3,433 research outputs found

    Heap Abstractions for Static Analysis

    Full text link
    Heap data is potentially unbounded and seemingly arbitrary. As a consequence, unlike stack and static memory, heap memory cannot be abstracted directly in terms of a fixed set of source variable names appearing in the program being analysed. This makes it an interesting topic of study and there is an abundance of literature employing heap abstractions. Although most studies have addressed similar concerns, their formulations and formalisms often seem dissimilar and some times even unrelated. Thus, the insights gained in one description of heap abstraction may not directly carry over to some other description. This survey is a result of our quest for a unifying theme in the existing descriptions of heap abstractions. In particular, our interest lies in the abstractions and not in the algorithms that construct them. In our search of a unified theme, we view a heap abstraction as consisting of two features: a heap model to represent the heap memory and a summarization technique for bounding the heap representation. We classify the models as storeless, store based, and hybrid. We describe various summarization techniques based on k-limiting, allocation sites, patterns, variables, other generic instrumentation predicates, and higher-order logics. This approach allows us to compare the insights of a large number of seemingly dissimilar heap abstractions and also paves way for creating new abstractions by mix-and-match of models and summarization techniques.Comment: 49 pages, 20 figure

    Heap Reference Analysis Using Access Graphs

    Full text link
    Despite significant progress in the theory and practice of program analysis, analysing properties of heap data has not reached the same level of maturity as the analysis of static and stack data. The spatial and temporal structure of stack and static data is well understood while that of heap data seems arbitrary and is unbounded. We devise bounded representations which summarize properties of the heap data. This summarization is based on the structure of the program which manipulates the heap. The resulting summary representations are certain kinds of graphs called access graphs. The boundedness of these representations and the monotonicity of the operations to manipulate them make it possible to compute them through data flow analysis. An important application which benefits from heap reference analysis is garbage collection, where currently liveness is conservatively approximated by reachability from program variables. As a consequence, current garbage collectors leave a lot of garbage uncollected, a fact which has been confirmed by several empirical studies. We propose the first ever end-to-end static analysis to distinguish live objects from reachable objects. We use this information to make dead objects unreachable by modifying the program. This application is interesting because it requires discovering data flow information representing complex semantics. In particular, we discover four properties of heap data: liveness, aliasing, availability, and anticipability. Together, they cover all combinations of directions of analysis (i.e. forward and backward) and confluence of information (i.e. union and intersection). Our analysis can also be used for plugging memory leaks in C/C++ languages.Comment: Accepted for printing by ACM TOPLAS. This version incorporates referees' comment

    Information Flow Control with System Dependence Graphs - Improving Modularity, Scalability and Precision for Object Oriented Languages

    Get PDF
    Die vorliegende Arbeit befasst sich mit dem Gebiet der statischen Programmanalyse — insbesondere betrachten wir Analysen, deren Ziel es ist, bestimmte Sicherheitseigenschaften, wie etwa Integrität und Vertraulichkeit, für Programme zu garantieren. Hierfür verwenden wir sogenannte Abhängigkeitsgraphen, welche das potentielle Verhalten des Programms sowie den Informationsfluss zwischen einzelnen Programmpunkten abbilden. Mit Hilfe dieser Technik können wir sicherstellen, dass z.B. ein Programm keinerlei Information über ein geheimes Passwort preisgibt. Im Speziellen liegt der Fokus dieser Arbeit auf Techniken, die das Erstellen des Abhängigkeitsgraphen verbessern, da dieser die Grundlage für viele weiterführende Sicherheitsanalysen bildet. Die vorgestellten Algorithmen und Verbesserungen wurden in unser Analysetool Joana integriert und als Open-Source öffentlich verfügbar gemacht. Zahlreiche Kooperationen und Veröffentlichungen belegen, dass die Verbesserungen an Joana auch in der Forschungspraxis relevant sind. Diese Arbeit besteht im Wesentlichen aus drei Teilen. Teil 1 befasst sich mit Verbesserungen bei der Berechnung des Abhängigkeitsgraphen, Teil 2 stellt einen neuen Ansatz zur Analyse von unvollständigen Programmen vor und Teil 3 zeigt aktuelle Verwendungsmöglichkeiten von Joana an konkreten Beispielen. Im ersten Teil gehen wir detailliert auf die Algorithmen zum Erstellen eines Abhängigkeitsgraphen ein, dabei legen wir besonderes Augenmerk auf die Probleme und Herausforderung bei der Analyse von Objektorientierten Sprachen wie Java. So stellen wir z.B. eine Analyse vor, die den durch Exceptions ausgelösten Kontrollfluss präzise behandeln kann. Hauptsächlich befassen wir uns mit der Modellierung von Seiteneffekten, die bei der Kommunikation über Methodengrenzen hinweg entstehen können. Bei Abhängigkeitsgraphen werden Seiteneffekte, also Speicherstellen, die von einer Methode gelesen oder verändert werden, in Form von zusätzlichen Knoten dargestellt. Dabei zeigen wir, dass die Art und Weise der Darstellung, das sogenannte Parametermodel, enormen Einfluss sowohl auf die Präzision als auch auf die Laufzeit der gesamten Analyse hat. Wir erklären die Schwächen des alten Parametermodels, das auf Objektbäumen basiert, und präsentieren unsere Verbesserungen in Form eines neuen Modells mit Objektgraphen. Durch das gezielte Zusammenfassen von redundanten Informationen können wir die Anzahl der berechneten Parameterknoten deutlich reduzieren und zudem beschleunigen, ohne dabei die Präzision des resultierenden Abhängigkeitsgraphen zu verschlechtern. Bereits bei kleineren Programmen im Bereich von wenigen tausend Codezeilen erreichen wir eine im Schnitt 8-fach bessere Laufzeit — während die Präzision des Ergebnisses in der Regel verbessert wird. Bei größeren Programmen ist der Unterschied sogar noch deutlicher, was dazu führt, dass einige unserer Testfälle und alle von uns getesteten Programme ab einer Größe von 20000 Codezeilen nur noch mit Objektgraphen berechenbar sind. Dank dieser Verbesserungen kann Joana mit erhöhter Präzision und bei wesentlich größeren Programmen eingesetzt werden. Im zweiten Teil befassen wir uns mit dem Problem, dass bisherige, auf Abhängigkeitsgraphen basierende Sicherheitsanalysen nur vollständige Programme analysieren konnten. So war es z.B. unmöglich, Bibliothekscode ohne Kenntnis aller Verwendungsstellen zu betrachten oder vorzuverarbeiten. Wir entdeckten bei der bestehenden Analyse eine Monotonie-Eigenschaft, welche es uns erlaubt, Analyseergebnisse von Programmteilen auf beliebige Verwendungsstellen zu übertragen. So lassen sich zum einen Programmteile vorverarbeiten und zum anderen auch generelle Aussagen über die Sicherheitseigenschaften von Programmteilen treffen, ohne deren konkrete Verwendungsstellen zu kennen. Wir definieren die Monotonie-Eigenschaft im Detail und skizzieren einen Beweis für deren Korrektheit. Darauf aufbauend entwickeln wir eine Methode zur Vorverarbeitung von Programmteilen, die es uns ermöglicht, modulare Abhängigkeitsgraphen zu erstellen. Diese Graphen können zu einem späteren Zeitpunkt der jeweiligen Verwendungsstelle angepasst werden. Da die präzise Erstellung eines modularen Abhängigkeitsgraphen sehr aufwendig werden kann, entwickeln wir einen Algorithmus basierend auf sogenannten Zugriffspfaden, der die Skalierbarkeit verbessert. Zuletzt skizzieren wir einen Beweis, der zeigt, dass dieser Algorithmus tatsächlich immer eine konservative Approximation des modularen Graphen berechnet und deshalb die Ergebnisse darauf aufbauender Sicherheitsanalysen weiterhin gültig sind. Im dritten Teil präsentieren wir einige erfolgreiche Anwendungen von Joana, die im Rahmen einer Kooperation mit Ralf Küsters von der Universität Trier entstanden sind. Hier erklären wir zum einen, wie man unser Sicherheitswerkzeug Joana generell verwenden kann. Zum anderen zeigen wir, wie in Kombination mit weiteren Werkzeugen und Techniken kryptographische Sicherheit für ein Programm garantiert werden kann - eine Aufgabe, die bisher für auf Informationsfluss basierende Analysen nicht möglich war. In diesen Anwendungen wird insbesondere deutlich, wie die im Rahmen dieser Arbeit vereinfachte Bedienung die Verwendung von Joana erleichtert und unsere Verbesserungen der Präzision des Ergebnisses die erfolgreiche Analyse erst ermöglichen

    A Non-Null Annotation Inferencer for Java Bytecode

    Get PDF
    We present a non-null annotations inferencer for the Java bytecode language. We previously proposed an analysis to infer non-null annotations and proved it soundness and completeness with respect to a state of the art type system. This paper proposes extensions to our former analysis in order to deal with the Java bytecode language. We have implemented both analyses and compared their behaviour on several benchmarks. The results show a substantial improvement in the precision and, despite being a whole-program analysis, production applications can be analyzed within minutes

    Precise Null Pointer Analysis Through Global Value Numbering

    Full text link
    Precise analysis of pointer information plays an important role in many static analysis techniques and tools today. The precision, however, must be balanced against the scalability of the analysis. This paper focusses on improving the precision of standard context and flow insensitive alias analysis algorithms at a low scalability cost. In particular, we present a semantics-preserving program transformation that drastically improves the precision of existing analyses when deciding if a pointer can alias NULL. Our program transformation is based on Global Value Numbering, a scheme inspired from compiler optimizations literature. It allows even a flow-insensitive analysis to make use of branch conditions such as checking if a pointer is NULL and gain precision. We perform experiments on real-world code to measure the overhead in performing the transformation and the improvement in the precision of the analysis. We show that the precision improves from 86.56% to 98.05%, while the overhead is insignificant.Comment: 17 pages, 1 section in Appendi

    Structural Analysis: Shape Information via Points-To Computation

    Full text link
    This paper introduces a new hybrid memory analysis, Structural Analysis, which combines an expressive shape analysis style abstract domain with efficient and simple points-to style transfer functions. Using data from empirical studies on the runtime heap structures and the programmatic idioms used in modern object-oriented languages we construct a heap analysis with the following characteristics: (1) it can express a rich set of structural, shape, and sharing properties which are not provided by a classic points-to analysis and that are useful for optimization and error detection applications (2) it uses efficient, weakly-updating, set-based transfer functions which enable the analysis to be more robust and scalable than a shape analysis and (3) it can be used as the basis for a scalable interprocedural analysis that produces precise results in practice. The analysis has been implemented for .Net bytecode and using this implementation we evaluate both the runtime cost and the precision of the results on a number of well known benchmarks and real world programs. Our experimental evaluations show that the domain defined in this paper is capable of precisely expressing the majority of the connectivity, shape, and sharing properties that occur in practice and, despite the use of weak updates, the static analysis is able to precisely approximate the ideal results. The analysis is capable of analyzing large real-world programs (over 30K bytecodes) in less than 65 seconds and using less than 130MB of memory. In summary this work presents a new type of memory analysis that advances the state of the art with respect to expressive power, precision, and scalability and represents a new area of study on the relationships between and combination of concepts from shape and points-to analyses

    Boomerang: Demand-Driven Flow- and Context-Sensitive Pointer Analysis for Java

    Get PDF
    Many current program analyses require highly precise pointer information about small, tar- geted parts of a given program. This motivates the need for demand-driven pointer analyses that compute information only where required. Pointer analyses generally compute points-to sets of program variables or answer boolean alias queries. However, many client analyses require richer pointer information. For example, taint and typestate analyses often need to know the set of all aliases of a given variable under a certain calling context. With most current pointer analyses, clients must compute such information through repeated points-to or alias queries, increasing complexity and computation time for them. This paper presents Boomerang, a demand-driven, flow-, field-, and context-sensitive pointer analysis for Java programs. Boomerang computes rich results that include both the possible allocation sites of a given pointer (points-to information) and all pointers that can point to those allocation sites (alias information). For increased precision and scalability, clients can query Boomerang with respect to particular calling contexts of interest. Our experiments show that Boomerang is more precise than existing demand-driven pointer analyses. Additionally, using Boomerang, the taint analysis FlowDroid issues up to 29.4x fewer pointer queries compared to using other pointer analyses that return simpler pointer infor- mation. Furthermore, the search space of Boomerang can be significantly reduced by requesting calling contexts from the client analysis

    Expression-based aliasing for OO-languages

    Full text link
    Alias analysis has been an interesting research topic in verification and optimization of programs. The undecidability of determining whether two expressions in a program may reference to the same object is the main source of the challenges raised in alias analysis. In this paper we propose an extension of a previously introduced alias calculus based on program expressions, to the setting of unbounded program executions s.a. infinite loops and recursive calls. Moreover, we devise a corresponding executable specification in the K-framework. An important property of our extension is that, in a non-concurrent setting, the corresponding alias expressions can be over-approximated in terms of a notion of regular expressions. This further enables us to show that the associated K-machinery implements an algorithm that always stops and provides a sound over-approximation of the "may aliasing" information, where soundness stands for the lack of false negatives. As a case study, we analyze the integration and further applications of the alias calculus in SCOOP. The latter is an object-oriented programming model for concurrency, recently formalized in Maude; K-definitions can be compiled into Maude for execution
    • …
    corecore