) ̸= (x∗i,j′,1, · · · , x∗i,j′,ℓ). Because of the modification introduced
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in G2, Kb ̸= K∗b,i,j′ . Since T = T ∗i,j′ , semi-uniqueness of XAC implies that

Pr[XVer((Ka,Kb), T ) = 1] = 0. Hence,

Pr[BADθ,γ3.2

∣∣F2] = 0. (47)

When there is some j′ ∈ [|m∗i |] such that xγ = x∗i,j′,γ but T ̸= T ∗i,j′ ,

our reasoning is as follows. We note that Kγ = SecEv(hski,γ , xγ) is u-
niformly distributed from A’s point of view (when ignoring T ∗i,j′), since
xγ = x∗i,j′,γ ∈ Lj′ and i /∈ Iop. Hence, security against substitution attacks

of XAC guarantees that the probability that mγ = XVer(Kγ , T ) = 1 is at
most AdvSUB

XAC(λ). In other words, we have

Pr[BADθ,γ3.2

∣∣F3] ≤ AdvSUB
XAC(λ). (48)

Combining Eq. (45)-(48), we derive that

Pr[BADθ,γ3.2 ] = Pr[BADθ,γ3.2

∣∣F1] · Pr[F1] + Pr[BADθ,γ3.2

∣∣F3] · Pr[F3]
= max{AdvIMP

XAC(λ), Adv
SUB
XAC(λ)}. (49)

Therefore,

Pr[BAD3.2] ≤
∑

(θ,γ)∈[qd]×[ℓ]

Pr[BADθ,γ3.2 ] ≤ qdℓmax{AdvIMP
XAC(λ), Adv

SUB
XAC(λ)}. ⊓⊔

⊓⊔

F Security Notions for KEM and MAC

We recall the notion of one-way security in the presence of a plaintext-
checking oracle (OW-PCA security) [29] for KEM, and the notion of
strong unforgeability under one-time chosen message attacks (sUF-OT-
CMA security) for MAC as follows.

Definition 12. (OW-PCA for KEM)[29]. We say that a KEM scheme
KEM = (KemGen,Encap,Decap) is OW-PCA secure, if for any PPT ad-
versary A, the advantage AdvOW-PCA

KEM,A (λ) := Pr[ExpOW-PCA
KEM,A (λ) = 1] is

negligible, where experiment ExpOW-PCA
KEM,A (λ) is defined in Fig. 12.

We write that CollPKKEM,n(1
λ) := Pr[∃i ̸= i′, s.t. pki = pki′ : (pk1,

sk1) ← KemGen(1λ), · · · , (pkn, skn)← KemGen(1λ)]. It is obvious that a
PPT adversary A can be constructed, such that

AdvOW-PCA
KEM,A (λ) ≥ 2

n
CollPKKEM,n(1

λ).

In other words, OW-PCA security guarantees that CollPKKEM,n(1
λ) is

negligible.

50



ExpOW-PCA
KEM,A (λ):

(pk, sk)← KemGen(1λ)

(K∗, c∗)← Encap(pk)

K ← ACheck(pk, c∗)

Return (K
?
= K∗)

Check(K, c):

Return (Decap(sk, c)
?
= K)

ExpsUF-OT-CMA
MAC,A (λ):

K ← MacGen(1λ); b′ := 0

(m, s1)← AVERF
1 (1λ)

t← Auth(K,m); (m∗, t∗)← AVERF
2 (t, s1)

If (Verf(K,m∗, t∗) = 1)
∧
((m∗, t∗) ̸= (m, t)):

b′ = 1

Return b′

VERF(m, t):

β ← Verf(K,m, t); Return β

Fig. 12 Experiment for defining OW-PCA security of KEM, and experiment for

defining sUF-OT-CMA security of MAC

Definition 13. (sUF-OT-CMA for MAC). We say that a MAC scheme
MAC = (MacGen,Auth,Verf) is sUF-OT-CMA secure, if for any PPT ad-
versary A, the advantage AdvsUF-OT-CMA

MAC,A (λ) := Pr[ExpsUF-OT-CMA
MAC,A (λ) =

1] is negligible, where experiment ExpsUF-OT-CMA
MAC,A (λ) is defined in Fig. 12.

G Deterred Proof of Theorem 6

We provide an intuition of our proof here. In order to prove SIM-Bi-
SO-CCA security, we need to provide adversary A with some message-
independent dummy ciphertexts (c∗1, · · · , c∗n), and then open them to the
real messages. We proceed in a series of games.

The key point is that for any i ∈ [n] and j ∈ [|m∗i |], c
∗sym
i,j = K∗symi,j ⊕

m∗i [j], i.e., given c∗symi,j and K∗symi,j , m∗i [j] is fixed. Hence, after generating
the dummy ciphertext c∗i [j] for A and before A submits a selective open-
ing query (IS , IR) such that (i, j) ∈ IS or i ∈ IR, we need to block A’s
random oracle query on K∗i,j , and decryption query on (i′, (ckem, csym, t))

satisfying Decap(skkemi′ , ckem) = K∗i,j , since any such call would assign a

value to K∗symi,j . (We stress that it’s possible that i′ ̸= i but meanwhile

Decap(skkemi′ , ckem) = K∗i,j . That’s why we require that the MAC tag
should be generated on a KEM ciphertext, a SE ciphertext and the pub-
lic key of KEM.) Hence, from game G3 on, we will abort once A submits
the above decryption query before querying the random oracle on K∗i,j .
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Note that if A did not query the random oracle on K∗i,j before, K∗maci,j

is still uniformly distributed. So the probability of abort is negligible be-
cause of sUF-OT-CMA security of MAC. Then from game G4 on, we will
abort if A queries the random oracle on K∗i,j . The probability of abort is
also negligible due to OW-PCA security of KEM.

Proof (of Theorem 6). For any PPT adversary A, in the real experiment
ExpBi-SO-real

PKEK-M,A (λ), we denote the challenge ciphertexts and their correspond-
ing messages by (c∗i )i∈[n] and (m∗i )i∈[n], respectively. More specifically,

for each i ∈ [n] and j ∈ [|m∗i |], we write c∗i [j] = (c∗kemi,j , c∗symi,j , t∗i,j). We

write r∗i [j], K
∗
i,j , K

∗sym
i,j and K∗maci,j similarly. For each i ∈ [n], we write

pki = pkkemi , and ski = (pkkemi , skkemi ). Again, we stress that in the real
experiment ExpBi-SO-real

PKEK-M,A (λ), for any i ∈ [n], pki is employed to encrypt
|m∗i | messages (i.e., m∗i [1], · · · ,m∗i [|m∗i |]).

In Fig. 13, denote by HASH1 (resp. HASH2) the random-oracle interface
of A1 (resp. A2 and A3), and denote by Dec1 (resp. Dec2) the decryption-
oracle interface of A1 (resp. A2 and A3).

Without loss of generality, we assume that after receiving ((r∗i [j],
m∗i [j])(i,j)∈IS , (ski,m

∗
i )i∈IR), the adversary (i.e., A3) will always query

the random oracle HRO on

• K∗i,j for each (i, j) ∈ IS , whereK∗i,j is from (K∗i,j , c
∗kem
i,j )← Encap(pkkemi ;

r∗i [j]);

• Ki,j = Decap(ski, c
∗kem
i,j ) for each i ∈ IR and j ∈ [|m∗i |].

We also assume that after receiving (ski,m
∗
i )i∈IR , A will not query the

decryption oracle on any (i′, ·) satisfying i′ ∈ IR. Note that this is also
without loss of generality, because A can decrypt the ciphertexts with
ski′ by itself.

Let qd (resp. qr) denote the total number of decryption queries (resp.
random-oracle queries) made by A. We write k̃ := maxni=1 |m∗i |. We stress

that k̃ is not a fixed value, and it is totally determined by A.
Since HRO is modeled as a random oracle, we assume that the chal-

lenger maintains a local array LH and employs it to keep track of issued
calls (either by the game or A) of HRO[·]. Specifically, for a query K,
the random oracle returns HRO(K) = (Ksym,Kmac) if there is an en-
try (K, (Ksym,Kmac)) ∈ LH, otherwise it samples (Ksym,Kmac) ← {0,
1}ℓ × KMAC, adds (K, (Ksym,Kmac)) to LH, and returns (Ksym,Kmac)
(we write HRO(K) := (Ksym,Kmac) and implicitly assume an update op-
eration LH := LH

∪
{(K, (Ksym,Kmac))} to happen in the background).

Now, we proceed in a series of games.
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Games G0-G1 ,
�� ��G1-G4 , G2-G4 , G3-G4 , G4

pp = 1λ ← Setup(1λ); n := 0; C := ∅; (M, s1)← A
HASH1,MkRec,Dec1
1 (pp)

If ∃ i ̸= i′, s.t. pkkem
i = pkkem

i′ : abort

M := (m∗
1 , · · · ,m

∗
n)←M

For i = 1 to n:

For j = 1 to |m∗
i |:

r∗i [j]← REncap; (K∗
i,j , c

∗kem
i,j )← Encap(pkkem

i ; r∗i [j])�� ��If (K∗
i,j , ·) ∈ LH: AbortEARLY:=true; abort

If ∃ (i′, j′) ̸= (i′′, j′′), s.t. K∗
i′,j′ = K∗

i′′,j′′ : abort

For i = 1 to n:

For j = 1 to |m∗
i |:

(K
∗sym
i,j , K∗mac

i,j ) = HRO(K∗
i,j); c

∗sym
i,j = K

∗sym
i,j ⊕m∗

i [j] (c
∗sym
i,j , K∗mac

i,j )← {0, 1}ℓ ×KMAC

t∗i,j = Auth(K∗mac
i,j , (pkkem

i , c∗kem
i,j , c

∗sym
i,j )); c∗i [j] := (c∗kem

i,j , c
∗sym
i,j , t∗i,j); C = C ∪ {(i, c∗i [j])}

(IS , IR, s2)← A
HASH2,Dec2
2 ((c∗i )i∈[n], s1)

(HRO(K∗
i,j) = (c

∗sym
i,j ⊕m∗

i [j], K
∗mac
i,j ))

(i,j)∈IS
∪
{(ĩ,j̃)|ĩ∈IR,j̃∈[|m∗

ĩ
|]}

out← AHASH2,Dec2
3 ((r∗i [j],m

∗
i [j])(i,j)∈IS

, (ski,m
∗
i )i∈IR

, s2)

Return (M,M,IS ,IR, out)

HASH1(K) :

If (K, ·) /∈ LH: (Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

HASH2(K) :

If (K, ·) /∈ LH:

If K = K∗
i′,j′ for some i′ ∈ [n] and j′ ∈ [|m∗

i′ |]:

AbortH := true; abort

HRO(K∗
i,j) = (c

∗sym
i,j ⊕m∗

i [j], K
∗mac
i,j )

Else:

(Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

MkRec() :

n = n + 1; (pkkem
n , skkem

n )← KemGen(1λ); pkn := pkkem
n ; skn := (pkkem

n , skkem
n )

Return pkn

Dec1(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
K = Decap(skkem

i′ , ckem); (K
sym

, K
mac

) = HASH1(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Dec2(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
K = Decap(skkem

i′ , ckem)

If (K ∈ {K∗
i,j | i ∈ [n], j ∈ [|m∗

i |]}) ∧ ((K, ·) /∈ LH): return ⊥

(K
sym

, K
mac

) = HASH2(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Fig. 13 Games G0-G4 in the proof of Theorem 6.

Game G−1: G−1 is the real experiment ExpBi-SO-real
PKEK-M,A (λ), i.e.,

G−1 = ExpBi-SO-real
PKEK-M,A (λ). (50)
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Game G0: G0 is the same as G−1, except that we abort this game (with
output ⊥) as soon as there are some i ̸= i′ such that pkkemi = pkkemi′ ,
or there are some (i, j) ̸= (i′, j′) such that K∗i,j = K∗i′,j′ . Since Encap
uniformly samples K, by a union bound, we derive that for any PPT
distinguisher D,

|Pr[D(G0) = 1]− Pr[D(G−1) = 1]| ≤ CollPKKEM,n(1
λ) +

nk̃(nk̃ − 1)

2|KKEM|

≤ n

2
AdvOW-PCA

KEM,AColl
(λ) +

nk̃(nk̃ − 1)

2λ+1
(51)

for a suitable PPT adversary AColl, where k̃ := maxni=1 |m∗i |.
Game G1: Game G1 is the same as G0, except that we abort this game
(with output ⊥) as long as AbortEARLY occurs. Let AbortEARLY1 denote
the event that A1 submits a random-oracle query K such that later there
is some K∗i′,j′ (for some i′ ∈ [n] and j′ ∈ [|m∗i′ |]), generated by Encap,
satisfying K∗i′,j′ = K. Let AbortEARLY2 denote the event that A1 sub-

mits a decryption query (i′′, (ckem, csym, t)) such that later there is some
K∗i′,j′ (for some i′ ∈ [n] and j′ ∈ [|m∗i′ |]), generated by Encap, satisfying

Decap(skkemi′′ , ckem) = K∗i′,j′ .Obviously, AbortEARLY occurs if and only if
AbortEARLY1 or AbortEARLY2 occurs.

Since Encap uniformly samples the session keys, for any i ∈ [n] and
any j ∈ [|m∗i |],K∗i,j is uniformly sampled. Note that A1 makes its random-
oracle queries and decryption queries before seeing the challenge cipher-
texts (c∗1, · · · , c∗n), So it has no information about K∗i,j for any i ∈ [n] and
any j ∈ [|m∗i |]. Therefore, we derive that for any PPT distinguisher D,

|Pr[D(G1) = 1]− Pr[D(G0) = 1]| ≤ Pr[AbortEARLY1] + Pr[AbortEARLY2]

≤
qr∑
θ=1

nk̃

2λ − (θ − 1)
+

qd∑
θ=1

nk̃

2λ − (θ − 1)

≤ nk̃qr
2λ − qr

+
nk̃qd

2λ − qd
, (52)

where k̃ = maxni=1 |m∗i |.
Game G2: Game G2 is the same as G1, except that (i) the procedures
“(K∗symi,j ,K∗maci,j ) = HRO(K

∗
i,j); c∗symi,j = K∗symi,j ⊕ m∗i [j]” are replaced

with “(c∗symi,j ,K∗maci,j ) ← {0, 1}ℓ × KMAC” for all i ∈ [n] and j ∈ [|m∗i |],
(ii) “(HRO(K

∗
i,j) = (c∗symi,j ⊕m∗i [j],K

∗mac
i,j ))(i,j)∈IS

∪
{(̃i,̃j)|̃i∈IR ,̃j∈[|m∗

ĩ
|]}” are

added the generation of the answer to the selective opening query, and
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(iii) if A2 and A3 submits a random-oracle query K such that (K, ·) /∈ LH

and K = K∗i′,j′ for some i′ ∈ [n] and j′ ∈ [|m∗i |], the challenger sets that

HRO(K
∗
i,j) = (c∗symi,j ⊕m∗i [j],K

∗mac
i,j ), as shown in Fig. 13.

We claim that for any (even unbounded) distinguisher Ds,

Pr[Ds(G2) = 1] = Pr[Ds(G1) = 1]. (53)

The reasons are as follows. Assuming neither AbortEARLY1 nor AbortEARLY2

happens in G2, for any i ∈ [n] and j ∈ [|m∗i′ |], (K
∗sym
i,j ,K∗maci,j ) is uni-

formly and independently distributed when A1 outputs (M, s1). Hence,
for each i ∈ [n] and j ∈ [|m∗i′ |], c∗symi,j = K∗symi,j ⊕ m∗i [j] is also uni-

formly distributed, and t∗i,j is a valid tag of (pkkemi , c∗kemi,j , c∗symi,j ) under
a key from the uniform distribution. Consequently, during the genera-
tion of (c∗1, · · · , c∗n), for each i ∈ [n] and j ∈ [|m∗i′ |], the challenger can
sample (c∗symi,j ,K∗maci,j ) uniformly and compute t∗i,j using K∗maci,j , without
changing the distribution of (c∗1, · · · , c∗n). In order to keep HRO consisten-
t, if A2 queries the random oracle on K = K∗i′,j′ for some i′ ∈ [n] and
j′ ∈ [|m∗i′ |] (resp. submits a selective opening query (IS , IR)), the chal-
lenger sets that HRO(K

∗
i′,j′) = (c∗symi′,j′ ⊕m∗i′ [j

′],K∗maci′,j′ ) (resp. sets that for

all (i, j) ∈ IS
∪
{(̃i, j̃) | ĩ ∈ IR, j̃ ∈ [|m∗

ĩ
|]}, HRO(K

∗
i,j) = (c∗symi,j ⊕m∗i [j],

K∗maci,j )). Therefore, we obtain Eq. (53).
Game G3: Let BAD denote the event that A2 or A3 submits a decryption
query (i′, (ckem, csym, t)) such that for K = Decap(skkemi′ , ckem), there is
some (i′′, j′′) satisfying that

(i) i′′ ∈ [n] and j′′ ∈ [|m∗i′′ |],
(ii) HRO(K) has not yet been programmed, and
(iii) ((i′′, (ckem, csym, t)) /∈ C) ∧ (K = K∗i′′,j′′) ∧ (Verf(K∗maci′′,j′′ , (pki′′ , c

kem,
csym), t) = 1).

Note that without loss of generality, we have already assumed that after
receiving (ski,m

∗
i )i∈IR , the adversary will not query the decryption oracle

on any (̃i, ·) satisfying ĩ ∈ IR. So if the decryption query (i′, (ckem, csym,
t)) is made by A3, then i′ /∈ IR. Obviously game G3 is the same as G2,
except that we abort this game (with output ⊥) as long as BAD occurs.

Now we present the following lemma with a postponed proof.

Lemma 4. There is a sUF-OT-CMA adversary AMAC attacking MAC,
such that

Pr[BAD] ≤ nk̃AdvsUF-OT-CMA
MAC,AMAC

(λ),

where k̃ = maxni=1 |m∗i |.
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Hence, for any PPT distinguisher D,

|Pr[D(G3) = 1]− Pr[D(G2) = 1]| ≤ Pr[BAD] ≤ nk̃AdvsUF-OT-CMA
MAC,AMAC

(λ). (54)

Game G4: In this game, a new abort condition is added (as shown in Fig.
13). Specifically, if A2 or A3 submits a random-oracle query K = K∗i′,j′
for some i′ ∈ [n] and j′ ∈ [|m∗i′ |] when (K, ·) /∈ LH, then the challenger
raises the event AbortH and aborts (with output ⊥). Again, we present
the following lemma with a postponed proof.

Lemma 5. There is an OW-PCA adversary AKEM attacking KEM, such
that for any PPT distinguisher D,

|Pr[D(G4) = 1]− Pr[D(G3) = 1]| ≤ k̃ñAdvOW-PCA
KEM,AKEM

(λ), (55)

where k̃ = maxni=1 |m∗i | and ñ is a polynomially upper bound of the number
of receivers that adversary A creates.

Now, we construct a PPT simulator S for A, as shown in Fig. 14. We
also let S maintain a local array LH and use it to keep track of issued
calls (either by the game of A). Obviously S simulates G4 perfectly for
A, so we derive that

ExpBi-SO-ideal
PKEK-M,S (λ) = G4. (56)

Therefore, combining Eq. (50)-(56), we derive that for any PPT dis-
tinguisher D,

AdvSIM-Bi-SO-CCA
PKEK-M,A,S,D (λ)

=
∣∣∣Pr[D(ExpBi-SO-real

PKEK-M,A (λ)) = 1]− Pr[D(ExpBi-SO-ideal
PKEK-M,S (λ)) = 1]

∣∣∣
= |Pr[D(G−1) = 1]− Pr[D(G4) = 1]|

≤ n

2
AdvOW-PCA

KEM,AColl
(λ) +

nk̃(nk̃ − 1)

2λ+1
+

nk̃qr
2λ − qr

+
nk̃qd

2λ − qd

+ nk̃AdvsUF-OT-CMA
MAC,AMAC

(λ) + nk̃AdvOW-PCA
KEM,AKEM

(λ)

for two suitable OW-PCA adversaries AColl,AKEM and a suitable sUF-
OT-CMA adversary AMAC, where k̃ = maxni=1 |m∗i |.

We catch up with the proofs of Lemma 4 and Lemma 5.

Proof (of Lemma 4).
Based on A, we construct a PPT adversary AMAC as shown in Fig.

15 and Fig. 16, where we use VERF to denote AMAC’s verification oracle.
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SSimMkRec1 (1λ) :

pp = 1λ ← Setup(1λ); n := 0; C := ∅; (M, s1)← A
HASH1,MkRec,Dec1
1 (pp)

If ∃ i ̸= i′, s.t. pkkem
i = pkkem

i′ : abort

ŝ1 := ((pki, ski)i∈[n], n, C, LH,M, s1); Return (M, ŝ1)

S2(len = ((|m∗
i |, ℓ)i∈[n]), ŝ1) :

For i = 1 to n:

For j = 1 to |m∗
i |:

r∗i [j]← REncap; (K∗
i,j , c

∗kem
i,j )← Encap(pkkem

i ; r∗i [j])

If (K∗
i,j , ·) ∈ LH: AbortEARLY:=true; abort

If ∃ (i′, j′) ̸= (i′′, j′′), s.t. K∗
i′,j′ = K∗

i′′,j′′ : abort

For i = 1 to n:

For j = 1 to |m∗
i |:

(c
∗sym
i,j , K∗mac

i,j )← {0, 1}ℓ ×KMAC; t∗i,j = Auth(K∗mac
i,j , (pkkem

i , c∗kem
i,j , c

∗sym
i,j ))

c∗i [j] := (c∗kem
i,j , c

∗sym
i,j , t∗i,j); C = C ∪ {(i, c∗i [j])}

(IS ,IR, s2)← A
HASH2,Dec2
2 ((c∗i )i∈[n], s1)

ŝ2 := ((pki, ski)i∈[n], (r
∗
i [j], c

∗
i [j], K

∗
i,j , , K

∗mac
i,j )i∈[n],j∈[|m∗

i
|], n, C, LH,M,IS , IR, s1)

Return (IS , IR, ŝ2)

S3((m∗
i [j])(i,j)∈IS

, (m∗
i )i∈IR

, ŝ2) :

(HRO(K∗
i,j) = (c

∗sym
i,j ⊕m∗

i [j], K
∗mac
i,j ))

(i,j)∈IS
∪
{(ĩ,j̃)|ĩ∈IR,j̃∈[|m∗

ĩ
|]}

out← AHASH2,Dec2
3 ((r∗i [j],m

∗
i [j])(i,j)∈IS

, (ski,m
∗
i )i∈IR

, s2); Return out

HASH1(K) :

If (K, ·) /∈ LH: (Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

HASH2(K) :

If (K, ·) /∈ LH:

If K = K∗
i′,j′ for some i′ ∈ [n] and j′ ∈ [|m∗

i′ |]: AbortH := true; abort

Else: (Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

MkRec() :

SimMkRec(); n = n + 1; (pkkem
n , skkem

n )← KemGen(1λ); pkn := pkkem
n ; skn := (pkkem

n , skkem
n )

Return pkn

Dec1(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
K = Decap(skkem

i′ , ckem); (K
sym

, K
mac

) = HASH1(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Dec2(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
K = Decap(skkem

i′ , ckem)

If (K ∈ {K∗
i,j | i ∈ [n], j ∈ [|m∗

i |]}) ∧ ((K, ·) /∈ LH): return ⊥
(K

sym
, K

mac
) = HASH2(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Fig. 14 Simulator S = (S1,S2,S3) in the proof of Theorem 6.
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Adversary AVERF
MAC,1(1

λ) :

(m̃∗, t̃∗) := (⊥,⊥); pp = 1λ ← Setup(1λ); n := 0; C := ∅; (M, s1)← A
HASH1,MkRec,Dec1
1 (pp)

If ∃ i ̸= i′, s.t. pkkem
i = pkkem

i′ : abort

M := (m∗
1 , · · · ,m

∗
n)←M; ĩ← [n]; j̃ ← [|m∗

ĩ
|]

For i = 1 to n:

For j = 1 to |m∗
i |:

r∗i [j]← REncap; (K∗
i,j , c

∗kem
i,j )← Encap(pkkem

i ; r∗i [j])

If (K∗
i,j , ·) ∈ LH: AbortEARLY:=true; abort

If ∃ (i′, j′) ̸= (i′′, j′′), s.t. K∗
i′,j′ = K∗

i′′,j′′ : abort

c
∗sym

ĩ,j̃
← {0, 1}ℓ; m̃ := (pkkem

ĩ
, c∗kem

ĩ,j̃
, c

∗sym

ĩ,j̃
)

s̃1 := ((m̃∗, t̃∗), (̃i, j̃), (pki, ski)i∈[n], (r
∗
i [j], K

∗
i,j , c

∗kem
i,j )i∈[n],j∈[ℓ], c

∗sym

ĩ,j̃
, n, C, LH,M,M, s1)

Return (m̃, s̃1)

Adversary AVERF
MAC,2(t̃, s̃1):

t∗
ĩ,j̃

:= t̃; c∗
ĩ
[j̃] := (c∗kem

ĩ,j̃
, c

∗sym

ĩ,j̃
, t∗

ĩ,j̃
); C = C ∪ {(̃i, c∗

ĩ
[j̃])}

For i ∈ [n] \ {̃i}:
For j = 1 to |m∗

i |:
(c

∗sym
i,j , K∗mac

i,j )← {0, 1}ℓ ×KMAC; t∗i,j = Auth(K∗mac
i,j , (pkkem

i , c∗kem
i,j , c

∗sym
i,j ))

c∗i [j] := (c∗kem
i,j , c

∗sym
i,j , t∗i,j); C = C ∪ {(i, c∗i [j])}

For j ∈ [|m∗
ĩ
|] \ {j̃}:

(c
∗sym

ĩ,j
, K∗mac

ĩ,j
)← {0, 1}ℓ ×KMAC; t∗

ĩ,j
= Auth(K∗mac

ĩ,j
, (pkkem

ĩ
, c∗kem

ĩ,j
, c

∗sym

ĩ,j
))

c∗
ĩ
[j] := (c∗kem

ĩ,j
, c

∗sym

ĩ,j
, t∗

ĩ,j
); C = C ∪ {(̃i, c∗

ĩ
[j])}

(IS ,IR, s2)← A
HASH2,Dec2
2 ((c∗i,j)i∈[n],j∈[k], s1)

If ((̃i, j̃) ∈ IS) ∨ (̃i ∈ IR): ABORT-Null := true

(HRO(K∗
i,j) = (c

∗sym
i,j ⊕m∗

i [j], K
∗mac
i,j ))(i,j)∈IS

∪
{(i′′,j′′)|i′′∈IR,j′′∈[|m∗

i′′
|]}

out← AHASH2,Dec2
3 ((r∗i [j],m

∗
i [j])(i,j)∈IS

, (ski,m
∗
i [j])i∈IR,j∈[|m∗

i
|], s2)

Return (m̃∗, t̃∗)

HASH1(K) :

If (K, ·) /∈ LH: (Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

HASH2(K) :

If (K, ·) /∈ LH:

If K = K∗
i′′,j′′ for some i′′ ∈ [n] and j′′ ∈ [|m∗

i′′ |]:

If (i′′, j′′) ̸= (̃i, j̃): HRO(K∗
i′′,j′′ ) = (c

∗sym

i′′,j′′ ⊕m∗
i′′ [j

′′], K∗mac
i′′,j′′ )

If (i′′, j′′) = (̃i, j̃): ABORT-Null := true

Else:

(Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

MkRec() :

n = n + 1; (pkkem
n , skkem

n )← KemGen(1λ); pkn := pkkem
n ; skn := (pkkem

n , skkem
n )

Return pkn

(The procedures of the decryption oracles Dec1 and Dec2 are given in Fig. 16.)

Fig. 15 Adversary AMAC = (AMAC,1,AMAC,2) attacking MAC.

For each i ∈ [n] and each j ∈ [|m∗i |], denote by BADi,j the event BAD
which is caused by the query (i′, (ckem, csym, t)) satisfying Decap(skkemi′ ,
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Dec1(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
K = Decap(skkem

i′ , ckem); (K
sym

, K
mac

) = HASH1(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Dec2(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
K = Decap(skkem

i′ , ckem)

If (K = K∗
i′′,j′′ for some i′′ ∈ [n], j′′ ∈ [|m∗

i′′ |]}) ∧ ((K, ·) /∈ LH):

If (i′′, j′′) ̸= (̃i, j̃):

(K
sym

, K
mac

) = HASH2(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Else:

If VERF((pkkem
i′ , ckem, csym), t) = 1:

(m̃∗, t̃∗) = ((pkkem
i′ , ckem, csym), t); ABORT-RETURN := true

Else:

Return ⊥

Fig. 16 The decryption oracles provided by AMAC in Fig. 15.

ckem) = K∗i,j . Thus we have Pr[BAD] ≤
∑n

i=1

∑|m∗i |
j=1 Pr[BADi,j ]. We al-

so introduce two special events, ABORT-Null and ABORT-RETURN (as
shown in Fig. 15 and Fig. 16), and require that when ABORT-Null (resp.
ABORT-RETURN) is set true, AMAC immediately terminates the simula-
tion and returns (⊥,⊥) (resp. (m̃∗, t̃∗)) as its final output.

Now we compute Pr[BADi,j ] for each i ∈ [n] and each j ∈ [|m∗i |].
Firstly, we note that if neither ABORT-Null nor ABORT-RETURN is

set true, then AMAC perfectly simulates game G2 for A.
Secondly, ABORT-RETURN is set true only if (K∗

ĩ,̃j
, ·) /∈ LH (i.e.,

ABORT-RETURN is set true only if neither A nor the game has queried
the random oracle on K = K∗

ĩ,̃j
). Hence, the termination incurred by

ABORT-Null will not influence the probability of ABORT-RETURN =
true. In other words, if we introduce the same event ABORT-RETURN in
G2, then Pr[ABORT-RETURN] inG2 is the same as Pr[ABORT-RETURN]
in the game simulated by AMAC.

Thirdly, note that for any fixed i′′ ∈ [n] and any fixed j′′ ∈ [|m∗i′′ |],
BADi′′,j′′ occurs if and only if ABORT-RETURN occurs when (̃i, j̃) is fixed
to be (i′′, j′′). In other words,

Pr[BADi′′,j′′ ] = Pr[ABORT-RETURN | (̃i, j̃) = (i′′, j′′)].

When ABORT-RETURN is set true, (m̃∗, t̃∗) = ((pkkemi′ , ckem, csym), t)

and VERF(m̃∗, t̃∗) = 1. If i′ ̸= ĩ, we derive that pkkemi′ ̸= pkkem
ĩ

because of
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the change introduced in G0. So

(m̃∗, t̃∗) = ((pkkemi′ , ckem, csym), t) ̸= ((pkkem
ĩ

, c∗kem
ĩ,̃j

, c∗sym
ĩ,̃j

), t∗
ĩ,̃j
) = (m̃, t̃).

If i′ = ĩ, since (i′, (ckem, csym, t)) /∈ C and (̃i, (c∗kem
ĩ,̃j

, c∗sym
ĩ,̃j

, t∗
ĩ,̃j
)) ∈ C, we

derive that (ckem, csym, t) ̸= (c∗kem
ĩ,̃j

, c∗sym
ĩ,̃j

, t∗
ĩ,̃j
), which also implies

(m̃∗, t̃∗) = ((pkkemi′ , ckem, csym), t) ̸= ((pkkem
ĩ

, c∗kem
ĩ,̃j

, c∗sym
ĩ,̃j

), t∗
ĩ,̃j
) = (m̃, t̃).

Therefore,

AdvsUF-OT-CMA
MAC,AMAC

(λ) = Pr[ABORT-RETURN].

Hence, we obtain that

Pr[BAD]

≤
n∑
i=1

|m∗i |∑
j=1

Pr[BADi,j ]

=

n∑
i=1

|m∗i |∑
j=1

Pr[ABORT-RETURN | (̃i, j̃) = (i, j)]

≤ nk̃
n∑
i=1

|m∗i |∑
j=1

Pr[ABORT-RETURN | (̃i, j̃) = (i, j)] Pr[(̃i, j̃) = (i, j)]

≤ nk̃Pr[ABORT-RETURN]

= nk̃AdvsUF-OT-CMA
MAC,AMAC

(λ),

where k̃ = maxni=1 |m∗i |. ⊓⊔

Proof (of Lemma 5). G4 and G3 are identical except that AbortH = true,
i.e., for any PPT distinguisher D,

|Pr[D(G4) = 1]− Pr[D(G3) = 1]| ≤ Pr[AbortH].

Assmue that ñ is a polynomially upper bound of the number of re-
ceivers that adversary A creates. We show an OW-PCA adversary AKEM,
attacking KEM, in Fig. 17 and Fig. 18. We introduce three special events
ABORT-RETURN, AbortHfail and ABORT-Null, and require that when any
one of these three events is set true, AKEM immediately terminates the
simulation and returns the current K̃ as its final output.
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Adversary ACheck
KEM (p̃k

kem
, c̃∗) :

K̃ := ⊥; ĩ← [ñ]; pp = 1λ ← Setup(1λ)

n := 0; C := ∅; (M, s1)← A
HASH1,MkRec,Dec1
1 (pp)

If ĩ > n: ABORT-Null := true

If ∃ i ̸= i′, s.t. pkkem
i = pkkem

i′ : abort

M := (m∗
1 , · · · ,m

∗
n)←M; j̃ ← [|m∗

ĩ
|]

For i ∈ [n] \ {̃i}:
For j = 1 to |m∗

i |:
r∗i [j]← REncap; (K∗

i,j , c
∗kem
i,j )← Encap(pkkem

i ; r∗i [j])

If (K∗
i,j , ·) ∈ LH: AbortEARLY:=true; abort

For j ∈ [|m∗
ĩ
|] \ {j̃}:

r∗
ĩ
[j]← REncap; (K∗

ĩ,j
, c∗kem

ĩ,j
)← Encap(pkkem

ĩ
; r∗

ĩ
[j])

If (K∗
ĩ,j

, ·) ∈ LH: AbortEARLY:=true; abort

c∗kem
ĩ,j̃

:= c̃∗

If ∃ (K, )̇ ∈ LH, s.t. Check(K, c∗kem
ĩ,j̃

) = 1: abort

If ∃ (i′, j′) ̸= (i′′, j′′), s.t. K∗
i′,j′ = K∗

i′′,j′′ : abort

For i = 1 to n:

For j = 1 to |m∗
i |:

(c
∗sym
i,j , K∗mac

i,j )← {0, 1}ℓ ×KMAC; t∗i,j = Auth(K∗mac
i,j , (pkkem

i , c∗kem
i,j , c

∗sym
i,j ))

c∗i [j] := (c∗kem
i,j , c

∗sym
i,j , t∗i,j); C = C ∪ {(i, c∗i [j])}

(IS , IR, s2)← A
HASH2,Dec2
2 ((c∗i )i∈[n], s1)

If ((̃i, j̃) ∈ IS) ∨ (̃i ∈ IR): abort

(HRO(K∗
i,j) = (c

∗sym
i,j ⊕m∗

i [j], K
∗mac
i,j ))(i,j)∈IS

∪
{(i′′,j′′)|i′′∈IR,j′′∈[|m∗

i′′
|]}

out← AHASH2,Dec2
3 ((r∗i [j],m

∗
i [j])(i,j)∈IS

, (ski,m
∗
i [j])i∈IR,j∈[|m∗

i
|], s2)

Return K̃

HASH1(K) :

If (K, ·) /∈ LH: (Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) := (Ksym, Kmac)

Return HRO(K)

HASH2(K) :

If (K, ·) /∈ LH:

If K = K∗
i′′,j′′ for some (i′′, j′′) ̸= (̃i, j̃): AbortHfail := true

If Check(K, c̃∗) = 1:

K̃ = K; ABORT-RETURN := true

If ∃(csym, (K
sym

, K
mac

)) ∈ Hpatch, s.t. Check(K, csym) = 1: HRO(K) = (K
sym

, K
mac

)

Else: (Ksym, Kmac)← {0, 1}ℓ ×KMAC; HRO(K) = (Ksym, Kmac)

Return HRO(K)

MkRec() :

n = n + 1

If n = ĩ: pkkem
n := p̃k

kem
; pkn := pkkem

n

Else: (pkkem
n , skkem

n )← KemGen(1λ); pkn := pkkem
n ; skn := (pkkem

n , skkem
n )

Return pkn

(The procedures of the decryption oracles Dec1 and Dec2 are given in Fig. 18.)

Fig. 17 Adversary AKEM attacking KEM.

Now we take a look at adversary AKEM in Fig. 17 and Fig. 18.
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Dec1(i
′, (ckem, csym, t)) :

If (i′ > n) ∨ ((i′, (ckem, csym, t)) ∈ C): return ⊥
If i′ ̸= ĩ:

K = Decap(skkem
i′ , ckem); (K

sym
, K

mac
) = HASH1(K)

If i′ = ĩ:

If ∃(K, ·) ∈ LH, s.t. Check(K, ckem) = 1:

K = K; (K
sym

, K
mac

) = HASH1(K)

Else:

(K
sym

, K
mac

)← {0, 1}ℓ ×KMAC; Add (ckem, (K
sym

, K
mac

)) to Hpatch

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Dec2(i
′, (ckem, csym, t)) :

If ((i′, (ckem, csym, t)) ∈ C) ∨ (i′ ∈ I′R): return ⊥
If i′ ̸= ĩ:

K = Decap(skkem
i′ , ckem)

If (K ∈ {K∗
i,j | i ∈ [n], j ∈ [|m∗

i |], (i, j) ̸= (̃i, j̃)}) ∧ ((K, ·) /∈ LH): return ⊥
If ((Check(K, c̃∗) = 1) ∧ ((K, ·) /∈ LH): return ⊥
(K

sym
, K

mac
) = HASH2(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

If i′ = ĩ:

If ∃ K ∈ {K∗
i,j | i ∈ [n], j ∈ [|m∗

i |], (i, j) ̸= (̃i, j̃)} s.t. (Check(K, ckem) = 1) ∧ ((K, ·) /∈ LH):

Return ⊥
If (ckem = c̃∗) ∧ (∀(K, ·) ∈ LH, Check(K, ckem) = 0): return ⊥
If ∃(K, ·) ∈ LH, s.t. Check(K, ckem) = 1:

K = K; (K
sym

, K
mac

) = HASH2(K)

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Else:

(K
sym

, K
mac

)← {0, 1}ℓ ×KMAC; Add (ckem, (K
sym

, K
mac

)) to Hpatch

If Verf(K
mac

, (pkkem
i′ , ckem, csym), t) = 0: return ⊥

Return m = csym ⊕K
sym

Fig. 18 The decryption oracles provided by AKEM in Fig. 17.

Upon receiving (p̃k
kem

, c̃∗), where c̃∗ is an encapsulation of some key

K̃∗ that AKEM aims to find out, AKEM runs A as A is run in G4, except
for the following differences:

(1) At the beginning, AKEM samples a random ĩ ← [ñ]. If ĩ > n, then
ABORT-Null is set true. Obviously,

Pr[¬ABORT-Null] = Pr[̃i ≤ n] =
n

ñ
. (57)

From now on, when ABORT-Null ̸= true, we write that I ̸=(̃i,̃j) := {(i
′′,

j′′) | i′′ ∈ [n], j′′ ∈ [|m∗i′′ |], (i′′, j′′) ̸= (̃i, j̃)}.
(2) Note that when ABORT-Null ̸= true,AKEM successfully sets that pk̃i =

p̃k
kem

and c∗kem
ĩ,̃j

:= c̃∗, where j̃ ← [|m∗
ĩ
|].

62



(3) When ABORT-Null ̸= true, since AKEM knows all the (K∗i,j)(i,j)∈I̸=(̃i,j̃)

and can access to the Check(·, ·) oracle, it can check by itself whether
there exist (i′, j′) ̸= (i′′, j′′) such that K∗i′,j′ = K∗i′′,j′′ , as in G4.

(4) When ABORT-Null ̸= true, if A submits a selective opening query
(IS , IR) such that (̃i, j̃) ∈ IS or ĩ ∈ IR, then AKEM apparently has
guessed (̃i, j̃) wrong and aborts the simulation immediately. That’s
because when (̃i, j̃) ∈ IS or ĩ ∈ IR, AbortH will not happen anymore.
So this termination will not affect the probability that AbortH occurs.

(5) If A1 submits a decryption query (i′, (ckem, csym, t)) to Dec1:

- If i′ ̸= ĩ, AKEM can compute K = Decap(skkemi′ , ckem) by itself.
Again, since AKEM knows all the (K∗i,j)(i,j)∈I̸=(̃i,j̃)

and can access

to the Check(·, ·) oracle, it can check whether K ∈ {K∗i,j | i ∈
[n], j ∈ [|m∗i |]} and whether (K, ·) /∈ LH. So it can answer this
decryption query directly by itself.

- If i′ = ĩ, AKEM cannot compute K = Decap(skkemi′ , ckem) since it

does not have skkemi′ = skkem
ĩ

. In order to obtain (K
sym

,K
mac

),

AKEM firstly checks whether “∃ (K, ·) ∈ LH, s.t. Check(K, ckem) =
1” or not. If so, then K = K, thus AKEM can finish the remain-
ing decryption procedures as in G4. If not, we make use of the
“oracle patching technique” from [9]. Specifically, AKEM samples
(K

sym
,K

mac
) ← {0, 1}ℓ × KMAC, uses the keys to answer the de-

cryption query, and meanwhile maintains a dedicated list Hpatch,
adding (ckem, (K

sym
,K

mac
)) to Hpatch. Then AKEM can finish the

remaining decryption procedures.

(6) When ABORT-Null ̸= true, if A2 or A3 submits a decryption query
(i′, (ckem, csym, t)) to Dec2:

- If i′ ̸= ĩ, AKEM can compute K = Decap(skkemi′ , ckem) by itself.
Again, since AKEM knows all the (K∗i,j)(i,j)∈I̸=(̃i,j̃)

and can access

to the Check(·, ·) oracle, it can check whether K ∈ {K∗i,j | i ∈
[n], j ∈ [|m∗i |]} and whether (K, ·) /∈ LH. So it can answer this
decryption query directly by itself.

- If i′ = ĩ, AKEM needs to check whether “(K ∈ {K∗i,j | i ∈ [n], j ∈
[|m∗i |]}) ∧ ((K, ·) /∈ LH)” without computing K = Decap(skkem

ĩ
,

ckem). We notice that AKEM knows all the (K∗i,j)(i,j)∈I̸=(̃i,j̃)
and can

access to the Check(·, ·) oracle, so it can check if “(K ∈ {K∗i,j | (i,
j) ∈ I ̸=(̃i,̃j)})∧((K, ·) /∈ LH)” by checking if “∃ K ∈ {K∗i,j | i ∈ [n],

j ∈ [|m∗i |], (i, j) ̸= (̃i, j̃)} s.t. (Check(K, ckem) = 1) ∧ ((K, ·) /∈
LH)”. On the other hand, since KEM has unique encapsulations,
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AKEM can check if “(K = K∗
ĩ,̃j
) ∧ ((K, ·) /∈ LH)” by checking if

“(ckem = c̃∗) ∧ (∀(K, ·) ∈ LH, Check(K, ckem) = 0)”. Therefore,
AKEM can finish the procedures “if (K ∈ {K∗i,j | i ∈ [n], j ∈
[|m∗i |]}) ∧ ((K, ·) /∈ LH)” when i′ = ĩ in G4.
Next, in order to obtain (K

sym
,K

mac
),AKEM firstly checks whether

“∃ (K, ·) ∈ LH, s.t. Check(K, ckem) = 1” or not. If so, thenK = K,
thus AKEM can finish the remaining decryption procedures as in
G4. If not, we make use of the “oracle patching technique” from [9].
AKEM samples (K

sym
,K

mac
) ← {0, 1}ℓ × KMAC, uses the keys to

answer the decryption query, and meanwhile maintains a dedicat-
ed list Hpatch, adding (ckem, (K

sym
,K

mac
)) to Hpatch. Then AKEM

can finish the remaining decryption procedures
In order to keep the responses to the random-oracle queries and
to the decryption-oracle queries consistent, on each random-oracle
queryK (to HASH2(·)) satisfying (K, ·) /∈ LH, AKEM checks whether
there is an entry (ĉkem, (K̂sym, K̂mac)) ∈ Hpatch such that Check(K,
ĉkem) = 1: if there is such an entry, then AKEM sets HRO(K) =
(K̂sym, K̂mac); otherwise, AKEM generates HRO(K) as before.

Note that when assuming ABORT-Null ̸= true, the probability that
AbortH occurs in the experiment simulated by AKEM for A (denoted as
Gsim) is the same as that in G4, and that

AdvOW-PCA
KEM,AKEM

(λ) = Pr[ABORT-RETURN]

≥ 1

nk̃
Pr[AbortH | in Gsim]

=
1

nk̃

n

ñ
Pr[AbortH | in G4]

=
1

k̃ñ
Pr[AbortH],

where k̃ = maxni=1 |m∗i |. Therefore, for any PPT distinguisher D,

|Pr[D(G4) = 1]− Pr[D(G3) = 1]| ≤ Pr[AbortH] ≤ k̃ñAdvOW-PCA
KEM,AKEM

(λ).

⊓⊔
⊓⊔
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