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Abstract
The minimizers sampling mechanism is a popular mechanism for string sampling introduced inde-
pendently by Schleimer et al. [SIGMOD 2003] and by Roberts et al. [Bioinf. 2004]. Given two positive
integers w and k, it selects the lexicographically smallest length-k substring in every fragment of w

consecutive length-k substrings (in every sliding window of length w + k − 1). Minimizers samples
are approximately uniform, locally consistent, and computable in linear time. Although they do
not have good worst-case guarantees on their size, they are often small in practice. They thus have
been successfully employed in several string processing applications. Two main disadvantages of
minimizers sampling mechanisms are: first, they also do not have good guarantees on the expected
size of their samples for every combination of w and k; and, second, indexes that are constructed
over their samples do not have good worst-case guarantees for on-line pattern searches.

To alleviate these disadvantages, we introduce bidirectional string anchors (bd-anchors), a new
string sampling mechanism. Given a positive integer ℓ, our mechanism selects the lexicographically
smallest rotation in every length-ℓ fragment (in every sliding window of length ℓ). We show that
bd-anchors samples are also approximately uniform, locally consistent, and computable in linear time.
In addition, our experiments using several datasets demonstrate that the bd-anchors sample sizes
decrease proportionally to ℓ; and that these sizes are competitive to or smaller than the minimizers
sample sizes using the analogous sampling parameters. We provide theoretical justification for these
results by analyzing the expected size of bd-anchors samples.

We also show that by using any bd-anchors sample, we can construct, in near-linear time, an
index which requires linear (extra) space in the size of the sample and answers on-line pattern
searches in near-optimal time. We further show, using several datasets, that a simple implementation
of our index is consistently faster for on-line pattern searches than an analogous implementation of
a minimizers-based index [Grabowski and Raniszewski, Softw. Pract. Exp. 2017].

Finally, we highlight the applicability of bd-anchors by developing an efficient and effective
heuristic for top-K similarity search under edit distance. We show, using synthetic datasets, that
our heuristic is more accurate and more than one order of magnitude faster in top-K similarity
searches than the state-of-the-art tool for the same purpose [Zhang and Zhang, KDD 2020].
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1 Introduction

The notion of minimizers, introduced independently by Schleimer et al. [57] and by Roberts
et al. [55], is a mechanism to sample a set of positions over an input string. The goal of
this sampling mechanism is, given a string T of length n over an alphabet Σ of size σ, to
simultaneously satisfy the following properties:
Property 1 (approximately uniform sampling): Every sufficiently long fragment of T has a

representative position sampled by the mechanism.
Property 2 (local consistency): Exact matches between sufficiently long fragments of T are

preserved unconditionally by having the same (relative) representative positions sampled
by the mechanism.

In most practical scenarios, sampling the smallest number of positions is desirable, as long
as Properties 1 and 2 are satisfied. This is because it leads to small data structures or
fewer computations. Indeed, the minimizers sampling mechanism satisfies the property of
approximately uniform sampling: given two positive integers w and k, it selects at least
one length-k substring in every fragment of w consecutive length-k substrings (Property
1). Specifically, this is achieved by selecting the starting positions of the smallest length-k
substrings in every (w + k− 1)-long fragment, where smallest is defined by a choice of a total
order on the universe of length-k strings. These positions are called the “minimizers”. Thus
from similar fragments, similar length-k substrings are sampled (Property 2). In particular,
if two strings have a fragment of length w + k − 1 in common, then they have at least one
minimizer corresponding to the same length-k substring. Let us denote by Mw,k(T ) the set
of minimizers of string T . The following example illustrates the sampling.

▶ Example 1. The setMw,k of minimizers for w = k = 3 for string T = aabaaabcbda (using
a 1-based index) is M3,3(T ) = {1, 4, 5, 6, 7} and for string Q = abaaa is M3,3(Q) = {3}.
Indeed Q occurs at position 2 in T ; and Q and T [2 . . 6] have the minimizers 3 and 4,
respectively, which both correspond to string aaa of length k = 3.

The minimizers sampling mechanism is very versatile, and it has been employed in various
ways in many different applications [45, 63, 19, 10, 30, 34, 35, 46, 36]. Since its inception,
the minimizers sampling mechanism has undergone numerous theoretical and practical
improvements [53, 10, 51, 50, 15, 21, 68, 36, 70] with a particular focus on minimizing the
size of the residual sample; see Section 6 for a summary on this line of research. Although
minimizers have been extensively and successfully used, especially in bioinformatics, we
observe several inherent problems with setting the parameters w and k. In particular,
although the notion of length-k substrings (known as k-mers or k-grams) is a widely-used
string processing tool, we argue that, in the context of minimizers, it may be causing many
more problems than it solves: it is not clear to us why one should use an extra sampling
parameter k to effectively characterize a fragment of length ℓ = w + k − 1 of T . In what
follows, we describe some problems that may arise when setting the parameters w and k.
Indexing: The most widely-used approach is to index the selected minimizers using a

hash table. The key is the selected length-k substring and the value is the list of
positions it occurs. If one would like to use length-k′ substrings for the minimizers with
ℓ = w +k−1 = w′ +k′−1, for some w′ ̸= w and k′ ̸= k, they should compute the new set
Mw′,k′(T ) of minimizers and construct their new index based on Mw′,k′ from scratch.

Querying: To the best of our knowledge, no index based on minimizers can return in optimal
or near-optimal time all occurrences of a pattern Q of length |Q| ≥ ℓ = w + k − 1 in T .

Sample Size: If one would like to minimize the number of selected minimizers, they should
consider different total orders on the universe of length-k strings, which may complicate
practical implementations, often scaling only up to a small k value, e.g. k = 16 [21]. On
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the other hand, when k is fixed and w increases, the length-k substrings in a fragment
become increasingly decoupled from each other, and that regardless of the total order
we may choose. Unfortunately, this interplay phenomenon is inherent to minimizers. It
is known that k ≥ logσ(w) + c, for a fixed constant c, is a necessary condition for the
existence of minimizers samples with expected size in O(n/w) [68]; see Section 6.

We propose the notion of bidirectional string anchors (bd-anchors) to alleviate these
disadvantages. The bd-anchors is a mechanism that drops the sampling parameter k and its
corresponding disadvantages. We only fix a parameter ℓ, which can be viewed as the length
w + k− 1 of the fragments in the minimizers sampling mechanism. The bd-anchor of a string
X of length ℓ is the lexicographically smallest rotation (cyclic shift) of X. We unambiguously
characterize this rotation by its leftmost starting position in string XX. The set Aℓ(T ) of
the order-ℓ bd-anchors of string T is the set of bd-anchors of all length-ℓ fragments of T . It
can be readily verified that bd-anchors satisfy Properties 1 and 2.

▶ Example 2. The set Aℓ(T ) of bd-anchors for ℓ = 5 for string T = aabaaabcbda (using
a 1-based index) is A5(T ) = {4, 5, 6, 11} and for string Q = abaaa, A5(Q) = {3}. Indeed
Q occurs at position 2 in T ; and Q and T [2 . . 6] have the bd-anchors 3 and 4, respectively,
which both correspond to the rotation aaaab.

Let us remark that string synchronizing sets, introduced by Kempa and Kociumaka [41],
is another string sampling mechanism which may be employed to resolve the disadvantages of
minimizers. Yet, it appears to be quite complicated to be efficient in practice. For instance,
in [20], the authors used a simplified and specific definition of string synchronizing sets to
design a space-efficient data structure for answering longest common extension queries.

We consider the word RAM model of computations with w-bit machine words, where
w = Ω(log n), for stating our results. We also assume throughout that string T is over
alphabet Σ = {1, 2, . . . , nO(1)}, which captures virtually any real-world scenario. We measure
space in terms of w-bit machine words. We make the following three specific contributions:

1. In Section 3 we state that the set Aℓ(T ), for any ℓ > 0 and any T of length n, can
be constructed in O(n) time; and that the expected size of Aℓ for strings of length
n, randomly generated by a memoryless source with identical letter probabilities, is in
O(n/ℓ), for any integer ℓ > 0 (proofs are deferred to the full version of our work). The
latter is in contrast to minimizers which achieve the expected bound of O(n/w) only
when k ≥ logσ w + c, for some constant c [68]. We then show, using five real datasets,
that indeed the size of Aℓ decreases proportionally to ℓ; that it is competitive to or
smaller than Mw,k, when ℓ = w + k − 1; and that it is much smaller than Mw,k for
small w values, which is practically important, as widely-used aligners that are based on
minimizers will require less space and computation time if bd-anchors are used instead.

2. In Section 4 we show an index based on Aℓ(T ), for any string T of length n and any
integer ℓ > 0, which answers on-line pattern searches in near-optimal time. In particular,
for any constant ϵ > 0, we show that our index supports the following trade-offs:

it occupies O(|Aℓ(T )|) extra space and reports all k occurrences of any pattern Q of
length |Q| ≥ ℓ given on-line in O(|Q|+ (k + 1) logϵ(|Aℓ(T )|)) time; or
it occupies O(|Aℓ(T )| logϵ(|Aℓ(T )|)) extra space and reports all k occurrences of any
pattern Q of length |Q| ≥ ℓ given on-line in O(|Q|+ log log(|Aℓ(T )|) + k) time.

We also show that our index can be constructed in O(n + |Aℓ(T )|
√

log(|Aℓ(T )|)) time.
We then show, using five real datasets, that a simple implementation of our index is
consistently faster in on-line pattern searches than an analogous implementation of the
minimizers-based index proposed by Grabowski and Raniszewski in [30].

ESA 2021
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3. In Section 5 we highlight the applicability of bd-anchors by developing an efficient and
effective heuristic for top-K similarity search under edit distance. This is a fundamental
and extensively studied problem [37, 9, 11, 44, 64, 67, 54, 61, 60, 17, 33, 65, 66] with
applications in areas including bioinformatics, databases, data mining, and information
retrieval. We show, using synthetic datasets, that our heuristic, which is based on the
bd-anchors index, is more accurate and more than one order of magnitude faster in top-K
similarity searches than the state-of-the-art tool proposed by Zhang and Zhang in [66].

In Section 2, we provide some preliminaries; and in Section 6 we discuss works related to
minimizers. Let us stress that, although other works may be related to our contributions, we
focus on comparing to minimizers because they are extensively used in applications.

2 Preliminaries

We start with some basic definitions and notation following [13]. An alphabet Σ is a finite
nonempty set of elements called letters. A string X = X[1] . . . X[n] is a sequence of length
|X| = n of letters from Σ. The empty string, denoted by ε, is the string of length 0. The
fragment X[i . . j] of X is an occurrence of the underlying substring S = X[i] . . . X[j]. We
also say that S occurs at position i in X. A prefix of X is a fragment of X of the form
X[1 . . j] and a suffix of X is a fragment of X of the form X[i . . n]. The set of all strings
over Σ (including ε) is denoted by Σ∗. The set of all length-k strings over Σ is denoted by
Σk. Given two strings X and Y , the edit distance dE(X, Y ) is the minimum number of edit
operations (letter insertion, deletion, or substitution) transforming one string into the other.

Let M be a finite nonempty set of strings over Σ of total length m. We define the trie
of M , denoted by TR(M), as a deterministic finite automaton that recognizes M . Its set
of states (nodes) is the set of prefixes of the elements of M ; the initial state (root node) is
ε; the set of terminal states (leaf nodes) is M ; and edges are of the form (u, α, uα), where
u and uα are nodes and α ∈ Σ. The size of TR(M) is thus O(m). The compacted trie of
M , denoted by CT(M), contains the root node, the branching nodes, and the leaf nodes of
TR(M). The term compacted refers to the fact that CT(M) reduces the number of nodes
by replacing each maximal branchless path segment with a single edge, and that it uses a
fragment of a string s ∈M to represent the label of this edge in O(1) machine words. The
size of CT(M) is thus O(|M |). When M is the set of suffixes of a string Y , then CT(M) is
called the suffix tree of Y , and we denote it by ST(Y ). The suffix tree of a string of length n

over an alphabet Σ = {1, . . . , nO(1)} can be constructed in O(n) time [22].
Let us fix throughout a string T = T [1 . . n] of length |T | = n over an ordered alphabet Σ.

Recall that we make the standard assumption of an integer alphabet Σ = {1, 2, . . . , nO(1)}.
We start by defining the notion of minimizers of T from [55] (the definition in [57] is

slightly different). Given an integer k > 0, an integer w > 0, and the ith length-(w + k − 1)
fragment F = T [i . . i + w + k − 2] of T , we define the (w, k)-minimizers of F as the
positions j ∈ [i, i + w) where a lexicographically minimal length-k substring of F occurs.
The set Mw,k(T ) of (w, k)-minimizers of T is defined as the set of (w, k)-minimizers of
T [i . . i + w + k − 2], for all i ∈ [1, n − w − k + 2]. The density of Mw,k(T ) is defined as
the quantity |Mw,k(T )|/n. The following bounds are obtained trivially. The density of any
minimizer scheme is at least 1/w, since at least one (w, k)-minimizer is selected in each
fragment, and at most 1, when every (w, k)-minimizer is selected.

If we waive the lexicographic order assumption, the setMw,k(T ) can be computed on-line
in O(n) time, and if we further assume a constant-time computable function that gives us an
arbitrary rank for each length-k substring in Σk in constant amortized time [36]. This can be
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implemented, for instance, using a rolling hash function (e.g. Karp-Rabin fingerprints [39]),
and the rank (total order) is defined by this function. We also provide here, for completeness,
a simple off-line O(n)-time algorithm that uses a lexicographic order.

▶ Theorem 3. The set Mw,k(T ), for any integers w, k > 0 and any string T of length n,
can be constructed in O(n) time.

Proof. The underlying algorithm has two main steps. In the first step, we construct ST(T ),
the suffix tree of T in O(n) time [22]. Using a depth-first search traversal of ST(T ) we assign
at every position of T in [1, n− k + 1] the lexicographic rank of T [i . . i + k− 1] among all the
length-k strings occurring in T . This process clearly takes O(n) time as ST(T ) is an ordered
structure; it yields an array R of size n− k + 1 with lexicographic ranks. In the second step,
we apply a folklore algorithm, which computes the minimum elements in a sliding window of
size w (cf. [36]) over R. The set of reported indices is Mw,k(T ). ◀

3 Bidirectional String Anchors

We introduce the notion of bidirectional string anchors (bd-anchors). Given a string W ,
a string R is a rotation (or cyclic shift or conjugate) of W if and only if there exists a
decomposition W = UV such that R = V U , for a string U and a nonempty string V . We
often characterize R by its starting position |U | + 1 in WW = UV UV . We use the term
rotation interchangeably to refer to string R or to its identifier (|U |+ 1).

▶ Definition 4 (Bidirectional anchor). Given a string X of length ℓ > 0, the bidirectional
anchor (bd-anchor) of X is the lexicographically minimal rotation j ∈ [1, ℓ] of X with minimal
j. The set of order-ℓ bd-anchors of a string T of length n > ℓ, for some integer ℓ > 0, is
defined as the set Aℓ(T ) of bd-anchors of T [i . . i + ℓ− 1], for all i ∈ [1, n− ℓ + 1].

The density of Aℓ(T ) is defined as the quantity |Aℓ(T )|/n. It can be readily verified that
the bd-anchors sampling mechanism satisfies Properties 1 (approximately uniform sampling)
and 2 (local consistency).

Construction and Size of Aℓ. We show that Aℓ admits an efficient construction. One can
use the linear-time algorithm by Booth [6] to compute the lexicographically minimal rotation
for each length-ℓ fragment of T , resulting in an O(nℓ)-time algorithm, which is reasonably
fast for modest ℓ. (Booth’s algorithm gives the leftmost minimal rotation by construction.)
We can instead design an optimal O(n)-time algorithm for the construction of Aℓ, which is
mostly of theoretical interest, via employing some elementary combinatorial observations
and the data structure proposed by Kociumaka in [42, Theorem 20].

▶ Theorem 5. The set Aℓ(T ), for any integer ℓ > 0 and any string T of length n, can be
constructed in O(n) time.

We can also show that the expected size of Aℓ(T ) is in O(n/ℓ) via observing that Aℓ(T ) is
expected to have many common elements with Mw,k(T ), for certain values of w and k.

▶ Theorem 6. If T is a string of length n, randomly generated by a memoryless source with
identical letter probabilities, then, for any integer ℓ > 0, the expected size of Aℓ(T ) is in
O(n/ℓ).

We defer the proofs of Theorems 5 and 6 to the full version of our work.

ESA 2021
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(a) DNA.
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(b) XML.
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(c) ENGLISH.
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Figure 1 Density vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

Density Evaluation. We compare the density of bd-anchors, denoted by BDA, to the
density of minimizers, for different values of w and k such that ℓ = w + k − 1. This is a
fair comparison because ℓ = w + k − 1 is the length of the fragments considered by both
mechanisms. We implemented bd-anchors, the standard minimizers mechanism from [55],
and the minimizers mechanism with robust winnowing from [57], which are referred to as
STD and WIN, respectively.

For bd-anchors, we used Booth’s algorithm, which is easy to implement and reasonably fast.
For minimizers, we used Karp-Rabin fingerprints [39]. (Note that such “random” minimizers
tend to perform even better than the ones based on lexicographic total order in terms of
density [68].) Throughout, we do not evaluate construction times, as all implementations are
reasonably fast, and we make the standard assumption that preprocessing is only required
once. We used five string datasets from the popular Pizza & Chili corpus [24] (see Table 1
for the datasets characteristics). All implementations referred to in this paper have been
written in C++ and compiled at optimization level -O3. All experiments reported in this
paper were conducted using a single core of an AMD Opteron 6386 SE 2.8GHz CPU and
252GB RAM running GNU/Linux.

As can be seen by the results depicted in Figure 1, the density of bd-anchors is either
significantly smaller than or competitive to the STD and WIN minimizers density, especially
for small w. This is useful because a lower density results in smaller indexes and less
computation (see Section 4), and because small w is of practical interest (see Section 5). For
instance, the widely-used long-read aligner Minimap2 [46] stores the selected minimizers of
a reference genome in a hash table to find exact matches as anchors for seed-and-extend
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Table 1 Datasets characteristics.

Dataset Length Alphabet
n size |Σ|

DNA 200,000,000 4
XML 200,000,000 95

ENGLISH 200,000,000 224
PROTEINS 200,000,000 27
SOURCES 200,000,000 229

alignment. The parameters w and k are set based on the required sensitivity of the alignment,
and thus w and k cannot be too large for high sensitivity. Thus, a lower sampling density
reduces the size of the hash table, as well as the computation time, by lowering the average
number of selected minimizers to consider when performing an alignment.

There exists a long line of research on improving the density of minimizers in special
regimes (see Section 6 for details). We stress that most of these algorithms are designed,
implemented, or optimized, only for the DNA alphabet. We have tested against two state-of-
the-art tools employing such algorithms: Miniception [68] and PASHA [21]. The former did
not give better results than STD or WIN for the tested values of w and k; and the latter
does not scale beyond k = 16 or with large alphabets. We have thus omitted these results.

We next report the average number (AVG) of bd-anchors of order ℓ ∈ {4, 8, 12, 16} over
all strings of length n = 20 (see Table 2a) and over all strings of length n = 32 (see Table 2b),
both over a binary alphabet. The results suggest that 2 may be a valid constant in O(n/ℓ).
As expected, the analogous AVG values using a ternary alphabet (not reported) were always
lower than the corresponding ones with a binary alphabet.

Table 2 Average number of bd-anchors for varying ℓ and: (a) n = 20 and (b) n = 32.

(a)

(n, ℓ) (20, 4) (20, 8) (20, 12) (20, 16)
2n/ℓ 10 5 3.33 2.5
AVG 8.53 4.37 2.77 1.76

(b)

(n, ℓ) (32, 4) (32, 8) (32, 12) (32, 16)
2n/ℓ 16 8 5.33 4
AVG 14.16 7.67 5.26 3.85

4 Indexing Using Bidirectional Anchors

Before presenting our index, let us start with a basic definition that is central to our querying
process.

▶ Definition 7 ((α, β)-hit). Given an order-ℓ bd-anchor jQ ∈ Aℓ(Q), for some integer ℓ > 0,
of a query string Q, two integers α > 0, β > 0, with α + β ≥ ℓ + 1, and an order-ℓ bd-anchor
jT ∈ Aℓ(T ) of a target string T , the ordered pair (jQ, jT ) is called an (α, β)-hit if and only
if T [jT − α + 1 . . jT ] = Q[jQ − α + 1 . . jQ] and T [jT . . jT + β − 1] = Q[jQ . . jQ + β − 1].

Intuitively, the parameters α and β let us choose a fragment of Q that is anchored at jQ.
We would like to construct a data structure over T , which is based on Aℓ(T ), such

that, when we are given an order-ℓ bd-anchor jQ over Q as an on-line query, together with
parameters α and β, we can report all (α, β)-hits efficiently. To this end, we present an
efficient data structure, denoted by Iℓ(T ), which is constructed on top of T , and answers
(α, β)-hit queries in near-optimal time. We prove the following result.

▶ Theorem 8. Given a string T of length n and an integer ℓ > 0, the Iℓ(T ) index can be
constructed in O(n + |Aℓ(T )|

√
log(|Aℓ(T )|)) time. For any constant ϵ > 0, Iℓ(T ):

occupies O(|Aℓ(T )|) extra space and reports all k (α, β)-hits in O(α + β + (k +
1) logϵ(|Aℓ(T )|)) time; or
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occupies O(|Aℓ(T )| logϵ(|Aℓ(T )|)) extra space and reports all k (α, β)-hits in O(α + β +
log log(|Aℓ(T )|) + k) time.

Let us denote by ←−X = X[|X|] . . . X[1] the reversal of string X. We now describe our data
structure.

Construction of Iℓ(T ). Given Aℓ(T ), we construct two sets SL
ℓ (T ) and SR

ℓ (T ) of strings;
conceptually, the reversed suffixes going left from j to 1, and the suffixes going right from
j to n, for all j in Aℓ(T ). In particular, for the bd-anchor j, we construct two strings:
←−−−−−
T [1 . . j] ∈ SL

ℓ (T ) and T [j . . n] ∈ SR
ℓ (T ). Note that, |SL

ℓ (T )| = |SR
ℓ (T )| = |Aℓ(T )|, since for

every bd-anchor in Aℓ(T ) we have a distinct string in SL
ℓ (T ) and in SR

ℓ (T ).
We construct two compacted tries T L

ℓ (T ) and T R
ℓ (T ) over SL

ℓ (T ) and SR
ℓ (T ), respectively,

to index all strings. Every string is concatenated with some special letter $ not occurring
in T , which is lexicographically minimal, to make SL

ℓ (T ) and SR
ℓ (T ) prefix-free (this is

standard for conceptual convenience). The leaf nodes of the compacted tries are labeled
with the corresponding j: there is a one-to-one correspondence between a leaf node and a
bd-anchor j. In O(|Aℓ(T )|) time, we also enhance the nodes of the tries with a perfect static
dictionary [26] to ensure constant-time retrieval of edges by the first letter of their label. Let
LL

ℓ (T ) denote the list of the leaf labels of T L
ℓ (T ) as they are visited using a depth-first search

traversal. LL
ℓ (T ) corresponds to the (labels of the) lexicographically sorted list of SL

ℓ (T )
in increasing order. For each node u in T L

ℓ (T ), we also store the corresponding interval
[xu, yu] over LL

ℓ (T ). Analogously for R, LR
ℓ (T ) denotes the list of the leaf labels of T R

ℓ (T )
as they are visited using a depth-first search traversal and corresponds to the (labels of the)
lexicographically sorted list of SR

ℓ (T ) in increasing order. For each node v in T R
ℓ (T ), we also

store the corresponding interval [xv, yv] over LR
ℓ (T ).

The total size occupied by the tries is Θ(|Aℓ(T )|) because they are compacted: we label
the edges with intervals over [1, n] from T .

We also construct a 2D range reporting data structure over the following points in set
Rℓ(T ):

(x, y) ∈ Rℓ(T ) ⇐⇒ LL
ℓ (T )[x] = LR

ℓ (T )[y].

Note that |Rℓ(T )| = |Aℓ(T )| because the set of leaf labels stored in both tries is precisely
the set Aℓ(T ). Let us remark that the idea of employing 2D range reporting for bidirectional
pattern searches has been introduced by Amir et al. [2] for text indexing and dictionary
matching with one error; see also [47].

This completes the construction of Iℓ(T ). We next explain how we can query Iℓ(T ).

Querying. Given a bd-anchor jQ over a string Q as an on-line query and parameters
α, β > 0, we spell

←−−−−−−−−−−−−−
Q[jQ − α + 1 . . jQ] in T L

ℓ (T ) and Q[jQ . . jQ + β − 1] in T R
ℓ (T ) starting

from the root nodes. If any of the two strings is not spelled fully, we return no (α, β)-
hits. If both strings are fully spelled, we arrive at node u in T L

ℓ (T ) (resp. v in T R
ℓ (T )),

which corresponds to an interval over LL
ℓ (T ) stored in u (resp. LR

ℓ (T ) in v). We obtain the
two intervals [xu, yu] and [xv, yv] forming a rectangle and ask the corresponding 2D range
reporting query. It can be readily verified that this query returns all (α, β)-hits.

▶ Example 9. Let T = aabaaabcbda and A5(T ) = {4, 5, 6, 11}. We have the following
strings in SL(T ):

←−−−−−
T [1 . . 4] = abaa;

←−−−−−
T [1 . . 5] = aabaa;

←−−−−−
T [1 . . 6] = aaabaa; and

←−−−−−−
T [1 . . 11] =

adbcbaaabaa. We have the following strings in SR(T ): T [4 . . 11] = aaabcbda; T [5 . . 11] =
aabcbda; T [6 . . 11] = abcbda; T [11 . . 11] = a. Inspect Figure 2.
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(b) Querying abaaa.

Figure 2 Let T = aabaaabcbda and ℓ = 5. Further let Q = aacabaaaae, the bd-anchor 6 ∈ A5(Q)
of order 5 corresponding to Q[4 . . 8], α = 3 and β = 3. The figure illustrates the Iℓ(T ) index and
how we find that Q[4 . . 8] = T [2 . . 5] = abaaa: the fragment T [2 . . 5] is anchored at position 4.

Proof of Theorem 8. We use the O(n)-time algorithm underlying Theorem 5 to construct
Aℓ(T ). We use the O(n)-time algorithm from [3, 8] to construct the compacted tries from
Aℓ(T ). We extract the |Aℓ(T )| points (x, y) ∈ Rℓ(T ) using the compacted tries in O(|Aℓ(T )|)
time. For the first trade-off of the statement, we use the O(|Aℓ(T )|

√
log(|Aℓ(T )|))-time

algorithm from [5] to construct the 2D range reporting data structure over Rℓ(T ) from [7].
For the second trade-off, we use the O(|Aℓ(T )|

√
log(|Aℓ(T )|))-time algorithm from [28] to

construct the 2D range reporting data structure over Rℓ(T ) from the same paper. ◀

We obtain the following corollary for the fundamental problem of text indexing [62, 48,
22, 38, 23, 31, 32, 4, 12, 52, 41, 27].

▶ Corollary 10. Given Iℓ(T ) constructed for some integer ℓ > 0 and some constant ϵ > 0
over string T , we can report all k occurrences of any pattern Q, |Q| ≥ ℓ, in T in time:
O(|Q|+ (k + 1) logϵ(|Aℓ(T )|)) when Iℓ(T ) occupies O(|Aℓ(T )|) extra space; or
O(|Q|+ log log(|Aℓ(T )|) + k) when Iℓ(T ) occupies O(|Aℓ(T )| logϵ(|Aℓ(T )|)) extra space.

Proof. Every occurrence of Q in T is prefixed by string P = Q[1 . . ℓ]. We first compute the
bd-anchor of P in O(ℓ) time using Booth’s algorithm. Let this bd-anchor be j. We set α = j

and β = |Q| − j + 1. The result follows by applying Theorem 8. ◀

Index Evaluation. Consider a hash table with the following (key, value) pairs: the key is the
hash value h(S) of a length-k string S; and the value (satellite data) is a list of occurrences
of S in T . It should be clear that such a hash table indexing the minimizers of T does not
perform well for on-line pattern searches of arbitrary length because it would need to verify
the remaining prefix and suffix of the pattern using letter comparisons for all occurrences of
a minimizer in T . We thus opted for comparing our index to the one of [30], which addresses
this specific problem by sampling the suffix array [48] with minimizers to reduce the number
of letter comparisons during verification.

To ensure a fair comparison, we have implemented the basic index from [30]; we denote
it by GR Index. We used Karp-Rabin [39] fingerprints for computing the minimizers of T .
We also used the array-based version of the suffix tree that consists of the suffix array (SA)
and the longest common prefix (LCP) array [48]; SA was constructed using SDSL [29] and
the LCP array using the Kasai et al. [40] algorithm.
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We sampled the SA using the minimizers. Given a pattern Q, we searched Q[j . . |Q|]
starting with the minimizer Q[j . . j + k − 1] using the Manber and Myers [48] algorithm
on the sampled SA. For verifying the remaining prefix Q[1 . . j − 1] of Q, we used letter
comparisons, as described in [30]. The space complexity of this implementation is O(n)
and the extra space for the index is O(|Mw,k(T )|). The query time is not bounded. We
have implemented two versions of our index. We used Booth’s algorithm for computing the
bd-anchors of T . We used SDSL for SA construction and the Kasai et al. algorithm for LCP
array construction. We sampled the SA using the bd-anchors thus constructing LL

ℓ (T ) and
LR

ℓ (T ). Then, the two versions of our index are:
1. BDA Index v1: Let j be the bd-anchor of Q[1 . . ℓ]. For

←−−−−−
Q[1 . . j] (resp. Q[j . . |Q|]) we used

the Manber and Myers algorithm for searching over LL
ℓ (T ) (resp. LR

ℓ (T )). We used range
trees [14] implemented in CGAL [59] for 2D range reporting as per the described querying
process. The space complexity of this implementation is O(n + |Aℓ(T )| log(|Aℓ(T )|))
and the extra space for the index is O(|Aℓ(T )| log(|Aℓ(T )|)). The query time is O(|Q|+
log2(|Aℓ(T )|) + k), where k is the total number of occurrences of Q in T .

2. BDA Index v2: Let j be the bd-anchor of Q[1 . . ℓ]. If |Q|−j +1 ≥ j (resp. |Q|−j +1 < j),
we search for Q[j . . |Q|] (resp.

←−−−−−
Q[1 . . j]) using the Manber and Myers algorithm on LR

ℓ (T )
(resp. LL

ℓ (T )). For verifying the remaining part of the pattern we used letter comparisons.
The space complexity of this implementation is O(n) and the extra space for the index is
O(|Aℓ(T )|). The query time is not bounded.

For each of the five real datasets of Table 1 and each query string length ℓ, we randomly
extracted 500,000 substrings from the text and treated each substring as a query, following [30].
We plot the average query time in Figure 3. As can be seen, BDA Index v2 consistently
outperforms GR Index across all datasets and all ℓ values. The better performance of BDA
Index v2 is due to two theoretical reasons. First, the verification strategy exploits the fact
that the index is bidirectional to apply the Manber and Myers algorithm to the largest part
of the pattern, which results in fewer letter comparisons. Second, bd-anchors generally have
smaller density compared to minimizers; see Figure 4. We also plot the peak memory usage
in Figure 5. As can be seen, BDA Index v2 requires a similar amount of memory to GR Index.

BDA Index v1 was slower than GR Index for small ℓ but faster for large ℓ in three out of five
datasets used and had by far the highest memory usage. Let us stress that the inefficiency of
BDA Index v1 is not due to inefficiency in the query time or space of our algorithm. It is
merely because the range tree implementation of CGAL, which is a standard off-the-shelf
library, is unfortunately inefficient in terms of both query time and memory usage; see
also [58, 25]. As BDA Index v2 was very efficient in all aspects, we defer the investigation of
alternative range tree implementations [58] for BDA Index v1 to the full version of our work.

Discussion. The proposed Iℓ(T ) index, which is based on bd-anchors, has the following
attributes:
1. Construction: Aℓ(T ) is constructed in O(n) worst-case time and Iℓ(T ) is constructed in
O(n + |Aℓ(T )|

√
log(|Aℓ(T )|)) worst-case time. These time complexities are near-linear in

n and do not depend on the alphabet Σ as long as |Σ| = nO(1), which is true for virtually
any real scenario.

2. Index Size: By Theorem 8, Iℓ(T ) can occupy O(|Aℓ(T )|) space. By Theorem 6, the size
of Aℓ(T ) is O(n/ℓ) in expectation and so Iℓ(T ) can also be of size O(n/ℓ). In practice
this depends on T and on the implementation of the 2D range reporting data structure.

3. Querying: The Iℓ(T ) index answers on-line pattern searches in near-optimal time.
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(a) DNA. (b) XML.

(c) ENGLISH. (d) PROTEINS.

(e) SOURCES.

Figure 3 Average query time (ms) vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

4. Flexibility: Note that one would have to reconstruct a (hash-based) index, which
indexes the set of (w, k)-minimizers, to increase specificity or sensitivity: increasing k

increases the specificity and decreases the sensitivity. Our Iℓ(T ) index, conceptually
truncated at string depth k, is essentially an index based on (w, k)-minimizers, which
additionally wrap around. We can thus increase specificity by considering larger α, β

values or increase sensitivity by considering smaller α, β values. This effect can be realized
without reconstructing our Iℓ(T ) index: we just adapt α and β upon querying accordingly.

5 Top-K Similarity Search under Edit Distance

We show how bd-anchors can be applied to speed up similarity search under edit distance.
This is a fundamental problem with myriad applications in bioinformatics, databases, data
mining, and information retrieval. It has thus been studied extensively in the literature both
from a theoretical and a practical point of view [37, 9, 11, 44, 64, 67, 54, 61, 60, 17, 33, 65, 66].
Let D be a collection of strings called dictionary. We focus, in particular, on indexing D for
answering the following type of top-K queries: Given a query string Q and an integer K, return
K strings from the dictionary that are closest to Q with respect to edit distance. We follow a
typical seed-chain-align approach as used by several bioinformatics applications [1, 16, 45, 46].
The main new ingredients we inject, with respect to this classic approach, is that we use: (1)
bd-anchors as seeds; and (2) Iℓ to index the dictionary D, for some integer parameter ℓ > 0.

Construction. We require an integer parameter ℓ > 0 defining the order of the bd-anchors.
We set T = S1 . . . S|D|, where Si ∈ D, compute the bd-anchors of order ℓ of T , and construct
the Iℓ(T ) index (see Section 4) using the bd-anchors.
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(a) DNA. (b) XML.

(c) ENGLISH. (d) PROTEINS.

(e) SOURCES.

Figure 4 Density vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

Querying. We require two parameters τ ≥ 0 and δ ≥ 0. The former parameter controls
the sensitivity of our filtering step (Step 2 below); and the latter one controls the sensitivity
of our verification step (Step 3 below). Both parameters trade accuracy for speed.

1. For each query string Q, we compute the bd-anchors of order ℓ. For every bd-anchor jQ,
we take an arbitrary fragment (e.g. the leftmost) of length ℓ anchored at jQ as the seed.
Let this fragment start at position iQ. This implies a value for α and β, with α+β = ℓ+1;
specifically for Q[iQ . . iQ + ℓ−1] we have Q[iQ . . jQ] = Q[jQ−α+1 . . jQ] and Q[jQ . . iQ +
ℓ − 1] = Q[jQ . . jQ + β − 1]. For every bd-anchor jQ, we query

←−−−−−−−−−−−−−
Q[jQ − α + 1 . . jQ] in

T L
ℓ (T ) and Q[jQ . . jQ + β − 1] in T R

ℓ (T ) and collect all (α, β)-hits.

2. Let τ ≥ 0 be an input parameter and let LQ,S = (q1, s1), . . . , (qk, sh) be the list of all
(α, β)-hits between the queried fragments of string Q and fragments of a string S ∈ D.
If h < τ , we consider string S as not found. The intuition here is that if Q and S are
sufficiently close with respect to edit distance, they would have a relatively long LQ,S [16].
If h ≥ τ , we sort the elements of LQ,S with respect to their first component. (This
comes for free because we process Q from left to right.) We then compute a longest
increasing subsequence (LIS) in LQ,S with respect to the second component, which chains
the (α, β)-hits, in O(h log h) time [56] per LQ,S list. We use the LIS of LQ,S to estimate
the identity score (total number of matching letters in a fixed alignment) for Q and S,
which we denote by EQ,S , based on the occurrences of the (α, β)-hits in the LIS.
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(a) DNA. (b) XML.

(c) ENGLISH. (d) PROTEINS.

(e) SOURCES.

Figure 5 Peak memory usage (GB) vs. w, k for ℓ = w + k − 1 and the datasets of Table 1.

3. Let δ ≥ 0 be an input parameter and let EK be the Kth largest estimated identity score.
We extract, as candidates, the ones whose estimated identity score is at least EK − δ.
For every candidate string S, we close the gaps between the occurrences of the (α, β)-hits
in the LIS using dynamic programming [43], thus computing an upper bound on the edit
distance between Q and S (UB score). In particular, closing the gaps consists in summing
up the exact edit distance for all pairs of fragments (one from S and one from Q) that
lie in between the (α, β)-hits. We return K strings from the list of candidates with the
lowest UB score. If δ = 0, we return K strings with the highest EQ,S score.

Index Evaluation. We compared our algorithm, called BDA Search, to Min Search, the
state-of-the-art tool for top-K similarity search under edit distance proposed by Zhang and
Zhang in [66]. The main concept used in Min Search is the rank of a letter in a string, defined
as the size of the neighborhood of the string in which the letter has the minimum hash value.
Based on this concept, Min Search partitions each string in the dictionary D into a hierarchy
of substrings and then builds an index comprised of a set of hash tables, so that strings
having common substrings and thus small edit distance are grouped into the same hash table.
To find the top-K closest strings to a query string, Min Search partitions the query string
based on the ranks of its letters and then traverses the hash tables comprising the index.
Thanks to the index and the use of several filtering tricks, Min Search is at least one order of
magnitude faster with respect to query time than popular alternatives [65, 67, 18].
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We implemented two versions of BDA Search: BDA Search v1 which is based on BDA
Index v1; and BDA Search v2 which is based on BDA Index v2. For Min Search, we used the
C++ implementation from https://github.com/kedayuge/Search.

We constructed synthetic datasets, referred to as SYN, in a way that enables us to study
the impact of different parameters and efficiently identify the ground truth (top-K closest
strings to a query string with respect to edit distance). Specifically, we first generated 50
query strings and then constructed a cluster of K strings around each query string. To
generate the query strings, we started from an arbitrary string Q of length |Q| = 1000 from
a real dataset of protein sequences, used in [66], and generated a string Q′ that is at edit
distance e from Q, by performing e edit distance operations, each with equal probability.
Then, we treated Q′ as Q and repeated the process to generate the next query string. To
create the clusters, we first added each query string into an initially empty cluster and then
added K − 1 strings, each at edit distance at most e′ < e from the query string. The strings
were generated by performing at most e′ edit distance operations, each with equal probability.
Thus, each cluster contains the top-K closest strings to the query string of the cluster. We
used K ∈ {5, 10, 15, 20, 25}, d = e

|Q| ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, and d′ = e′

|Q| = d− 0.05. We
evaluated query answering accuracy using the F1 score [49], expressed as the harmonic mean
of precision and recall1. For BDA Search, we report results for τ = 0 (full sensitivity during
filtering) and δ = 0 (no sensitivity during verification), as it was empirically determined to
be a reasonable trade-off between accuracy and speed. For Min Search, we report results
using its default parameters from [66].

We plot the F1 scores and average query time in Figures 6 and 7, respectively. All methods
achieved almost perfect accuracy, in all tested cases. BDA Search slightly outperformed Min
Search (by up to 1.1%), remaining accurate even for large ℓ; the changes to F1 score for
Min Search as ℓ varies are because the underlying method is randomized. However, both
versions of BDA Search were more than one order of magnitude faster than Min Search on
average (over all results of Figure 7), with BDA Search v1 being 2.9 times slower than BDA
Search v2 on average, due to the inefficiency of the range tree implementation of CGAL.
Furthermore, both versions of BDA Search scaled better with respect to K. For example,
the average query time for BDA Search v1 became 2 times larger when K increased from
5 to 25 (on average over ℓ values), while that for Min Search became 5.4 times larger on
average. The reason is that verification in Min Search, which increases the accuracy of this
method, becomes increasingly expensive as K gets larger. The peak memory usage for these
experiments is reported in Figure 8. Although Min Search outperforms BDA Search in terms
of memory usage, BDA Search v2 still required a very small amount of memory (less than
1GB). BDA Search v1 required more memory for the reasons mentioned in Section 4.

Discussion. BDA Search outperforms Min Search in accuracy while being more than one
order of magnitude faster in query time. These results are very encouraging because the
efficiency of BDA Search is entirely due to injecting bd-anchors and not due to any further
filtering tricks such as those employed by Min Search. Min Search clearly outperforms BDA
Search in memory usage, albeit the memory usage of BDA Search v2 is still quite modest.
We defer an experimental evaluation using real datasets to the full version of our work.

1 Precision is the ratio between the number of returned strings that are among the top-K closest strings
to a query string and the number of all returned strings. Recall is the ratio between the number of
returned strings that are among the top-K closest strings to a query string and K. Since all tested
algorithms return K strings, the F1 score in our experiments is equal to precision and equal to recall.

https://github.com/kedayuge/Search
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(a) SYN. (b) SYN.

Figure 6 F1 score vs. (a) d, d′, ℓ, for K = 20, and (b) ℓ, K, for d = 0.15 and d′ = 0.1.

(a) SYN. (b) SYN.

Figure 7 Average query time (ms) vs. (a) d, d′, ℓ, for K = 20, and (b) ℓ, K, for d = 0.15 and
d′ = 0.1.

6 Other Works on Improving Minimizers

Although every sampling mechanism based on minimizers primarily aims at satisfying
Properties 1 and 2, different mechanisms employ total orders that lead to substantially
different total numbers of selected minimizers. Thus, research on minimizers has focused on
determining total orders which lead to the lowest possible density (recall that the density is
defined as the number of selected length-k substrings over the length of the input string).
In fact, much of the literature focuses on the average case [53, 51, 50, 21, 68]; namely, the
lowest expected density when the input string is random. In practice, many works use a
“random minimizer” where the order is defined by choosing a permutation of all the length-k
strings at random (e.g., by using a hash function, such as the Karp-Rabin fingerprints [39],
on the length-k strings). Such a randomized mechanism has the benefit of being easy to
implement and providing good expected performance in practice.

Minimizers and Universal Hitting Sets. A universal hitting set (UHS) is an unavoidable
set of length-k strings, i.e., it is a set of length-k strings that “hits” every (w + k − 1)-long
fragment of every possible string. The theory of universal hitting sets [53, 50, 41, 69] plays
an important role in the current theory for minimizers with low density on average. In
particular, if a UHS has small size, it generates minimizers with a provable upper-bound on
their density. However, UHSs are less useful in the string-specific case for two reasons [70]:
(1) the requirement that a UHS has to hit every (w + k − 1)-long fragment of every possible
string is too strong; and (2) UHSs are too large to provide a meaningful upper-bound on
the density in the string-specific case. Therefore, since in many practical scenarios the input
string is known and does not change frequently, we try to optimize the density for one
particular string instead of optimizing the average density over a random input.
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(a) SYN. (b) SYN.

Figure 8 Peak memory usage (GB) vs. (a) d, d′, ℓ, for K = 20, and (b) ℓ, K, for d = 0.15 and
d′ = 0.1.

String-Specific Minimizers. In the string-specific case, minimizers sampling mechanisms
may employ frequency-based orders [10, 36]. In these orders, length-k strings occurring
less frequently in the string compare less than the ones occurring more frequently. The
intuition [70] is to obtain a sparse sampling by selecting infrequent length-k strings which
should be spread apart in the string. However, there is no theoretical guarantee that a
frequency-based order gives low density minimizers (there are many counter-examples).
Furthermore, frequency-based orders do not always give minimizers with lower density in
practice. For instance, the two-tier classification (very frequent vs. less frequent length-k
strings) in the work of [36] outperforms an order that strictly follows frequency of occurrence.

A different approach to constructing string-specific minimizers is to start from a UHS
and to remove elements from it, as long as it still hits every (w + k− 1)-long fragment of the
input string [15]. Since this approach starts with a UHS that is not related to the string,
the improvement in density may not be significant [70]. Additionally, current methods [21]
employing this approach are computationally limited to using k ≤ 16, as the size of the UHS
increases exponentially with k. Using such small k values may not be appropriate in some
applications.

Other Improvements. When k ≈ w, minimizers with expected density of 1.67/w + o(1/w)
on a random string can be constructed using the approach of [68]. Such minimizers have
guaranteed expected density less than 2/(w + 1) and work for infinitely many w and k. The
approach of [68] also does not require the use of expensive heuristics to precompute and store
a large set of length-k strings, unlike some methods [53, 15, 21] with low density in practice.

The notion of polar set, which can be seen as complementary to that of UHS, was
recently introduced in [70]. While a UHS is a set of length-k strings that intersect with
every (w + k − 1)-long fragment at least once, a polar set is a set of length-k strings that
intersect with any fragment at most once. The construction of a polar set builds upon sets of
length-k strings that are sparse in the input string. Thus, the minimizers derived from these
polar sets have provably tight bounds on their density. Unfortunately, computing optimal
polar sets is NP-hard, as shown in [70]. Thus, the work of [70] also proposed a heuristic for
computing feasible “good enough” polar sets. A main disadvantage of this approach is that
when each length-k string occurs frequently in the input string, it becomes hard to select
many length-k strings without violating the polar set condition.
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