9 research outputs found

    Mixing Color Coding-Related Techniques

    Full text link
    Narrow sieves, representative sets and divide-and-color are three breakthrough color coding-related techniques, which led to the design of extremely fast parameterized algorithms. We present a novel family of strategies for applying mixtures of them. This includes: (a) a mix of representative sets and narrow sieves; (b) a faster computation of representative sets under certain separateness conditions, mixed with divide-and-color and a new technique, "balanced cutting"; (c) two mixtures of representative sets, iterative compression and a new technique, "unbalanced cutting". We demonstrate our strategies by obtaining, among other results, significantly faster algorithms for kk-Internal Out-Branching and Weighted 3-Set kk-Packing, and a framework for speeding-up the previous best deterministic algorithms for kk-Path, kk-Tree, rr-Dimensional kk-Matching, Graph Motif and Partial Cover

    A 2k2k-Vertex Kernel for Maximum Internal Spanning Tree

    Full text link
    We consider the parameterized version of the maximum internal spanning tree problem, which, given an nn-vertex graph and a parameter kk, asks for a spanning tree with at least kk internal vertices. Fomin et al. [J. Comput. System Sci., 79:1-6] crafted a very ingenious reduction rule, and showed that a simple application of this rule is sufficient to yield a 3k3k-vertex kernel. Here we propose a novel way to use the same reduction rule, resulting in an improved 2k2k-vertex kernel. Our algorithm applies first a greedy procedure consisting of a sequence of local exchange operations, which ends with a local-optimal spanning tree, and then uses this special tree to find a reducible structure. As a corollary of our kernel, we obtain a deterministic algorithm for the problem running in time 4knO(1)4^k \cdot n^{O(1)}

    Patching Colors with Tensors

    Get PDF

    Spotting Trees with Few Leaves

    Full text link
    We show two results related to the Hamiltonicity and kk-Path algorithms in undirected graphs by Bj\"orklund [FOCS'10], and Bj\"orklund et al., [arXiv'10]. First, we demonstrate that the technique used can be generalized to finding some kk-vertex tree with ll leaves in an nn-vertex undirected graph in O(1.657k2l/2)O^*(1.657^k2^{l/2}) time. It can be applied as a subroutine to solve the kk-Internal Spanning Tree (kk-IST) problem in O(min(3.455k,1.946n))O^*(\min(3.455^k, 1.946^n)) time using polynomial space, improving upon previous algorithms for this problem. In particular, for the first time we break the natural barrier of O(2n)O^*(2^n). Second, we show that the iterated random bipartition employed by the algorithm can be improved whenever the host graph admits a vertex coloring with few colors; it can be an ordinary proper vertex coloring, a fractional vertex coloring, or a vector coloring. In effect, we show improved bounds for kk-Path and Hamiltonicity in any graph of maximum degree Δ=4,,12\Delta=4,\ldots,12 or with vector chromatic number at most 8

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Paths and walks, forests and planes : arcadian algorithms and complexity

    Get PDF
    This dissertation is concerned with new results in the area of parameterized algorithms and complexity. We develop a new technique for hard graph problems that generalizes and unifies established methods such as Color-Coding, representative families, labelled walks and algebraic fingerprinting. At the heart of the approach lies an algebraic formulation of the problems, which is effected by means of a suitable exterior algebra. This allows us to estimate the number of simple paths of given length in directed graphs faster than before. Additionally, we give fast deterministic algorithms for finding paths of given length if the input graph contains only few of such paths. Moreover, we develop faster deterministic algorithms to find spanning trees with few leaves. We also consider the algebraic foundations of our new method. Additionally, we investigate the fine-grained complexity of determining the precise number of forests with a given number of edges in a given undirected graph. To wit, this happens in two ways. Firstly, we complete the complexity classification of the Tutte plane, assuming the exponential time hypothesis. Secondly, we prove that counting forests with a given number of edges is at least as hard as counting cliques of a given size.Diese Dissertation befasst sich mit neuen Ergebnissen auf dem Gebiet parametrisierter Algorithmen und Komplexitätstheorie. Wir entwickeln eine neue Technik für schwere Graphprobleme, die etablierte Methoden wie Color-Coding, representative families, labelled walks oder algebraic fingerprinting verallgemeinert und vereinheitlicht. Kern der Herangehensweise ist eine algebraische Formulierung der Probleme, die vermittels passender Graßmannalgebren geschieht. Das erlaubt uns, die Anzahl einfacher Pfade gegebener Länge in gerichteten Graphen schneller als bisher zu schätzen. Außerdem geben wir schnelle deterministische Verfahren an, Pfade gegebener Länge zu finden, falls der Eingabegraph nur wenige solche Pfade enthält. Übrigens entwickeln wir schnellere deterministische Algorithmen, um Spannbäume mit wenigen Blättern zu finden. Wir studieren außerdem die algebraischen Grundlagen unserer neuen Methode. Weiters untersuchen wir die fine-grained-Komplexität davon, die genaue Anzahl von Wäldern einer gegebenen Kantenzahl in einem gegebenen ungerichteten Graphen zu bestimmen. Und zwar erfolgt das auf zwei verschiedene Arten. Erstens vervollständigen wir die Komplexitätsklassifizierung der Tutte-Ebene unter Annahme der Expo- nentialzeithypothese. Zweitens beweisen wir, dass Wälder mit gegebener Kantenzahl zu zählen, wenigstens so schwer ist, wie Cliquen gegebener Größe zu zählen.Cluster of Excellence (Multimodal Computing and Interaction
    corecore