
HAL Id: hal-03820072
https://hal.inria.fr/hal-03820072

Submitted on 18 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cumulatively All-Lossy-But-One Trapdoor Functions
from Standard Assumptions

Benoît Libert, Ky Nguyen, Alain Passelègue

To cite this version:
Benoît Libert, Ky Nguyen, Alain Passelègue. Cumulatively All-Lossy-But-One Trapdoor Functions
from Standard Assumptions. SCN 2022 - Proceedings of the 13th Conference on Security in Commu-
nication Networks, Sep 2022, Amalfi, Italy. �hal-03820072�

https://hal.inria.fr/hal-03820072
https://hal.archives-ouvertes.fr

Cumulatively All-Lossy-But-One Trapdoor
Functions from Standard Assumptions

Benoît Libert1,2, Ky Nguyen3,4, and Alain Passelègue2,4

1 CNRS, Laboratoire LIP, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

benoit.libert@ens-lyon.fr
3 DIENS, École normale supérieure, CNRS, PSL University, Paris, France

(�) ky.nguyen@ens.psl.eu
4 Inria, France

alain.passelegue@inria.fr

Abstract. Chakraborty, Prabhakaran, and Wichs (PKC’20) recently in-
troduced a new tag-based variant of lossy trapdoor functions, termed
cumulatively all-lossy-but-one trapdoor functions (CALBO-TDFs). In-
formally, CALBO-TDFs allow defining a public tag-based function with
a (computationally hidden) special tag, such that the function is lossy
for all tags except when the special secret tag is used. In the latter case,
the function becomes injective and efficiently invertible using a secret
trapdoor. This notion has been used to obtain advanced constructions
of signatures with strong guarantees against leakage and tampering, and
also by Dodis, Vaikunthanathan, and Wichs (EUROCRYPT’20) to ob-
tain constructions of randomness extractors with extractor-dependent
sources. While these applications are motivated by practical considera-
tions, the only known instantiation of CALBO-TDFs so far relies on the
existence of indistinguishability obfuscation.
In this paper, we propose the first two instantiations of CALBO-TDFs
based on standard assumptions. Our constructions are based on the
LWE assumption with a sub-exponential approximation factor and on
the DCR assumption, respectively, and circumvent the use of indistin-
guishability obfuscation by relying on lossy modes and trapdoor mecha-
nisms enabled by these assumptions.
Keywords. Lossy trapdoor functions, cumulative lossiness, standard as-
sumptions.

1 Introduction

As introduced by Peikert and Waters [49], lossy trapdoor functions (LTDFs) are
function families where evaluation keys can be sampled in two modes: In the in-
jective mode, a function Fek(·) is injective and can be inverted using a trapdoor
tk that comes with the evaluation key ek; In the lossy mode, a function Fek(·) has
a much smaller image size and thus loses a certain amount of information about
its input. The standard security of an LTDF requires that the two modes be in-
distinguishable. That is, no efficient distinguisher can tell apart lossy evaluation
keys from injective ones.

Lossy trapdoor functions have been built from a variety of standard cryp-
tographic assumptions, such as the Decisional Diffie-Hellman (DDH) [49,26,30]
and Learning with Errors (LWE) assumptions [49,8,2], the Quadratic Residu-
osity (QR) [38,26,25] and Composite Residuosity (DCR) assumptions [26], the
Phi-hiding assumption [42,3] and more [47,54]. They have found numerous ap-
plications in cryptography, including chosen-ciphertext security, trapdoor func-
tions with many hard-core bits, collision-resistant hash functions, oblivious trans-
fer [49], deterministic [9,51] and hedged public-key encryption [6,53] in the stan-
dard model, instantiability of RSA-OAEP [42], computational extractors [24,28],
pseudo-entropy functions [18], selective-opening security [7], and more.

Several generalizations of LTDFs have been considered. Of particular interest
are the tag-based variants, where algorithms take an additional tag as input. In
all-but-one LTDFs [49] for instance, the evaluation key obtained by running the
sampling algorithm with a special tag tag∗ is such that the function Fek(·, tag) is
injective for all tags tag ̸= tag∗, but the function Fek(·, tag∗) is lossy. All-but-one
LTDFs have been generalized to all-but-N LTDFs [37] (which admit N > 1 lossy
tags) or all-but-many lossy trapdoor functions (where arbitrarily many lossy
tags can be adaptively created). The latter notion notably found applications to
selective-opening chosen-ciphertext security with compact ciphertexts [40,44,14].

In a setting where multiple lossy evaluations are provided (e.g., for multiple
lossy evaluation keys in the context of standard LTDFs or for multiple lossy tags
in the context of tag-based LTDFs), one may want to guarantee that multiple
lossy evaluations on the same input x do not reveal more information about x
than a single evaluation. This additional property was termed cumulative lossi-
ness in [19] where it was formalized by requiring the existence of a (possibly
inefficient) algorithm that starts with some fixed, partial information about x
and recovers the entire information provided by the multiple lossy evaluations.
The fact that all these evaluations can be recovered (even inefficiently) from the
same amount of partial information on x then guarantees that multiple lossy
evaluations on the same input x preserve the entropy of x. In particular, they
do not end up leaking x entirely.

In this paper, we investigate the notion of cumulatively all-lossy-but-one trap-
door functions, suggested by Chakraborty, Prabharkaran and Wichs [19], which
considers the case where all tags are lossy, except one. This notion has been used
to obtain advanced constructions of randomness extractors [24] and signatures
in the leakage and tampering model [19].

Cumulatively All-Lossy-But-One Lossy Trapdoor Functions. A cu-
mulatively all-lossy-but-one trapdoor functions (CALBO-TDFs) is a tag-based
LTDFs where the function Fek(·, tag) is lossy for any tag tag except one spe-
cial injective tag tag∗, for which Fek(·, tag∗) is invertible using a trapdoor td
associated with ek. In addition, the lossiness is required to be cumulative in the
sense that multiple evaluations Fek(x, tagi) for lossy tags tagi ̸= tag∗ always leak
the same information about x. Finally, the evaluation key should computation-
ally hide the special injective tag and evaluation keys generated with distinct
injective tags are required to be (computationally) indistinguishable.

2

In [24], the notion of CALBO-TDFs was relaxed by not requiring the ex-
istence of a trapdoor for the injective tag tag∗. This relaxed notion, termed
CALBO functions (or CALBOs for short), is also implicit in [18,27]. By drop-
ping the trapdoor requirement, these works obtained CALBOs from standard
lossy functions (without trapdoor). Therefore it has been possible to construct
CALBOs from many standard assumptions such as DDH, LWE, or DCR.

The design of CALBO-TDFs, for which a trapdoor is required in injective
mode, is much harder. Indeed, the only known instantiation so far [19] relies on
the existence of indistinguishability obfuscation [29] (iO) besides the DDH (or
LWE) assumption. At a high level, the construction of [19] starts with cumulative
LTDFs (C-LTDFs), which can be built from LWE or DDH, and combines it with
iO and puncturable PRFs [13,41,15]. The idea of [19] is to generate a CALBO-
TDF evaluation key as an obfuscated program in which the special injective tag
tag∗ is hard-wired together with an injective evaluation key for the underlying C-
LTDF. This program, on input tag, outputs the hard-wired injective evaluation
key if tag = tag∗; Otherwise, it samples a lossy evaluation key using randomness
derived from a puncturable PRF (of which the key is also hard-wired in the
program) evaluated on the input tag, and finally returns the resulting evaluation
key. When it comes to evaluating a function for an input x and a tag tag, [19]
evaluates the underlying C-LTDF on input x using the evaluation key obtained
by running the obfuscated program on input tag. The injectivity on the special
tag tag∗ and the cumulative lossiness property immediately follow from the same
properties in the underlying C-LTDF. Indistinguishability of evaluation keys
simply follows from the security of iO, the pseudorandomness of the puncturable
PRF when puncturing the tags, and the indistinguishability of lossy and injective
keys in the underlying C-LTDF.

In [19], CALBO-TDFs served as a building block to construct leakage and
tamper resilient signature schemes with a deterministic signing algorithm, a
notion that provides a natural solution to protect signature schemes against
leakage, e.g. physical analysis and timing measurements, or tampering attacks,
where the adversary deliberately targets the randomness used by the algorithms.
The complexity of the CALBO-TDF candidate of [19] motivates the search for
simpler, more efficient instantiations of CALBO-TDFs that avoid the use of
heavy hammers like obfuscation and rely on more standard assumptions.

1.1 Our Contributions

We present two constructions of CALBO-TDFs based solely on standard as-
sumptions. Our first construction relies on the LWE assumption [52] with sub-
exponential approximation factor in reducing LWE to a worst-case lattice prob-
lem 5, while our second construction relies on Paillier’s Composite Residuosity
assumption [48] (DCR).

5 The approximation factor is closely related to the modulus-to-noise ratio q/σ if the
LWE problem is defined over the ring of integers modulo q and the errors are sampled
from a discrete Gaussian distribution Dσ.

3

We thus avoid the use of indistinguishability obfuscation (which was used to
hide the hard-wired values including the special tag and the injective evaluation
key) by relying on lossy modes and trapdoor mechanisms enabled by LWE and
DCR. The first construction uses the lossy mode and trapdoor mechanism of
LWE in a similar way to [33,2,46]. By exploiting ideas from [45], it achieves a
mildly relaxed notion of cumulative lossiness, where cumulative lossiness only
holds with overwhelming probability over the choice of (non-injective) tags. The
same relaxed notion was used in the LWE+iO-based construction of [19]. This
relaxation does not hurt any of the applications, as shown [19]. Our second
construction relies on the lossiness and trapdoor mechanism of the Decision
Composite Residuosity (DCR) assumption. In particular, it uses the Damgård-
Jurik cryptosystem [20] in a similar way to the LTDF of Freeman et al. [26].

1.2 Technical Overview

Relaxed CALBO-TDFs from LWE. We start from the observation that
CALBOs (without a trapdoor) can be viewed as selectively secure unpredictable
functions when the key of the function is the CALBO’s input and the input
of the function serves as the CALBO’s tag. We then upgrade the LWE-based
PRF of Libert, Stehlé and Titiu [45] whose security proof precisely relies on the
cumulative lossiness of the LWE function (in its derandomized version based on
the rounding technique of [4]) for an appropriate choice of parameters. The LWE
function (which maps a pair of short integer column-vectors (s, e) ∈ Zn×Zm to
s⊤A+e⊤, for a random matrix A ∈ Zn×m

q) is known [33] to provide a lossy func-
tion, and even a lossy trapdoor function for an appropriate choice of parameters
[8,2]. The PRF of [45] interprets a variant of the key-homomorphic PRF of [11]
as a lossy function in its security proof. More specifically, letting ⌊·⌋p : Zq → Zp

denote the rounding function of [4] for moduli p < q defined as ⌊x⌋p = ⌊(p/q)·x⌋,
the function mapping x ∈ Zn

q to
⌊
x⊤ ·A

⌋
p

is injective when A ∈ Zn×m
q is uni-

formly random and lossy (as shown in [2]) when A is of the form D⊤ · B + E
for some random B ∈ Zℓ×m

q ,D ∈ Zℓ×n
q , ℓ≪ n, and some small-norm matrix E.

The PRF of [45] maps an input x to ⌊s⊤A(x)⌋p, where s ∈ Zn is the secret key
and A(x) ∈ Zn×m

q is an input-dependent matrix derived from public matrices.
The latter matrix is actually obtained using fully homomorphic encryption tech-
niques, by multiplying Gentry-Sahai-Waters (GSW) ciphertexts [32] indexed by
the bits of x. The security proof of [45] “programs” A(x) in such a way that all
evaluation queries reveal a lossy function of the secret key s while the challenge
evaluation reveals a non-lossy function ⌊s⊤A(x⋆)⌋p of s. By choosing a large
enough ratio q/p, they show that all evaluation queries reveal the same informa-
tion about the secret key s, which is exactly what we need to prove cumulative
lossiness in the CALBO setting. At the same time, [45] shows that ⌊s⊤A(x⋆)⌋p
retains a large amount of entropy conditionally on the information revealed by
all evaluation queries.

We introduce two modifications in the function of [45]. First, we only need
a selectively secure version of their PRF since the injective tag tag∗ is known

4

ahead of time in the security experiment whereas [45] has to prove adaptive secu-
rity using an admissible hash function [10]. We thus remove the admissible hash
function and directly compute A(x) as a product of public GSW ciphertexts
indexed by the tag bits without encoding them first. As a second modification
w.r.t [45], we need to extend the tag-dependent matrix A(x) so as to ensure
invertibility in injective mode.

Our CALBO construction can be outlined as follows. Given the injective tag
tag∗ ∈ {0, 1}t, the setup algorithm first generates A = D⊤ ·B + E ∈ Zn×m

q as
a lossy matrix, where B ∈ Zℓ×m

q , D ∈ Zℓ×n
q and E ∈ Zn×m, with ℓ ≪ n < m.

Then, the setup algorithm embeds (A,B) in the evaluation key ek via a set of
GSW ciphertexts [32]

Ai,b = A ·Ri,b + δb,tag∗i ·G ∀i ∈ [t], b ∈ {0, 1} (1)

where tag∗i denotes the i-th bit of tag∗, δb,tag∗i = (b
?
= tag∗i), G ∈ Zn×⌈n·log q⌉

q is
the gadget matrix of Micciancio and Peikert [46], and Ri,b ∈ {0, 1}m×⌈n·log q⌉ for
each i ∈ [t]. The trapdoor tk (which allows inverting in injective mode) contains
{Ri,b}i∈[t],b∈{0,1}. The computational indistinguishability of keys for different
injective tags follows from the LWE assumption. The latter implies that the
lossy matrix A = D⊤ · B + E is indistinguishable from a uniform matrix in
Zn×m
q . When A is uniform, the Leftover Hash Lemma implies that each product

A ·Ri,b is statistically close to the uniform distribution U(Zn×m
q). This ensures

that matrices (1) statistically hide tag∗ as they are statistically indistinguishable
from i.i.d. random matrices over Zq.

In order to evaluate the function on an input x for a tag tag, the evaluation
algorithm computes a product of GSW ciphertexts {Ai,tagi}

t
i=1 chosen among

{(Ai,0,Ai,1)}ti=1 and then obtains a ciphertext A(tag) encrypting the logical
AND Ctag(tag

∗) ≜
∧t

i=1(tagi
?
= tag∗i), where {tagi}ti=1 are the bits of tag. Said

otherwise, the tag-dependent matrix A(tag) = A · Rtag + Ctag∗(tag) · G is an
encryption of Ctag(tag

∗) =
∏t

i=1 δtagi,tag∗i , where the circuit Ctag(·) is homomor-
phically evaluated by computing a subset product of GSW ciphertexts in the
most sequential way (according to the terminology in [5]) so as to minimize the
noise growth. This is done by making sure that each multiplication always in-
volves a fresh GSW ciphertext.

Finally, the output of the evaluation is
⌊
x⊤ · [A |A(tag)]

⌋
p
. Here, we slightly

modify [45] where the challenge evaluation is of the form
⌊
x⊤A(tag)

⌋
p
. The rea-

son is that, in order to ensure invertibility for the injective tag tag∗, we need to
exploit the fact that A(tag∗) depends on G. To this end, we need an injective
evaluation of x to be of the form⌊

x⊤ · [A |A(tag∗)]
⌋
p
=

⌊
x⊤ · [A |A ·Rtag∗ +G]

⌋
p

for some small-norm matrix Rtag∗ ∈ Zn×⌈n·log q⌉. In this case, the binary matrices
Ri,b contained in tk can be used to compute Rtag∗ , which is a Micciancio-Peikert
trapdoor [46] for the matrix [A |A(tag∗)] and allows inverting the function x→⌊
x⊤ · [A |A(tag∗)]

⌋
p

in the same way as in the LTDF of [2].

5

In lossy mode (when tag differs from tag∗ in at least one bit), we can achieve
cumulative lossiness only for a fixed input, due to the error introduced by the
rounding operation. The argument is essentially the same as that in [45]: We
exploit the lossy form of A and the fact that, for any lossy tag tag ̸= tag∗, the
matrix [A |A(tag)] = [A |A · Rtag] does not depend on G. Then, with over-
whelming probability, multiple evaluations

⌊
x⊤ · [A |A ·Rtag]

⌋
p

always reveal
the same information about x ∈ Zn since w.h.p. we have⌊

x⊤ · [A |A ·Rtag]
⌋
p
=

⌊
x⊤ ·D⊤ ·B | (x⊤ ·D⊤ ·B) ·Rtag]

⌋
p

when q/p is sufficiently large. Hence, the evaluations
{⌊

x⊤ · [A |A(tag)]
⌋
p

}
tag ̸=tag∗

do not reveal any more information than D · x ∈ Zℓ
q. Concerning the relaxation

of cumulative lossiness, Chakraborty et al. [19] have the same restriction in their
use of the LWE assumption. However, as discussed in [19, Apppendix A], this
relaxed notion is not a problem in their applications of CALBO-TDFs.
CALBO-TDFs from DCR. We give a construction of CALBO-TDFs based
on the Damgård-Jurik homomorphic encryption scheme [20] with additional in-
sights from [21,22]. The construction is obtained by composing together multiple
instances of the DCR-based lossy trapdoor permutation of Freeman et al. [26],
which is index-dependent as its domain depends on the evaluation key. Recall
that the Damgård-Jurik cryptosystem uses the group Z∗

Nζ+1 , where N = pq is
an RSA modulus and ζ ≥ 1 is some natural number. Given an injective tag
tag∗ ∈ {0, 1}t, the evaluation key ek of our CALBO-TDFs includes (N, ζ) and
the following Damgård-Jurik ciphertexts

gi,b = (1 +N)
δb,tag∗

i · αNζ

i,b mod Nζ+1 ∀(i, b) ∈ [t]× {0, 1} ,

where αi,b ←↩ U(Z∗
N) for each i ∈ [t], b ∈ {0, 1}, δb,tag∗i = (b

?
= tag∗i) and tag∗i

denotes the i-th bit of tag∗. The trapdoor tk consists of the Damgård-Jurik
decryption key.

For an evaluation of an input x ∈ ZNζ+1 given a tag tag, we first write
x0 := x = y0 ·N + z0 for (y0, z0) ∈ ZNζ × ZN . Then, we iterate for i ∈ [t] and,
at each iteration, we compute a Damgård-Jurik ciphertext xi of yi−1:

xi = g
yi−1

i,tagi
· zN

ζ

i−1 mod Nζ+1 .

The output of the function consists of xt.
In the injective mode (where tag = tag∗), we have that gi,tag∗i is an encryption

of 1 for each i ∈ [t]. Then, each xi is an encryption of yi−1. Using tk, the inverter
can thus recover (yi−1, zi−1) from xi and eventually recover (y0, z0) and x = x0
as long as zi−1 ∈ Z∗

N at each iteration. For any input x such that zi−1 /∈ Z∗
N

at some iteration, the evaluation algorithm outputs 0 (analogously to an index-
dependent DCR-based LTDF proposed by Auerbach et al. [3, Section 6.1]). We
note that our DCR-based construction is not perfectly invertible in injective
mode, the fraction of inputs for which the function is not invertible is negligible.

6

Moreover, finding such inputs is as hard as factoring N and thus contradicts the
DCR assumption.

In the lossy mode (where tag ̸= tag∗), let the smallest index i ∈ [t] such that
tagi ̸= tag∗. For this index i, gi,tagi is a Damgård-Jurik encryption of 0, and so is
xi at the i-th evaluation step. This implies that xi loses information about yi−1

as it can take at most φ(N) values.
We then observe that injectivity and indistinguishability follow from the

correctness and semantic security of Damgård-Jurik. Cumulative lossiness can be
argued using the same arguments as in the CALBO function of [24, Section 5.3.1].
At each evaluation step, the information (yi−1, zi−1) ∈ ZNζ×ZN about x is fully
carried over to the next step of the evaluation if tagi = tag∗i and zi−1 ∈ Z∗

N . As
soon as tagi differs from tag∗i , the information about yi−1 is lost and subsequent
evaluation steps (and therefore the final output of the evaluation) only depend on
at most logφ(N) < logN bits of x. Since there are t positions where a lossy tag
can differ from tag∗ for the first time, the function {Fek(·, tag)}tag ̸=tag∗ has image
size at most φ(N)t. So, the union of all lossy evaluations {Fek(x, tag)}tag ̸=tag∗ on
some input x reveals at most log(φ(N)t) < t · logN bits about x.

1.3 Related Work

Dodis, Vaikuntanathan and Wichs [24, Section 5.3.1] considered a notion of cu-
mulatively all-lossy-but-one (CALBO) functions without trapdoor, which they
used to extract randomness from extractor-dependent sources. They showed that
CALBOs can be generically realized from standard lossy functions by relaxing
the injectivity property. Due to their relaxed notion of injectivity, their construc-
tion is not invertible in injective mode. Our DCR-based CALBO-TDF is inspired
by their construction (which is itself similar to the pseudo-entropy function of
Braverman et al. [18]) with the difference that we do not need to compose a
standard lossy function with a compressing d-wise independent function at each
iterative evaluation step. This is the reason why our injective mode is invertible.

In a recent work, Quach, Waters, and Wichs [50] introduced a new notion of
targeted lossy functions (TLFs), where lossy evaluations only lose information on
some targeted inputs and no trapdoor allows efficiently inverting in the injective
mode. Quach et al. [50] also extended TLFs to targeted all-lossy-but-one (T-
ALBOs) and targeted all-injective-but-one (T-AIBOs) variants. Interestingly, it
was shown in [50] that, in contrast to lossy trapdoor functions, TLFs, T-ALBOs,
and T-AIBOs can be realized in Minicrypt. We can also consider the relaxation
of targeted lossiness alone, while still asking for a trapdoor in the injective mode.
This notion was discussed in [30] where a construction based on the Computa-
tional Diffie-Hellman assumption was given.

Lossy algebraic filters (LAFs) [39,43] are tag-based lossy functions that were
used to construct public-key encryption schemes with circular chosen-ciphertext
security [39]. They provide similar functionalities to CALBO in that they explic-
itly require multiple evaluations {Fek(x, tagi)}i on distinct lossy tags to always
leak the same information about x. One difference is that LAFs admit arbi-
trarily many injective tags and arbitrarily many lossy tags. The requirement is

7

that lossy tags should be hard to find without a trapdoor key. In contrast to
CALBO-TDFs, LAFs do not support efficient inversion on injective tags.

2 Background

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we
let Zq denote the ring of integers with addition and multiplication modulo q,
containing the representatives in the interval (−q/2, q/2). We always set q as a
prime integer. For 2 ≤ p < q and x ∈ Zq, we define ⌊x⌋p := ⌊(p/q) · x⌋ ∈ Zp

where the operator ⌊y⌋ means taking the largest integer less than or equal to y.
This notation is readily extended to vectors over Zq. Given a distribution D, we
write x ∼ D to denote a random variable x distributed according to D. For a
finite set S, we let U(S) denote the uniform distribution over S. If X and Y are
distributions over the same domain D, then ∆(X,Y) denotes their statistical
distance. We write ppt as a shorthand for “probabilistic polynomial-time” when
considering the complexity of algorithms. We use a generalized version of the
Leftover Hash Lemma [36].

Lemma 1 ([1], Lemma 14). Let H = {h : X → Y }h∈H be a family of
universal hash functions. Let f : X → Z be some function. Let T1, . . . , Tk be
k independent random variables over X and we define γ := maxk γ(Ti) where
γ(Ti) := maxt∈X Pr[Ti = t]. Then, we have

∆
(

(h, h(T1), f(T1), . . . , h(Tk), f(Tk)) ;
(
h, U

(1)
Y , f(T1), . . . , U

(k)
Y , f(Tk)

))
≤ k

2

√
γ · |Y | · |Z|

where U (1)
Y , . . . , U

(k)
Y denote k uniformly random variables over Y .

2.1 Cumulatively All-Lossy-But-One Trapdoor Functions

We now recall the definition of cumulatively all-lossy-but-one trapdoor functions
(CALBO-TDFs), a notion recently introduced in [19,24] as an extension of lossy
trapdoor functions. We also recall its variant with relaxed cumulative lossiness
that we achieve assuming LWE. We refer the reader to the introduction for an
overview of these notions in the general context of lossy trapdoor functions.

Definition 1 (CALBO-TDF). Let λ ∈ N be a security parameter and ℓ, α :
N → N be functions. Let T = {Tλ}λ∈N be a family of sets of tags. An (ℓ, α)-
cumulatively-all-lossy-but-one trapdoor function family (CALBO-TDF) with re-
spect to the tag family T is a triple of algorithms (Sample,Eval, Invert), where
the first is probabilistic and the latter two are deterministic:

– Sample(1λ, tag∗): on inputs 1λ and tag∗ ∈ Tλ, sample and output (ek, tk).
– Eval(ek, tag, x): on inputs x ∈ {0, 1}ℓ(λ), an evaluation key ek and tag, output

an element y in some set R of images.

8

– Invert(tk, tag, y): on inputs y ∈ R, a trapdoor key tk, and tag, output x′ ∈
{0, 1}ℓ(λ).

We require the following properties:

– (Injectivity) There exists a negligible function negl : N→ N such that for all
λ ∈ N, tag∗ ∈ Tλ, (ek, tk)←Sample(1λ, tag∗) we have

|{x ∈ {0, 1}ℓ(λ) : Invert(tk, tag∗,Eval(ek, tag∗, x)) = x}|
2ℓ(λ)

≥ 1− negl(λ) .

– (α-cumulative lossiness) For all λ ∈ N, all tags tag∗ ∈ Tλ, and all (ek, tk)←
Sample(1λ, tag∗), there exists a (possibly inefficient) function compressek :
{0, 1}ℓ(λ) → Rek where |Rek| ≤ 2ℓ(λ)−α(λ) such that for all tag ̸= tag∗

and x ∈ {0, 1}ℓ(λ), there exists a (possibly inefficient) function expandek,tag :
Rek → R satisfying

Eval(ek, tag, x) = expandek,tag(compressek(x)) . (2)

– (Indistinguishability) For all tag∗0, tag∗1 ∈ Tλ, the two ensembles

{ek0 : (ek0, tk0)←Sample(1λ, tag∗0)}λ∈N

{ek1 : (ek1, tk1)←Sample(1λ, tag∗1)}λ∈N

are computationally indistinguishable.

An alternative, relaxed notion of CALBO-TDFs was also proposed in [19,24].
In this relaxed variant, cumulative lossiness is slightly simplified by requiring
Equation (2) to only hold with overwhelming probability over the choice of tags.
This minor relaxation does not impact applications, as the relaxed notion was
proven sufficient for all known applications of CALBO-TDFs in [19, Appendix A].
We use this relaxation in our LWE-based construction in Section 3.1, and recall
it below. We refer to this notion as relaxed CALBO-TDFs.

(relaxed α-cumulative lossiness) There exists a negligible function negl : N→
(0, 1) and for sufficiently large λ ∈ N, for any tag∗ ∈ Tλ, for all (ek, tk)←
Sample(1λ, tag∗), there exists a (possibly inefficient) function compressek :
{0, 1}ℓ(λ) → Rek where |Rek| ≤ 2ℓ(λ)−α(λ) such that for any fixed ran-
domly chosen x ∈ {0, 1}ℓ(λ), there exists a (possibly inefficient) function
expandek,tag : Rek → R satisfying

Pr[Eval(ek, tag, x) = expandek,tag(compressek(x))] ≥ 1− negl(λ) ,

where the probability is taken over the choices of tag ̸= tag∗. We call negl(λ)
the lossiness error of the CALBO-TDF.

Lossiness rate. We define the lossiness rate of an (ℓ, α)-CALBO-TDF by the
rate of bits lost on lossy tags, namely 1− (ℓ−α)/ℓ = α/ℓ. This is similar to the
notion of lossiness rate used in [49,30]. Ideally, we want this rate to be as close
to 1 as possible, for example 1− o(1).

9

2.2 Lattices

Unless stated otherwise, we write vectors as column vectors. For a full-row rank
matrix A ∈ Zn×m

q , we define the lattice Λ(A) admitting A as a basis by Λ(A) =

{s⊤ ·A : s ∈ Zn
q }. We also define the lattice Λ⊥(A) = {x ∈ Zm : Ax = 0 mod

q}. Given a vector x ∈ Zn
q , we define its ℓ∞-norm as ∥x∥∞ = maxi∈[n] |x[i]|

where x[i] denotes the i-th coordinate of x. We let ∥x∥2 =
√
x[1]2 + · · ·+ x[n]2

denote the Euclidean norm of x. The minimum distance measured in ℓ∞-norm
of a lattice Λ is given by λ∞1 (Λ) := minx̸=0 ∥x∥∞. For a basis B of Rn, the
origin-centered parallelepiped is defined as P1/2(B) := B · [−1/2, 1/2)n. We also
use the following infinity norm for matrices B ∈ Zn×m:

∥B∥∞ = max
i∈[n]

 m∑
j=1

|Bi,j |

 .

Let Σ ∈ Rn×n be a symmetric positive definite matrix and c ∈ Rn be a vector.
We define the Gaussian function over Rn by ρΣ, c(x) = exp(−π(x− c)⊤Σ-1(x−
c)) and if Σ = σ2 · In and c = 0, we write ρσ for ρΣ, c. For any discrete
set Λ ⊂ Rn, the discrete Gaussian distribution DΛ,Σ,c has probability mass
PrX∼DΛ,Σ,c

[X = x] =
ρΣ, c(x)
ρΣ, c(Λ) , for any x ∈ Λ. When c = 0 and Σ = σ2 · In we

denote DΛ,Σ,c by DΛ,σ.

Learning-With-Errors Assumption. Our first CALBO-TDFs relies on the
LWE assumption.

Definition 2. Let α : N → (0, 1) and m ≥ n ≥ 1, q ≥ 2 be functions of a
security parameter λ ∈ N. The Learning with Errors (LWE) problem consists
in distinguishing between the distributions (A, s⊤A + e⊤) and U(Zn×m

q × Zm
q),

where A ∼ U(Zn×m
q), s ∼ U(Zn

q) and e ∼ DZm,αq. For an algorithm A : Zn×m
q ×

Zm
q → {0, 1}, we define

AdvLWE
q,m,n,α(A) =

∣∣Pr[A (
A, s⊤A+ e⊤

)
= 1]− Pr[A (A,u) = 1

∣∣ ,
where the probabilities are over A ∼ U(Zn×m

q), s ∼ U(Zn
q), u ∼ U(Zm

q) and
e ∼ DZm,αq and the internal randomness of A. We say that LWEq,m,n,α is hard
if for all ppt algorithm A, the advantage AdvLWE

q,m,n,α(A) is negligible in λ.

We require that α ≥ 2
√
n/q for the reduction from worst-case lattice problems

and refer the readers to, e.g., [17] for more details.
We will need the techniques for homomorphic encryption (HE) [32] in or-

der to build CALBO-TDFs from LWE. In this paper, we consider only binary
circuits with fan-in-2 gates for homomorphic evaluation. We use the terms size
and depth of a circuit to refer to the number of its gates and the length of its
longest input-to-output path, respectively. The syntax of HE schemes is recalled
in Appendix A.1. We note that in our construction from LWE, we do not need
the general fully homomorphic encryption thanks to the fact that all evaluated
circuits have bounded depths, for the sole purpose of comparing tags. Hence,
leveled homomorphic encryption suffices for our purposes.

10

Gadget matrix. We recall the “gadget matrix” from [46] and their homomor-
phic properties. The technique is later developed further in [12,34,35]. For an in-
teger modulus q, the gadget vector over Zq is defined as g = (1, 2, 4, . . . , 2⌈log q⌉−1).

The gadget matrix Gn is the tensor (or Kronecker) product In⊗g ∈ Zn×n′

q where
n′ = ⌈n log q⌉. There exists an efficiently computable function G-1

n : Zn×n′

q →
{0, 1}n′×n′

such that Gn ·G-1
n (A) = A for all A ∈ Zn×n′

q . In particular, we can
define G-1

n to be the entry-wise binary decomposition of matrices in Zn×n′

q . In
the following, we omit the subscript n and write G when it is clear from context.
Lemma 2 helps bound the noise of the output ciphertext after homomorphically
evaluating a depth-τ circuit C containing only AND gates. This will affect our
parameter choices for the LWE-based CALBO-TDFs as well as our later argu-
ment for its relaxed cumulative lossiness.

Lemma 2 (Adapted from [32,12,16]). Let λ ∈ N and m = m(λ), n = n(λ).
We define n′ := ⌈n log q⌉. Let C : {0, 1}t → {0, 1} be a AND Boolean circuit of
depth τ . Let Ai = A ·Ri+bi ·G ∈ Zn×m

q with A ∈ Zn×m
q , Ri ∈ {−1, 1}m×n′

and
bi ∈ {0, 1}, for i ≤ t. There exist deterministic algorithms FHEval and EvalPriv
with running time poly(4τ , t,m, n, log q) that satisfy:

FHEval(C, (Ai)i) = A ·RC + C(b1, . . . , bt) ·G = A ·RC +

t∧
i=1

bi ·G,

where RC = EvalPriv
(
C, ((Ri, bi))i

)
and ∥RC∥∞ ≤ maxi{∥Ri∥∞} · (n′ + 1)τ .

Lossy mode of LWE. We recall the Lossy sampler for LWE that is introduced
by Goldwasser et al. in [33] and later developed by Alwen et al. in [2].

Definition 3. Let χ = χ(λ) be an efficiently sampleable distribution over Z. We
define an efficient lossy sampler (A, B)←Lossy(1m, 1n, 1ℓ, q, χ) via:

Lossy(1m, 1n, 1ℓ, q, χ): Sample B ←↩ U(Zℓ×m
q),D ←↩ U(Zℓ×n

q),E ←↩ χn×m,
where ℓ≪ n, and output A = D⊤ ·B+E ∈ Zn×m

q together with B.

We remark that the lossy sampler reveals the coefficient matrix B along with
A but as long as the secret matrix D is not leaked, this does not compromise
the pseudorandomness of A. Indeed, it can be shown that under the LWEq,m,ℓ,α

assumption, A is computationally indistinguishable from a uniformly random
matrix. Intuitively, the dimension of the secret is now ℓ and we view each row
of D⊤ as a secret vector, B as the uniform coefficients and each row of A as the
resulting LWE vector. Formally, we have the following lemma:

Lemma 3 ([33]). Let a random matrix Ã←↩ U(Zn×m
q) and let a pair (A, B)←

Lossy(1m, 1n, 1ℓ, q, χ), where χ = DZ,αq is an error distribution. Then, under
the LWEq,m,ℓ,α assumption, the following two distributions are computationally
indistinguishable: A

comp
≈ Ã.

11

Trapdoor mechanisms for LWE. Micciancio and Peikert [46] introduced a
trapdoor mechanism for LWE. Their technique makes use of the “gadget matrix”
G ∈ Zn×n′

q , where n′ = ⌈n log q⌉, and for A′ ∈ Zn×(m+n′)
q , they call a short ma-

trix R ∈ Zm×n′
a G-trapdoor of A′ if A′ · [R⊤ | Im]⊤ = HG for some invertible

H ∈ Zn×n
q . Micciancio and Peikert also showed that using a G-trapdoor allows

one to invert the LWE function (s, e) 7→ s⊤A′ + e⊤ for any s ∈ Zn
q and any

error e ∈ Zm+n′
such that ∥e∥2 ≤ q/O(

√
n log q). More specifically, we have the

following lemma:

Lemma 4 ([46], Theorem 4.1 and Section 5). Let n′ = ⌈n log q⌉ and
δ = negl(n). Assume that m ≥ n log q+2 log n′

2δ . Then there exists a ppt algorithm
GenTrap that takes as inputs matrices A ∈ Zn×m

q ,H ∈ Zn×n
q , outputs a short

matrix R ∈ {−1, 0, 1}m×n′
and A′ = [A | −A ·R + H ·G] ∈ Zn×(m+n′)

q such
that if H is invertible, then R is a G-trapdoor of A′ and we call H the invert
tag of A′.

In particular, inverting the function gG(s, e) := s⊤ ·G + e⊤ can be done in
quasi-linear time Õ(n) for any s ∈ Zn

q and any e ∈ P1/2(q · (B-1)⊤), where B is
a basis of the lattice Λ⊥(G) = {z ∈ Zn′

: G · z = 0 (mod q)}.

In a follow-up work, Alwen et al. [2] used GenTrap to construct trapdoors for
inverting Learning with Rounding (LWR) instances

⌊
s⊤A

⌋
p
. Their main obser-

vation is that one can convert
⌊
s⊤A

⌋
p

to s⊤A + e⊤ where ∥e∥2 ≤
√
mq/p,

by first multiplying with q/p then taking the ceiling value. Afterwards, using a
G-trapdoor of A, e.g. a sample from GenTrap, allows one to compute back s.
Formally, we have the following lemma:

Lemma 5 ([2], Lemma 6.3). Let n′ = ⌈n log q⌉ and δ = negl(n). Assume
that m ≥ n log q + 2 log n′

2δ and p ≥ O(
√
(m+ n′)n′). Then there exists a ppt

algorithm LWRInvert that takes as inputs (A′,R) with R being a G-trapdoor of
A′, together with some c ∈ Zm+n′

p such that c =
⌊
s⊤A′⌋

p
for some s ∈ Zn

q , then
outputs s.

We will also need the following technical lemmas. Lemma 6 comes from a
work by Gentry, Peikert, and Vaikuntanathan [31].

Lemma 6 ([31], Lemma 5.3). Let ℓ and q be positive integers and q be
prime. Let n ≥ 2ℓ log q. Then for all but an at most q−n fraction of D ∈ Zℓ×n

q ,
we have λ∞1 (Λ(D)) ≥ q/4, where Λ(D) = {s⊤D : s ∈ Zℓ

q} and λ∞1 (Λ(D)) is the
minimum distance of Λ(D) measured in the ℓ∞-norm.

Lemma 7 ([2], Lemma 2.7). Let p, q be positive integers and p < q. Let
R > 0 be an integer. Then, the probability that there exists e ∈ [−R,R] such that
⌊y⌋p ̸= ⌊y + e⌋p, where y ←↩ U(Zq), is at most 2pR/q.

The following lemma is well-known, e.g. a simple proof can be found in [45,
Lemma 2.3].

12

Lemma 8. Let q be a prime a Dm,n,q be a distribution over Zn×m
q such that

∆(Dm,n,q, U(Zn×m
q)) ≤ ϵ. Then, let Vn,q be any distribution over Zn

q , we have

∆(V ⊤
n,q ·Dm,n,q, U(Zm

q)) ≤ ϵ+ α ·
(
1− 1

qm

)
where α := Pr[v←↩ Vn,q : v = 0].

2.3 Composite Residuosity

Our second CALBO-TDFs relies on Paillier’s composite residuosity assumption.

Definition 4 ([48,20]). Let a composite N = pq, for primes p, q, and let an
integer ζ ≥ 1. The ζ-Decision Composite Residuosity (ζ-DCR) problem is to
distinguish between the distributions D0 := {z = zN

ζ

0 mod Nζ+1 | z0 ←↩ U (Z∗
N)}

and D1 := {z ←↩ U
(
Z∗
Nζ+1

)
}.

For each ζ > 0, the ζ-DCR assumption was shown to be equivalent to the original
1-DCR assumption [20]. Damgård and Jurik [20] initially gave their security
proof using a recursive argument (rather than a sequence of hybrid experiments)
that loses a factor 2 at each step, thus incurring an apparent security loss 2ζ .
However, the semantic security of their scheme under the 1-DCR assumption
for any polynomial ζ is a well-known result. The proof of Lemma 9 is perhaps
folklore, for instance, a full proof can be found in [23].

Lemma 9. Let ζ = poly(λ). Then ζ-DCR is equivalent to 1-DCR with a security
loss at most ζ.

3 Cumulatively All-Lossy-But-One Trapdoor Functions

We now describe two constructions of CALBO-TDFs from standard assump-
tions. So far, the only known CALBO-TDFs construction was proposed by
Chakraborty et al. [19] and relies on puncturable PRFs, cumulatively-lossy-
trapdoor functions (C-LTDFs) and indistinguishability obfuscation (iO). This
construction relies on iO to obfuscate a program, which first compares a given
input tag with the hardcoded injective tag and outputs the hardcoded injective
evaluation key if the comparison goes through. Otherwise, it generates a fresh
lossy key. All auxiliary key generations in the program are realized using the
algorithms from the underlying C-LTDF. The obfuscated program is described
in the evaluation key for the CALBO-TDF. An evaluation on a pair of tag and
input proceeds by first calling the obfuscated program on the given tag to get a
C-LTDF key, then use the evaluation of the C-LTDF on the received key and the
given input. The obfuscated program uses a puncturable PRF, which receives
the given tag as input, to generate randomness needed for producing a fresh
lossy key. Our constructions are much simpler and require neither CPRFs nor
iO. They thus drastically improve the efficiency compared to [19].

We construct CALBO-TDFs from the LWE and DCR assumptions. Our LWE-
based CALBO-TDFs only achieves the relaxed variant of cumulative lossiness
while our DCR-based construction achieves the full notion. The fact that we

13

have to relax the cumulative lossiness in the LWE case seems intrinsic due to
the noise that appears in the LWE samples. We remark that Chakraborty et al.
faced a similar problem when constructing C-LTDFs from LWE as well as when
boostrapping C-LTDFs to CALBO-TDFs using iO in [19].

3.1 Relaxed CALBO-TDFs from LWE

In this section, we describe our construction of CALBO-TDFs from LWE. It is
inspired from the PRF from [45], which can be seen as a CALBO-TDFs without
inversion. We extend ideas from [45] to achieve inversion via trapdoors.

Let λ be a security parameter and let ℓ = ℓ(λ), n = n(λ),m = m(λ), q =
q(λ), p = p(λ), t = t(λ), β = β(λ) be natural numbers and χ = χ(λ) = DZ,αq
be an LWE error distribution. We denote n′ = ⌈n log q⌉. The tag space is Tλ =
{0, 1}t. Our construction now goes as follows:

Sample(1λ, tag∗): Sample (A, B)←Lossy(1m, 1n, 1ℓ, q, χ), then set the evalua-
tion key ek :=

(
A ∈ Zn×m

q , B ∈ Zℓ×m
q , {Ai,0,Ai,1}ti=1

)
where

Ai,b = A ·Ri,b + δb,tag∗i ·G ∈ Zn×n′

q ∀i ∈ [t], b ∈ {0, 1}

for Ri,b ← U({0, 1}m×n′
), tag∗i denotes the i-th bit of tag∗, and δb,tag∗i =

(b
?
= tag∗i). Afterwards, set the trapdoor key tk := {Ri,b}i∈[t],b∈{0,1} and

output (ek, tk).
Eval(ek, tag,x ∈ [0, β]n): Let Ctag : {0, 1}t → {0, 1} be the circuit Ctag(tag

′) =∏t
i=1 δtagi,tag′i and δtagi,tag′i = 1 if and only if tagi = tag′i. Parse the evaluation

key ek = (A, B, {Ai,0,Ai,1}ti=1) and perform the homomorphic evaluation

A(tag) := FHEval
(
Ctag,

(
Ai,tagi

)t
i=1

)
= A ·Rtag + Ctag(tag

∗) ·G

=

{
A ·Rtag +G if tag = tag∗

A ·Rtag otherwise
∈ Zn×n′

q (3)

where the procedure FHEval is specified by:

FHEval
(
Ctag,

(
Ai,tagi

)t
i=1

)
:= A1,tag1 ·G

-1 (A2,tag2 ·G
-1 (· · ·G-1(At,tagt) · · ·

))
and Rtag ∈ Zm×n′

. Finally, compute and output
⌊
x⊤ · [A |A(tag)]

⌋
p
.

Invert(tk, tag∗,y ∈ Zm+n′

p): Parse the trapdoor key tk = {Ri,b}i∈[t],b∈{0,1} then
compute

FHEval
(
Ctag∗ ,

(
Ai,tag∗i

)t
i=1

)
= A ·Rtag∗ +G ,

and following Lemma 2, obtain EvalPriv
(
Ctag∗ , ((Ri,tag∗i

, tag∗i))i∈[t]

)
= Rtag∗ .

Afterwards, compute x← LWRInvert([A |A · Rtag∗ + G],−Rtag∗ ,y) as per
Lemma 5 and output x.

14

The way we carry out the homomorphic computation FHEval involved in
equation (3) is not unique. Roughly speaking, at each step of the homomorphic
evaluation of Ctag, we “decompose” the result from the previous step using G-1

(the decomposed entries become binary) before multiplying so as to obtain a
ciphertext for the AND gate’s output. This gives the smallest possible increase
in the error term of the resulting homomorphic ciphertext, following Lemma 2.
Different approaches for computing FHEval will lead to different error increases.
Indeed, we homomorphically evaluate the circuit Ctag in the most possible “se-
quential” way, which is inspired by [5], and always multiply ciphertexts whose
noise terms are not too large. A less sequential computation will work, but at
the cost of a larger modulus, which then becomes exponential not only in the
security paramter but also in the depth of Ctag.

Parameter selection. Let λ be the security parameter. First of all, we set the
bound β = 1 for the entries of inputs, which gives a domain {0, 1}n. We set the
tag length t = log λ, which means the circuits to be homomorphically evaluated
have depths bounded by t− 1 ≤ log λ. By Lemma 6, we must choose ℓ such that
n ≥ 2ℓ log q. In addition, for the trapdoor mechanism to work, Lemma 5 requires
that m ≥ n log q + 2 log n′

2δ and p ≥ O(
√

(m+ n′)n′), where n′ = ⌈n log q⌉ and
δ = negl(n).

We will need m ≥ n log q + ω(log n) in order to apply Lemma 3. Moreover,
for the LWEq,m,n−1,α problem to be hard, it is necessary that q ≤ 2n

ϵ

< 2n and
2
√
n/q ≤ α ≤ n · 2−nϵ

, for some 0 < ϵ < 1. We refer to [17, Corollary 3.2] for
more details on these bounds for q and α. Similarly, we also need to ensure that
the LWEq,m,ℓ,α problem is hard. Last but not least, we need q/p > 2λ for the
rounding operation to anihilate the noise term, following Lemma 7. Concretely,
let 0 < ϵ < 1 be a constant and d ≥ 1, we set up the parameters as follows:

n = Θ(λd); n′ = n log q = Θ
(
λd+dϵ

)
; β = 1; t = log λ; q = 2n

ϵ

= Θ
(
2λ

dϵ
)
;

α = n · 2−nϵ

= Θ
(
λd · 2−λdϵ

)
; m = 2λ+ ⌈n log q⌉ = Θ

(
λd+dϵ

)
;

ℓ =
n

2 log q
= Θ

(
λd−dϵ

)
; p = Θ

(√
(m+ n′)n′

)
= Θ

(
λd+dϵ

)
.

Theorem 1. Let λ ∈ N be a security parameter. Under the LWEq,m,ℓ,α and
LWEq,m,n−1,α assumptions, the above construction (Sample,Eval, Invert) is a re-
laxed (n, n− ℓ log q)-cumulatively-all-lossy-but-one trapdoor function family with
tag space Tt = {0, 1}t.

Proof. We now prove each of the required properties.

Injectivity. The correctness of FHEval and EvalPriv in Invert follows Lemma 2.
It is straightforward to see that −Rtag∗ is a G-trapdoor for the matrix A′ :=
[A |A ·Rtag∗ +G]. Hence, given as inputs y = Eval(ek, tag∗,x) =

⌊
x⊤ ·A′⌋

p
and

the pair (A′,−Rtag∗), the algorithm LWRInvert will be able to compute back x
as per Lemma 5.

15

Indistinguishability. Let tag∗0, tag∗1 ∈ {0, 1}t and (ekb, tkb)←Sample(1λ, tag∗b)
for b ∈ {0, 1}. We want to prove that ek0 and ek1 are indistinguishable. Let
b ∈ {0, 1}. The evaluation key ekb is parsed as

ekb =
(
A(b) ∈ Zn×m

q , B(b) ∈ Zℓ×m
q , {A(b)

i,0 ,A
(b)
i,1}

t
i=1

)
where (A(b),B(b))← Lossy(1m, 1n, 1ℓ, q, χ) and B(b) ∼ U(Zℓ×m

q), A(b)
i,b′ are en-

cryptions of δb′,tag∗b,i ∈ {0, 1} for i ∈ [t] and tag∗b,i is the i-th bit of tag∗b .
Similarly to the proof of semantic security for the GSW encryption scheme [32],

we first notice that A(b) is indistinguishable from a uniformly random matrix
Ã(b) in Zn×m

q thanks to Lemma 3 and the parameter choice m ≥ n log q + 2λ.
Hence, changing A(b) to Ã(b) is computationally indistinguishable under LWE.

We then apply Lemma 1 for the family of universal hash functions H = {hA :
Zn
q → Zm

q } where hA(x) := x⊤ · A is indexed by A ∈ Zn×m
q and q is prime.

Therefore, it holds that
(
Ã(b)R

(b)
i,tag∗b,i

)
i∈[t]

is statistically close to a t-tuple of in-

dependent uniformly random matrices. As a result, for all i, the pair (Ã(b)
i,0 , Ã

(b)
i,1),

where Ã
(b)
i,b′ := Ã(b)R

(b)
i,tag∗b,i

+ δb′,tag∗b,i ·G for b′ ∈ {0, 1}, is statistically close to
a pair of uniformly random matrices. In the end, for b ∈ {0, 1}, ekb is computa-
tionally indistinguishable from ẽkb whose components are sampled uniformly at
random in the corresponding domain and the indistinguishability is concluded.

Relaxed cumulative lossiness. Let tag∗ ∈ Tt, (ek, tk)← Sample(1λ, tag∗),
and fix an input x ∈ [0, β]n = {0, 1}n by the parameter choice β = 1. For every
tag ∈ Tt such that tag ̸= tag∗, we need to describe two functions compressek and
expandek,tag such that

Eval(ek, tag,x) = expandek,tag(compressek(x))

except for a negligible probability over the choices of tag ̸= tag∗.
The function compressek(x ∈ {0, 1}n) is described as follows:

1. Parse ek as ek := (A, B, {Ai,0,Ai,1}ti=1) then use A ∈ Zn×m
q and

B ∈ Zℓ×m
q to recover (inefficiently) D ∈ Zℓ×n

q and E ∈ Zn×m. This
is essentially inverting an LWE function (D,E) → D⊤B + E for the
matrix B.

2. Compute and output D · x ∈ Zℓ
q.

Let y ∈ Zℓ
q and tag ∈ Tt such that tag ̸= tag∗. The function expandek,tag(y)

is described as follows:

1. Parse the ek as ek := (A, B, {Ai,0,Ai,1}ti=1) then use (A,B) to (ineffi-
ciently) recover D ∈ Zℓ×n

q and E ∈ Zn×m
q . Using A and {Ai,0,Ai,1}ti=1,

compute A(tag) as in the Eval algorithm, i.e.

A(tag) := FHEval
(
Ctag,

(
Ai,tagi

)t
i=1

)
= A ·Rtag + Ctag(tag

∗) ·G
(∗)
= A ·Rtag ∈ Zn×n′

q

16

where the (∗) equality comes from the fact that tag ̸= tag∗. We will
denote A′ := [A | A(tag)] = [A |

(
D⊤ ·B+E

)
·Rtag] ∈ Zn×(m+n′)

q .

2. Compute (inefficiently) a matrix F ∈ Zℓ×n′

q such that F is an LWE
secret for (D,A(tag)). Specifically, the matrix F statisfies that A(tag) =
D⊤ · F+Etag where Etag ∈ Zn×n′

has bounded entries. The bound will
be analyzed below.

3. Compute (inefficiently) an arbitrary but small matrix R′ ∈ Zm×n′
such

that B ·R′ = F.
4. Compute and return

⌊
[y⊤ ·B |y⊤ · F]

⌋
p
∈ Zm+n′

p .

Given a fixed input x ∈ {0, 1}n, for tag ∈ Tt and tag ̸= tag∗, we consider

expandek,tag(compressek(x)) = expandek,tag(D · x)
=

⌊
[(D · x)⊤ ·B | (D · x)⊤ · F]

⌋
p

=
⌊
[(D · x)⊤ ·B | (D · x)⊤ ·B ·R′]

⌋
p

where B,D,R′,F are computed as specified in compressek and expandek,tag.
To begin with, we analyze the bound of the entries in the error matrix Etag

so that the matrix F computed in step 2 of expandek,tag is uniquely determined.
It suffices to bound the infinity norm of E ·Rtag.

We evaluate homomorphically the ciphertexts Ai,b on a circuit Ctag defined
as a sequential AND-ing of t bits in tag and has depth t − 1. Moreover, the
matrices Ai,b are obtained using binary Ri ∈ {0, 1}m×n′

, for all i ∈ [t] and
b ∈ {0, 1}. As a corollary of Lemma 2, we have ∥Rtag∥∞ ≤ n′(n′ + 1)t. With
E ∈ Zn×m

q , we also have

∥E∥∞ = max
i∈[n]

 m∑
j=1

|Ei,j |

 ≤ mαq .

This implies that ∥E · Rtag∥∞ ≤ ∥E∥∞ · ∥Rtag∥∞ ≤ n′(n′ + 1)t · m · αq . We
choose the parameters for n′(n′ + 1)t ·m · αq to be small enough, for example
smaller than q/4 given a sufficiently large λ. Thus

(
D⊤ ·B+E

)
·Rtag uniquely

determines B · Rtag as a corollary of Lemma 6. Consequently, the (inefficient)
step 2 of expandek,tag will be able to find the unique F = B · Rtag . Then, we
have B ·R′ = B ·Rtag and⌊

[(Dx)⊤ ·B | (Dx)⊤ ·B ·R′]
⌋
p
=

⌊
[(Dx)⊤ ·B | (Dx)⊤ ·B ·Rtag]

⌋
p
.

Let us define an event BAD as⌊
[(Dx)⊤ ·B | (Dx)⊤ ·B ·Rtag]

⌋
p

̸=
⌊
[(Dx)⊤ ·B+ x⊤E | (Dx)⊤ ·B ·Rtag + x⊤ ·E ·Rtag]

⌋
p

and we observe that the right-hand side is actually Eval(ek, tag,x). A simple
computation gives us Pr[Eval(ek, tag,x) = expandek,tag(compressek(x))] ≥ 1 −

17

Pr[BAD] where the probabilities are taken over the choices of tag ∈ Tt such that
tag ̸= tag∗, for the fixed input x ∈ {0, 1}n. Lemma 10 proves that Pr[BAD] is
negligible in λ under our parameter selection and the proof is completed. ⊓⊔

Lemma 10. We have the following bound:

Pr[BAD] ≤ 2t+1 · p ·mα ·
(
1 + n′(n′ + 1)t

)
.

A proof for Lemma 10 can be found in Appendix B.1.

3.2 CALBO-TDFs from DCR

In this section we give a construction of CALBO-TDF achieving non-relaxed cu-
mulative lossiness from the DCR assumption. We start by recalling the Damgård-
Jurik encryption scheme, whose decryption algorithm along with other useful
properties are used in our CALBO-TDFs.

Damgård-Jurik encryption. Damgård and Jurik introduced in [20] a gen-
eralization of Paillier’s cryptosystem based on the ζ-DCR assumption. Given
a modulus N = pq such that gcd(N,φ(N)) = 1, where p and q are primes,
Damgård and Jurik proved that the multiplicative group Z∗

Nζ+1 is isomorphic to
the direct product of ZNζ and Z∗

N :

Theorem 2 ([20], Theorem 1). For any N satisfying gcd(N,φ(N)) = 1
and for ζ < min(p, q), the map ψζ : ZNζ × Z∗

N → Z∗
Nζ+1 given by (m, r) 7→

(1+N)mrN
ζ

(mod Nζ+1) is invertible in polynomial time using lcm(p−1, q−1).

The Damgård-Jurik encryption exploits this isomorphic property: a public key
is a pair (N, ζ) associated with secret key (p, q) and ψζ is the encryption func-
tion (where r plays the role of randomness), that can be inverted (decryption)
given (p, q). Semantic security is easily proven under the ζ-DCR assumption [20,
Theorem 2]. We recall the details of their scheme in Appendix A.2.

We are now ready to describe our construction of CALBO-TDFs from the
ζ-DCR assumption. We remark that the domain is currently index-dependent,
i.e. inputs are taken in Z∗

Nζ+1 where N and ζ are specified in the evaluation key.
The domain can be made index-independent by using {0, 1}n for some bitlength
n in the same way Freeman et al. have done in [26], e.g. we can choose any n ∈ N
such that n < min(log p, log q).

Sample(1λ, tag∗): Given tag∗ ∈ Tt = {0, 1}t, generate an evaluation key

ek :=
(
N, ζ, {gi,0, gi,1 ∈ Z∗

Nζ+1 }ti=1

)
,

consisting of the following components:
– A modulus N = pq such that p, q > 2l(λ) and gcd(N,φ(N)) = 1, where
l : N→ N is a polynomial dictating the bitlength of p and q as a function
of λ, and an integer ζ > t.

18

– Elements gi,0, gi,1 ∈ Z∗
Nζ+1 which are generated as

gi,b = (1 +N)
δb,tag∗

i · αNζ

i,b mod Nζ+1 ∀(i, b) ∈ [t]× {0, 1} ,

where αi,b ←↩ U(Z∗
N) for each i ∈ [t], b ∈ {0, 1}, tag∗i denotes the i-th bit

of tag∗, and δb,tag∗i = (b
?
= tag∗i). We note that gi,b is a Damgård-Jurik

ciphertext of δb,tag∗i .
Output ek and tk = (p, q).

Eval(ek, tag, x): Given an input x ∈ ZNζ+1 and tag ∈ Tt = {0, 1}t, let x0 = x.
Find (y0, z0) ∈ ZNζ × ZN such that x0 = y0 · N + z0. If gcd(z0, N) > 1,
output 0. Otherwise, for i = 1 to t, do the following:

1. Parse xi−1 ∈ ZNζ+1 as a pair of integers (yi−1, zi−1) ∈ ZNζ ×Z∗
N such

that xi−1 = yi−1 ·N + zi−1.

2. Compute xi = g
yi−1

i,tagi
· zNζ

i−1 mod Nζ+1.
In the end, output z = xt ∈ Z∗

Nζ+1 .

Invert(tk, tag, z): Set xt = z and find (yt, zt) ∈ ZNζ × ZN such that xt =
yt ·N + zt. If gcd(zt, N) > 1, output 0. Otherwise, for i = t down to i = 1,
conduct the following steps:

1. Using tk = (p, q), compute the unique pair (yi−1, zi−1) ∈ ZNζ × Z∗
N

such that
xi = g

yi−1

i,tagi
· zN

ζ

i−1 mod Nζ+1 .

This is done by first recovering yi−1 = Dec((p, q), xi) ∈ ZNζ using
the Damgård-Jurik decryption algorithm for obtaining zi−1 =

(
xi ·

g
−yi−1

i,tagi
mod Nζ+1

)N−ζ

mod N. Note that zi−1 ∈ Z∗
N is well-defined

thanks to the isomorphism ψ-1
ζ used in Damgård-Jurik decryption.

2. Let xi−1 = yi−1 ·N + zi−1. Output x0 when i = 1.

The check gcd(z0, N) = 1 in Eval implies that, as long as factoring is hard, it
is infeasible to find non-invertible inputs, i.e. x = y0 ·N + z0 ∈ ZNζ+1 such that
gcd(z0, N) > 1 for (y0, z0) ∈ ZNζ ×ZN . Moreover, the fraction of non-invertible
inputs is bounded by Nζ · (p+q)/N ζ+1 = (p+q)/N , which is negligible. We now
prove that the above construction is a CALBO-TDF assuming ζ-DCR holds.

Theorem 3. Let λ ∈ N is a security parameter. Let ζ = ζ(λ), l = l(λ), t = t(λ)
be functions in λ such that ζ > t. Assuming the ζ-DCR assumption, the triplet
(Sample,Eval, Invert) is a ((ζ+1) logN, (ζ+1) logN − t logN −1)-cumulatively-
all-lossy-but-one trapdoor function family with tag space Tt = {0, 1}t.

Proof. We prove injectivity, indistinguishability and cumulative lossiness prop-
erties as defined in Section 2.1. Let λ ∈ N be a security parameter and ζ =
ζ(λ), l = l(λ), t = t(λ) be polynomials in λ such that ζ > t. Let tag∗ ∈ Tt be the
injective tag and (ek, tk)←Sample(1λ, tag∗).

We first justify why we only need to check gcd(z0, N) = 1 and can be sure
that if it holds, gcd(zi, N) = 1 for all i ≥ 1. Indeed, let i ∈ [t]. By construction

19

xi = yi ·N + zi for (yi, zi) ∈ ZNζ × ZN . Suppose z0 ∈ Z∗
N , we verify the claim

by induction. Indeed x1 = ψζ(y0, z0) ∈ Z∗
Nζ+1 . Hence gcd(z1, N) = gcd(z1 +

y1 · N,N) = gcd(x1, N) = 1. For the inductive step, suppose zi−1 ∈ Z∗
N , then

xi = ψζ(yi−1, zi−1) ∈ Z∗
Nζ+1 . By the same argument, we have gcd(zi, N) =

gcd(zi + yi ·N,N) = gcd(xi, N) = 1.

Injectivity. Let tag∗ ∈ {0, 1}t be an injective tag. We consider two cases
for invertibility of Eval(ek, tag∗, x) given the trapdoor tk of tag∗. If x ∈ ZNζ+1 \
Z∗
Nζ+1 , equivalently by Theorem 2 it holds that x = y0·N+z0 and gcd(z0, N) > 1,

then Eval(ek, tag∗, x) = 0 by construction and cannot be inverted using tk. The
fraction of such inputs in ZNζ+1 is

Nζ · (N − φ(N))

Nζ+1
=
p+ q − 1

N
.

which is negligible in λ.
Otherwise, suppose that x ∈ Z∗

Nζ+1 . By the correctness of Damgård-Jurik
decryption algorithm and Theorem 2, for each i = t down to 1, step 1 in Invert
correctly recovers yi−1 ∈ ZNζ and zi−1 ∈ Z∗

N such that xi−1 = yi−1 ·N + zi−1,
where xi−1 is used at step i− 1 in Eval(ek, tag∗, x). Inductively, x0 = y0 ·N + z0
is recovered correctly. In summary, Invert(tk, tag∗,Eval(ek, tag∗, x)) = x for an
overwhelming fraction of the domain ZNζ+1 and the injectivity is concluded.

Indistinguishability. Let tag∗0, tag∗1 ∈ {0, 1}t and (ekb, tkb)←Sample(1λ, tag∗b)
for b ∈ {0, 1}. We want to prove that ek0 and ek1 are indistinguishable. Let
b ∈ {0, 1}. The evaluation key ekb is parsed as

ekb =
(
N, ζ, {g(b)i,0 , g

(b)
i,1 ∈ Z∗

Nζ+1 }ti=1

)
where g(b)i,b′ is a Damgård-Jurik encryption of δb′,tag∗b,i for i ∈ [t] and b′ ∈ {0, 1},
respectively and tag∗b,i is the i-th bit of tag∗b . The indistinguishability readily
follows the semantic security of the Damgård-Jurik encryption scheme under a
standard hybrid argument.

Cumulative lossiness. For (ek, tk) ← Sample(1λ, tag∗) and tag ∈ {0, 1}t
such that tag ̸= tag∗, we want to describe two (possibly inefficient) functions
compressek and expandek,tag satisfying Eval(ek, tag, x) = expandek,tag(compressek(x))
for all x ∈ ZNζ+1 . The function compressek(x) for x ∈ ZNζ+1 is as follows:

1. Parse the evaluation key as

ekb =
(
N, ζ, {gi,0, gi,1 ∈ Z∗

Nζ+1 }ti=1

)
and (inefficiently) factor N = pq.

2. Initialize a list List to empty. Compute (y, z) ∈ ZNζ × ZN such that
x = y ·N + z. If gcd(z,N) > 1 then add 0 to List and output List.

20

3. Otherwise, having p, q, for all (i, b) ∈ [t]×{0, 1}, use the Damgård-Jurik
decryption Dec((p, q), gi,b) = δb,tag∗i and in the end obtain tag∗ ∈ {0, 1}t.
Moreover, use the isomorphism ψ-1

ζ from Theorem 2 to also recover all
the αi,b ∈ Z∗

N while knowing gi,b ∈ Z∗
Nζ+1 and δb,tag∗i ∈ ZNζ .

4. For i = 1 to t, define

siblingi := tag∗[1..(i−1)] ∥ (1− tag∗i)

where tag∗[1..(i−1)] denotes the first i− 1 bits of tag∗.
5. For j = 1 to t, perform the following:

– Let x0 = x and find (y0, z0) such that x0 = y0 ·N + z0.
– For k = 1 to j − 1, compute

xk = g
yk−1

k,siblingj [k]
· zN

ζ

k−1 (mod Nζ+1)

where siblingj [k] is the k-th bit of siblingj .
– Let b = siblingj [j]. Compute (yj−1, zj−1) such that xj−1 = yj−1 ·N+
zj−1 and add

(α
yj−1

j−1,b · zj−1)
Nζ

(mod Nζ+1) ∈ ZN

to List.
6. Output List ∈ Zt

N .

Given tag ̸= tag∗ and a List ∈ Zt
N , the function expandek,tag(List) is given

below:

1. Parse the evaluation key as ekb =
(
N, ζ, {gi,0, gi,1 ∈ Z∗

Nζ+1 }ti=1

)
and

(inefficiently) factor N = pq.
2. If List contains only one element 0, output 0.
3. Otherwise, having p, q, for all (i, b) ∈ [t]×{0, 1}, use the Damgård-Jurik

decryption Dec((p, q), gi,b) = δb,tag∗i and in the end obtain tag∗ ∈ {0, 1}t.
4. Compute i = minj∈[t](tagj ̸= tag∗j). It holds that 1 ≤ i ≤ t is well-defined

because tag ̸= tag∗.
5. Let xi = List[i]. For k = i+ 1 to t, conduct the following:

– Compute (yk−1, zk−1) satisfying xk−1 = yk−1 ·N + zk−1.
– Compute

xk = g
yk−1

k,tagk
· zN

ζ

k−1 (mod Nζ+1) .

6. Output xt ∈ Z∗
Nζ+1 .

Relating to cumulative lossiness, we evaluate |{compressek(x) : x ∈ ZNζ+1}|.
By construction, for x ∈ Z∗

Nζ+1 , the output of compressek(x) is a list of t elements
in ZN . If x ∈ ZNζ+1 \ Z∗

Nζ+1 , compressek(x) outputs a list of one single element,
namely 0. We then have the bound

|{compressek(x) : x ∈ ZNζ+1}| = N t + 1 ≤ 2 ·N t .

21

We want to prove that Eval(ek, tag, x) = expandek,tag(compressek(x)) for all
x ∈ ZNζ+1 and tag ̸= tag∗. If x ∈ ZNζ+1 \ Z∗

Nζ+1 , then Eval(ek, tag, x) = 0 by
construction. Moreover, we have x = y ·N + z for (y, z) ∈ ZNζ × ZN such that
gcd(z,N) > 1. Thus, compressek(x) outputs List containing only 0 and step 2 in
expandek,tag(List) recovers exactly 0. Otherwise, suppose x ∈ Z∗

Nζ+1 . Our main
observation is that for i = minj∈[t](tagj ̸= tag∗j), the value xi will uniquely
determine xt, by the fact that ψζ is an isomorphism from Theorem 2. Moreover,
because tagi ̸= tag∗i and tagk = tag∗k for all k < i, we have

xi = (α
yi−1

i−1,b · zi−1)
Nζ

(mod Nζ+1)

and the sequence (x0, . . . , xi−1 = yi−1 · N + zi−1) stays the same as if the
input tag is tag∗. By definition of siblingi, it is easily verified that the loop 5 in
compressek constructs List such that List[i] = xi and i = minj∈[t](tagj ̸= tag∗j).
Finally, the loop 5 in expandek,tag(List) performs exactly the same computation as
Eval(ek, tag, x) would do, starting from i. Hence, the equality Eval(ek, tag, x) =
expandek,tag(compressek(x)) is justified. ⊓⊔

Remark 1 The domain is ZNζ+1 and its size is log(Nζ+1) = (ζ + 1) logN .
Moreover, by setting the tag length t = O(λ) and the exponent ζ = ω(λ) so that
our CALBO-TDFs can be used for the applications to randomness extractors
in [24, Corollary 5.12], the lossiness rate of the above construction becomes

(ζ + 1) logN − log(2 ·N t)

(ζ + 1) logN
= 1− t

ζ + 1
− 1

(ζ + 1) logN
= 1− o(1)

and is indeed better than what the LWE-based CALBO-TDF achieves, which is
1−Θ(1) by the parameter choices.

Acknowledgements This work was supported in part by the French ANR
Project ANR-19-CE39-0011 PRESTO and in part by the French ANR ALAM-
BIC project (ANR-16-CE39-0006).

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: EUROCRYPT 2010. https://doi.org/10.1007/978-3-642-13190-5_28

2. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited
- new reduction, properties and applications. In: CRYPTO 2013, Part I. https:
//doi.org/10.1007/978-3-642-40041-4_4

3. Auerbach, B., Kiltz, E., Poettering, B., Schoenen, S.: Lossy trapdoor permutations
with improved lossiness. In: CT-RSA (2019)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudo-random functions and lattices. In:
Eurocrypt (2012)

5. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom
functions. In: CRYPTO 2014, Part I. https://doi.org/10.1007/978-3-662-44371-2_
20

22

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20

6. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek,
S.: Hedged public-key encryption: How to protect against bad randomness. In:
Asiacrypt (2009)

7. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for en-
cryption and commitment secure under selective opening. In: EUROCRYPT 2009.
https://doi.org/10.1007/978-3-642-01001-9_1

8. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor
functions and applications. In: EUROCRYPT 2012. https://doi.org/10.1007/
978-3-642-29011-4_15

9. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: CRYPTO 2008.
https://doi.org/10.1007/978-3-540-85174-5_19

10. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Crypto (2004)

11. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key-homomorphic PRFs
and their applications. In: Crypto (2013)

12. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G.,
Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption,
arithmetic circuit ABE and compact garbled circuits. In: EUROCRYPT 2014.
https://doi.org/10.1007/978-3-642-55220-5_30

13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: ASIACRYPT 2013, Part II. https://doi.org/10.1007/978-3-642-42045-0_
15

14. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and applica-
tions. In: CRYPTO 2017, Part III. https://doi.org/10.1007/978-3-319-63697-9_11

15. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: PKC 2014. https://doi.org/10.1007/978-3-642-54631-0_29

16. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: ITCS
(2014)

17. Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: Unbounded attributes
and semi-adaptive security. In: CRYPTO 2016, Part III. https://doi.org/10.1007/
978-3-662-53015-3_13

18. Braverman, M., Hassidim, A., Kalai, Y.T.: Leaky pseudo-entropy functions. In:
ICS 2011

19. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications. In:
PKC 2020, Part I. https://doi.org/10.1007/978-3-030-45374-9_8

20. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system. In: PKC 2001. https://doi.org/10.1007/
3-540-44586-2_9

21. Damgård, I., Nielsen, J.B.: Perfect hiding and perfect binding universally com-
posable commitment schemes with constant expansion factor. In: CRYPTO 2002.
https://doi.org/10.1007/3-540-45708-9_37

22. Damgård, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: CRYPTO 2003. https://doi.org/
10.1007/978-3-540-45146-4_15

23. Devevey, J., Libert, B., Peters, T.: Rational Modular Encoding in the DCR Set-
ting: Non-Interactive Range Proofs and Paillier-Based Naor-Yung in the Stan-
dard Model. In: PKC 2022. Yokohama (virtual event), Japan (Mar 2022), https:
//hal.inria.fr/hal-03807457

23

https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-319-63697-9_11
https://doi.org/10.1007/978-3-319-63697-9_11
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-662-53015-3_13
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1007/978-3-030-45374-9_8
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15
https://hal.inria.fr/hal-03807457
https://hal.inria.fr/hal-03807457

24. Dodis, Y., Vaikuntanathan, V., Wichs, D.: Extracting randomness from extractor-
dependent sources. In: EUROCRYPT 2020, Part I. https://doi.org/10.1007/
978-3-030-45721-1_12

25. Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor
hash functions and their applications. In: Crypto (2019)

26. Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions
of lossy and correlation-secure trapdoor functions. In: PKC 2010. https://doi.org/
10.1007/978-3-642-13013-7_17

27. Garg, A., Kalai, Y.T., Khurana, D.: Computational extractors with negligible error
in the CRS model. Cryptology ePrint Archive, Report 2019/1116, https://eprint.
iacr.org/2019/1116

28. Garg, A., Kalai, Y.T., Khurana, D.: Low error efficient computational extrac-
tors in the CRS model. In: EUROCRYPT 2020, Part I. https://doi.org/10.1007/
978-3-030-45721-1_14

29. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate in-
distinguishability obfuscation and functional encryption for all circuits. In: FOCS.
LNCS, Springer (2013)

30. Garg, S., Gay, R., Hajiabadi, M.: New techniques for efficient trapdoor func-
tions and applications. In: EUROCRYPT 2019, Part III. https://doi.org/10.1007/
978-3-030-17659-4_2

31. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and
new cryptographic constructions. In: 40th ACM STOC. https://doi.org/10.1145/
1374376.1374407

32. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In:
CRYPTO 2013, Part I. https://doi.org/10.1007/978-3-642-40041-4_5

33. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the
learning with errors assumption. In: ICS 2010

34. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: CRYPTO 2015, Part II. https://doi.org/10.1007/978-3-662-48000-7_25

35. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic sig-
natures from standard lattices. In: 47th ACM STOC. https://doi.org/10.1145/
2746539.2746576

36. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator
from any one-way function. SIAM Journal on Computing (4) (1999)

37. Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: Con-
structions from general assumptions and efficient selective opening chosen cipher-
text security. In: Asiacrypt (2011)

38. Hemenway, B., Ostrovsky, R.: Extended-DDH and lossy trapdoor functions. In:
PKC (2012)

39. Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In:
Eurocrypt (2013)

40. Hofheinz, D.: All-but-many lossy trapdoor functions. In: EUROCRYPT 2012.
https://doi.org/10.1007/978-3-642-29011-4_14

41. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: ACM CCS 2013. https://doi.org/10.
1145/2508859.2516668

42. Kiltz, E., O’Neill, A., Smith, A.: Instantiability of RSA-OAEP under chosen-
plaintext attack. In: CRYPTO 2010. https://doi.org/10.1007/978-3-642-14623-7_
16

24

https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-030-45721-1_12
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17
https://doi.org/10.1007/978-3-642-13013-7_17
https://eprint.iacr.org/2019/1116
https://eprint.iacr.org/2019/1116
https://doi.org/10.1007/978-3-030-45721-1_14
https://doi.org/10.1007/978-3-030-45721-1_14
https://doi.org/10.1007/978-3-030-45721-1_14
https://doi.org/10.1007/978-3-030-45721-1_14
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1007/978-3-030-17659-4_2
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-642-29011-4_14
https://doi.org/10.1007/978-3-642-29011-4_14
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1145/2508859.2516668
https://doi.org/10.1007/978-3-642-14623-7_16
https://doi.org/10.1007/978-3-642-14623-7_16
https://doi.org/10.1007/978-3-642-14623-7_16
https://doi.org/10.1007/978-3-642-14623-7_16

43. Libert, B., Qian, C.: Lossy algebraic filters with short tags. In: PKC (2019)
44. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trap-

door functions and selective opening chosen-ciphertext security from LWE. In:
CRYPTO 2017, Part III. https://doi.org/10.1007/978-3-319-63697-9_12

45. Libert, B., Stehlé, D., Titiu, R.: Adaptively secure distributed PRFs from LWE.
In: TCC 2018, Part II. https://doi.org/10.1007/978-3-030-03810-6_15

46. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT 2012. https://doi.org/10.1007/978-3-642-29011-4_41

47. Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor func-
tions. In: PKC (2010)

48. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT’99. https://doi.org/10.1007/3-540-48910-X_16

49. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: 40th
ACM STOC. https://doi.org/10.1145/1374376.1374406

50. Quach, W., Waters, B., Wichs, D.: Targeted lossy functions and applications. In:
CRYPTO 2021, Part IV. https://doi.org/10.1007/978-3-030-84259-8_15

51. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively-chosen plaintext distributions. In: Eurocrypt (2013)

52. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6) (2009)

53. Vergnaud, D., Xiao, D.: Public-key encryption with weak randomness: Security
against strong chosen distribution attacks. Cryptology ePrint Archive: Report
2013/681 (2013)

54. Wee, H.: Dual projective hashing and its applications - lossy trapdoor functions
and more. In: Eurocrypt (2012)

25

https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-030-03810-6_15
https://doi.org/10.1007/978-3-030-03810-6_15
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1145/1374376.1374406
https://doi.org/10.1007/978-3-030-84259-8_15
https://doi.org/10.1007/978-3-030-84259-8_15

A Additional Definitions

A.1 Homorphic Encryption

Definition 5. A homomorphic encryption scheme (KeyGen,Enc,Dec,FHEval)
for a family of circuits {Cτ}τ∈N consists of four ppt algorithms:

– KeyGen(1λ, 1τ) : Given as inputs a security parameter λ and another param-
eter τ , output a pair (pk, sk).

– Enc(pk, b) : Given a bit b ∈ {0, 1} and the public key pk, output a ciphertext
c.

– Dec(sk, c) : Given a ciphertext c and the secret key sk, output a bit b.
– FHEval(pk, C, c) : Given the public key pk, a circuit C ∈ Cτ , and a vector c

of ciphertexts encrypting input bits of C, output a vector c′ of ciphertexts.

Correctness. An HE scheme (KeyGen,Enc,Dec,FHEval) is (perfectly) correct
for a family of circuits {Cτ}τ∈N if for all λ, τ ∈ N the following conditions hold:

– For any b ∈ {0, 1}

Pr[b←Dec(sk, c) : (pk, sk)←KeyGen(1λ, 1τ); c←Enc(pk, b)] = 1 .

– For any C ∈ Cτ and t input bits (b1, . . . , bt) ∈ {0, 1}t of C

Pr

[
C(b1, . . . , bt)←Dec(sk,FHEval(pk, C, (c1, . . . , ct))) :

(pk, sk)←KeyGen(1λ, 1τ)
∀i ∈ [t], ci←Enc(pk, bi)

]
= 1 .

The correctness can be relaxed by allowing the above probabilities to hold except
for a negligible error.
Semantic security. An HE scheme E = (KeyGen,Enc,Dec,FHEval) is seman-
tically secure if for all λ ∈ N and for all ppt adversary A, the following advantage
is negligible in λ:

Advsem
E,A(λ) :=

∣∣∣∣Pr [1←A(pk, c) :
1τ←A(1λ), (pk, sk)←KeyGen(1λ, 1τ)
c← Enc(pk, 0)

]
− Pr

[
1←A(pk, c) :

1τ←A(1λ), (pk, sk)←KeyGen(1λ, 1τ)
c← Enc(pk, 1)

]∣∣∣∣ .

We note that we consider the parameter τ as an adversarial quantity that can
be chosen by A.
Leveled homomorphic encryption. We will consider mainly leveled homo-
morphic encryption schemes. An HE scheme E is said to be a leveled homomor-
phic encryption scheme if E is correct for a family of circuits {Cτ}τ∈N and for all
τ ∈ N, the set Cτ contains only circuits whose depths are at most τ .

26

A.2 Damgård-Jurik encryption scheme

The Damgård-Jurik encryption scheme is given below:

KeyGen(1λ) : Given as input 1λ where λ ∈ N is a security parameter, choose a
λ-bit modulus N = pq such that gcd(N,φ(N)) = 1. Output pk = (N, ζ) and
sk = (p, q).

Enc(pk,m) : Given a public key pk = (N, ζ) and a plaintext m ∈ ZNζ , sample
r ←↩ U(Z∗

N) and output ψζ(m, r) = (1 +N)mrN
ζ

(mod Nζ+1).
Dec(sk, c) : Given a secret key sk = (p, q) and a ciphertext c ∈ Z∗

Nζ+1 , compute
lcm(p− 1, q − 1) and use the inversion algorithm in Theorem 2 to compute
back m. Output m.

B Deferred Proofs

B.1 Proof of Lemma 10

First, since B ∼ U(Zℓ×m), Lemma 8 implies that (Dx)⊤ ·B is statistically close
to uniform. By Lemma 7, we have

Pr
[⌊
(Dx)⊤ ·B

⌋
p
̸=

⌊
(Dx)⊤ ·B+ x⊤E

⌋
p

]
≤ 2p · β ·mαq

q
= 2p ·mα ,

where ∥E∥∞ ≤ m · αq and ∥x∥∞ ≤ β = 1.
On the other hand, a similar argument as in [2, Proof of Theorem 7.3] es-

tablishes that B ·Rtag is statistically close to uniform. Applying Lemma 8 again
implies (Dx)⊤ ·B ·Rtag is statistically close to uniform. We have shown above
that

∥E ·Rtag∥∞ ≤ n′(n′ + 1)t ·m · αq

where n′ = n log q. Hence, by Lemma 7, we obtain

Pr
[⌊
(Dx)⊤ ·BRtag

⌋
p
̸=

⌊
(Dx)⊤ ·BRtag + x⊤ ·ERtag

⌋
p

]
≤ 2p · β · n′(n′ + 1)t ·mαq

q
= 2p · n′(n′ + 1)t ·mα .

Finally, a union bound over all possible tag ∈ Tt = {0, 1}t and tag ̸= tag∗ yields

Pr[BAD] ≤ (2t − 1) ·
(
Pr

[⌊
(Dx)⊤ ·B

⌋
p
̸=

⌊
(Dx)⊤ ·B+ x⊤E

⌋
p

]
+ Pr

[⌊
(Dx)⊤ ·BRtag

⌋
p
̸=

⌊
(Dx)⊤ ·BRtag + x⊤ ·ERtag

⌋
p

])
≤ 2t+1 · p ·mα ·

(
1 + n′(n′ + 1)t

)
. (4)

The right-hand side of (4) is set up to be negligible in λ. ⊓⊔

27

	Cumulatively All-Lossy-But-One Trapdoor Functions from Standard Assumptions

