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Abstract
We describe a generic way of exponentially speeding up algorithms which rely on Color-Coding
by using the recently introduced technique of Extensor-Coding (Brand, Dell and Husfeldt, STOC
2018). To demonstrate the usefulness of this “patching” of Color-Coding algorithms, we apply it ad
hoc to the exponential-space algorithms given in Gutin et al. (Journal Comp. Sys. Sci. 2018) and
obtain the fastest known deterministic algorithms for, among others, the k-internal out-branching
and k-internal spanning tree problems. To realize these technical advances, we make qualitative
progress in a special case of the detection of multilinear monomials in multivariate polynomials:
We give the first deterministic fixed-parameter tractable algorithm for the k-multilinear detection
problem on a class of arithmetic circuits that may involve cancellations, as long as the computed
polynomial is promised to satisfy a certain natural condition.

Furthermore, we explore the limitations of using this very approach to speed up algorithms by
determining exactly the dimension of a crucial subalgebra of extensors that arises naturally in the
instantiation of the technique: It is equal to F2k+1, the kth odd term in the Fibonacci sequence. To
determine this dimension, we use tools from the theory of Gröbner bases, and the studied algebraic
object may be of independent interest.

We note that the asymptotic bound of F2k+1 ≈ φ2k = O(2.619k) curiously coincides with the
running time bound on one of the fastest algorithms for the k-path problem based on representative
sets due to Fomin et al. (JACM 2016). Here, φ is the golden ratio.
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1 Introduction

The research in parameterized algorithms has brought forth a vast toolbox of techniques to
tackle an ever-growing list of hard computational problems, and provided solutions for those
problems in a multitude of shapes and flavors. Recently, Brand, Dell and Husfeldt [9] added
another item to the box: A technique called Extensor-Coding, based on the properties of the
so-called exterior algebra, a fundamental object in multilinear algebra.

Extensor-Coding allows us to understand a variety of key approaches in the design of
parameterized algorithms in a common language, including the celebrated and by now classic
Color-Coding-approach of Alon, Yuster and Zwick [1], the algebraic fingerprints due to Koutis
[24] and Koutis and Williams [25], the representative families from Fomin et al. [19, 18], and
the labeled walks of Björklund et al. [5].
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25:2 Patching Colors with Tensors

While this yields unification on a conceptual level, the main technical advance made
in [9] was with respect to the approximate counting of solutions in the longest path (or
k-path) problem. Despite the fact that the technique suggests a straightforward algebraic
and deterministic algorithm for the k-path problem, its running time was only very slightly
(infinitesimally, in fact) below the older bound achieved by Chen et al. [10], and thus at
significant distance from Zehavi’s current record bound [36]. In this paper, we will identify
several problems where Extensor-Coding does improve over the state-of-the-art. To this end,
we start from a novel and natural variant of the ubiquitous multilinear detection problem on
polynomials computed by arithmetic circuits that is more general than the very well-studied
case of cancellation-free circuits. This leads us to a rather generic approach of patching, if
you will, algorithms involving Color-Coding, by replacing the Colors used in the algorithm by
Extensors, i.e., elements of the exterior algebra.1 This then yields an exponential speed-up.
While this improvement is certainly incremental in nature, the novelty of the approach laid
out in this work is of a more conceptual nature. This is discussed further below.

On the other hand, we demonstrate an algebraic barrier, limiting the potential progress
that can be made by applying Extensor-Coding in a more or less straightforward manner –
just as we do it in this paper for the considered algorithmic problems. This barrier is based
on the dimension of a certain subalgebra of the exterior algebra, which presents a lower
bound for the cost of computation in the algebra and hence for the entire algorithm. It is
noteworthy that the resulting bound, which is exactly the (2k + 1)th Fibonacci number on
an underlying vector space of dimension k, asymptotically coincides with the square of the
golden ratio, which also appears in the approach of Fomin et al. to the k-path problem, which
is based on the very different, purely combinatorial method of representative families [19].
One might argue that this connection is not entirely surprising, since the approaches can be
used to solve the same problem and the representative families in fact have their origin in
exterior algebra. This, however, is an argument that only bears on a superficial level: It is
by no means clear how the very algebraic object studied in this article relates in any way to
the use of the exterior algebra in the representative families-approach, and indeed, one can
consider uncovering such a precise connection as an intriguing avenue for further research.
Therefore, one may regard studying this algebraic object as a first step to tighten the ties
between combinatorics and algebra in the study of rather general parameterized algorithms,
and not just for the k-path problem.

1.1 Contributions

1.1.1 New and Improved Algorithms

The algorithmic problems we study are the following: The k-internal out-branching (k-IOB)
problem asks for the existence of an out-branching (also called a directed spanning tree or
arborescence, among others) with at least k internal, i.e., non-leaf, nodes. The k-internal
spanning (k-IST) tree problem is formulated analogously for undirected graphs. A subset of
edges in an edge-colored graph is k-colorful if it contains edges of at least k distinct colors,
and the definitions of the problems k-colorful perfect matching and k-colorful out-branching
are self-evident.

Our algorithmic advances in these problems are borne by progress in another domain:
The k-multilinear detection (k-MLD) problem has as an input a multivariate polynomial
represented through an arithmetic circuit, and asks whether the polynomial contains a

1 Extensors are often also referred to as antisymmetric tensors, hence the title.
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monomial of degree k in which no variable appears with degree more than one. We focus our
attention on the restriction of the problem to those instances where a multilinear monomial
may only appear with positive coefficient. Since there is no known way to efficiently test
this property, this turns the problem into a promise problem. The promise, however, is
typically satisfied in combinatorial applications, where the studied polynomials are usually
multivariate generating functions of the sought combinatorial objects. The decisive subtlety
here is that, while the polynomial that is computed by the input circuit may not have
negative coefficients in its multilinear part, the circuit itself may very well contain negative
constants and make use of cancellations, and, in particular, it need not be monotone. We will
make heavy use of this property in the above application problems, and the above point is
decisive here for the following reason: These problems can be expressed using determinantal
generating functions, and by a theorem of Jerrum and Snir, determinants do not have
monotone circuits of subexponential size, such that cancellations are actually crucial for
their efficient computation. To the best of our knowledge, this is the first fixed-parameter
tractable algorithm for the problem.

We prove the following deterministic, exponential-space2 record time bounds, and defer
the reader to Sect. 4 for a formal statement of the theorem.

I Theorem 1 (Informal). There are deterministic algorithms to solve
1. the k-internal out-branching problem and the k-internal spanning tree problem in time

3.21k · poly(n), and
2. the k-colorful perfect matching problem on planar graphs and the k-colorful out-branching

problem in time 4k · poly(n).
Furthermore, there is a deterministic algorithm that solves the restriction of the multilin-
ear detection problem to circuits computing polynomials with positive coefficients in their
multilinear part (as laid out above) in time 4k · poly(n) on skew arithmetic circuits, and
in time 2ωk · poly(n) < 5.19k · poly(n) on general circuits, where ω is the exponent of
matrix multiplication.

I Remark 2. The bound of 5.19 is not competitive; indeed it is easy to prove that an
exponential basis of 4.312 can be obtained using a derandomization of Color-Coding, and
Pratt [28] gives a randomized algorithm achieving 4.075. Note, however, that our bound
depends on ω, and one can make the point (albeit moot in the foreseeable future) of this
dependency making our bound potentially competitive.

I Remark 3. Skewness, i.e., the syntactic restriction of each multiplication gate having an
input as an operand seems rather strong at a first glance. At a second glance, this impression
does not hold up: Without concerning ourselves with the technicalities of algebraic complexity
theory, suffice it to say that the polynomials that can be computed by efficient skew circuits
are precisely those that are efficient projections of determinants, and determinantal generating
functions are known for a variety of combinatorial objects. Equivalently, they are those
polynomials that are computed by efficient algebraic branching programs (which is a widely
studied and very natural computational model).

The algorithms for the problems of detecting a k-internal as well as k-colorful out-
branching (and spanning tree) are established, as demonstrated by Björklund et al. , via the
Directed Matrix-Tree Theorem [7]. We reuse the meticulous and very careful analysis of the

2 We are aware of the doubtful practical usefulness of exponential-space algorithms in some settings and
ask the skeptical reader to think of our results as being motivated theoretically.
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parallel monomial sieving technique by Gutin et al. [22]. We can relatively easily replace the
employed pseudorandom objects by extensors. This suggests a rather generic way in which
to speed up algorithms based on Color-Coding by instead using Extensor-Coding.

As far as the k-colorful planar matching problem is concerned, as in [22], we use a Pfaffian
computation. However, we cannot perform the square root extraction that is necessary to
make use of the determinantal identities for the Pfaffian, but rely on a result of Flarup et al.
[15] for a direct computation of Pfaffians with skew arithmetic circuits.

Let us conclude the discussion of our algorithmic contributions with a comment on
their relevance. As far as combinatorial problems are concerned, the obtained technical
improvements are incremental. However, focusing on these individual results is, in a way, a
red herring: The important point is that we can obtain speed-ups in sophisticated algorithms
for well-studied problems in a simple, ad hoc manner by replacing colors with extensors.
The only requirement here is the, as argued, rather mild one of the combinatorial objects in
question being described through a determinantal formula. This is not primarily a technical,
but a conceptual insight that is meant to guide the design of deterministic exponential-space
algorithms in the future, and to encourage revisiting existing bounds using extensors. To
demonstrate how to go about this, we do so for k-IOB, a very well-studied problem where
the current state-of-the-art was obtained through a sequence of incremental improvements,
each more involved than the previous one.

A similar case can be made for the monomial detection algorithms, which are obtained in
an admittedly straightforward manner by an application of the Extensor-Coding method,
which was certainly available at the time of writing of [9]. The takeaway here, however,
is that polynomials with positive coefficients computed by efficient skew circuits are not
some arbitrary, but instead very natural class of polynomials, namely those that arise as
determinantal generating functions for combinatorial objects, which are of central interest in
algebraic combinatorics.

1.1.2 Algebraic Limitations
Broadly speaking, when aiming towards deterministic decision algorithms, Extensor-Coding
essentially works by evaluating a multivariate polynomial associated with the input over an
exterior algebra. This algebra is of dimension 4k, where k will typically be the parameter of
the input instance (while it formally is half the dimension of the underlying vector space).

In this way, it is similar to a method introduced by Koutis [24]. It differs, however, in the
points at which the polynomial associated with the input instance is evaluated. While Koutis,
and later, Williams [33], rely on random evaluation points, in [9], certain carefully constructed
vectors are used. One can readily observe that “evaluating a polynomial” involves, on an
arithmetic level, nothing but multiplications and additions. In particular, if one evaluates
a polynomial over any algebraic structure that is closed under multiplication and addition,
one will always obtain again an element of this algebraic structure after evaluation. Turning
this around, one can always restrict one’s attention to the closure of (i.e., the substructure
generated by) the set of evaluation points. In particular, it might be far easier to actually
implement the arithmetic operations only over this substructure than over the entire structure.

In this paper, we will examine the subalgebra generated by the aforementioned special
evaluation points (i.e., the smallest set closed under addition, scaling with a field constant,
and multiplication containing all the evaluation points). Note now that the dimension of
an algebra provides a trivial lower bound on the cost of general computation in it, simply
because one has to write down its elements’ coordinates at some point. Conversely, the
dimension itself can be used to derive a trivial upper bound for the cost of computation as
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well, just by a look-up of the structural constants of the algebra, but this bound is generally
far from optimal. For example, naive multiplication of degree-d polynomials (which can
be modeled as objects of a O(d)-dimensional algebra over some field) takes around O(d2)
field operations, while (over compatible fields) the Fast Fourier Transform method yields
the classic bound of O(d log d). A running time of the latter form, i.e., quasilinear in the
dimension of the algebra, is of course the best one can hope for. Note however that, in
general, it is a highly nontrivial, and sometimes impossible, task to come up with such fast
multiplication algorithms in any kind of algebraic structure.

We prove that, surprisingly (for reasons that will be expanded on later), the dimension of
the subalgebra generated by the evaluation points used in Extensor-Coding is of dimension
exponentially smaller than 4k, i.e., the dimension of the full algebra. At first, this seems to
open up a tantalizing new point of attack on one of the most prominent open problems in
the area of parameterized algorithms: To exhibit a deterministic algorithm for the k-path
problem that matches the running time of 2k · poly(n) for the best randomized algorithms
[33, 24]. Now, a priori, we could hope for the studied subalgebra to be of dimension 2k (but
not much smaller, by a result of Koutis-Williams [26]). Then, a quasilinear multiplication
algorithm would give a bound of 2k · poly(k) field operations, and (assuming all coefficients
stay of moderate size) hence produce a deterministic algorithm solving the problem in time
2k · poly(n).

Unfortunately, we share the fate of Tantalos:

I Theorem 4 (Informal). The dimension of the subalgebra of the exterior algebra over the
complex vector space of dimension 2k generated by the evaluation points used in Extensor-
Coding is of dimension exactly F2k+1, which is the (2k + 1)th Fibonacci number, and this is
asymptotically bounded as 2.618k ≤ F2k+1 ≤ 2.619k.

Again, it will be stated formally in Sect. 5. Somewhat unluckily, this does also not suffice
to improve the state-of-the-art for k-path, even if we had a sufficiently fast multiplication
algorithm, since Zehavi’s [36] intricate algorithm has an exponential basis of 2.597 in its
running time.

This result can be interpreted in two ways: On the one hand, as laid out above, it
can be seen as a negative result, ruling out one approach for solving the k-path problem
deterministically and fast. On the other hand, while a quasilinear multiplication algorithm for
the subalgebra might be a lot to hope for, even an algorithm using, say, 2.619ωk/2 < 3.136k

field operations would mean significant improvements for all the problems studied in this
paper, including in particular deterministic multilinear detection for a subclass of circuits
with cancellations. It is not at all clear how to implement multiplication over this algebra
faster than trivially, and we leave this as a challenging open problem.

Let us comment on the bound of 2.619kω/2, which might at first seem arbitrary. This
is simply the bound one would obtain from a matrix representation of dimension at most
d, i.e., having dimension

√
2.619k/2 ×

√
2.619k/2. For this reason, it appears in the recent

breakthrough work of Umans [32] and Ching-Yun Hsu and Umans [12] on generalized Fast
Fourier Transforms on arbitrary finite groups. Therefore, our result nurtures the hope for
even further, significant improvement for a variety of parameterized problems, conditional
on the development of fast multiplication algorithms over this algebraic structure.

Furthermore, we exhibit a whole family of subalgebras that enjoy all the desired properties
of the subalgebra that is used in [9], and that obey the same upper bound on their dimension,
while the lower bound argument does not easily carry over, and it is an exciting possibility
that, somewhere among these subalgebras, there is one that has even lower dimension.

ESA 2019



25:6 Patching Colors with Tensors

As for our algorithmic contributions, let us comment on the relevance of the algebraic
barrier, and in particular, why this highly special algebraic object is of wider interest. Given
the apparent connection to the work of Fomin et al. as well as the recent insights of Pratt
[28], the study of algebraic approaches may have much closer ties to the classic combinatorial
techniques than is currently visible. Establishing the dimension bounds as done here is clearly
necessary and important in order to uncover these ties; ties which, eventually, might make
the study of parameterized algorithms and their limitations appealing to a more diverse
audience even outside of parameterized algorithms and complexity, in a way similar (even
if not as ambitious by far) to how algebraic geometers found interest in complexity theory
through its geometric reformulation. Furthermore, as stated, exhibiting fast multiplication
algorithms for this problem would directly imply massive speed-ups for problems that are
amenable to be “patched” using extensors.

1.2 Related work
The k-internal out-branching and spanning tree problems have attracted a significant amount
of attention over the last years [17, 22, 6, 7, 27, 38, 37, 16, 13, 11, 21, 14, 29]. The current
deterministic record bounds for all the aforementioned graph problems were recently given
in Gutin et al. [22], using monomial sieving in combination with Color-Coding and suitable
pseudorandom objects. The bounds they obtain (in the exponential-space setting) for the
k-internal out-branching and spanning tree problems are 3.41k · poly(n), and 4.32k · poly(n)
for the k-colorful perfect matching and out-branching problems.

The detection of k-multilinear terms in polynomials computed by arithmetic circuits lies
at the heart of the design of the fastest randomized algorithms for a host of parameterized
problems, such as the longest path problem on directed graphs, the k-tree problem, the
t-dominating set problem and the m-dimensional k-matching problem, with a record bound
of 2k · poly(n) for randomized k-multilinear detection [26, 33]. The crux is that, for the
arithmetic circuits in these algorithms, it is required that they be monotone, i.e., do not
involve any cancellations of terms. On this class of monotone arithmetic circuits, the k-
multilinear detection problem can be solved deterministically in time 3.85k · poly(n), using
the combinatorial notion of representative sets [18].

Recently, the first fixed-parameter tractable randomized algorithms were developed for
the problem on general arithmetic circuits [9], which has sparked further work in the area,
announcing a polynomial-space version and 4.08k · poly(n) as a new record bound on general
circuits [3, 2, 28].

Due to the particularity of the algebraic object studied for the dimension barrier, it is
highly doubtful whether any work directly related to it has been done – at the least, we are
not aware of such work. However, the idea of proving dimension lower bounds in order to
limit the use of certain parameterized algorithmic techniques was already present in work
by Koutis and Williams [26]. Their work, however, gives a more general lower bound and
relies on entirely different technical ideas, making it akin to our work only in a broader
conceptual sense.

Omitted proofs and details will appear in [8], which we call the full version.

2 Preliminaries

In what follows, 2 ≤ ω < 2.374 [30, 34] is the exponent of matrix multiplication.
An arithmetic circuit is a directed acyclic graph with a single vertex of out-degree 0,

called the output, a set of vertices with in-degree 0 which are labeled with variables or
complex numbers, called the inputs and labels + and × on all vertices that are not inputs.
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A vertex labeled with + or × is, respectively, called a +-gate or ×-gate. All ×-gates are
required to have in-degree at most two. We call an arithmetic circuit skew if, for all ×-gates,
at least one of the arcs ending at the gate comes from an input. The polynomial computed
by an arithmetic circuit is defined in the obvious inductive way: It is equal to the label of
the inputs, and for a gate that is not an input, it is defined as the result of the operation
indicated by the label of the gate, applied to its two inputs.

Given a directed graph D = (V,A), we a call a subgraph B of D out-branching if B is
an oriented tree with exactly one vertex r of in-degree zero, the root, and B is spanning.
Vertices of out-degree zero are called leaves, and vertices that are not leaves are internal. For
an integer k, an out-branching is k-internal if it contains at least k internal vertices.

A set of arcs is called a matching if no vertex of V is contained in two arcs, and a matching
is perfect if every vertex is contained in some arc of the matching.

For an edge-colored graph G, directed or undirected, we call a subgraph S of G k-colorful,
if the edge set of S contains at least k differently colored edges.

2.1 A Review of Extensor-Coding
Although not a strict prerequisite, some knowledge of the technique and its uses for the
longest path problem make the following certainly more digestible. An elementary exposition
of the employed algebraic objects can be found in the original work [9]. However, we will
demonstrate the technique in the appropriate brevity. This should, in principle, suffice to
understand everything that happens here. For a more mathematically concise and thorough
treatment of the algebraic background material, we encourage the interested reader to consult
any given textbook on algebra, for example the one by Birkhoff and Mac Lane [4].

Let us first review some basic algebraic notions. A complex unital associative algebra is
a ring A that is simultaneously a complex vector space, such that scalar multiplication is
compatible with the multiplication in the ring. That is, for any λ ∈ C and a, b ∈ A, it holds
that λ(ab) = (λa)b = a(λb) and there is an element 1 ∈ A with 1a = a = a1 for all a ∈ A.
Since complex unital associative algebras are the only types of algebras we will encounter
henceforth, we understand all these properties whenever we speak merely of an algebra. The
dimension of an algebra A is the dimension of A as a complex vector space.

2.1.1 The Exterior Algebra
Let V be the complex vector space Ck, endowed with its canonical basis {e1, . . . , ek}. We
can now consider the set of formal, non-commutative polynomials C〈e1, . . . , ek〉 that can be
formed in the “indeterminates” (or generators) e1, . . . , ek.

Let us define a kind of multiplication on these generators that is denoted as ∧, called
the wedge product. The wedge product operation on the generators is defined to satisfy the
anti-commutativity relation: ei ∧ ej = −ej ∧ ei for all 1 ≤ i, j ≤ k. For i = j, this means
that ei ∧ ei = −ei ∧ ei, which over C implies ei ∧ ei = 0 for all i.

By repeatedly applying this rule, we can understand the multiplication of more than two
generators as follows. Let 1 ≤ i1, . . . , it ≤ k be natural numbers, and consider the wedge
product ei1 ∧ · · · ∧ eit . Exhaustive application of the rules now implies that this product
becomes zero if ij = ij′ for any distinct j, j′. Otherwise, it is equal to sgn(σ)eiσ(1) ∧· · ·∧eiσ(t) ,
where σ is the permutation that brings the sequence i1, . . . , it in ascending order.

This multiplication is extended to linear combinations of wedge products of the generators
by distributivity and bilinearity. The vector space generated by all such wedge products of
generators is called the exterior algebra over V and is denoted by Λ(V ). The vector space
Λ(V ) is turned into an algebra by equipping it with the wedge product as multiplication. We
have seen that any reordering of the factors either leaves the original wedge product intact

ESA 2019



25:8 Patching Colors with Tensors

or leads to a sign change. Hence, the set of ordered wedge products {ei1 ∧ · · · ∧ eit | 0 ≤
t ≤ k, i1 < · · · < it} form a linear basis of Λ(V ). This shows that Λ(V ) is of dimension 2k.
For any set S ⊆ {1, . . . , k}, we write eS to denote ei1 ∧ · · · ∧ ei|S| , where the elements of S
are assumed to be in ascending order, i.e., i1 < · · · < i|S|. We remark that we can regard
V as a linear subspace of Λ(V ) via a vector’s basis representation, i.e., (x1, . . . , xk)T ∈ Ck

corresponds uniquely to x1e{1} + · · ·+ xje{k}.
Let us quickly comment on the cost of computation in Λ(V ). It is clear that addition of

two elements of Λ(V ) can be performed using 2k arithmetic operations, namely by pointwise
addition, over C. Clearly, this can be performed in time polynomial in the length of the
basis coefficients of the two summands.

For a restricted but crucial variant of multiplication in Λ(V ), called skew multiplication,
we recall the following observation:

I Proposition 5 ([9], Sect. 2.3). Given an element x ∈ Λ(Ck) and y ∈ Ck ⊆ Λ(Ck) as a list
of basis coefficients, their product x∧ y ∈ Λ(Ck) as a list of basis coefficients can be computed
using 2k · poly(k) arithmetic operations over C.

Additionally, if the bitlength of coefficients of x and y is bounded in by τ , then their
product can be computed in 2k · poly(τ) bit operations.

As for general multiplication, let us record what Włodarczyk [35] showed implicitly:

I Theorem 6 ([35]). Given two elements x, y ∈ Λ(Ck) as a list of basis coefficients, their
product x ∧ y ∈ Λ(Ck) as a list of basis coefficients can be computed using 2ωk/2 · poly(k)
arithmetic operations over C.

Additionally, if the bitlength of coefficients of x and y is bounded by τ , then their product
can be computed in 2ωk/2 · poly(τ) bit operations.

Since the connection to the exterior algebra in [35] is not made explicitly, we give a self-
contained (and somewhat simpler) proof of Włodarczyk’s result, adapted to our terminology,
in the full version.
I Remark 7. The best known way to compute a general wedge product is due to insights of
Włodarczyk: This goes by reducing the wedge product to the product in a so-called Clifford
algebra, which is an algebra that, filtered by degree, gives rise to the exterior algebra as its
associated graded algebra. This is surprising from a mathematical perspective: The exterior
algebra is an especially degenerate Clifford algebra, and yet the latter is used to compute in
the former. Finding other, possibly faster approaches for the computation of wedge products
is an independent research direction that we feel worth pursuing in the future, given that
the wedge product is the epitomic operation in all of multilinear algebra.

An easy, but fundamental standard observation is that, for any t ≤ k, the t-factor wedge
multiplication map

V t → Λ(V ), x1, . . . , xt 7→ x1 ∧ · · · ∧ xt ∈ Λ(V ) (1)

can be written down in coordinates as the determinants of the t× t-minors of the matrix
(x1 | x2 | . . . | xt) obtained as the juxtaposition of x1, . . . , xt:

x1 ∧ · · · ∧ xt =
∑

S∈([k]
t )

det(x1 | x2 | . . . | xt)SeS ,

where (x1 | x2 | . . . | xt)S is the t× t-minor of the matrix (x1 | x2 | . . . | xt) indexed at the
rows S. In particular, this entails that the k-fold wedge product is just the determinant map:

x1 ∧ · · · ∧ xk = det(x1 | x2 | . . . | xt)e[k] .
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2.1.2 Lifts
Consider the direct sum of vector spaces V ⊕ V ∼= C2k, and let ι1, ι2 : V → V ⊕ V be the
canonical embeddings of V into V ⊕ V as the left and right summand, respectively. In
coordinates, this corresponds respectively to pre- or appending k zeros to a vector. Consider
the lift mapping Λ(V )→ Λ(V ⊕ V ), x 7→ x := ι1(x) ∧ ι2(x). We now have (see also [9, Sect.
3.4]) the following.

x1 ∧ · · · ∧ xk = ±det(x1 | · · · | xk)2e[2k],

where the sign only depends on k.

2.1.3 Vandermonde Codings
Determinants vanish on singular matrices. To prevent unwanted vanishing of determinants
later on, we will use a set of vectors that are, in a sense, maximally linearly independent:
Vandermonde vectors. To this end, consider the mapping

φ : C→ V, c 7→ (1, c, c2, . . . , ck−1)

and its lifted variant

φ : C→ V ⊕ V, c 7→ φ(c) .

This has the nice property that, on the image of φ (or φ for that matter), the k-fold wedge
product map as in Eq. (1) is zero only when two factors are equal. In particular, the mapping
Ck → Λ(V ⊕ V ), (c1, . . . , ck) 7→ φ(c1) ∧ · · · ∧ φ(ck) is zero exactly on the set of points that
have at least two coordinates equal. Indeed, the coordinates of this map witness this in the
clearest way possible: It is the well-known Vandermonde-determinant

∏
i<j(ci − cj). An

analogous statement of course holds for φ.

3 Monomial Detection Problems

As a kind of warm-up, we will give a rather direct, but very useful first application to a special
kind of monomial detection problem. The general problem presents itself as follows: As
input, it obtains a multivariate (and now again commutative) polynomial f ∈ C[X1, . . . , Xn]
in n indeterminates. Our task is now to decide whether or not f contains a monomial of
degree k such that no indeterminate appears twice. A variation of this is to ask whether f
contains a monomial such that at least k distinct indeterminates appear in it. The degree of
hardness of this problem obviously hinges on the way in which f is represented. When f is
given in its sparse representation as a list of monomials and coefficients, then deciding this
question is trivial.

This not the case, however, if f is represented by an arithmetic circuit, which is the setting
we are interested in. Indeed, we are interested only in a semantically defined subclass of
arithmetic circuits: Those that compute a polynomial f such that every multilinear monomial
that appears in f does so with positive coefficient. As stated before, it is crucial to note that
this does not mean a monotonicity restriction for the input circuit, and it may well involve
cancellations of terms and negative constants. Let us formally define the set of circuits we
are interested in:

I Definition 8. Let C be an arithmetic circuit that computes a polynomial f . We call
C combinatorial if f has non-negative coefficients on its multilinear part, and C can be
evaluated over Z at numbers of absolute value at most τ using poly(τ) bit operations.
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We remark that the last condition of this definition is a barely concealed crutch to avoid
having to think about subtleties regarding a possible doubly exponential blowup of inputs
in general arithmetic circuits, which are irrelevant in our applications. For a very similar
reason, we only speak about evaluation over Z; namely, in order to ignore potential issues
with representations of complex numbers.

3.1 Multilinear Detection
As promised, we will now start out with an easy application of Extensor-Coding. Speaking of
promises, it is again in order to remark that the problems discussed henceforth are promise
problems, in the sense that there is no known efficient method of checking whether an input
circuit satisfies the condition of being combinatorial.

I Theorem 9. There is a deterministic algorithm that, given a combinatorial arithmetic
circuit C of size s and an integer k, decides whether or not the polynomial computed by C
contains a multilinear monomial of degree k in time 2ωk · poly(s) < 5.19k · poly(s).

Proof. Consider the lifted Vandermonde coding φ, and assume that the polynomial computed
by C is n-variate.

The algorithm then simply evaluates C at (φ(1), . . . , φ(n)), and outputs “yes” if and only
if the coefficient of e[2k] in the resulting element of Λ(V ⊕ V ) is non-zero.

The running time is immediate from the definition and Theorem 6, and correctness can
be seen as follows. We first have to take care of the fact that our algebra is not commutative,
strictly speaking, but nevertheless we evaluate a commutative polynomial over it. This is
remedied either by a standard degree-k homogenization argument on C, and, depending on
k, a subsequent single sign correction of the result. Alternatively, one can observe that the
signs are consistent across each degree individually, and monomials of different degrees are
linearly independent, so that the different signature arising when evaluation over the image
of φ will not make a difference. From the fact mentioned in discussion about Vandermonde
codings, every monomial containing an indeterminate twice will vanish. The parts of degree
less than k do not enter into the coefficient of e[2k], and parts of degree more than k will go
to zero anyways. Now, let L be the set of multilinear monomials in the polynomial computed
by f . Each such monomial m identifies a subset of {1, . . . , n}, and by abuse of notation, we
will not distinguish between a monomial and a subset. Furthermore, we denote with cm the
coefficient of m, which is non-negative by the assumption on C, and let Vm be the 2k × 2k
matrix (φ(i))i∈m. Then the coefficient of e[2k] can be seen to be equal to

∑
m∈L cm ·det(Vm)2,

which is non-zero if and only if one of the determinants is non-zero. This in turn happens if
and only if there is a multilinear monomial of degree k in the polynomial computed by C. J

We also obtain the more useful skew variant:

I Theorem 10. There is a deterministic algorithm that, given a skew combinatorial arithmetic
circuit C of size s and an integer k, decides whether or not the polynomial computed by C
contains a multilinear monomial of degree k in time 4k · poly(s).

Proof. Follows verbatim like Theorem 9 after replacing Theorem 6 by Proposition 5. J

3.2 k-Distinct Detection
We will now turn to the monomial detection problem that will later on be used in applications,
namely the k-distinct detection problem. Again, the input here is an arithmetic circuit, but
this time, the task is to decide whether there exists a monomial containing at least k distinct
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indeterminates. Using the folklore trick of replacing every variable xi by 1 + t · xi with a
formal indeterminate t, turning a nilpotent variable xi into an (almost) idempotent one, and
then extracting the coefficient of tk, we obtain:3

I Theorem 11. There is a deterministic algorithm that, given a skew combinatorial arithmetic
circuit C of size s that computes a polynomial that only has non-negative coefficients, and an
integer k, decides whether or not the polynomial computed by C contains a monomial with at
least k different variables in time 4k · poly(s).

A proof sketch is given in the full version. Equipped with these observations, we may now
turn to our application problems.

4 Graph Problems

We will make use of the classic Directed Matrix-Tree Theorem, following the presentation
in [7]. Let us first define the Laplacian of a directed graph G = (D,A). To this end, let
X = {xa | a ∈ A} be a set of formal indeterminates labeled with the arcs of a graph, and
define the matrix L = (`uv)u,v∈V through

`uv =


∑

w∈V :wu∈A xwu if u = v

−xuv if uv ∈ A
0 if uv /∈ A

.

After fixing a root r ∈ V , we will consider Lr, the Laplacian punctured at r, which is defined
as the matrix obtained from L by striking row r and column r. With these definitions in place,
we have the following well-known theorem, and just as [7], we refer to the corresponding
chapter of Gessel and Stanley in the Handbook of Combinatorics [20] for a proof.

I Theorem 12 (Directed Matrix-Tree Theorem). Let G = (D,A) be a directed graph. For all
r ∈ V , the following holds.

detLr =
∑

T = (V, B) is an
out-branching of G

rooted at r

∏
b∈B

xb .

In other words, the determinant of Lr is the multivariate generating function of the set
of out-branchings rooted at r. The important insight is now the following: All known
(randomized) efficient algorithms for detecting k-multilinear terms – and, by extension,
k-distinct terms – in the polynomial computed by an arithmetic circuit rely on this circuit
not involving cancellations in their computation, i.e., they need to be monotone.

However, by a theorem of Jerrum and Snir [23], computing detLr using such a monotone
circuit requires circuits of exponential size in n.

On the other hand, there are efficient skew arithmetic circuits (this time with cancellations)
for computing the n× n determinant polynomial:

I Theorem 13 ([31]). There is a family of skew arithmetic circuits (Cn)n∈N such that Cn

computes the n× n determinant polynomial, and the size s(n) of Cn satisfies s(n) ≤ poly(n).
Furthermore, there is an algorithm that, upon input 1n, outputs a description of Cn in time
poly(n), and every circuit can be evaluated over Z in polynomial time in the length of the
input representation.

3 We might just replace the indeterminate t by 1, and extract the degree-k term of the result in the exterior
algebra. Using an extra indeterminate t allows us to avoid explaining how degree is a well-defined
concept even over exterior algebras.
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In fact, the n×n determinant polynomial is complete – for a suitable notion of reduction – for
the adequately named class VDET of polynomial families computable by poly(n)-sized skew
arithmetic circuits, defined ibid. Importantly, this together with the Matrix-Tree Theorem
12 also shows that detLr is a combinatorial polynomial.

4.1 Out-Branchings
Let us now proceed gently with a first application of what we have gathered so far.

I Theorem 14. There is a deterministic algorithm that, given a directed edge-colored graph
D on n vertices and an integer k, decides whether D has a k-colorful out-branching in time
4k · poly(n).

Proof. First, replace every variable xa by a fresh variable corresponding to its color c(a), say
yc(a), and denote the corresponding symbolic matrix with Lr(y). Since detLr is combinatorial
and skew, so is detLr(y), and we can perform the k-distinct detection from Theorem 11 in
the claimed running time. The existence of a monomial with k distinct variables in detLr(y)
is now clearly equivalent to the existence of a k-colorful out-branching in D. J

Theorems 12, 13 and Theorem 11 immediately yield a deterministic algorithm for the problem,
running in time 4k · poly(n). We note that this is already a significant improvement over the
time bound of 5.14k · poly(n) on the runner-up algorithm of [37].

I Proposition 15 (Superseded by [22]). There is a deterministic algorithm that, given a
directed graph D on n vertices and an integer k, decides whether D has a k-internal out-
branching in time 4k · poly(n).

Proof. First, replace every variable xuv be a fresh variable corresponding to its tail, say yu,
and denote the corresponding symbolic matrix with Lr(y). Since detLr is combinatorial and
skew, so is the n-variate polynomial detLr(y), and we can perform the k-distinct detection
from Theorem 11 in the claimed running time. It has been observed by Björklund et al. [7]
that this is neatly equivalent to the input instance containing a k-internal out-branching. J

To speed this up, we can more or less just plug in an Extensor-Coding into the analysis from
[22] and set a new record bound for the k-internal out-branching problem. We defer the
proof to the full version.

I Theorem 16. There is a deterministic algorithm that, given a directed graph D on n vertices
and an integer k, decides whether D has a k-internal out-branching in time 3.21k · poly(n).

The corresponding results for k-internal spanning trees of undirected graphs follow immedi-
ately by standard reductions to the directed case (see [22]).

4.2 Colorful Planar Perfect Matchings
Just like out-branchings, perfect matchings in planar graphs have an efficiently computable
multivariate generating function, namely the Pfaffian Pf A of a suitable skew-symmetric
matrix A. Gutin et al. [22] employ a determinantal identity for the Pfaffian, and do so by
evaluating the determinant polynomial in question over the integers in a black-box fashion.
Namely, they exploit that Pf(A)2 = det(A). In the very last step, this requires a square
root extraction, which is a perfectly viable path over the integers, but not over more general
algebras. Therefore, instead of construing Pf(A) as

√
det(A), we rely on an observation

of Flarup et al. [15], who show that the Pfaffian has efficient skew circuits. Putting this
together, we immediately obtain:
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I Theorem 17. There is a deterministic algorithm that, given an undirected edge-colored
planar graph G on n vertices and an integer k, decides whether G has a k-colorful perfect
matching in time 4k · poly(n).

5 The Dimension Barrier

In this section, we will explain Theorem 4. The entire proof is deferred to the full version.

5.1 The Subalgebra Generated by Evaluation Points
Let us first elaborate on the fundamental insight that motivates this result and that was
alluded to already in the introduction: Let f be a complex polynomial, such as the polynomial
computed by a circuit in, say, Theorem 11. During the evaluation of this polynomial f
(or rather the circuit computing it) at points from the image of φ, only sums and wedge
products of elements of the image of φ are ever formed. Note that this is what we do in all
our applications: We only plug in points of the form φ(c) for some c ∈ C. We can say this
rigorously and concisely by stating that during such an evaluation, all computation may only
occur in the subalgebra of Λ(V ⊕ V ) generated by the image of φ, which is – by definition
– the set of all sum-wedge product combinations of the generating set. It is precisely the
subalgebra generated by these elements φ(c) that we will study. The fundamental quantity
associated with this subalgebra is its dimension, that is, the dimension of the subalgebra
as a complex vector space. Let us stress again the argument from the introduction that
any potential progress on the technique in its present form hinges on the dimension of this
subalgebra: It provides both strict lower bounds and a good guide towards the upper bounds
one can hope for when solving problems using Extensor-Coding.

5.2 A Family of Related Subalgebras
The decisive property that makes Vandermonde codings so useful is that any distinct k of
them are linearly independent, which is commonly referred to the set of Vandermonde vectors
being in general position. This, however, is not only a property enjoyed by Vandermonde
vectors. First of all, any finite random set of vectors is in general position almost certainly.

This suggests that instead of considering the subalgebra generated by Vandermonde
codings, one might as well just take any n random vectors and proceed with them. Extensive
computational experiments have shown, however, that the expected dimension of this
subalgebra is almost as high as the dimension of the full algebra. Curiously, it seems to be
equal (and in fact this was the only case that ever occurred during all our experiments) to
the k-th Catalan number, which grows asymptotically faster than 4(1−ε)k for all ε > 0.

It is worth pondering about this phenomenon for a little while. From a matroid perspective,
the Vandermonde codings just correspond to a representation of the k-uniform matroid over
an n-element universe. One might now hope that the dimension of the subalgebra generated
by the lifts of the columns of this representation matrix is a matroid invariant; however, this
is not the case. Even more, most representations are just as bad as the worst case.

Remarkably, the extraordinarily well-behaved case of the Vandermonde representation
transfers quite directly to a related family of subalgebras. Consider any set P = {p1, . . . , pk}
of formal univariate polynomials that are linearly independent and of degree less than k. In
other words, a basis of the set of polynomials of degree less than k. We can form, for any n,
a k×n evaluation matrix of this set P , where the i-th row is given as (pi(1), pi(2), . . . , pi(n)).
If we pick as P the standard monomial basis, this is just the Vandermonde representation.
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However, we may as well pick any other basis, and the resulting matrix will again have the
property that any subset of k columns is linearly independent. This works, provided the pi

do not have a common root at the evaluation point. We can take care of this easily by just
picking a different, appropriate set of evaluation points. Note that this set exists (and in fact,
almost certainly, any random set will do) by the fact that the pi are distinct polynomials.
Now, we can again study the subalgebra of Λ(V ⊕ V ) generated by the lifts of the column
vectors of this evaluation matrix. Surprisingly, the argument for the upper dimension bound
carries over immediately, but we could not find a corresponding proof for the lower bound.
This opens up the exciting possibility of finding lower-dimensional algebras in this family,
that could lead to even faster algorithms. Note that despite the main motivation for studying
this algebra may stem from the flagship k-path problem, due to the connection to multilinear
detection, finding these algorithms has impacts for all the problems that reduce to this special
case of multilinear detection, including those studied in this paper.

5.3 The Barrier
As announced, we will merely state the relevant theorem. A full, detailed proof can be found
in the full version.

I Theorem 18. Let V = Ck and let F2k+1 be the (2k+1)th Fibonacci number. The subalgebra
of Λ(V ⊕V ) generated by the image {φ(c) | c ∈ C} of φ is of dimension exactly equal to F2k+1.

Furthermore, for any linear basis P of the univariate polynomials of degree at most k,
denote for c ∈ C with P (c) the column vector obtained by evaluating all polynomials in P at
c. Then, the subalgebra generated by {P (c) | c ∈ C} is of dimension at most F2k+1.
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