92 research outputs found

    Equivalence of the filament and overlap graphs of subtrees of limited trees

    Get PDF
    The overlap graphs of subtrees of a tree are equivalent to subtree filament graphs, the overlap graphs of subtrees of a star are cocomparability graphs, and the overlap graphs of subtrees of a caterpillar are interval filament graphs. In this paper, we show the equivalence of many more classes of subtree overlap and subtree filament graphs, and equate them to classes of complements of cochordal-mixed graphs. Our results generalize the previously known results mentioned above

    Recognising the overlap graphs of subtrees of restricted trees is hard

    Get PDF
    The overlap graphs of subtrees in a tree (SOGs) generalise many other graphs classes with set representation characterisations. The complexity of recognising SOGs is open. The complexities of recognising many subclasses of SOGs are known. Weconsider several subclasses of SOGs by restricting the underlying tree. For a fixed integer k≥3k \geq 3, we consider:\begin{my_itemize} \item The overlap graphs of subtrees in a tree where that tree has kk leaves \item The overlap graphs of subtrees in trees that can be derived from a given input tree by subdivision and have at least 3 leaves \item The overlap and intersection graphs of paths in a tree where that tree has maximum degree kk\end{my_itemize} We show that the recognition problems of these classes are NP-complete. For all other parameters we get circle graphs, well known to be polynomially recognizable

    Recognising the overlap graphs of subtrees of restricted trees is hard

    Get PDF
    The overlap graphs of subtrees in a tree (SOGs) generalise many other graphs classes with set representation characterisations. The complexity of recognising SOGs is open. The complexities of recognising many subclasses of SOGs are known. Weconsider several subclasses of SOGs by restricting the underlying tree. For a fixed integer k≥3k \geq 3, we consider:\begin{my_itemize} \item The overlap graphs of subtrees in a tree where that tree has kk leaves \item The overlap graphs of subtrees in trees that can be derived from a given input tree by subdivision and have at least 3 leaves \item The overlap and intersection graphs of paths in a tree where that tree has maximum degree kk\end{my_itemize} We show that the recognition problems of these classes are NP-complete. For all other parameters we get circle graphs, well known to be polynomially recognizable

    Automorphism Groups of Geometrically Represented Graphs

    Full text link
    We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four

    A fast approximate skeleton with guarantees for any cloud of points in a Euclidean space

    Get PDF
    The tree reconstruction problem is to find an embedded straight-line tree that approximates a given cloud of unorganized points in Rm\mathbb{R}^m up to a certain error. A practical solution to this problem will accelerate a discovery of new colloidal products with desired physical properties such as viscosity. We define the Approximate Skeleton of any finite point cloud CC in a Euclidean space with theoretical guarantees. The Approximate Skeleton ASk(C)(C) always belongs to a given offset of CC, i.e. the maximum distance from CC to ASk(C)(C) can be a given maximum error. The number of vertices in the Approximate Skeleton is close to the minimum number in an optimal tree by factor 2. The new Approximate Skeleton of any unorganized point cloud CC is computed in a near linear time in the number of points in CC. Finally, the Approximate Skeleton outperforms past skeletonization algorithms on the size and accuracy of reconstruction for a large dataset of real micelles and random clouds

    Automorphism Groups of Geometrically Represented Graphs

    Get PDF
    Interval graphs are intersection graphs of closed intervals and circle graphs are intersection graphs of chords of a circle. We study automorphism groups of these graphs. We show that interval graphs have the same automorphism groups as trees, and circle graphs have the same as pseudoforests, which are graphs with at most one cycle in every connected component. Our technique determines automorphism groups for classes with a strong structure of all geometric representations, and it can be applied to other graph classes. Our results imply polynomial-time algorithms for computing automorphism groups in term of group products
    • …
    corecore