1,473 research outputs found

    Computing Weakest Strategies for Safety Games of Imperfect Information

    Get PDF
    CEDAR (Counter Example Driven Antichain Refinement) is a new symbolic algorithm for computing weakest strategies for safety games of imperfect information. The algorithm computes a fixed point over the lattice of contravariant antichains. Here contravariant antichains are antichains over pairs consisting of an information set and an allow set representing the associated move. We demonstrate how the richer structure of contravariant antichains for representing antitone functions, as opposed to standard antichains for representing sets of downward closed sets, allows CEDAR to apply a significantly less complex controllable predecessor step than previous algorithms

    Looking at Mean-Payoff through Foggy Windows

    Full text link
    Mean-payoff games (MPGs) are infinite duration two-player zero-sum games played on weighted graphs. Under the hypothesis of perfect information, they admit memoryless optimal strategies for both players and can be solved in NP-intersect-coNP. MPGs are suitable quantitative models for open reactive systems. However, in this context the assumption of perfect information is not always realistic. For the partial-observation case, the problem that asks if the first player has an observation-based winning strategy that enforces a given threshold on the mean-payoff, is undecidable. In this paper, we study the window mean-payoff objectives that were introduced recently as an alternative to the classical mean-payoff objectives. We show that, in sharp contrast to the classical mean-payoff objectives, some of the window mean-payoff objectives are decidable in games with partial-observation

    The Complexity of Synthesizing Uniform Strategies

    Full text link
    We investigate uniformity properties of strategies. These properties involve sets of plays in order to express useful constraints on strategies that are not \mu-calculus definable. Typically, we can state that a strategy is observation-based. We propose a formal language to specify uniformity properties, interpreted over two-player turn-based arenas equipped with a binary relation between plays. This way, we capture e.g. games with winning conditions expressible in epistemic temporal logic, whose underlying equivalence relation between plays reflects the observational capabilities of agents (for example, synchronous perfect recall). Our framework naturally generalizes many other situations from the literature. We establish that the problem of synthesizing strategies under uniformity constraints based on regular binary relations between plays is non-elementary complete.Comment: In Proceedings SR 2013, arXiv:1303.007

    Probabilistic Opacity for Markov Decision Processes

    Full text link
    Opacity is a generic security property, that has been defined on (non probabilistic) transition systems and later on Markov chains with labels. For a secret predicate, given as a subset of runs, and a function describing the view of an external observer, the value of interest for opacity is a measure of the set of runs disclosing the secret. We extend this definition to the richer framework of Markov decision processes, where non deterministic choice is combined with probabilistic transitions, and we study related decidability problems with partial or complete observation hypotheses for the schedulers. We prove that all questions are decidable with complete observation and ω\omega-regular secrets. With partial observation, we prove that all quantitative questions are undecidable but the question whether a system is almost surely non opaque becomes decidable for a restricted class of ω\omega-regular secrets, as well as for all ω\omega-regular secrets under finite-memory schedulers

    Uniform Strategies

    Get PDF
    We consider turn-based game arenas for which we investigate uniformity properties of strategies. These properties involve bundles of plays, that arise from some semantical motive. Typically, we can represent constraints on allowed strategies, such as being observation-based. We propose a formal language to specify uniformity properties and demonstrate its relevance by rephrasing various known problems from the literature. Note that the ability to correlate different plays cannot be achieved by any branching-time logic if not equipped with an additional modality, so-called R in this contribution. We also study an automated procedure to synthesize strategies subject to a uniformity property, which strictly extends existing results based on, say standard temporal logics. We exhibit a generic solution for the synthesis problem provided the bundles of plays rely on any binary relation definable by a finite state transducer. This solution yields a non-elementary procedure.Comment: (2012

    Lossy Channel Games under Incomplete Information

    Get PDF
    In this paper we investigate lossy channel games under incomplete information, where two players operate on a finite set of unbounded FIFO channels and one player, representing a system component under consideration operates under incomplete information, while the other player, representing the component's environment is allowed to lose messages from the channels. We argue that these games are a suitable model for synthesis of communication protocols where processes communicate over unreliable channels. We show that in the case of finite message alphabets, games with safety and reachability winning conditions are decidable and finite-state observation-based strategies for the component can be effectively computed. Undecidability for (weak) parity objectives follows from the undecidability of (weak) parity perfect information games where only one player can lose messages.Comment: In Proceedings SR 2013, arXiv:1303.007

    Qualitative Analysis of Partially-observable Markov Decision Processes

    Get PDF
    We study observation-based strategies for partially-observable Markov decision processes (POMDPs) with omega-regular objectives. An observation-based strategy relies on partial information about the history of a play, namely, on the past sequence of observations. We consider the qualitative analysis problem: given a POMDP with an omega-regular objective, whether there is an observation-based strategy to achieve the objective with probability~1 (almost-sure winning), or with positive probability (positive winning). Our main results are twofold. First, we present a complete picture of the computational complexity of the qualitative analysis of POMDP s with parity objectives (a canonical form to express omega-regular objectives) and its subclasses. Our contribution consists in establishing several upper and lower bounds that were not known in literature. Second, we present optimal bounds (matching upper and lower bounds) on the memory required by pure and randomized observation-based strategies for the qualitative analysis of POMDP s with parity objectives and its subclasses

    A Backward-traversal-based Approach for Symbolic Model Checking of Uniform Strategies for Constrained Reachability

    Full text link
    Since the introduction of Alternating-time Temporal Logic (ATL), many logics have been proposed to reason about different strategic capabilities of the agents of a system. In particular, some logics have been designed to reason about the uniform memoryless strategies of such agents. These strategies are the ones the agents can effectively play by only looking at what they observe from the current state. ATL_ir can be seen as the core logic to reason about such uniform strategies. Nevertheless, its model-checking problem is difficult (it requires a polynomial number of calls to an NP oracle), and practical algorithms to solve it appeared only recently. This paper proposes a technique for model checking uniform memoryless strategies. Existing techniques build the strategies from the states of interest, such as the initial states, through a forward traversal of the system. On the other hand, the proposed approach builds the winning strategies from the target states through a backward traversal, making sure that only uniform strategies are explored. Nevertheless, building the strategies from the ground up limits its applicability to constrained reachability objectives only. This paper describes the approach in details and compares it experimentally with existing approaches implemented into a BDD-based framework. These experiments show that the technique is competitive on the cases it can handle.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    How to Handle Assumptions in Synthesis

    Full text link
    The increased interest in reactive synthesis over the last decade has led to many improved solutions but also to many new questions. In this paper, we discuss the question of how to deal with assumptions on environment behavior. We present four goals that we think should be met and review several different possibilities that have been proposed. We argue that each of them falls short in at least one aspect.Comment: In Proceedings SYNT 2014, arXiv:1407.493
    corecore