2,214 research outputs found

    Algorithms for the power-p Steiner tree problem in the Euclidean plane

    Get PDF
    We study the problem of constructing minimum power-pp Euclidean kk-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most kk additional nodes (Steiner points) may be introduced anywhere in the plane. The cost of an edge is its length to the power of pp (where p1p\geq 1), and the cost of a network is the sum of all edge costs. We propose two heuristics: a ``beaded" minimum spanning tree heuristic; and a heuristic which alternates between minimum spanning tree construction and a local fixed topology minimisation procedure for locating the Steiner points. We show that the performance ratio κ\kappa of the beaded-MST heuristic satisfies 3p1(1+21p)κ3(2p1)\sqrt{3}^{p-1}(1+2^{1-p})\leq \kappa\leq 3(2^{p-1}). We then provide two mixed-integer nonlinear programming formulations for the problem, and extend several important geometric properties into valid inequalities. Finally, we combine the valid inequalities with warm-starting and preprocessing to obtain computational improvements for the p=2p=2 case

    The Unreasonable Success of Local Search: Geometric Optimization

    Full text link
    What is the effectiveness of local search algorithms for geometric problems in the plane? We prove that local search with neighborhoods of magnitude 1/ϵc1/\epsilon^c is an approximation scheme for the following problems in the Euclidian plane: TSP with random inputs, Steiner tree with random inputs, facility location (with worst case inputs), and bicriteria kk-median (also with worst case inputs). The randomness assumption is necessary for TSP

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    Concurrent Geometric Multicasting

    Full text link
    We present MCFR, a multicasting concurrent face routing algorithm that uses geometric routing to deliver a message from source to multiple targets. We describe the algorithm's operation, prove it correct, estimate its performance bounds and evaluate its performance using simulation. Our estimate shows that MCFR is the first geometric multicast routing algorithm whose message delivery latency is independent of network size and only proportional to the distance between the source and the targets. Our simulation indicates that MCFR has significantly better reliability than existing algorithms
    corecore