23 research outputs found

    The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration

    Get PDF
    In this article, the Program Committee of the Second Parameterized Algorithms and Computational Experiments challenge (PACE 2017) reports on the second iteration of the PACE challenge. Track A featured the Treewidth problem and Track B the Minimum Fill-In problem. Over 44 participants on 17 teams from 11 countries submitted their implementations to the competition

    Bidirectional string anchors: A new string sampling mechanism

    Get PDF
    The minimizers sampling mechanism is a popular mechanism for string sampling introduced independently by Schleimer et al. [SIGMOD 2003] and by Roberts et al. [Bioinf. 2004]. Given two positive integers w and k, it selects the lexicographically smallest length-k substring in every fragment of w consecutive length-k substrings (in every sliding window of length w+k-1). Minimizers samples are approximately uniform, locally consistent, and computable in linear time. Although they do not have good worst-case guarantees on their size, they are often small in practice. They thus have been successfully employed in several string processing applications. Two main disadvantages of minimizers sampling mechanisms are: first, they also do not have good guarantees on the expected size of their samples for every combination of w and k; and, second, indexes that are constructed over their samples do not have good worst-case guarantees for on-line pattern searches. To alleviate these disadvantages, we introduce bidirectional string anchors (bd-anchors), a new string sampling mechanism. Given a positive integer , our mechanism selects the lexicographically smallest rotation in every length- fragment (in every sliding window of length ). We show that bd-anchors samples are also approximately uniform, locally consistent, and computable in linear time. In addition, our experimen

    Genome assembly forensics: finding the elusive mis-assembly

    Get PDF
    A collection of software tools is combined for the first time in an automated pipeline for detecting large-scale genome assembly errors and for validating genome assemblies

    MetaCarvel: linking assembly graph motifs to biological variants

    Get PDF
    Reconstructing genomic segments from metagenomics data is a highly complex task. In addition to general challenges, such as repeats and sequencing errors, metagenomic assembly needs to tolerate the uneven depth of coverage among organisms in a community and differences between nearly identical strains. Previous methods have addressed these issues by smoothing genomic variants. We present a variant-aware metagenomic scaffolder called MetaCarvel, which combines new strategies for repeat detection with graph analytics for the discovery of variants. We show that MetaCarvel can accurately reconstruct genomic segments from complex microbial mixtures and correctly identify and characterize several classes of common genomic variants.https://doi.org/10.1186/s13059-019-1791-

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Discovering Motifs in Ranked Lists of DNA Sequences

    Get PDF
    Computational methods for discovery of sequence elements that are enriched in a target set compared with a background set are fundamental in molecular biology research. One example is the discovery of transcription factor binding motifs that are inferred from ChIP–chip (chromatin immuno-precipitation on a microarray) measurements. Several major challenges in sequence motif discovery still require consideration: (i) the need for a principled approach to partitioning the data into target and background sets; (ii) the lack of rigorous models and of an exact p-value for measuring motif enrichment; (iii) the need for an appropriate framework for accounting for motif multiplicity; (iv) the tendency, in many of the existing methods, to report presumably significant motifs even when applied to randomly generated data. In this paper we present a statistical framework for discovering enriched sequence elements in ranked lists that resolves these four issues. We demonstrate the implementation of this framework in a software application, termed DRIM (discovery of rank imbalanced motifs), which identifies sequence motifs in lists of ranked DNA sequences. We applied DRIM to ChIP–chip and CpG methylation data and obtained the following results. (i) Identification of 50 novel putative transcription factor (TF) binding sites in yeast ChIP–chip data. The biological function of some of them was further investigated to gain new insights on transcription regulation networks in yeast. For example, our discoveries enable the elucidation of the network of the TF ARO80. Another finding concerns a systematic TF binding enhancement to sequences containing CA repeats. (ii) Discovery of novel motifs in human cancer CpG methylation data. Remarkably, most of these motifs are similar to DNA sequence elements bound by the Polycomb complex that promotes histone methylation. Our findings thus support a model in which histone methylation and CpG methylation are mechanistically linked. Overall, we demonstrate that the statistical framework embodied in the DRIM software tool is highly effective for identifying regulatory sequence elements in a variety of applications ranging from expression and ChIP–chip to CpG methylation data. DRIM is publicly available at http://bioinfo.cs.technion.ac.il/drim

    Faculty Publications and Creative Works 2001

    Get PDF
    One of the ways in which we recognize our faculty at the University of New Mexico is through Faculty Publications & Creative Works. An annual publication, it highlights our faculty\u27s scholarly and creative activities and achievements and serves as a compendium of UNM faculty efforts during the 2001 calendar year. Faculty Publications & Creative Works strives to illustrate the depth and breadth of research activities performed throughout our University\u27s laboratories, studios and classrooms. We believe that the communication of individual research is a significant method of sharing concepts and thoughts and ultimately inspiring the birth of new ideas. In support of this, UNM faculty during 2001 produced over 2,299* works, including 1,685 scholarly papers and articles, 69 books, 269 book chapters, 184 reviews, 86 creative works and 6 patented works. We are proud of the accomplishments of our faculty which are in part reflected in this book, which illustrates the diversity of intellectual pursuits in support of research and education at the University of New Mexico
    corecore