
Acta Math. Univ. Comenianae
Vol. LXXXVIII, 3 (2019), pp. 651–658

651

RECOGNISING THE OVERLAP GRAPHS OF SUBTREES

OF RESTRICTED TREES IS HARD

J. ENRIGHT and M. PERGEL

Abstract. The overlap graphs of subtrees in a tree (SOGs) generalise many other

graphs classes with set representation characterisations. The complexity of recog-
nising SOGs in open. The complexities of recognising many subclasses of SOGs are

known. We consider several subclasses of SOGs by restricting the underlying tree.

For a fixed integer k ≥ 3, we consider:
• The overlap graphs of subtrees in a tree where that tree has k leaves.

• The overlap graphs of subtrees in trees that can be derived from a given input

tree by subdivision and have at least three leaves.

• The overlap and intersection graphs of paths in a tree where that tree has
maximum degree k.

We show that the recognition problems of these classes are NP-complete. For all

other parameters we get circle graphs, well known to be polynomially recognizable.

A graph G = (V,E) with a vertex set V = {v1, . . . , vn} and the edge set
E = {e1, . . . , em} is an intersection graph of a set system {s1, . . . , sn}, where for
all i, si ⊆ S, each vertex vi corresponds to a set si and each edge e = (vi, vj) is
equivalent to the fact that si∩sj 6= ∅. Similarly, a graph G = (V,E) with a vertex
set V = {v1, . . . , vn} and the edge set E = {e1, . . . , em} is an overlap graph of a
set system {s1, . . . , sn}, where for all i, si ⊆ S, each vertex vi corresponds to a set
si and each edge e = (vi, vj) is equivalent to the fact that si ∩ sj 6= ∅ and neither
si ⊂ sj nor sj ⊂ si.

When we consider the overlap and intersection graphs of particular types of
set systems, we define graph classes. Part of the theoretical interest in geometric
intersection and overlap graphs stems from efficient algorithms for otherwise NP-
hard problems on these graph classes. Often, these algorithms require as input
a set intersection representation of a particular type. Thus we are interested in
whether or not a given graph has a particular type of intersection representation.
This is called the recognition problem.

Probably the oldest intersection-defined graphs are interval graphs, the inter-
section graphs of interval on a line [8]. The interval graphs are generalised by
intersection graphs of paths in a tree [4, 12]. Intersection graphs of paths in a tree
are in turn generalised by chordal graphs. While primarily defined as the graphs

Received May 24, 2019.
2010 Mathematics Subject Classification. Primary 97P20, 97K20, 97K30, 03D15.
This research was partially supported by the Czech Science Foundation grant GA19-08554S.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Enlighten: Publications

https://core.ac.uk/display/296225144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


652 J. ENRIGHT and M. PERGEL

without induced cycles of length greater than three, chordal graphs are also ex-
actly the intersection graphs of subtrees in a tree [6]. The overlap analogue of
chordal graphs is the class of subtree overlap graphs, the overlap graphs of subtrees
in a tree. Subtree overlap graphs generalise many set representation characterised
classes, including chordal graphs and therefore interval graphs.

Gavril [7] defined interval filament graphs and subtree filament graphs as in-
tersection graphs of filaments on intervals and filaments on subtrees, respectively.
Filaments are curves above some geometric structure (in this case above intervals
or subtrees) such that filaments above disjoint structures must not intersect, while
filaments above overlapping structures (i.e., over sets a and b such that a∩ b, a \ b
and also b \ a are non-empty) must mutually intersect.

Interval filament graphs are a subclass of subtree overlap graphs, and subtree
filament graphs are exactly subtree overlap graphs [5]. Given a set representa-
tion, we can solve some otherwise hard problems on these classes, including many
problems on chordal graphs [14], maximum weighted clique and independent set
on interval filament graphs and maximum weighted independent set for subtree
filament graphs [7].

Recognising interval filament graphs is known to be hard [7, 13]. In contrast, we
can recognise interval graphs and chordal graphs in linear time [3, 14], and inter-
section graphs of paths in a tree in O(nm) time, where n is the number of vertices
and m the number of edges in the input graph [15]. The complexity of recognis-
ing subtree overlap graph is open. Because this problem is generally expected to
be NP-complete, it becomes interesting to ask about reasonable subclasses where
Gavril’s algorithm could work, too.

With this in mind, we define three overlap subclasses of subtree overlap graphs:
we define k-SOG as the overlap graphs of subtrees in a tree such that the tree has
at most k-leaves, class k-degree-POG as the overlap graphs of subpaths in a tree
such that the tree has maximum degree at most k, and the class T-SOG as the
overlap graphs of subtrees of a trees derived from an input tree T by subdivision of
edges.

Though we expect the recognition of subtree overlap graphs to be NP-complete,
we expected the recognition of these simplified SOGs to be polynomial time. We
were therefore surprised when we obtained hardness results for the recognition
problems of k-SOG and k-degree-POG for a fixed integer k ≥ 3 and for T − SOG
provided that T has at least three leaves. We present these hardness results in this
paper. The result about k-degree-POG also holds for corresponding intersection
graphs; our reduction also shows that it is NP-complete to recognise intersection
graphs of paths in a tree with a fixed maximum degree greater than two. In
contrast, intersection graphs of subpaths in a tree can be recognised in polynomial
time.

Our result on the hardness of recognising the subtree overlap graph with k
leafage for fixed integer k ≥ 3 provides a counterpoint to work on the intersection
leafage of chordal graphs. Stacho and Habib [10] give a polynomial-time algorithm
for determining the leafage of a chordal graph and constructing a representation
that achieves that leafage. Leafage was further explored by Chaplick and Stacho [2]



RECOGNISING THE OVERLAP GRAPHS OF SUBTREES 653

in terms of vertex-leafage where each subtree in the representation is permitted to
have at most k leaves by showing that the vertex-leafage is polynomially solvable
for vertex-leafage at most 3 and NP-complete otherwise. In contrast with the
former and as another pebble into the mosaic of leafage, we show that determining
the leafage of a subtree overlap graph is NP-hard for leafage at least 3.

Golumbic et al. [9] explore the complexity of recognising the intersection graphs
of paths in a tree parameterised by both the maximum degree of the underlying
tree and the number of vertices that must be shared between two paths for them to
be considered as intersecting. They provide a complete hierarchy of graph classes
using these parameters.

The idea of a simpler representation, as well as previous work by [11] motivated
us to define complicacy for subtree overlap graphs: For a subtree overlap graph G,
its complicacy is minimum k, such that G is a k-SOG. We denote this complicacy
by cmpS(G). For a natural number n, by cmpS(n) we denote the minimum k
such that every subtree-overlap graph on n vertices is also a k-SOG. Due to Cenek
[1], it holds that cmpS(n) ≤ n. As a further result, we obtained a lower bound
cmpS(n) ≥ n− log n + o(log n).

1. Main ideas

In our classes, it is obvious that the recognition problem is in NP (there always
exists a representation by subtrees of at most quadratic size with respect to the
number of vertices). In order to show the hardness-results, we use a special version
of the k-colouring problem, 3-connected k-colouring, i.e., the problem of colouring
the graph with k colours so that no pair of neighbouring vertices gets the same
colour, restricted only to 3-connected graphs. To observe that this problem is still
NP-hard, it suffices to take an instance of the k-colourability problem. For a given
graph, we take 3 independent copies of it and for a triple of vertices corresponding
to one vertex, we put a triangle on these vertices, see Figure 1. Depending on
the leafage of the underlying tree or the maximum permitted degree k of the
underlying tree we reduce 3-connected k-colourability.

Figure 1. Idea of how to reduce (normal) k-colouring to 3-connected k-colouring. We reduce

P2. We also show, how to find three disjoint paths for one pair of vertices (dashed). Colours of
the vertices correspond to the assigned colours. (in problem of colouring).

More thoroughly we proceed here for the recognition problem of subtree-overlap
three graphs representable by subtrees of a tree with three leaves, as the remaining
proofs use the same idea (just technical details and auxiliary constructions differ).



654 J. ENRIGHT and M. PERGEL

We define a twig in a tree to be a path from a leaf to the nearest vertex of degree
higher than 2 (excluding the vertex of higher degree). For a tree with three leaves,
there are three twigs that we obtain by removing the vertex of degree 3. The
reduction exploits the fact that twigs in these trees can simulate colour-classes for
an instance of our colouring problem. For a graph G, an instance of 3-connected
3-colourability, we define a graph G′′ consisting of vertex-representatives of G,
edge representatives (of G) and an overhead construction.

The overhead construction forces the vertex-representatives to be representable
solely on twigs (that simulate colour-classes). Edge-representatives control indi-
vidual pairs of incident vertices to be represented on two distinct twigs. In this
way we obtain the assignment of colours for the original graph G from the repre-
sentation of graph G′′.

The overhead construction is generally represented by the Gu
d -blocking gadget

depicted in Figure 2. Particularly when representing by subtrees in a tree with
three leaves, we pick G0

3. The subtree-overlap representation of this gadget gener-
ally blocks all branching-nodes in the underlying tree, as well, as all paths between
them (i.e., between any pair of branching-nodes) in the case that the number of
leaves is restricted.

vs

vb

vs2

vb2

1

2

u

...

1 2 d...

vs

vb

vs2

vb2

1

2

3

1 2 3

4

a)
b)

s’ s’

b’ b’

Figure 2. In a) the Gu
d graph – note the presence of d paths of three vertices between vertices

vs and vb, and u paths of three vertices between vb′ and vs′ . In b) an example: the G4
3 graph.

Due to possible singularities in the representation that can turn up at most
4 times (in the whole construction), we pick 5 disjoint copies of the original
graph (then at least one copy gets represented correctly). Vertex- and edge-
representatives are designed in the following way: For each vertex v in G (i.e.,
in any of 5 copies of G), we make a pair of mutually adjacent vertices v, f(v) in
G′′. We call these vertices a representative and its brother, respectively. For each
edge e = {u, v} in G, we put to G′′ a vertex e adjacent to representatives of its
endvertices, i.e., u and v. We make all brothers and edge-representatives adjacent
with vs and vb from Gu

d . Moreover, we put a clique on them. This construction
is illustrated by Figure 3. Vertex representatives are designed so that they can be
represented (up to 4 exceptions) solely on twigs. Edge-representatives are designed
so that they could not overlap a pair of representatives lying on the same twig.



RECOGNISING THE OVERLAP GRAPHS OF SUBTREES 655

a

b

c

e

vs

vb

vs’vb’

a

b

c

e
f(a)

f(b)

f(c)

Figure 3. Demonstration of constructing G′′ (on the right side of the arrow) from G (on

the left side of the arrow). Yellow vertices (a, b, c) are vertex-representatives, peach vertices

(f(a), f(b), f(c)) are their brothers and blue vertices are edge-representatives. Note that all ver-
tices in the dotted oval induce a clique, and are all adjacent to vb and vs. In a full construction,

there will be five copies of G involved, and therefore five copies of the vertex-representatives,
brothers of vertices, and edge-representative. All edge-representative and brothers will induce a

clique. These copies have been omitted for legibility.

Before proceeding further, let us define some notation. For a vertex va, by ta we
denote a subtree representing va. For a copy of G in G′′ we say that in a subtree-
overlap representation this copy is nicely represented, it all vertex representatives
are represented on twigs and there is no illegal pair, i.e., two representatives of
vertices adjacent in G represented on the same twig. A nice representation is
therefore equivalent to a correct colouring of G. Obviously, a correct colouring
admits a nice representation. The converse is more difficult.

Having described the graphs whose representability can be shown to be equiv-
alent to colouring the original graph G, we state the appropriate theorems that
follow from this construction.

2. Subtrees in restricted trees

The construction from the previous section shows the following.

Theorem 1. For a given k, it is NP-complete to decide whether a given graph
is a k-SOG.

Proof. Sketch: We reduce 3-connected k-colouring and from its instance we
create a graph G′′ described in the previous section using Gu

d with d = 3 and if
k = 3 then u = 0, otherwise u = k−d+1. It is not difficult to observe that a subtree
representing vs (a vertex of Gu

d) has to be contained in a subtree representing vb, or
vice-versa. Without loss of generality, we consider the former situation (mnemonics
for vertices are v-smaller and v-bigger). Then this tb has to be represented by a
subtree containing all branching nodes in the underlying tree. From the following
lemma (that gets shown in the full version of the article) it follows that at least
one copy of the original graph G has to be nicely represented. �

Lemma 1. When representing G′′, no more than these singularities can occur:
At most one vertex representative can be represented as a supertree of tb. At most



656 J. ENRIGHT and M. PERGEL

one vertex representative can be represented as a subtree of ts containing a branch-
ing node. At most one vertex representative can be represented as a subtree of ts
on a non-twig path. At most one pair of neighbouring vertices can be represented
as an illegal pair.

In a very similar way we obtain the following:

Theorem 2. Given a tree T , it is NP-hard to decide for a given graph G
whether it is a T -SOG.

Sketch of proof. As T has k leaves, we reduce 3-connected k-colouring in a
described way. In a tree, a vertex of degree d is called a lastbranch, if it is incident
with d− 1 twigs. Let d be a minimum degree of a lastbranch in T . Then for the
construction we pick Gk−d+1

d and the same arguments apply. �

t
s2

. . . 

t
b

t
st

b2
1

u

2

. . . 

d

v
s

v
b

v
s2

v
b2

1

2

u

...

1
2 d...

a) b)

’ ’
’

’

Figure 4. A generalised overlap representation of the Gu
d graph on a tree with a node such

that the forest created by removing that node has two connected components: a tree with d
leaves and a node of degree d and a tree with at least u + 1 leaves. The interior of tb′ and ts′
are darkened to indicate that the structure of the tree there is somewhat irrelevant - only the

number of boundary nodes is important. There is exactly one node of degree greater than two
contained in ts and that node is contained only in ts and tb, and all other nodes of degree greater

than two are contained in tb′ . The representation is on the left, and the Gu
d graph is on the right.

Vertex labels and corresponding subtrees are colour coded.

3. Paths in a Tree

We now turn to the complexity of the problem of recognising overlap graphs of
paths in a tree of maximum degree k.

Theorem 3. For a given k > 2, it is NP-complete to decide whether a given
graph G has an overlap representation by subpaths in a tree with maximum degree
k. To decide whether G has an intersection representation by subpaths in a tree
with maximum degree k, is NP-complete, too.

Sketch of proof. This time we use G′′ without Gu
d , i.e., without all its vertices

(just vertex representatives, their brothers and edge representatives remain). In



RECOGNISING THE OVERLAP GRAPHS OF SUBTREES 657

the representation, there appears a central vertex, i.a. a branching node used by
all edge representatives (otherwise they could not mutually overlap). Removal of
this vertex splits the tree into k components corresponding to colour-classes for
G. At most two vertex representatives can contain the central vertex, remaining
copies of G have to be nicely represented. �

…

central 
vertex c

colour 1

…

colour k
colour kcolour 1

Part of graph represented: 

Figure 5. Sample subpath overlap representation on a tree of maximum degree k ≥ 3. Black
ovals are vertex-representatives, the two pale coloured subtrees are edge-representatives. Brothers

of vertex-representatives are omitted. Colour classes are shown in dotted ovals. The part of the

graph that is represented is shown on the right.

4. Conclusion and future work

We have shown that recognising a number of subclasses of subtree overlap graphs
is NP-complete. This is surprising because of the extreme enforced simplicity of
the representations. Our ultimate goal continues to be resolving the complexity
of the recognition problem for subtree overlap graphs in general. This is currently
an open problem.

Other related open problems include tighter bounds on the complicacy of sub-
tree overlap graphs, as well as investigation of other geometric overlap and in-
tersection classes. Also a challenging problem related to subtree overlap graphs
(a.k.a. subtree filament graphs) is a weighted clique (as Gavril’s algorithm a bit
surprisingly covers just maximum weighted independent set in this case).

Further open problems reflect the approximability of presented parameters, i.e.,
whether for a graph representable in a tree with k leaves we can efficiently find a
representation in a tree with kl leaves for some l and similarly with subpaths in a
tree if we permit a higher maximum degree in the underlying tree than necessary.

References

1. Cenek E., Subtree Overlap Graphs and the Maximum Independent Set Problem, Master’s
thesis, University of Alberta, Department of Computing Science, 1998.

2. Chaplick S. and Stacho J., The vertex leafage of chordal graphs, Discrete Appl. Math. 168

(2014), 14–25.



658 J. ENRIGHT and M. PERGEL

3. Corneil D. G., Olariu S. and Stewart L., Lbfs orderings and cocomparability graphs, in:

SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms,
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 883–884.

4. Dangelmayr C. and Felsner S., Chordal graphs as intersection graphs of pseudosegments, in:

Graph Drawing (M. Kaufmann and D. Wagner, eds.), Lecture Notes in Comput. Sci. 4372,
Springer, 208–219.

5. Enright J. and Stewart L., Subtree filament graphs are subtree overlap graphs, Inf. Process.

Lett. 104 (2007), 228–232.
6. Gavril F., The intersection graphs of subtrees in trees are exactly the chordal graphs, J.

Combin. Theory Ser. B 16 (1974), 47–56.
7. Gavril F., Maximum weight independent sets and cliques in intersection graphs of filaments,

Inf. Process. Lett. 73 (2000), 181–188.

8. Gilmore P. and Hoffman A., A characterization of comparability graphs and of interval
graphs, Canad. J. Math. 16 (1964), 539–548.

9. Golumbic M. C., Lipshteyn M. and Stern M., Equivalences and the complete hierarchy of

intersection graphs of paths in a tree, Discrete Appl. Math. 156 (2008), 3203–3215.
10. Habib M. and Stacho J., Linear algorithms for chordal graphs of bounded directed vertex

leafage, Electron. Notes Discrete Math. 32 (2009), 99–108.

11. Kratochv́ıl J. and Pergel M., Two results on intersection graphs of polygons, in: Graph
Drawing (G. Liotta, ed.), Lecture Notes in Comput. Sci. 2912, Springer, 59–70.

12. Monma C. L. and Wei V. K.-W., Intersection graphs of paths in a tree, J. Comb. Theory,

Ser. B 41 (1986), 141–181.
13. Pergel M., Recognition of polygon-circle graphs and graphs of interval filaments is np-

complete, in: WG 2007 (A. Brandstädt, D. Kratsch, H. Müller, eds.), Lecture Notes in

Comput. Sci. 4769, Springer, 238–247.
14. Rose D. J., Tarjan R. E. and Leuker G. S., Algorithmic aspects of vertex elimination on

graphs, SIAM J. Comput. 5 (1976), 266–283.
15. Schäffer A. A., A faster algorithm to recognize undirected path graphs, Discrete Appl. Math.

43 (1993), 261–295.

J. Enright, University of Edinburgh, Easter Bush, Midlothian, UK,

e-mail : jessica.enright@ed.ac.uk

M. Pergel, Department of Software and Computer Science Education, Faculty of Mathematics

and Physics, Charles University, Prague, Czech Republic,

e-mail : perm@kam.mff.cuni.cz


