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Abstract

We put forward a generalization of lossy trapdoor functions (LTFs). Namely, all-but-many
lossy trapdoor functions (ABM-LTFs) are LTFs that are parametrized with tags. Each tag can
either be injective or lossy, which leads to an invertible or a lossy function. The interesting
property of ABM-LTFs is that it is possible to generate an arbitrary number of lossy tags by
means of a special trapdoor, while it is not feasible to produce lossy tags without this trapdoor.

Our definition and construction can be seen as generalizations of all-but-one LTFs (due
to Peikert and Waters) and all-but-N LTFs (due to Hemenway et al.). However, to achieve
ABM-LTFs (and thus a number of lossy tags which is not bounded by any polynomial), we
have to employ some new tricks. Concretely, we give two constructions that use “disguised”
variants of the Waters, resp. Boneh-Boyen signature schemes to make the generation of lossy
tags hard without trapdoor. In a nutshell, lossy tags simply correspond to valid signatures. At
the same time, tags are disguised (i.e., suitably blinded) to keep lossy tags indistinguishable
from injective tags.

ABM-LTFs are useful in settings in which there are a polynomial number of adversarial
challenges (e.g., challenge ciphertexts). Specifically, building on work by Hemenway et al.,
we show that ABM-LTFs can be used to achieve selective opening security against chosen-
ciphertext attacks. One of our ABM-LTF constructions thus yields the first SO-CCA secure
encryption scheme with compact ciphertexts (O(1) group elements) whose efficiency does not
depend on the number of challenges. Our second ABM-LTF construction yields an IND-CCA
(and in fact SO-CCA) secure encryption scheme whose security reduction is independent of the
number of challenges and decryption queries.
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1 Introduction

Lossy trapdoor functions. Lossy trapdoor functions (LTFs) have been formalized by Peikert
and Waters [39], in particular as a means to construct chosen-ciphertext (CCA) secure public-key
encryption (PKE) schemes from lattice assumptions. In a nutshell, LTFs are functions that may be
operated with an injective key (in which case a trapdoor allows to efficiently invert the function), or
with a lossy key (in which case the function is highly non-injective, i.e., loses information). The key
point is that injective and lossy keys are computationally indistinguishable. Hence, in a security
proof (say, for a PKE scheme), injective keys can be replaced with lossy keys without an adversary
noticing. But once all keys are lossy, a ciphertext does not contain any (significant) information
anymore about the encrypted message. There exist quite efficient constructions of LTFs based on
a variety of assumptions (e.g., [39, 9, 13, 24]). Besides, LTFs have found various applications in
public-key encryption [26, 9, 7, 6, 27, 22] and beyond [19, 39, 36] (where [19] implicitly uses LTFs
to build commitment schemes).

LTFs with tags and all-but-one LTFs. In the context of CCA-secure PKE schemes, it is
useful to have LTFs which are parametrized with a tag1. In all-but-one LTFs (ABO-LTFs), all
tags are injective (i.e., lead to an injective function), except for one single lossy tag. During a proof
of CCA security, this lossy tag will correspond to the (single) challenge ciphertext handed to the
adversary. All decryption queries an adversary may make then correspond to injective tags, and
so can be handled successfully. ABO-LTFs have been defined, constructed, and used as described
by Peikert and Waters [39].

Note that ABO-LTFs are not immediately useful in settings in which there is more than one
challenge ciphertext. One such setting is the selective opening (SO) security of PKE schemes ([7],
see also [14, 21]). Here, an adversary A is presented with a vector of ciphertexts (which correspond
to eavesdropped ciphertexts), and gets to choose a subset of these ciphertexts. This subset is
then opened for A; intuitively, this corresponds to a number of corruptions performed by A. A’s
goal then is to find out any nontrivial information about the unopened ciphertexts. It is currently
not known how to reduce this multi-challenge setting to a single-challenge setting (such as IND-
CCA security). In particular, ABO-LTFs are not immediately useful to achieve SO-CCA security.
Namely, if we follow the described route to achieve security, we would have to replace all challenge
ciphertexts (and only those) with lossy ones. However, an ABO-LTF has only one lossy tag, while
there are many challenge ciphertexts.

All-but-N LTFs and their limitations. A natural solution has been given by Hemenway et al.
[27], who define and construct all-but-N LTFs (ABN-LTFs). ABN-LTFs have exactly N lossy
tags; all other tags are injective. This can be used to equip exactly the challenge ciphertexts with
the lossy tags; all other ciphertexts then correspond to injective tags, and can thus be decrypted.
Observe that ABN-LTFs encode the set of lossy tags in their key. (That is, a computationally
unbounded adversary could always brute-force search which tags lead to a lossy function.) For
instance, the construction of [27] embeds a polynomial in the key (hidden in the exponent of group
elements) such that lossy tags are precisely the zeros of that polynomial.

Hence, ABN-LTFs have a severe drawback: namely, the space complexity of the keys is at least
linear in N . In particular, this affects the SO secure PKE schemes derived in [27]: there is no
single scheme that would work in arbitrary protocols (i.e., for arbitrary N). Besides, their schemes
quickly become inefficient as N gets larger, since each encryption requires to evaluate a polynomial
of degree N in the exponent.

Our contribution: LTFs with many lossy tags. In this work, we define and construct
all-but-many LTFs (ABM-LTFs). An ABM-LTF has superpolynomially many lossy tags, which
however require a special trapdoor to be found. This is the most crucial difference to ABN-LTFs:
with ABN-LTFs, the set of lossy tags is specified initially, at construction time. Our ABM-LTFs
have a trapdoor that allows to sample on the fly from a superpolynomially large pool of lossy tags.

1What we call “tag” is usually called “branch.” We use “tag” in view of our later construction, in which tags
have a specific structure, and cannot be viewed as branches of a (binary) tree.
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(Of course, without that trapdoor, and even given arbitrarily many lossy tags, another lossy tag is
still hard to find.) This in particular allows for ABM-LTF instantiations with compact keys and
images whose size is independent of the number of lossy tags.

Our constructions can be viewed as “disguised” variants of the Waters, resp. Boneh-Boyen (BB)
signature schemes [45, 10]. Specifically, lossy tags correspond to valid signatures. However, to make
lossy and injective tags appear indistinguishable, we have to blind signatures by encrypting them,
or by multiplying them with a random subgroup element. We give more details on our constructions
below.

A DCR-based construction. Our first construction operates in ZNs+1 . (Larger s yield lossier
functions. For our applications, s = 2 will be sufficient.) A tag consists of two Paillier/Damg̊ard-
Jurik encryptions E(x) ∈ ZNs+1 . At the core of our construction is a variant of Waters signatures
over ZNs+1 whose security can be reduced to the problem of computing E(ab) from E(a) and
E(b), i.e., of multiplying Paillier/DJ-encrypted messages. This “multiplication problem” may be
interesting in its own right. If it is easy, then Paillier/DJ is fully homomorphic; if it is infeasible,
then we can use it as a “poor man’s CDH assumption” in the plaintext domain of Paillier/DJ.

We stress that our construction does not yield a signature scheme; verification of Waters sig-
natures requires a pairing operation, to which we have no equivalent in ZNs+1 . However, we
will be able to construct a matrix M ∈ Z3×3

Ns+1 out of a tag, such that the “decrypted matrix”

M̃ = D(M) ∈ Z3×3
Ns has low rank iff the signature embedded in the tag is valid. Essentially, this

observation uses products of plaintexts occurring in the determinant det(M̃) to implicitly imple-
ment a “pairing over ZNs+1” and verify the signature. Similar techniques to encode arithmetic
formulas in the determinant of a matrix have been used, e.g., by [30, 2] in the context of secure
computation.

Our function evaluation is now a suitable multiplication of the encrypted matrix M with a
plaintext vector X ∈ Z3

Ns , similar to the one from Peikert and Waters [39]. Concretely, on input

X, our function outputs an encryption of the ordinary matrix-vector product M̃ ·X. If M̃ is non-
singular, then we can invert this function using the decryption key. If M̃ has low rank, however,
the function becomes lossy. This construction has compact tags and function images; both consist
only of a (small) constant number of group elements, and only the public key has O(k) group
elements, where k is the security parameter. Thus, our construction does not scale in the number
N of lossy tags.

A pairing-based construction. Our second uses a product group G1 = 〈g1〉 × 〈h1〉 that allows
for a pairing. We will implement BB signatures in 〈h1〉, while we blind with elements from 〈g1〉.
Consequently, our security proof requires both the Strong Diffie-Hellman assumption (SDH, [10])
in 〈h1〉 and a subgroup indistinguishability assumption.

Tags are essentially matrices (Wi,j)i,j for Wi,j ∈ G1 = 〈g1〉×〈h1〉. Upon evaluation, this matrix
is first suitably paired entry-wise to obtain a matrix (Mi,j)i,j over GT = 〈gT 〉 × 〈hT 〉, the pairing’s
target group. This operation will ensure that (a) Mi,j (for i 6= j) always lies in 〈gT 〉, and (b) Mi,i

lies in 〈gT 〉 iff the h1-factor of Wi,i constitutes a valid BB signature for the whole tag. With these
ideas in mind, we revisit the original matrix-based LTF construction from [39] to obtain a function
with trapdoors.

Unfortunately, using the matrix-based construction from [39] results in rather large tags (of
size O(n2) group elements for a function with domain {0, 1}n). On the bright side, a number
of random self-reducibility properties allow for a security proof whose reduction quality does not
degrade with the number N of lossy tags (i.e., challenge ciphertexts) around. Specifically, neither
construction nor reduction scale in N .

Applications. Given the work of [27], a straightforward application of our results is the con-
struction of an SO-CCA secure PKE scheme. (However, a slight tweak is required compared to the
construction from [27] — see Section 6.3 for details.) Unlike the PKE schemes from [27], both of
our ABM-LTFs give an SO-CCA construction that is independent of N , the number of challenge
ciphertexts. Moreover, unlike the SO-CCA secure PKE scheme from [22], our DCR-based SO-CCA
scheme has compact ciphertexts of O(1) group elements. Finally, unlike both [27] and [22], our
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pairing-based scheme has a reduction that does not depend on N and the number of decryption
queries (see Section 5.3 for details).

As a side effect, our pairing-based scheme can be interpreted as a new kind of CCA secure PKE
scheme with a security proof that is tight in the number of challenges and decryption queries. This
solves an open problem of Bellare et al. [5], although the scheme should be seen as a (relatively
inefficient) proof of concept rather than a practical system. Also, to be fair, we should mention that
the SDH assumption we use in our pairing-based ABM-LTF already has a flavor of accommodating
multiple challenges: an SDH instance contains polynomially many group elements.

Open problems. An interesting open problem is to find different, and in particular efficient
and tightly secure ABM-LTFs under reasonable assumptions. This would imply efficient and
tightly (SO-)CCA-secure encryption schemes. (With our constructions, one basically has to choose
between efficiency and a tight reduction.) Also, our pairing-based PKE scheme achieves only
indistinguishability-based, but not (in any obvious way) simulation-based SO security [7]. (To
achieve simulation-based SO security, a simulator must essentially be able to efficiently explain
lossy ciphertexts as encryptions of any given message, see [7, 22].) However, as we demonstrate
in case of our DCR-based scheme, in some cases ABM-LTFs can be equipped with an additional
“explainability” property that leads to simulation-based SO security (see Section 7 for details).
It would be interesting to find other applications of ABM-LTFs. One reviewer suggested that
ABM-LTFs can be used instead of ABO-LTFs in the commitment scheme from Nishimaki et al.
[36], with the goal of attaining reusable commitments.

Organization. After fixing some notation in Section 2, we proceed to our definition of ABM-
LTFs in Section 3. We define and analyze our DCR-based ABM-LTF in Section 4. We present
our pairing-based ABM-LTF in Section 5. We then show how ABM-LTFs imply CCA-secure
(indistinguishability-based) selective-opening security in Section 6. Finally, we explain how to
achieve simulation-based selective-opening security in Section 7.

2 Preliminaries

Notation. For n ∈ N, let [n] := {1, . . . , n}. Throughout the paper, k ∈ N denotes the security
parameter. For a finite set S, we denote by s ← S the process of sampling s uniformly from
S. For a probabilistic algorithm A, we denote y ← A(x;R) the process of running A on input
x and with randomness R, and assigning y the result. We let RA denote the randomness space
of A; we require RA to be of the form RA = {0, 1}r. We write y ← A(x) for y ← A(x;R)
with uniformly chosen R ∈ RA, and we write y1, . . . , ym ← A(x) for y1 ← A(x), . . . , ym ← A(x)
with fresh randomness in each execution. If A’s running time is polynomial in k, then A is called
probabilistic polynomial-time (PPT). The statistical distance of two random variables X and Y
over some countable domain S is defined as SD (X ; Y ) := 1

2

∑
s∈S |Pr [X = s]− Pr [Y = s]|. We

write X
d
≈ Y for SD (X ; Y ) ≤ d.

Chameleon hashing. A chameleon hash function (CHF, see [31]) is collision-resistant when only
the public key of the function is known. However, this collision-resistance can be broken (in a very
strong sense) with a suitable trapdoor. We will assume an input domain of {0, 1}∗. We do not
lose (much) on generality here, since one can always first apply a collision-resistant hash function
on the input to get a fixed-size input.

Definition 2.1 (Chameleon hash function). A chameleon hash function CH consists of the follow-
ing PPT algorithms:
Key generation. CH.Gen(1k) outputs a key pkCH along with a trapdoor tdCH.
Evaluation. CH.Eval(pkCH, X;RCH) maps an input X ∈ {0, 1}∗ to an image Y . By RCH, we

denote the randomness used in the process. We require that if RCH is uniformly distributed,
then so is Y (over its respective domain).

Equivocation. CH.Equiv(tdCH, X,RCH, X
′) outputs randomness R′CH with

CH.Eval(pkCH, X;RCH) = CH.Eval(pkCH, X
′;R′CH) (1)
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for the corresponding key pkCH. We require that for any X,X ′, if RCH is uniformly dis-
tributed, then so is R′CH.

We require that CH is collision-resistant in the sense that given pkCH, it is infeasible to find
X,RCH, X

′, R′CH with X 6= X ′ that meet (1). Formally, for every PPT B,

AdvcrCH,B(k) := Pr
[
X 6= X ′ and (1) holds | (X,RCH, X

′, R′CH)← B(1k, pkCH)
]

is negligible, where (pkCH, tdCH)← CH.Gen(1k).

Lossy authenticated encryption. Since our encryption scheme follows a hybrid approach, we
require a suitable symmetric encryption scheme:

Definition 2.2 (Lossy authenticated encryption.). A lossy authenticated encryption scheme LAE =
(E,D) with key space {0, 1}2k and message space {0, 1}k consists of the following two PPT algo-
rithms:
Encryption. E(K,msg), for a key K ∈ {0, 1}2k and a message msg ∈ {0, 1}k, outputs a (sym-

metric) ciphertext D.
Decryption. D(K,D), for a key K ∈ {0, 1}2k and a (symmetric) ciphertext D, outputs a message

msg ∈ {0, 1}k or ⊥. (In the latter case, we say that D rejects D.)
We require the following:
Correctness. We have D(K,E(K,msg)) = msg for all K ∈ {0, 1}2k and msg ∈ {0, 1}k.
Authentication. For an adversary A, we let AdvauthLAE,A(k) denote the probability that A succeeds

in the following experiment:
1. A, on input 1k, chooses a message msg ∈ {0, 1}k, and gets an encryption D = E(K,msg)

of msg under a freshly chosen key K ← {0, 1}2k.
2. A gets (many-time) oracle access to a decryption oracle D(K, ·) with hardwired key K.
3. A wins iff it manages to submit a decryption query D′ 6= D to D that is not rejected

(i.e., for which D(K,D′) 6= ⊥).
We require that AdvauthLAE,A(k) is negligible for every PPT A.

Lossiness. For msg ∈ {0, 1}k, let Dmsg be the distribution of E(K,msg) (for random K ←
{0, 1}2k). We require that for any two msg ,msg ′ ∈ {0, 1}k, the distributions Dmsg and Dmsg ′

are identical. (That is, when K is unknown, a ciphertext reveals no information about the
plaintext.)

Lossy authenticated encryption schemes exist unconditionally. For instance, if we parse K =
(K1,K2) ∈ ({0, 1}k)2, we can set E(K,msg) = (ρ, τ) = (msg ⊕ K1,MAC(K2, ρ)) for a message
authentication code MAC that is strongly existentially unforgeable under one-time chosen-message
attacks.

Lossy trapdoor functions. Lossy trapdoor functions (see [39]) are a variant of trapdoor one-
way functions. They may be operated in an “injective mode” (which allows to invert the function)
and a “lossy mode” in which the function is non-injective. For simplicity, we restrict to an input
domain {0, 1}n for polynomially bounded n = n(k) > 0.

Definition 2.3 (Lossy trapdoor function). A lossy trapdoor function (LTF) LTF with domain
Dom consists of the following algorithms:
Key generation. LTF.IGen(1k) yields an evaluation key ek and an inversion key ik.
Evaluation. LTF.Eval(ek , X) (with X ∈ Dom) yields an image Y . Write Y = fek (X).
Inversion. LTF.Invert(ik , Y ) outputs a preimage X. Write X = f−1ik (Y ).
Lossy key generation. LTF.LGen(1k) outputs an evaluation key ek ′.
We require the following:
Correctness. For all (ek , ik)← LTF.IGen(1k), X ∈ Dom, it is f−1ik (fek (X)) = X.
Indistinguishability. The first output of LTF.IGen(1k) is indistinguishable from the output of

LTF.LGen(1k), i.e.,

AdvindLTF,A(k) := Pr
[
A(1k, ek) = 1

]
− Pr

[
A(1k, ek ′) = 1

]
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is negligible for all PPT A, for (ek , ik)← LTF.IGen(1k), ek ′ ← LTF.LGen(1k).
Lossiness. We say that LTF is `-lossy if for all possible ek ′ ← LTF.LGen(1k), the image set

fek ′(Dom) is of size at most |Dom|/2`.

3 Definition of ABM-LTFs

We are now ready to define ABM-LTFs. As already discussed in Section 1, ABM-LTFs generalize
ABO-LTFs and ABN-LTFs in the sense that there is a superpolynomially large pool of lossy tags
from which we can sample. We require that even given oracle access to such a sampler of lossy
tags, it is not feasible to produce a (fresh) non-injective tag. Furthermore, it should be hard to
distinguish lossy from injective tags.

Definition 3.1 (ABM-LTF). An all-but-many lossy trapdoor function (ABM-LTF) ABM with
domain Dom consists of the following PPT algorithms:
Key generation. ABM.Gen(1k) yields an evaluation key ek, an inversion key ik, and a tag key

tk. The evaluation key ek defines a set T = Tp × {0, 1}∗ that contains the disjoint sets of
lossy tags Tloss ⊆ T and injective tags Tinj ⊆ T . Tags are of the form t = (tp, ta), where
tp ∈ Tp is the core part of the tag, and ta ∈ {0, 1}∗ is the auxiliary part of the tag.

Evaluation. ABM.Eval(ek , t,X) (for t ∈ T , X ∈ Dom) produces Y =: fek ,t(X).
Inversion. ABM.Invert(ik , t, Y ) (with t ∈ Tinj) outputs a preimage X =: f−1ik ,t(Y ).
Lossy tag generation. ABM.LTag(tk , ta) takes as input an auxiliary part ta ∈ {0, 1}∗ and outputs

a core tag tp such that t = (tp, ta) is lossy.
We require the following:
Correctness. For all possible (ek , ik , tk) ← ABM.Gen(1k), t ∈ Tinj, and X ∈ Dom, it is always

f−1ik ,t(fek ,t(X)) = X.

Lossiness. We say that ABM is `-lossy if for all possible (ek , ik , tk)← ABM.Gen(1k), and all lossy
tags t ∈ Tloss, the image set fek ,t(Dom) is of size at most |Dom|/2`.

Indistinguishability. Even multiple lossy tags are indistinguishable from random tags:

AdvindABM,A(k) := Pr
[
A(1k, ek)ABM.LTag(tk ,·) = 1

]
− Pr

[
A(1k, ek)OTp (·) = 1

]
is negligible for all PPT A, where (ek , ik , tk) ← ABM.Gen(1k), and OT (·) ignores its input
and returns a uniform and independent core tag tp ← Tp.

Evasiveness. Non-injective tags are hard to find, even given multiple lossy tags:

AdvevaABM,A(k) := Pr
[
A(1k, ek)ABM.LTag(tk ,·) ∈ T \ Tinj

]
is negligible with (ek , ik , tk) ← ABM.Gen(1k), and for any PPT algorithm A that never
outputs tags obtained through oracle queries (i.e., A never outputs tags t = (tp, ta), where tp
has been obtained by an oracle query ta).

On our tagging mechanism. Our tagging mechanism is different from the mechanism from
ABO-, resp. ABN-LTFs. In particular, our tag selection involves an auxiliary and a core tag part;
lossy tags can be produced for arbitrary auxiliary tags. (Conceptually, this resembles the two-stage
tag selection process from Abe et al. [1] in the context of hybrid encryption.) On the other hand,
ABO- and ABN-LTFs simply have fully arbitrary (user-selected) bitstrings as tags.

The reason for our more complicated tagging mechanism is that during a security proof, tags are
usually context-dependent and not simply random. For instance, a common trick in the public-key
encryption context is the following: upon encryption, choose a one-time signature keypair (v, s),
set the tag to the verification key v, and then finally sign the whole ciphertext using the signing
key s. This trick has been used numerous times (e.g., [20, 15, 39, 40]) and ensures that a tag
cannot be re-used by an adversary in a decryption query. (To re-use that tag, an adversary would
essentially have to forge a signature under v.)
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However, in our constructions, in particular lossy tags cannot be freely chosen. (This is different
from ABO- and ABN-LTFs and stems from the fact that there are superpolynomially many lossy
tags.) But as outlined, during a security proof, we would like to embed auxiliary information in
a tag, while being able to force the tag to be lossy. We thus divide the tag into an auxiliary part
(which can be used to embed, e.g., a verification key for a one-time signature), and a core part
(which will be used to enforce lossiness).

4 A DCR-based ABM-LTF

We now construct an ABM-LTF ABMD in rings ZNs+1 for composite N . Domain and codomain
of our function will be Z3

Ns and (Z∗Ns+1)3, respectively. One should have in mind a value of s ≥ 2
here, since we will prove that ABMD is ((s− 1) log2(N))-lossy.

4.1 Setting and assumptions

In the following, let N = PQ for primes P and Q, and fix a positive integer s. Write ϕ(N) :=
(P − 1)(Q− 1). We will silently assume that P and Q are chosen from a distribution that depends
on the security parameter. Unless indicated otherwise, all computations will take place in ZNs+1 ,
i.e., modulo N s+1. It will be useful to establish the notation h := 1 +N ∈ ZNs+1 . We also define
algorithms E and D by E(x) = rN

s
hx for x ∈ ZNs and a uniformly and independently chosen

r ∈ Z∗Ns+1 , and D(c) = ((cϕ(N))1/ϕ(N) mod Ns − 1)/N ∈ ZNs for c ∈ ZNs+1 . That is, E and D are
Paillier/Damg̊ard-Jurik encryption and decryption operations as in [37, 17], so that D(rN

s
hx) = x

and D(E(x)) = x. Moreover, D can be efficiently computed using the factorization of N . We will
also apply D to vectors or matrices over ZNs+1 , by which we mean component-wise application.
We make the following assumptions:

Assumption 4.1. The s-Decisional Composite Residuosity (short: s-DCR) assumption holds iff

Advs-dcrD (k) := Pr
[
D(1k, N, rN

s
) = 1

]
− Pr

[
D(1k, N, rN

s
h) = 1

]
is negligible for all PPT D, where r ← Z∗Ns+1 is chosen uniformly.

Assumption 4.1 is rather common and equivalent to the semantic security of the Paillier [37]
and Damg̊ard-Jurik (DJ) [17] encryption schemes. In fact, it turns out that all s-DCR assumptions
are (tightly) equivalent to 1-DCR [17]. Nonetheless, we make s explicit here to allow for a simpler
exposition. Also note that Assumption 4.1 supports a form of random self-reducibility. Namely,
given one challenge element c ∈ Z∗Ns+1 , it is possible to generate many fresh challenges ci with the
same decryption D(ci) = D(c) by re-randomizing the rN

s
part.

Assumption 4.2. The No-Multiplication (short: No-Mult) assumption holds iff

Advmult
A (k) := Pr

[
A(1k, N, c1, c2) = c∗ ∈ Z∗N2 for D(c∗) = D(c1) · D(c2) mod N s

]
is negligible for all PPT A, where c1, c2 ← Z∗N2 are chosen uniformly.

The No-Mult assumption stipulates that it is infeasible to multiply Paillier-encrypted messages.
If No-Mult (along with s-DCR and a somewhat annoying technical assumption explained below)
hold, then our upcoming construction will be secure. But if the No-Mult problem is easy, then
Paillier encryption is fully homomorphic.2

The following technical lemma will be useful later on, because it shows how to lift ZN2-
encryptions to ZNs+1-encryptions.

2Of course, there is a third, less enjoyable possibility. It is always conceivable that an algorithm breaks No-Mult
with low but non-negligible probability. Such an algorithm may not be useful for constructive purposes. Besides, if
either s-DCR or the annoying technical assumption do not hold, then our construction may not be secure.
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Lemma 4.3 (Lifting, implicit in [17]). Let s ≥ 1 and τ : ZN2 → ZNs+1 be the canonical embedding
with τ(c mod N2) = c mod N s+1 for c ∈ ZN2 interpreted as an integer from {0, . . . , N2−1}. Then,
for any c ∈ Z∗N2, and X := D(τ(c)) ∈ ZNs and x := D(c) ∈ ZN , we have X = x mod N .

Proof. Consider the canonical homomorphism π : ZNs+1 → ZN2 . Write Z∗Ns+1 = 〈gs〉 × 〈hs〉
for some gs ∈ Z∗Ns+1 of order ϕ(N) and hs := 1 + N mod N s+1. We have π(〈gs〉) = 〈g1〉 and

π(hxs ) = hx mod N
1 . Since π ◦ π̂ = idZN2 , this gives π̂(gu1h

x
1) = gu

′
s h

x+x′N
s for suitable u′, x′.

Unfortunately, we need another assumption to exclude certain corner cases:

Assumption 4.4. We require that the following function is negligible for all PPT A:

AdvnoninvA (k) := Pr
[
A(1k, N) = c ∈ ZN2 such that 1 < gcd(D(c), N) < N

]
.

Intuitively, Assumption 4.4 stipulates that it is infeasible to generate Paillier encryptions of
“funny messages.” Note that actually knowing any such message allows to factor N .

4.2 Our construction

Overall idea. The first idea in our construction will be to use the No-Mult assumption as a
“poor man’s CDH assumption” in order to implement Waters signatures [45] over ZNs+1 . Recall
that the verification of Waters signatures requires a pairing operation, which corresponds to the
multiplication of two Paillier/DJ-encrypted messages in our setting. We do not have such a mul-
tiplication operation available; however, for our purposes, signatures will never actually have to
be verified, so this will not pose a problem. We note that the original Waters signatures from [45]
are re-randomizable and thus not strongly unforgeable. To achieve the evasiveness property from
Definition 3.1, we will thus combine Waters signatures with a chameleon hash function, much like
Boneh et al. [12] did to make Waters signatures strongly unforgeable.

Secondly, we will construct 3 × 3-matrices M = (Mi,j)i,j over ZNs+1 , in which we carefully
embed our variant of Waters signatures. Valid signatures will correspond to singular “plaintext
matrices” M̃ := (D(Mi,j))i,j ; invalid signatures correspond to full-rank matrices M̃ . We will define
our ABM-LTF f as a suitable matrix-vector multiplication of M with an input vector X ∈ Z3

Ns .

For a suitable choice of s, the resulting f will be lossy if det(M̃) = 0.

Key generation. ABM.Gen(1k) first chooses N = PQ, and a key pkCH along with trapdoor tdCH

for a chameleon hash function CH. Finally, ABM.Gen chooses a, b ← ZNs , as well as k + 1 values
hi ← ZNs for 0 ≤ i ≤ k, and sets

A← E(a) B ← E(b) Hi ← E(hi) (for 0 ≤ i ≤ k)

ek = (N,A,B, (Hi)
k
i=0, pkCH) ik = (ek , P,Q) tk = (ek , a, b, (hi)

k
i=0, tdCH).

Tags. Recall that a tag t = (tp, ta) consists of a core part tp and an auxiliary part ta ∈ {0, 1}∗.
Core parts are of the form tp = (R,Z,RCH) with R,Z ∈ Z∗Ns+1 and randomness RCH for CH. (Thus,
random core parts are simply uniform values R,Z ∈ Z∗Ns+1 and uniform CH-randomness.) With
t, we associate the chameleon hash value T := CH.Eval(pkCH, (R,Z, ta)), and a group hash value
H := H0

∏
i∈T Hi, where i ∈ T means that the i-th bit of T is 1. Let h := D(H) = h0 +

∑
i∈T hi.

Also, we associate with t the matrices

M =

Z A R
B h 1
H 1 h

 ∈ Z3×3
Ns+1 M̃ =

z a r
b 1 0
h 0 1

 ∈ Z3×3
Ns , (2)

where M̃ = D(M) is the component-wise decryption of M , and r = D(R) and z = D(Z). It will be

useful to note that det(M̃) = z − (ab+ rh). We will call t lossy if det(M̃) = 0, i.e., if z = ab+ rh;

we say that t is injective if M̃ is invertible.
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Lossy tag generation. ABM.LTag(tk , ta), given tk = ((N,A,B, (Hi)i), a, b, (hi)
k
i=0, tdCH) and

an auxiliary tag part ta ∈ {0, 1}∗, picks an image T of CH that can later be explained (using
tdCH) as the image of an arbitrary preimage (R,Z, ta). Let h := h0 +

∑
i∈T hi and R ← E(r) for

uniform r ← ZNs , and set Z ← E(z) for z = ab + rh. Finally, let RCH be CH-randomness for
which T = CH.Eval(pkCH, (R,Z, ta)). Obviously, this yields uniformly distributed lossy tag parts
(R,Z,RCH).

Evaluation. ABM.Eval(ek , t,X), for ek = (N,A,B, (Hi)i, pkCH), t = ((R,Z,RCH), ta), and a
preimage X = (Xi)

3
i=1 ∈ Z3

Ns , first computes the matrix M = (Mi,j)i,j as in (2). Then, ABM.Eval
computes and outputs

Y := M ◦X :=

 3∏
j=1

M
Xj
i,j

3

i=1

.

Note that the decryption D(Y ) is simply the ordinary matrix-vector product D(M) ·X.

Inversion and correctness. ABM.Invert(ik , t, Y ), given an inversion key ik , a tag t, and an
image Y = (Yi)

3
i=1, determines X = (Yi)

3
i=1 as follows. First, ABM.Invert computes the matrices

M and M̃ = D(M) as in (2), using P,Q. For correctness, we can assume that the tag t is injective,

so M̃ is invertible; let M̃−1 be its inverse. Since D(Y ) = M̃ · X, ABM.Invert can retrieve X as

M̃−1 · D(Y ) = M̃−1 · M̃ ·X.

4.3 Security analysis

Theorem 4.5 (Security of ABMD). Assume that Assumption 4.1, Assumption 4.2, and Assump-
tion 4.4 hold, that CH is a chameleon hash function, and that s ≥ 2. Then the algorithms described
in Section 4.2 form an ABM-LTF ABMD as per Definition 3.1.

We have yet to prove lossiness, indistinguishability, and evasiveness.

Lossiness. Our proof of lossiness loosely follows Peikert and Waters [39]:

Lemma 4.6 (Lossiness of ABMD). ABMD is ((s− 1) log2(N))-lossy.

Proof. Assume an evaluation key ek = (N,A,B, (Hi)i, pkCH), and a lossy tag t, so that the matrix

M̃ from (2) is of rank ≤ 2. Hence, any fixed decrypted image

D(fek ,t(X)) = D(M ◦X) = M̃ ·X

leaves at least one inner product 〈C,X〉 ∈ ZNs (for C ∈ Z3
Ns that only depends on M̃) completely

undetermined. The additional information contained in the encryption randomness of an image
Y = fek ,t(X) fixes the components of X and thus 〈C,X〉 only modulo ϕ(N) < N . Thus, for any
given image Y , there are at least bN s/ϕ(N)c ≥ N s−1 possible values for 〈C,X〉 and thus possible
preimages. The claim follows.

Indistinguishability. Observe that lossy tags can be produced without knowledge of the fac-
torization of N . Hence, even while producing lossy tags, we can use the indistinguishability of
Paillier/DJ encryptions E(x). This allows to substitute the encryptions R = E(r), Z = E(z) in
lossy tags by independently uniform encryptions. This step also makes the CH-randomness inde-
pendently uniform, and we end up with random tags. We omit the straightforward formal proof
and state:

Lemma 4.7 (Indistinguishability of ABMD). Given the assumptions from Theorem 4.5, ABMD is
indistinguishable. Concretely, for any PPT adversary A, there exists an s-DCR distinguisher D
of roughly the same complexity as A, such that

AdvindABMD,A(k) = Advs-dcrD (k). (3)
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The tightness of the reduction in (3) stems from the random self-reducibility of s-DCR.

Evasiveness. It remains to prove evasiveness.

Lemma 4.8 (Evasiveness of ABMD). Given the assumptions from Theorem 4.5, ABMD is evasive.
Concretely, for any PPT adversary A that makes at most Q = Q(k) oracle queries, there exist
adversaries B, D, and F of roughly the same complexity as A, with

AdvevaABMD,A(k) ≤ O(kQ(k)) · Advmult
F (k) + AdvnoninvE (k) +

∣∣∣Advs-dcrD (k)
∣∣∣+ AdvcrCH,B(k).

At its core, the proof of Lemma 4.8 adapts the security proof of Waters signatures to ZNs+1 .
That is, we will create a setup in which we can prepare Q(k) lossy tags (which correspond to valid
signatures), and the tag the adversary finally outputs will be interpreted as a forged signature.
Crucial to this argument will be a suitable setup of the group hash function (Hi)

k
i=0. Depending on

the (group) hash value, we will either be able to create a lossy tag with that hash, or use any lossy
tag with that hash to solve a underlying No-Mult challenge. With a suitable setup, we can hope
that with probability O(1/(kQ(k))), Q(k) lossy tags can be created, and the adversary’s output
can be used to solve an No-Mult challenge. The proof of Lemma 4.8 is somewhat complicated by
the fact that in order to use the collision-resistance of the employed CHF, we have to first work our
way towards a setting in which the CHF trapdoor is not used. This leads to a somewhat tedious
“deferred analysis” (see [25]) and the s-DCR term in the lemma.

Proof. We turn to the full proof of Lemma 4.8. Fix an adversary A. We proceed in games. In
Game 1, A(ek) interacts with an ABM.LTag(tk , ·) oracle that produces core tag parts for lossy
tags tp = ((R,Z,RCH), ta) that satisfy z = ab + rh for r = D(R), z = D(Z), and h = D(H) with
H = H0

∏
i∈T Hi and T = CH.Eval(pkCH, (R,Z, ta)). Without loss of generality, we assume that

A makes exactly Q oracle queries, where Q = Q(k) is a suitable polynomial. Let badi denote the
event that the output of A in Game i is a lossy tag, i.e., lies in Tloss. By definition,

Pr [bad1] = Pr
[
AABM.LTag(tk ,·)(ek) ∈ Tloss

]
, (4)

where the keys ek and tk are generated via (ek , ik , tk)← ABM.Gen(1k).

Getting rid of (chameleon) hash collisions. To describe Game 2, let badhash be the event
that A finally outputs a tag t = ((R,Z,RCH), ta) with a CHF hash T = CH.Eval((R,Z, ta);RCH)
that has already appeared as the CHF hash of an ABM.LTag output (with the corresponding
auxiliary tag part input). Now Game 2 is the same as Game 1, except that we abort (and do not
raise event bad2) if badhash occurs. Obviously,

Pr [bad1]− Pr [bad2] ≤ Pr [badhash] . (5)

It would seem intuitive to try to use CH’s collision resistance to bound Pr [badhash]. Unfortunately,
we cannot rely on CH’s collision resistance in Game 2 yet, since we use CH’s trapdoor in the process
of generating lossy tags. So instead, we use a technique called “deferred analysis” [25] to bound
Pr [badhash]. The idea is to forget about the storyline of our evasiveness proof for the moment
and develop Game 2 further up to a point at which we can use CH’s collision resistance to bound
Pr [badhash].

This part of the proof largely follows the argument from Lemma 4.7. Concretely, we can
substitute the lossy core tag parts output by ABM.LTag by uniformly random core tag parts. At
this point, CH’s trapdoor is no longer required to implement the oracle A interacts with. Hence we
can apply CH’s collision resistance to bound Pr [badhash] in this modified game. This also implies
a bound on Pr [badhash] in Game 2: since the occurrence of badhash is obvious from the interaction
between A and the experiment, Pr [badhash] must be preserved across these transformations. We
omit the details, and state the result of this deferred analysis:

Pr [badhash] ≤
∣∣∣Advs-dcrD (k)

∣∣∣+ AdvcrCH,B(k) (6)
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for suitable adversaries D, E, and B. This ends the deferred analysis step, and we are back on
track in our evasiveness proof.

Preparing the setup for our reduction. In Game 3, we set up the group hash function given
by (Hi)

k
i=0 differently. Namely, for 0 ≤ i ≤ k, we choose independent γi ← ZNs , and set

Hi := AαiE(γi), so that hi := D(Hi) = αia+ γi mod N s (7)

for independent αi ∈ Z yet to be determined. Note that this yields an identical distribution of
the Hi no matter how concretely we choose the αi. For convenience, we write α = α0 +

∑
i∈T αi

and γ = γ0 +
∑

i∈T γi for a given tag t with associated CH-image T . This in particular implies
h := D(H) = αa+ γ for the corresponding group hash H = H0

∏
i∈T Hi. Our changes in Game 3

are purely conceptual, and so
Pr [bad3] = Pr [bad2] . (8)

To describe Game 4, let t(i) denote the i-th lossy core tag part output by ABM.LTag (including

the corresponding auxiliary part t
(i)
a ), and let t∗ be the tag finally output by A. Similarly, we

denote with T (i), α∗, etc. the intermediate values for the tags output by ABM.LTag and A. Now
let goodsetup be the event that gcd(α(i), N) = 1 for all i, and that α∗ = 0. In Game 4, we abort

(and do not raise event bad4) if ¬goodsetup occurs. (In other words, we only continue if each H(i)

has an invertible A-component, and if H∗ has no A-component.)
Waters [45] implicitly shows that for a suitable distribution of αi, the probability Pr

[
goodsetup

]
can be kept reasonably high:

Lemma 4.9 (Waters [45], Claim 2, adapted to our setting). In the situation of Game 4, there
exist efficiently computable distributions αi, such that for every possible view view that A could
experience in Game 4, we have

Pr
[
goodsetup | view

]
≥ O(1/(kQ(k))). (9)

This directly implies
Pr [bad4] ≥ Pr

[
goodsetup

]
· Pr [bad3] . (10)

An annoying corner case. Let Pr [badtag] be the event that A outputs a tag t∗ for which

det(M̃∗) = z∗− (ab+ r∗h∗) is neither invertible nor 0 modulo N . This in particular means that t∗

is neither injective nor lossy. A straightforward reduction to Assumption 4.4 shows that

Pr [badtag] ≤ AdvnoninvE (k) (11)

for an adversary E that simulates Game 4 and outputs Z∗/(hab · (R∗)h∗) mod N2.

The final reduction. We now claim that

Pr [bad4] ≤ Advmult
F (k) + Pr [badtag] (12)

for the following adversary F on the No-Mult assumption. Our argument follows in the footsteps
of the security proof of Waters’ signature scheme [45]. Our No-Mult adversary F obtains as input
c1, c2 ∈ ZN2 , and is supposed to output c∗ ∈ ZN2 with D(c1)·D(c2) = D(c∗) ∈ ZN . In order to do so,
F simulates Game 4. F incorporates its own challenge as A := τ(c1)E(a′N) and B := τ(c2)E(b′N)
for the embedding τ from Lemma 4.3 and uniform a′, b′ ∈ ZNs−1 . This gives uniformly distributed
A,B ∈ Z∗Ns+1 . Furthermore, by Lemma 4.3, we have a = D(c1) mod N and b = D(c2) mod N for
a := D(A) and b := D(B). Note that F can still compute all Hi and thus ek efficiently using (7).

We now describe how F constructs lossy tags, as required to implement oracle Tloss of Game
4. Since the CH trapdoor tdCH is under F ’s control, we can assume a given CH-value T to which
we can later map our tag ((R,Z), ta). By our changes from Game 4, we can also assume that the
corresponding α = α0 +

∑
i∈T αi is invertible modulo N s and known. We pick δ ← ZNs , and set

R := B−1/α mod Ns
E(δ) Z := AαδBγ/αE(γδ).
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With the corresponding CH-randomness RCH, this yields perfectly distributed lossy tags satisfying

D(A) · D(B) + D(R) · D(H) = ab+ (−b/α+ δ)(αa+ γ) = αδa− (γ/α)b+ γδ = D(Z).

Note that this generation of lossy tags is not possible when α = 0.
So far, we have argued that F can simulate Game 4 perfectly for A. It remains to show how F

can extract an No-Mult solution out of a tag t∗ output by A. Unless badtag occurs or t∗ is injective,
we have

z∗ = D(Z∗) = D(A) · D(B) + D(R∗) · D(H∗) = ab+ r∗h∗ mod N.

Since we abort otherwise, we may assume that α∗ = 0, so that z∗ = ab+r∗h∗ = ab+γ∗r∗ mod N
for known γ∗. This implies ab = z∗ − γ∗r∗ mod N , so F can derive and output a ZN2-encryption
of ab as Z∗/(R∗)γ

∗
mod N2. This shows (12).

Taking (4)-(12) together shows Lemma 4.8.

5 A pairing-based ABM-LTF

In this section, we give a construction of a pairing-based all-but-many lossy trapdoor function
ABMP with domain {0, 1}n. We will work in a specific group setting, which we describe next.

5.1 Setting and assumptions

Our construction will require groups G1, G2, GT of composite order. We will assume that this
group order is publicly known. However, for our subgroup indistinguishability assumption (and
only for this assumption), it will be crucial to hide the factors of the group order. (In addition, for
this assumption, it will be necessary to hide certain subgroup generators.) While the assumption of
composite-order groups leads to comparatively inefficient instantiations, it is not all too uncommon
(e.g., [11, 44, 23, 34]). Unique to our setting, however, is the combination of several assumptions
of different type over the same platform group(s).

Concretely, we will work in groups G1, G2, GT of composite order such that

G1 = 〈g1〉 × 〈h1〉 G2 = 〈g2〉 × 〈h2〉 GT = 〈gT 〉 × 〈hT 〉 (13)

for suitable not a priori known g1, h1, g2, h2, gT , hT , such that g1, h1, g2, h2 are of (distinct) unknown
prime orders, and so that

gT = ê(g1, g2) hT = ê(h1, h2) ê(g1, h2) = ê(h1, g2) = 1 (14)

for a suitable publicly known (asymmetric) pairing ê : G1 ×G2 → GT . We furthermore assume
that it is possible to uniformly sample from G1.

Assumption 5.1. We make the Decisional Diffie-Hellman assumption in 〈g1〉. Namely, we require
that for all PPT D, the function

AdvddhD (k) := Pr
[
D(1k, g1, h1, g2, h2, g

a
1 , g

b
1, g

ab
1 ) = 1

]
− Pr

[
D(1k, g1, h1, g2, h2, g

a
1 , g

b
1, g

r
1) = 1

]
is negligible, where a, b, r ← [ord(g1)].

We stress that the because the pairing ê is asymmetric, it does not help in any obvious way in
breaking Assumption 5.1.

The random self-reducibility of DDH. A useful property of DDH-like assumptions such as
Assumption 5.1 is their random self-reducibility; this has already been noted and used several times
(e.g., [42, 35, 41, 5]). These works observe that from one DDH instance (ga1 , g

b
1, g

c
1) instance (with

fixed g1), we can construct many (gbi1 , g
ci
1 ) pairs, such that the gbi1 are independently uniform, and

(a) if c = ab, then ci = abi for all i, and (b) if c is independently uniform, then so are all ci. From
this, a straightforward hybrid argument shows:

11



Lemma 5.2. Let M = (Mi,j) ∈ Gn×n
1 with Mi,j = g

aibj
1 for uniform ai, bj, and let R = (Ri,j) ∈

G
n×n
1 with Ri,j = g

ri,j
1 for uniform ri,j. Then, for every PPT D′, there exists a PPT D with

Pr
[
D′(1k, g1, h1, g2, h2,M)

]
− Pr

[
D′(1k, g1, h1, g2, h2, R)

]
= n · AdvddhD (k). (15)

We have recently been told by Jorge Villar [43] that the factor of n in (15) can be improved to
O(log n).

Assumption 5.3. We make the following subgroup indistinguishability assumption: we require
that for all PPT E, the function

AdvsubE (k) := Pr
[
E(1k, g1, h1, g2, g

s̃
2h

ŝ
2, g

r
1) = 1

]
− Pr

[
E(1k, g1, h1, g2, g

s̃
2h

ŝ
2, g

r
1 · h1) = 1

]
is negligible, where r ← [ord(g1)], s̃← [ord(g2)], and ŝ← [ord(h2)].

Note that in this, it is crucial to hide the generator h2 and the group order of g1, resp. g2 and
gT . On the other hand, the element gs̃2h

ŝ
2 given to E is simply a uniform element from G2.

Relation to general subgroup decision problems. Subgroup indistinguishability assumptions
such as Assumption 5.3 in pairing groups have turned out quite useful in recent years (e.g., [44, 32,
23, 33]). In view of that, Bellare et al. [8] propose general subgroup decision (GSD) problems as a
generalized way to look at such subgroup indistinguishability assumptions. In a GSD problem for
a group with composite order

∏
i∈[n] pi, an adversary specifies two subsets S0, S1 ⊆ [n], then gets as

challenge an element of order
∏
i∈Sb pi, and finally must guess b. In the process, the adversary may

ask for elements of order pi, as long as i 6∈ (S0 \S1)∪(S1 \S0). (Note that if i ∈ (S0 \S1)∪(S1 \S0),
pairing an element of order pi with the challenge would trivially solve the GSD problem). While
[8] formulate GSD problems for symmetric pairings (so that G1 = G2), Assumption 5.3 can be
cast as a variant of a GSD problem with n = 2 in groups with asymmetric pairing. In this case,
the adversary would ask for a challenge from G1 with S0 = {1} and S1 = {1, 2} (corresponding to
gr1 and gr1 · h1, respectively). The additional elements E gets in Assumption 5.3 do not allow (in
an obvious way, using the pairing) to distinguish challenges.

Conversion to prime-order groups. Intuitively, Assumption 5.3 is the only reason why we
work in groups of composite order. A natural question is to ask whether we can convert our
construction to prime-order groups, which allow for much more efficient instantiations. Freeman
[23] gives a generic mechanism for such conversions. However, the generic conversions of [23] require
that the pairing is either used in a projecting or canceling way (but not both). Roughly speaking,
projecting means that at some point we explicitly use a subgroup order to “exponentiate away”
some blinding factor. Canceling means that we rely on, e.g., ê(g1, h2) = 1. Unfortunately, we use
the pairing both in a projecting and canceling way, so that we cannot rely on the conversions of
[23]. (We note that Meiklejohn et al. [33] present a blind signature scheme with similar properties
to demonstrate limitations of Freeman’s conversions.) Hence, unfortunately, we do not know how
to express our construction in a prime-order setting.

Finally, we make an assumption corresponding to the security of the underlying (Boneh-Boyen)
signature scheme:

Assumption 5.4. We make the Strong Diffie-Hellman assumption [10] in 〈h1〉. Namely, we
require that for all PPT F and all polynomials Q = Q(k), the function

AdvsdhF (k) :=

Pr
[
F (1k, g1, h1, g2, h2, ord(g1), ord(h1), h

v
2, h

v
1, h

(v2)
1 , . . . , h

(vQ)
1 ) = (e, h

1/(v+e)
1 ) with e ∈ N

]
is negligible, where v ← [ord(g1)].
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5.2 Construction

Let CH be a chameleon hash function. We now describe our ABM-LTF ABMP.

Key generation. ABM.Gen(1k) constructs groups G1,G2,GT with uniformly distributed gen-
erators g1, h1, g2, h2, gT , hT as in (13), along with a pairing ê : G1 ×G2 → GT . We assume that
ABM.Gen can do so in a way that ord(gT ), ord(hT ) are known to ABM.Gen (but not public, so
that it is still realistic to make Assumption 5.3). ABM.Gen then uniformly chooses exponents
v̂ ← [ord(hT )], and ũ, ṽ, z̃ ∈ [ord(gT )], as well as a chameleon hash function key pkCH along with
trapdoor tdCH. Then ABM.Gen sets

U = gũ2h2

V = gṽ2h
v̂
2

Z = gz̃Th
−1
T

ek = (g2, U, V, Z, pkCH)

ik = ord(gT )

tk = (g1, h1, ord(gT ), ord(hT ), ũ, ṽ, z̃, v̂, tdCH).

(16)

Tags. Tags are of the form t = (tp, ta) with an auxiliary tag part ta ∈ {0, 1}∗. The core tag part is
tp = ((Wi,j)i,j∈[n], RCH) with Wi,j ∈ G1 and randomness RCH for CH. Random core tag parts are

thus uniformly random elements of Gn×n
1 together with uniform randomness for CH. Even though

the following decomposition will generally not be known, we write

Wi,j = g
w̃i,j
1 h

ŵi,j
1 . (17)

Connected with a tag t as above is the matrix M = (Mi,j)i,j∈[n] ∈ Gn×n
T defined through

∀i, j ∈ [n], i 6= j : Mi,j = ê(Wi,j , g2)
(

= g
w̃i,j
T

)
∀i ∈ [n] : Mi,i = ê(Wi,i, U

eV ) · Z
(

= g
w̃i,i(ṽ+eũ)+z̃
T h

ŵi,i(v̂+e)−1
T

)
,

(18)

where e := CH.Eval(pkCH, ((Wi,j)i,j , ta);RCH) is the hash value of the tag.

Lossy and injective tags. A tag t is injective iff for all i ∈ [n], we have Mi,i ∈ GT \ 〈gT 〉, i.e.,
if every Mi,i has a nontrivial hT -factor. Furthermore, t is lossy iff there exist (ri, si)i∈[n] such that

Mi,j = g
risj
T

for all i, j ∈ [n]. Using (16,17,18), and assuming e 6= −v̂ for the moment, injectivity is equivalent
to ŵi,i 6= 1/(v̂ + e) mod ord(hT ) for all i. Similarly, lossiness is equivalent to the following three
conditions:

1. ŵi,i = 1/(v̂ + e) mod ord(hT ),
2. w̃i,j = risj mod ord(gT ) for all i 6= j, and
3. w̃i,i = (risi − z̃)/(ṽ + eũ) mod ord(gT ) for all i ∈ [n]

for suitable (ri, si)i∈[n]. Obviously, the sets of lossy and injective tags are disjoint.

Lossy tag generation. ABM.LTag(tk , ta), for tk = (g1, h1, ord(gT ), ord(hT ), ũ, ṽ, z̃, v̂, tdCH) and
ta ∈ {0, 1}∗ uniformly selects exponents ri, si ← [ord(gT )] (for i ∈ [n]). Furthermore, ABM.LTag
selects a random image e of CH so that, using tdCH, e can later be explained as an image of an
arbitrary preimage. ABM.LTag then sets

Wi,j = g
risj
1 (i 6= j)

Wi,i = g
(risi−z̃)/(ṽ+eũ) mod ord(gT )
1 h

1/(v̂+e) mod ord(hT )
1

(19)

and generates randomness RCH with CH.Eval(pkCH, ((Wi,j)i,j , ta);RCH) = e using tdCH. Finally,
ABM.LTag outputs the core tag part tp = ((Wi,j)i,j , RCH). By the discussion above, it is clear that
the tag t = (tp, ta) is lossy.
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Evaluation. ABM.Eval(ek , t,X), with ek = (g2, U, V, Z, pkCH), t = (((Wi,j)i,j∈[n], RCH), ta), and
a preimage X = (X1, . . . , Xn) ∈ {0, 1}n, first computes the matrix M through (18). From there,
ABM.Eval proceeds similarly to the original lossy trapdoor function construction from [39]. Namely,
ABM.Eval computes

Yi =
∏
j∈[n]

M
Xj
i,j

for i ∈ [n] and sets Y := (Y1, . . . , Yn). Note that if we write Yi = gỹiT h
ŷi
T and use the notation from

(16,17), we obtain

ỹi = Xi (w̃i,i(ṽ + eũ) + z̃) +
∑
j 6=i

Xjw̃i,j mod ord(gT )

ŷi = ((v̂ + e)ŵi,i − 1)Xi mod ord(hT ).

(20)

Inversion and correctness. ABM.Invert(ik , t, Y ), given an inversion key ik = ord(gT ), a tag t,

and an image Y = (Y1, . . . , Yn), determines X = (X1, . . . , Xn) ∈ {0, 1}n as follows: if Y
ord(gT )
i = 1,

then set Xi = 0; else set Xi = 1. Intuitively, ABM.Invert thus projects the image elements Yi onto
their hT -component, and sets Xi = 1 iff Yi has a nontrivial hT -component.

Given the decomposition (20) of Yi, we immediately get correctness. Namely, as soon as t is
injective, we have (v̂ + e)ŵi,i − 1 6= 0 mod ord(gT ) and thus

Y
ord(gT )
i = 1 ⇐⇒ Ŷi = 0 ⇐⇒ Xi = 0.

5.3 Discussion

Before turning to the security analysis of ABMP, we make two comments about ABMP.

Variation with Waters signatures. We could as well have used Waters signatures [45] instead
of BB signatures in the construction of ABMP. In that case, there would be two group elements
in the tag per element on the diagonal of the matrix W . The derivation of the matrix M would
then proceed as above for elements outside of the diagonal, and would on the diagonal essentially
perform the verification of Waters signatures. The details are straightforward, and the most
interesting effects would be:
(a) Instead of the SDH assumption, we would use the CDH assumption in 〈h1〉.
(b) Our evasiveness proof would incur a reduction factor of N (the number of issued lossy tags).
(c) The evaluation key would contain a hash function (Hi)

k
i=0 of linearly many group elements.

Tight (SO-)CCA security proofs with ABMP. As it will turn out, the security reduction of
ABMP does not depend on N , the number of used lossy tags. When implementing our SO-CCA
secure PKE scheme PKE from Section 6.3 with ABMP, this yields an SO-CCA reduction indepen-
dent of the number of challenge ciphertexts. However, note that the reduction of Theorem 6.5
still suffers from a factor of q, the number of decryption queries an adversary makes. We will
outline how to get rid of this factor using the specific structure of our upcoming evasiveness proof
of ABMP.

Namely, the SO-CCA proof incurs a reduction loss of q while ensuring that all decryption
queries refer to injective tags. Evasiveness (as in Definition 3.1) only guarantees that an adversary
cannot output a single non-injective tag. Hence, our SO-CCA proof is forced to a hybrid argument
over all q decryption queries during the evasiveness reduction. However, our upcoming evasiveness
proof of ABMP can actually verify signatures embedded in tags during the reduction to the SDH
assumption. Hence, our proof actually shows – with the same reduction factors – that no adversary
can generate any fresh non-injective tags, even given many tries. Plugging this proof directly into
the SO-CCA proof gives a reduction that is independent of both N and q.
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5.4 Security analysis

Theorem 5.5 (Security of ABMP). Assume that Assumption 5.1, Assumption 5.3, and Assump-
tion 5.4 hold, and that CH is a chameleon hash function. Then the algorithms described in Sec-
tion 5.2 form an ABM-LTF ABMP in the sense of Definition 3.1.

We have already commented on the correctness property; it remains to prove lossiness, indis-
tinguishability, and evasiveness.

Lossiness. Our proof of lossiness proceeds similarly to the one by Peikert and Waters [39]:

Lemma 5.6 (Lossiness of ABMP). ABMP is (n− log2(ord(gT ))-lossy.

Proof. Assume an evaluation key ek = (g2, U, V, Z, pkCH) and a tag t. We may assume that t is
lossy, so that for the corresponding matrix M given by (18), we have Mi,j = g

risj
T for all i, j ∈ [n].

Hence, evaluating via ABM.Eval(ek , t,X) gives Y = (Y1, . . . , Yn) with

Yi =
∏
j∈[n]

M
Xj
i,j = g

∑
j∈[n]Xjrisj

T = g
ri(

∑
j∈[n]Xjsj mod ord(gT ))

T .

Thus, Y depends only on
∑

j∈[n]Xjsj mod ord(gT ), and lossiness as claimed follows.

Indistinguishability. To prove lossy and random tags indistinguishable, we use — not too
surprisingly — the DDH and subgroup assumptions. Namely, we first exchange the DDH-related
g1-factors in lossy tags by random factors, and then randomize the now truly blinded h1-factors.
The main challenge in the proof is to prepare essentially the same experiment with different kinds
of setup information provided by the respective assumptions.

Lemma 5.7 (Indistinguishability of ABMP). Given the assumptions from Theorem 5.5, ABMP
is indistinguishable. Concretely, for any PPT adversary A, there exist adversaries D, and E of
roughly the same complexity as A, such that∣∣∣AdvindABMP,A(k)

∣∣∣ ≤ n · ∣∣∣AdvddhD (k)
∣∣∣+ 2

∣∣∣AdvsubE (k)
∣∣∣ . (21)

We note that the factor of n in (21) can be improved to O(log2(n)) using [43].

Proof. Fix a PPT adversary A. We proceed in games. In Game 1, A(ek) interacts with an
ABM.LTag(tk , ·) oracle that produces lossy core tag parts t = ((Wi,j)i,j , RCH) as in (19). Without
loss of generality, we assume that A makes at most Q oracle queries for a suitable polynomial
Q = Q(k). Let out i denote the output of A in Game i. By definition,

Pr [out1 = 1] = Pr
[
AABM.LTag(tk)(ek) = 1

]
, (22)

where the keys ek and tk are generated via (ek , ik , tk) ← ABM.Gen(1k). We will now make
modifications to the oracle that A interacts with; we call the refined oracle of Game i Oi.

In Game 2, we do not use ord(gT ) and ord(hT ) anymore. Concretely, we compute the elements

g
(risi−z̃)/(ṽ+eũ) mod ord(gT )
1 and h

1/(v̂+e) mod ord(hT )
1

from (19) using divisions modulo the (publicly known) group order |GT |. Random exponents are
chosen from [|GT |] (instead of from [ord(gT )] or [ord(hT )]). Since ord(gT ) and ord(hT ) divide |GT |,
this yields identical results. We obviously have

Pr [out2 = 1] = Pr [out1 = 1] . (23)
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In Game 3, we modify the way the g1-factors in (19) are chosen. Now O3 outputs core tag
parts tp = ((Wi,j)i,j , RCH) with components Wi,j defined according to

Wi,j = g
w̃i,j
1 (i 6= j)

Wi,i = g
w̃i,i
1 h

1/(v̂+e)
1

for uniformly and independently random exponents w̃i,j . Hence, the difference to Game 2 is that
all g1-factors of the tag have been randomized, while the h1-components remain unchanged. A
hybrid argument will show

|Pr [out3 = 1]− Pr [out2 = 1]| ≤ n ·
∣∣∣AdvddhD (k)

∣∣∣ (24)

for a suitable DDH adversary D that employs the reduction from Lemma 5.2.
In Game 4, we randomize all h1-factors in the Wi,j . Concretely, we let O4 choose

Wi,j = g
w̃i,j
1 h

ŵi,j
1 (i, j ∈ [n]),

where both the w̃i,j and ŵi,j are uniformly and independently random. Since all h1-, resp. h2-factors
in Game 3 and Game 4 are blinded by uniform g1-factors, we obtain

|Pr [out4 = 1]− Pr [out3 = 1]| ≤ 2
∣∣∣AdvsubE (k)

∣∣∣ (25)

for a suitable subgroup distinguisher E. Namely, on input g1, h1, g2, g
s̃
2h
′
2
ŝ, gr1h

b
1 (for b ∈ {0, 1}), E

proceeds as follows. First, E implicitly sets h2 := h′2
ŝ and computes the elements U, V, Z of ek by

raising gs̃2h
′
2
ŝ = gs̃2h2 to the appropriate h2-power and blinding it with a uniform power of g2:

U = gs̃2h
′
2
ŝ

= gs̃2h2 V =
(
gs̃2h
′
2
ŝ
)v̂

= gs̃v̂2 h
v̂
2 Z = ê(gz̃1/h1, g

s̃
2h
′
2
ŝ
) = gz̃s̃T h

−1
T

for uniformly chosen blinding factors ṽ, z̃ ∈ [|G2]. (Note that ṽ mod ord(g2) and ṽ mod ord(h2)
are indendently and uniformly distributed.) This results in evaluation keys distributed as in Game
3 and Game 4. The Wi,j are computed from gr1h

b
1, again by blinding and raising to either the

appropriate h1-power, or a random power:

Wi,j = g
w̃i,j
1

(
gr1h

b
1

)r′i,j
= g

w̃i,j+b·r′i,j
1 h

b·r′i,j
1 (i 6= j)

Wi,i =
(
gr1h

b
1

)r′i
h
1/(v̂+e)
1 = g

r′ir
1 h

b·r′i+1/(v̂+e)
1

for uniform r′i,j , r
′
i ∈ [|G1|]. If b = 0, this results in tags as in Game 3, and if b = 1, this yields tags

as in Game 4. (25) follows.
In Game 5, we let O5 choose the hash values e not right away, but according to e :=

CH.Eval(pkCH, ((Wi,j)i,j , ta);RCH) for uniform and independent randomness RCH. (Note that as
of Game 4, e is not used in the construction of the Wi,j .) By the definition of CH, this change is
purely conceptual, so we get

Pr [out5 = 1] = Pr [out4 = 1] (26)

Finally, note that O5 yields uniformly random tags, just like OT from the indistinguishability
criterion from Definition 3.1. Putting things together, we get∣∣∣AdvindABMP,A(k)

∣∣∣ =
∣∣∣Pr
[
AABM.LTag(tk)(1k, ek) = 1

]
− Pr

[
AOT (1k, ek) = 1

]∣∣∣
= |Pr [out1 = 1]− Pr [out5 = 1]| ≤ n ·

∣∣∣AdvddhD (k)
∣∣∣+ 2

∣∣∣AdvsubE (k)
∣∣∣

which shows (21) as desired.
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Evasiveness. It remains to prove the evasiveness of ABMP.

Lemma 5.8 (Evasiveness of ABMP). Given the assumptions from Theorem 5.5, ABMP is evasive.
Concretely, for any PPT adversary A, there exist adversaries B, D, E, and F of roughly the same
complexity as A, such that∣∣AdvevaABMP,A(k)

∣∣ ≤ n · ∣∣∣AdvddhD (k)
∣∣∣+ 2

∣∣∣AdvsubE (k)
∣∣∣+ AdvcrCH,B(k) + AdvsdhF (k) (27)

We first give some intuition before turning to the full proof. First, consider the computation
of the matrix (Mi,j)i,j as in (18). Observe that when only looking at the h1 factors of the Wi,i,
essentially a verification of n Boneh-Boyen (BB) signatures takes place. In particular, lossy tags
correspond to n valid BB signatures. Moreover, in order to generate a non-injective tag, an
adversary will have to forge at least one BB signature. Thus, the core of our proof is simply the
security proof of the BB signature scheme [10]. However, the proof of Lemma 5.8 is complicated by
the fact that in order to use the security of the employed CHF, we have to first work our way towards
a setting in which the CHF trapdoor is not used. This leads to a somewhat tedious “deferred
analysis” (see [25]) and the perhaps somewhat surprising DDH and subgroup distinguisher terms
in the lemma. Similar to the case of our DCR-based ABM-LTF, we note that the employed
signature scheme needs only be weakly unforgeable, since our construction employs a chameleon
hash function.

Proof. We turn to the full proof of Lemma 5.8. Fix an adversary A. We proceed in games.
In Game 1, A(ek) interacts with an ABM.LTag(tk , ·) oracle that produces lossy core tag parts
tp = ((Wi,j)i,j , RCH) as in (19). Without loss of generality, we assume that A makes exactly Q
oracle queries, where Q = Q(k) is a suitable polynomial. Let badi denote the event that the output
of A in Game i is a lossy tag, i.e., lies in Tloss. By definition,

Pr [bad1] = Pr
[
AABM.LTag(tk)(ek) ∈ Tloss

]
, (28)

where the keys ek and tk are generated via (ek , ik , tk)← ABM.Gen(1k).
In Game 2, we do not use ord(gT ) and ord(hT ) anymore. Instead, we invert exponents modulo

the publicly known group order |GT | and choose uniform exponents from [GT ], as in the proof of
Lemma 5.7. Because this change is merely conceptual, we get

Pr [bad2] = Pr [bad1] . (29)

To describe Game 3, denote with badhash the event that A eventually outputs a tag t =
(((Wi,j)i,j , RCH), ta) with a hash e = CH.Eval(pkCH, (Wi,j)i,j ;RCH) that has already appeared as
the hash of some ABM.LTag-output (with attached auxiliary part). Now Game 3 is the same as
Game 2, except that we abort (and do not raise event bad3) if badhash occurs. Obviously, we have

|Pr [bad3]− Pr [bad2]| ≤ Pr [badhash] . (30)

It would seem intuitive to try to use CH’s collision resistance to bound Pr [badhash]. Unfortunately,
we cannot rely on CH’s collision resistance in Game 3 yet, since we use CH’s trapdoor in the process
of generating lossy tags. So instead, we use a technique called “deferred analysis” [25] to bound
Pr [badhash]. The idea is to forget about the storyline of our evasiveness proof for the moment
and develop Game 3 further up to a point at which we can use CH’s collision resistance to bound
Pr [badhash].

This part of the proof largely follows the proof of Lemma 5.7. Concretely, we can substitute
the lossy tags output by ABM.LTag step by step by uniformly random tags. At this point, CH’s
trapdoor is no longer required to implement the oracle A interacts with. Hence we can apply
CH’s collision resistance to bound Pr [badhash] in this modified game. This also implies a bound
on Pr [badhash] in Game 3: since the occurrence of badhash is obvious from the interaction between
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A and the experiment, Pr [badhash] must be preserved across these transformations. We omit the
details, and state the result of this deferred analysis:

Pr [badhash] ≤ n ·
∣∣∣AdvddhD (k)

∣∣∣+ 2
∣∣∣AdvsubE (k)

∣∣∣+ AdvcrCH,B(k) (31)

for suitable PPT adversaries D, E, and B. This ends the deferred analysis step, and we are back
on track in our evasiveness proof.

We now claim that
Pr [bad3] = AdvsdhF (k) (32)

for the following adversary F on the Strong Diffie-Hellman assumption (i.e., Assumption 5.4). Our
reduction follows in the footsteps of the security proof of the Boneh-Boyen signature scheme from

[10]. Recall that F obtains as input elements g1, h
′
1, g2, h2, h

v̂
2, h
′
1
v̂, h′1

(v̂2) . . . , h′1
v̂Q for an unknown

uniform exponent v̂, as well as ord(g1) and ord(h′1), and is supposed to output a tuple (e, h′1
1/(v̂+e)).

First, F chooses Q uniform CH-images e1, . . . , eQ and sets up the degree-Q polynomial

f(X) :=
∏
i∈[Q]

X + ei ∈ Zord(h′1)
[X]

with zeros −ei. Then F constructs h1 := h′1
f(v̂) using the coefficients of f(X) and the elements

h′1
v̂j from its input. Note that now, F is able to efficiently compute roots

h
1/(v̂+ei)
1 = h′1

f(v̂)/(v̂+ei) = h′1

∏
j 6=i v̂+ej

by computing the coefficients of the polynomial fi(X) =
∏
j 6=iX + ei ∈ Zord(h′1)

[X] and then

constructing h′1
fi(v̂) from the h′1

v̂i .
This allows F to simulate Game 3, using an evaluation key ek = (g2, U, V = gṽ2h

v̂
2, Z, pkCH)

(for uniform ṽ) and tag hash values ei for the answers to F ’s oracle queries. Say that F generates
a tag t = ((Wi,j)i,j , RCH) as output. By our change from Game 3, we can assume that the hash
e := CH.Eval(pkCH, ((Wi,j)i,j , ta);RCH) is different from all ei. In particular, the polynomials f(X)
and X + e are coprime, so that we can write 1 = φ · f(X) + ρ(X) · (X + e) for suitable φ ∈ Zord(h′1)

and ρ(X) ∈ Zord(h′1)
[X] with deg(ρ(X)) = Q − 1. Thus, a nontrivial root of h′1 can be computed

as

h′1
1
v̂+e = h′1

φ·f(v̂)+ρ(v̂)·(v̂+e)
v̂+e =

(
h

1
v̂+e

1

)φ
· h′1

ρ(v̂)
,

where h′1
ρ(v̂) can be computed from the h′1

(v̂i), and h
1
v̂+e

1 is extracted from F ’s output as follows.

Namely, F checks for all indices i ∈ [n] whether ê(Wi,i, h
v̂+e
2 )

?
= gT . If this is the case for, say, i,

then (
W

ord(g1)
i,i

)ord(g1)−1 mod ord(h′1)
= h

1
v̂+e

1 .

If ê(Wi,i, h
v̂+e
2 ) 6= gT for all i, then the tag is injective, and F fails.

By this setup, F succeeds to compute h′1
1/(v̂+e) whenever bad3 occurs, so we obtain (32).

Summing up, we get (27) as desired.

6 Application: selective opening security

6.1 ABM-LTFs with explainable tags

For the application of SOA-CCA security, we need a slight variant of ABM-LTFs. Concretely, we
require that values that are revealed during a ciphertext opening can be explained as uniformly
chosen “without ulterior motive,” if only their distribution is uniform. (This is called “invertible
sampling” by Damg̊ard and Nielsen [18].)
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Definition 6.1 (Efficiently samplable and explainable). A finite set S is efficiently samplable and
explainable if any element of S can be explained as the result of a uniform sampling. Formally,
there are PPT algorithms SampS , ExplS , such that

1. SampS(1k) uniformly samples from S, and
2. for any s ∈ S, ExplS(s) outputs random coins for Samp that are uniformly distributed among

all random coins R with SampS(1k;R) = s.

Definition 6.2 (ABM-LTF with explainable tags). An ABM-LTF has explainable tags if the core
part of tags is efficiently samplable and explainable. Formally, if we write T = Tp×Taux, where Tp
and Taux denote the core and auxiliary parts of tags, then Tp is efficiently samplable and explainable.

Explainable tags and our ABM-LTFs. Our DCR-based ABM-LTF ABMD has explainable
tags, as Z∗Ns+1 is efficiently explainable. Concretely, SampZ∗

Ns+1
can choose a uniform s ← ZNs+1

and test s for invertibility. If s is invertible, we are done; if not, we can factor N and choose a
uniform s′ ← Z∗Ns+1 directly, using the group order of Z∗Ns+1 . Similarly, our pairing-based ABM-
LTF ABMP has explainable tags as soon as the employed group G1 is efficiently samplable and
explainable. We will also have to explain the CHF randomness RCH in both of our constructions.
Fortunately, the CHF randomness of many known constructions [38, 31, 19, 3, 16, 29] consists of
uniform values (over an explainable domain), which are efficiently samplable and explainable.

6.2 Selective opening security

PKE schemes. A public-key encryption (PKE) scheme consists of three PPT algorithms
(PKE.Gen,PKE.Enc,PKE.Dec). Key generation PKE.Gen(1k) outputs a public key pk and a se-
cret key sk . Encryption PKE.Enc(pk ,msg) takes a public key pk and a message msg , and out-
puts a ciphertext C. Decryption PKE.Dec(sk , C) takes a secret key sk and a ciphertext C,
and outputs a message msg . For correctness, we want PKE.Dec(sk , C) = msg for all msg , all
(pk , sk) ← PKE.Gen(1k), and all C ← (pk ,msg). For simplicity, we only consider message spaces
{0, 1}k.
Definition of selective opening security. Following [21, 7, 27], we present a definition for
security under selective openings that captures security under adaptive attacks. The definition is
indistinguishability-based; it demands that even an adversary that gets to see a vector of ciphertexts
cannot distinguish the true contents of the ciphertexts from independently sampled plaintexts.3

To model adaptive corruptions, our notion also allows the adversary to request “openings” of
adaptively selected ciphertexts.

Definition 6.3 (Efficiently re-samplable). Let N = N(k) > 0, and let dist be a joint distribu-
tion over ({0, 1}k)N . We say that dist is efficiently re-samplable if there is a PPT algorithm
ReSampdist such that for any I ⊆ [N ] and any partial vector msg′I := (msg ′(i))i∈I ∈ ({0, 1}k)|I|,
ReSampdist(msg′I) samples from the distribution dist, conditioned on msg(i) = msg ′(i) for all i ∈ I.

Definition 6.4 (IND-SO-CCA security). A PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec) is
IND-SO-CCA secure iff for every polynomially bounded function N = N(k) > 0, and every stateful
PPT adversary A, the function

Advcca-soPKE,A(k) := Pr
[
Expind-so-cca-bPKE,A (k) = 1

]
− 1

2

is negligible. Here, the experiment Expind-so-cca-bPKE,A (k) is defined as follows:

3Like previous works, we restrict ourselves to message distributions that allow for an efficient re-sampling. We
explain in Section 7how to achieve simulation-based selective opening security for arbitrary message spaces.
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Experiment Expind-so-cca-bPKE,A

b← {0, 1}
(pk , sk)← PKE.Gen(1k)
(dist,ReSampdist)← APKE.Dec(sk ,·)(pk)
msg0 := (msg(i))i∈[N ] ← dist

R := (R(i))i∈[N ] ← (RPKE.Enc)
N

C := (C(i))i∈[N ] := (PKE.Enc(pk ,msg(i);R(i)))i∈[N ]

I ← APKE.Dec(sk ,·)(select,C)
msg1 := ReSampdist(msgI)
outA ← APKE.Dec(sk ,·)(output, (msg(i), R(i))i∈I ,msgb)
return (outA = b)

We only allow A that (a) always output efficiently re-samplable distributions dist over ({0, 1}k)N
with corresponding efficient re-sampling algorithms ReSampdist, (b) never submit a received chal-
lenge ciphertext C(i) to their decryption oracle PKE.Dec(sk , ·), and (c) always produce binary final
output outA.

This definition can be generalized in many ways, e.g., to more opening phases, or more encryp-
tion keys. We focus on the one-phase, one-key case for ease of presentation; our techniques apply
equally to a suitably generalized security definitions.

6.3 IND-SO-CCA security from ABM-LTFs

The construction. To construct our IND-SO-CCA secure PKE scheme, we require the following
ingredients:
• an LTF LTF = (LTF.IGen, LTF.Eval, LTF.Invert, LTF.LGen) with domain {0, 1}n (as in Defini-

tion 2.3) that is `′-lossy,
• an efficiently explainable ABM-LTF ABM = (ABM.Gen,ABM.Eval,ABM.Invert,ABM.LTag)

with domain4 {0, 1}n and tag set T = Tp × Taux (as in Definition 6.2) that is `-lossy,
• a family UH of universal hash functions h : {0, 1}n → {0, 1}2k, so that for any f : {0, 1}n →
{0, 1}`′+`, it is SD ((h, f(X), h(X)) ; (h, f(X), U)) = O(2−k), where h ← UH, X ← {0, 1}n,
and U ← {0, 1}2k, and
• a lossy authenticated encryption scheme LAE = (E,D) (see Definition 2.2) with 2k-bit keys
K and k-bit messages msg .

Then, consider the following PKE scheme PKE = (PKE.Gen,PKE.Enc,PKE.Dec):

Algorithm PKE.Gen(1k)
(ek ′, ik ′)← LTF.IGen(1k)
(ek , ik , tk)← ABM.Gen(1k)
h← UH
pk := (ek ′, ek , h)
sk := (ik ′, ek , h)
return (pk , sk)

Algorithm PKE.Enc(pk ,msg)
parse pk =: (ek ′, ek , h)
X ← {0, 1}n
K := h(X)
D ← E(K,msg)
Y ′ := fek ′(X)
tp := SampTp(1

k;Rtp)
Y := fek ,(tp,Y ′)(X)
C := (D,Y ′, tp, Y )
return C

Algorithm PKE.Dec(sk , C)
parse sk =: (ik ′, ek , h),
C =: (D,Y ′, tp, Y )

X ← f−1
ik ′

(Y ′)
if Y 6= fek ,(tp,Y ′)(X)

return ⊥
K := h(X)
msg ← D(K,D)
return msg

The core of this scheme is a (deterministic) double encryption as in [39, 27]. One encryption
(namely, Y ′) is generated using an LTF, and the other (namely, Y ) is generated using an ABM-
LTF. In the security proof, the LTF will be switched to lossy mode, and the ABM-LTF will be used
with lossy tags precisely for the (IND-SO-CCA) challenge ciphertexts. This will guarantee that all

4In case of our DCR-based ABM-LTF ABMD, the desired domain {0, 1}n must be suitably mapped to ABMD’s
“native domain” Z3

Ns .
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challenge ciphertexts will be lossy. At the same time, the evasiveness property of our ABM-LTF
will guarantee that no adversary can come up with a decryption query that corresponds to a lossy
ABM-LTF tag. As a consequence, we will be able to answer all decryption queries during the
security proof.

Relation to the construction of Hemenway et al.. Our construction is almost identical to
the one of Hemenway et al. [27], which in turn builds upon the construction of an IND-CCA secure
encryption scheme from an all-but-one lossy trapdoor function [39]. However, while we employ
ABM-LTFs, [27] employ “all-but-N lossy trapdoor functions” (ABN-LTFs), which are defined
similarly to ABM-LTFs, only with the number of lossy tags fixed in advance (to a polynomial
value N). Thus, unlike in our schemes, the number of challenge ciphertexts N has to be fixed
in advance with [27]. Furthermore, the complexity of the schemes from [27] grows (linearly) in
the number N of challenge ciphertexts. On the other hand, ABN-LTFs also allow to explicitly
determine all lossy tags in advance, upon key generation. (For instance, all lossy tags can be chosen
as suitable signature verification keys or chameleon hash values.) With ABM-LTFs, lossy tags are
generated on the fly, through ABM.LTag. This difference is the reason for the auxiliary tag parts
in the ABM-LTF definition, cf. Section 3.

Theorem 6.5. If LTF is an LTF, ABM is an efficiently explainable ABM-LTF, UH is an UHF
family as described, and LAE is a lossy authenticated encryption scheme, then PKE is IND-SO-CCA
secure. In particular, for every IND-SO-CCA adversary A on PKE that makes at most q = q(k)
decryption queries, there exist adversaries B, C, D, and E of roughly same complexity as A, and
such that∣∣Advcca-soPKE,A(k)

∣∣ ≤ ∣∣∣AdvindABM,B(k)
∣∣∣+q(k) ·AdvevaABM,C(k)+

∣∣∣AdvindLTF,D(k)
∣∣∣+N ·AdvauthLAE,E(k)+O(N/2k).

(33)

While the reduction depends on N , these dependencies only appear in statistical terms (when
using the unconditionally secure lossy authenticated encryption from Section 2). On the other
hand, the number of an adversary’s decryption queries goes linearly into the reduction factor. We
can get rid of this factor of q(k) in case of our pairing-based ABM-LTF ABMP; see Section 5.3.
We now turn to the proof of Theorem 6.5.

Proof. The proof largely follows [39, 27]. Assume n = n(k) > 0 and an IND-SO-CCA adversary A
that makes exactly q decryption queries, where q = q(k) is a suitable polynomial. We proceed in
games, and start with the real IND-SO-CCA experiment Expind-so-cca-bPKE,A as Game 1. In this game,

A receives a ciphertext vector C := (C(i))i∈[n] := (PKE.Enc(pk ,msg(i);R(i)))i∈[n] for a message

vector msg := (msg(i))i∈[n] sampled from an adversarially chosen message distribution dist. A

then chooses a subset I ⊆ [n] and gets openings (msg(i), R(i))i∈I of all ciphertexts in I, along
with the whole message vector msg. In this, each ciphertext C(i) is of the form (D,Y ′, tp, Y ), and
generated according to PKE.Enc. This means that tp is generated as a random tag part, using
SampTp(1

k;Rtp). If we denote with out i the output of Game i, we get

Pr [out1 = 1]− 1

2
= Advcca-soPKE,A(k). (34)

Say that a tag (tp, Y
′)) in one of A’s decryption queries (D,Y ′, tp, Y ) is copied if it has

occurred already in one of the challenge ciphertexts C(i). In Game 2, we handle decryption
queries with copied tags differently. Specifically, if (tp, Y

′) is copied from a challenge ciphertext

C(i) = (D̃, Ỹ ′, t̃p, Ỹ ) (such that Ỹ ′ = Y ′ and t̃p = tp), then reject that decryption query (with ⊥)

in case Ỹ 6= Y . But if Ỹ = Y , decrypt D (and return the result) using the key K that was initially
used when encrypting C(i). (That way, neither Y nor Y ′ have to be inverted when processing
decryption queries with copied tag.)

Since Y ′ uniquely determines X (and thus Y ) at this point, these changes are purely conceptual,
and we have

Pr [out2 = 1] = Pr [out1 = 1] . (35)
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In Game 3, we slightly change how openings of ciphertexts are performed. In Game 2, we
have revealed the random coins Rtp used to construct the ABM core tag part tp upon an opening.
In Game 3, we instead reveal random coins that are generated via Rtp ← ExplTp(1

k, tp). Since the
core tag space Tp is efficiently samplable and explainable by assumption, we get

Pr [out3 = 1] = Pr [out2 = 1] . (36)

In Game 4, we generate all ABM tags in the C(i) as lossy tags, using tp ← Tloss(Y ′). A
straightforward reduction shows

Pr [out4 = 1]− Pr [out3 = 1] = AdvindABM,B(k) (37)

for a suitable adversary B on ABM’s indistinguishability.
Recall that in the original scheme PKE, we first use LTF’s inversion key ik ′ to obtain X :=

f−1
ik ′

(Y ′). We then check that fek ,(tp,Y ′)(X) = Y (and reject if not). Now in Game 5, we use ABM’s

inversion key ik to first obtain X := f−1ek ,(tp,Y ′)
(Y ) and then check that fek ′(X) = Y ′. (Note that

by the changes from Game 2, we may assume that the tag (tp, Y
′) is fresh.) By the correctness

properties of LTF and ABM, these procedures yield the same results, unless the adversary submits
a decryption query with a non-injective, non-copied tag. We thus need to bound Pr [badninj],
where badninj denotes the event that A submits a decryption query with a non-injective ABM tag
t = (tp, Y

′) that is not copied. However, the evasiveness property of ABM guarantees that

|Pr [out5]− Pr [out4]| ≤ Pr [badninj] ≤ q(k) · AdvevaABM,C(k) (38)

is negligible, where B is a suitable adversary against the evasiveness property of ABM. (Concretely,
B simulates Game 4, chooses i ∈ [q] uniformly, and outputs the tag t = (tp, Y

′) from A’s ith
decryption query if it is not copied. Note that B can use its ABM.LTag oracle to produce lossy
ABM tags.)

In Game 6, we generate LTF’s evaluation key ek ′ as a lossy key, via ek ′ ← LTF.LGen(1k). Since
in Game 5, LTF’s inversion key ik ′ is never used, a straightforward reduction shows

Pr [out5 = 1]− Pr [out6 = 1] = AdvindLTF,D(k) (39)

for a suitable PPT adversary on LTF’s indistinguishability.
In Game 7, we compute the keys K used during encryption as independently and truly random

keys K ∈ {0, 1}2k, instead of setting K = h(X). (Note that by our rules from Game 2, this also
means that upon a decryption query with a copied tag (tp, Y

′), that same random key K used
during encryption is used to decrypt.)

To justify our change, observe that in Game 6, all evaluations Y ′ = fek ′(X), resp. Y =
fek ,(tp,Y ′)(X)) that A receives in the challenge ciphertexts are made with respect to lossy keys,
resp. tags. In particular, at this point, the values h(X) generated during encryption msg are sta-
tistically close to uniform, even given Y ′ and Y . Hence, the difference between Game 6 and Game
7 is only statistical:

|Pr [out7]− Pr [out6]| ≤ O(N/2k). (40)

Finally, in Game 8, we reject all decryption queries with copied tags (tp, Y
′) (even if also Y is

copied from the same challenge ciphertext). A difference to Game 7 only occurs if A manages to
submit a decryption query (D,Y ′, tp, Y ) with the following properties:
• the values tp, Y

′, Y are all copied from the same previous challenge ciphertext C(i), and
• D decrypts correctly to some message under the key K used in that challenge ciphertext
C(i).

Let us call badauth the event that A places such a decryption query. We can bound the probability
that badauth occurs using LAE’s authentication property. Namely, a hybrid argument over all
challenge ciphertexts shows that

|Pr [out8]− Pr [out7]| ≤ Pr [badauth] ≤ N · AdvauthLAE,E(k) (41)
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for an adversary E that simulates Game 7, and embeds its own challenge ciphertext as one of the
IND-SO-CCA challenge ciphertexts of Game 7.

Now observe that in Game 8, A receives only lossy LAE ciphertexts made with independently
random keys K (that are never used again for any decryption queries). The message vectors msg0

and msg1 from Expind-so-cca-bPKE,A are thus identically distributed (even given A’s view), and we finally
obtain

Pr [out8 = 1] =
1

2
. (42)

Taking (34-42) together shows (33).

7 From indistinguishability-based to simulation-based security

7.1 Simulation-based selective opening security

While our used definition of selective opening security (IND-SO-CCA security) is common, it
has certain drawbacks. To explain, note that the IND-SO-CCA security experiment involves a
conditional re-sampling of messages msg1 := ReSampdist(msgI). This operation is only efficient if
the message distribution is efficiently re-samplable. This causes two problems.

First, in settings that correspond to arbitrary message distributions, IND-SO-CCA security
may lead to inefficient hybrid settings. For instance, consider a game-based proof that first uses
the IND-SO-CCA security of an encryption scheme and thus substitutes encrypted messages with
re-sampled ones. This leads to a game that re-samples messages and thus may itself not be efficient.
However, once an intermediate game is inefficient, later reductions to a computational assumption
may be considerably more difficult if not impossible.

Second, we can only prove IND-SO-CCA security with respect to efficiently re-samplable mes-
sage distributions. The reason is essentially the same: once the re-sampling of messages is inef-
ficient, we cannot even simulate the IND-SO-CCA security experiment efficiently. This hinders
reductions to a computational assumption (e.g., the indistinguishability or evasiveness of an ABM-
LTF).

Another notion of selective opening security is the simulation-based notion of SIM-SO-CCA
security [7, 27, 22]. With this notion, we require that an SO-CCA attack on the scheme can be
simulated in a setting in which only the opened messages (but no ciphertexts at all) are available
to the simulator. SIM-SO-CCA security has the advantage that the security experiments (real and
ideal) are efficient. In particular, it is possible to show security with respect to arbitrary message
distributions [7, 27, 22].

7.2 SIM-SO-COM security of our DCR-based scheme

Technical goal. In the following, we briefly sketch how we can achieve SIM-SO-CCA secu-
rity (with respect to arbitrary message distributions) for our DCR-based construction. To show
SIM-SO-CCA security, we need to devise an efficient algorithm Opener that opens a given lossy
ciphertext arbitrarily, i.e., as an encryption of an arbitrary message. Here, a lossy ciphertext de-
notes one which is encrypted with respect to a lossy LTF key, and a lossy ABM-LTF tag. (See [7]
for details.)

The scheme. So consider the scheme PKE from Section 6.3, instantiated with our DCR-based
ABM-LTF ABMD and the DCR-based LTF from [24]. Also, we assume that the lossy authenticated
encryption scheme from Section 2 is chosen, such that symmetric ciphertexts are of the form
D = E(K,msg) = (ρ, τ) = (msg ⊕K1,MAC(K2, ρ)) for a one-time secure message authentication
code MAC. For ease of presentation, assume that a preimage X = (Xi)

3
i=1 ∈ Z3

Ns is chosen as
a preimage for both ABM-LTF and LTF. We then have K = (K1,K2) = h(X) for a suitable
2-universal hash function h : Z3

Ns → {0, 1}2k. For concreteness, say that

h(X) = (a · (X1 +X2 ·N s +X3 ·N2s) + b mod p) mod 22k
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for a prime p with N3s < p < 2N3s, and uniform a, b ∈ Zp.
With a lossy ABM-LTF tag and a lossy LTF key, the remaining ciphertext only depends on

the following values:

C̃ = M̃ ·X mod Z3
Ns , CN = X mod ϕ(N), CN ′ = X mod ϕ(N ′), (43)

where M̃ is the (rank-2) matrix from (2), and N ′ is the modulus employed by the DCR-based LTF
from [24].

For simplicity, say that 22k < N ′ < N , and let s ≥ 8. Then, the values C̃, CN , CN ′ leave h(X)
statistically close to uniform. To see this, observe that X initially contains 3s log2(N) bits of min-
entropy. The presence of C̃, CN , and CN ′ decreases this by at most 2s log2(N) + 3 log2(ϕ(N)) +
3 log2(ϕ(N)) ≤ (2s + 6) log2(N) bits. For s ≥ 8, X thus retains at least 2 log2(N) > 4k bits of
min-entropy. By the leftover hash lemma,

SD
(

(C̃, CN , CN ′ , h(X)) ; (C̃, CN , CN ′ , U{0,1}2k)
)
≤ 2−2k, (44)

where U{0,1}2k ∈ {0, 1}2k is independently uniform.

Opener algorithm. Now consider the following Opener algorithm: on input a lossy ciphertext
(given by C̃, CN , CN ′ , and ρ, τ generated as above for uniform X, the arising K0 = (K0

1 ,K
0
2 ) =

h(X) and, say, msg := 0k), and a “target message” msg∗ ∈ {0, 1}k, Opener outputs a uniformly
selected solution X∗ that satisfies (43) and additionally h(X∗) = (K1,K2) = (ρ ⊕ msg∗,K0

2 ). If
no such solution X∗ exists, Opener fails. (In other words, Opener attempts to explain the given
ciphertext as an encryption of msg∗.) We will have to show that Opener yields “plausible” output
distributions (and in particular fails only with negligible probability), and can be implemented
efficiently.

Why Opener yields plausible output distributions. Observe that

(Cmsg∗ , X)
0
≈ (Cmsg∗ ,Opener(Cmsg∗ ,msg∗))

2−k

≈ (C0,Opener(Cmsg∗ ,msg∗)), (45)

where
• Cmsg∗ is a (lossy) encryption of msg∗ with randomness X,
• C0k is a (lossy) encryption of 0k, and
• the message msg∗ may depend arbitrarily on pk (but not on h).

The first step in (45) follows by the definition of Opener; the second step follows by (44), and
using that an application of a (probabilistic) function does not increase the statistical distance.
Intuitively, (45) shows that Opener generates plausible openings of lossy ciphertexts to arbitrary
messages.

How Opener can be implemented efficiently. Observe that the constraints (43) and h(X) =
(ρ⊕msg∗,K0

2 ) can be expressed as a constant number of linear inequalities over Z. The variables
of these inequalities are the components of X = (X1, X2, X3) (interpreted as integers between 0
and N s − 1), as well as various unknown multiples of the corresponding moduli.

For instance, a constraint of the form h(X) = (ρ⊕msg∗,K0
2 ) is equivalent to

(a · (X1 +X2 ·N s +X3 ·N2s) + b mod p) mod 22k = (ρ⊕msg∗,K0
2 ), (46)

where we interpret (ρ ⊕msg∗,K0
2 ) as a (constant) Z22k -element. Now the modular equation (46)

is equivalent to the constraints

0 ≤ Xi < N s for 1 ≤ i ≤ 3

0 ≤ a · (X1 +X2 ·N s +X3 ·N2s) + b+ p · µp < p

(a · (X1 +X2 ·N s +X3 ·N2s) + b+ p · µp) + µ22k22k = (ρ⊕msg∗,K0
2 )

over Z, with constants p,N, s, k, a, b,msg∗⊕ ρ, and variables X1, X2, X3, µp, µ22k . Using A = B ⇔
A ≤ B ∧B ≤ A, we obtain a system of 10 inequalities. Together with the inequalities arising from

24



(43), this yields a constant-sized system of inequalities that can be solved for X in polynomial time
using, e.g., Lenstra’s algorithm [28].

Our final goal is to obtain a properly distributed solution (i.e., a solution X that in distributed
uniformly, conditioned on (43) and h(X) = (ρ ⊕ msg∗,K0

2 ). A uniform solution can be obtained
generically from Barvinok’s algorithm [4], as follows. (Barvinok’s algorithm counts the number of
solutions to a given constant-sized system of inequalities as above.) First, let n0 and n1 be the
number of solutions that start with a 0-, resp. 1-bit. With probability n0/(n0 + n1), set the first
solution bit to 0 (else to 1) by adding a suitable (modular) equality, and proceed with the next
bit. (By grouping bits together, the number of additional equalities will always be constant.) In
the end, this yields a perfectly uniform solution.

How to use Opener. Thus equipped with an efficient Opener algorithm, we can show SIM-SO-
CCA security along the lines of Bellare et al. [7]. The main difference to the proof of [7] is that
we want to show chosen-ciphertext security; that is, we need to be able to implement a decryption
oracle in all stages of the proof. We can do this exactly as in our IND-SO-CCA proof (i.e., in
the proof of Theorem 6.5). In particular, we can first work our way towards a setting in which
all challenge ciphertexts are lossy, and then use the Opener algorithm above to open challenge
ciphertexts as necessary. This process requires knowledge about the challenge messages only in
the opening stage, and thus constitutes an efficient SIM-SO-CCA simulator.

7.3 The case of our pairing-based scheme

It would seem natural to expect that a similar technique can be used to prove the SIM-SO-CCA
security of PKE, instantiated with our pairing-based ABM-LTF ABMP and, say, the DDH-based
LTF from [39]. To explain the problem that arises, note that preimages X then are from {0, 1}n,
and a ciphertext fixes

Cp =
n∑
i=1

αiXi mod p and Cp′ =
n∑
i=1

α′iXi mod p′, (47)

where αi, α
′
i are exponents induced by the ABM-LTF tag, resp. the LTF key, and p, p′ are corre-

sponding group orders. We could choose a suitable hash function of the form h(X) =
∑n

i=1 βiXi

with uniform βi. (It can be expected that the vector (βi)i is linearly independent of the vectors
(αi)i and (α′i)i.) However, to construct an efficient Opener algorithm, we would have to come
up with X ∈ {0, 1}n that is consistent with (47) (for fixed Cp, Cp′), and additionally satisfies
h(X) ⊕ ρ = msg for given ρ,msg . By linearity, this would require finding uniformly distributed
binary solutions of the equations

n∑
i=1

αiXi = 0 mod p and

n∑
i=1

α′iXi = 0 mod p′.

However, it is not clear how to do so. For instance, we cannot use Lenstra’s algorithm (as in
the DCR-based scheme above), since the number of inequalities that would arise is linear in the
security parameter. (Hence, Lenstra’s algorithm would not run efficiently.)
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