1,168 research outputs found

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Partitioning a Polygon Into Small Pieces

    Full text link
    We study the problem of partitioning a given simple polygon PP into a minimum number of polygonal pieces, each of which has bounded size. We give algorithms for seven notions of `bounded size,' namely that each piece has bounded area, perimeter, straight-line diameter, geodesic diameter, or that each piece must be contained in a unit disk, an axis-aligned unit square or an arbitrarily rotated unit square. A more general version of the area problem has already been studied. Here we are, in addition to PP, given positive real values a1,,aka_1,\ldots,a_k such that the sum i=1kai\sum_{i=1}^k a_i equals the area of PP. The goal is to partition PP into exactly kk pieces Q1,,QkQ_1,\ldots,Q_k such that the area of QiQ_i is aia_i. Such a partition always exists, and an algorithm with running time O(nk)O(nk) has previously been described, where nn is the number of corners of PP. We give an algorithm with optimal running time O(n+k)O(n+k). For polygons with holes, we get running time O(nlogn+k)O(n\log n+k). For the other problems, it seems out of reach to compute optimal partitions for simple polygons; for most of them, even in extremely restricted cases such as when PP is a square. We therefore develop O(1)O(1)-approximation algorithms for these problems, which means that the number of pieces in the produced partition is at most a constant factor larger than the cardinality of a minimum partition. Existing algorithms do not allow Steiner points, which means that all corners of the produced pieces must also be corners of PP. This has the disappointing consequence that a partition does often not exist, whereas our algorithms always produce useful partitions. Furthermore, an optimal partition without Steiner points may require Ω(n)\Omega(n) pieces for polygons where a partition consisting of just 22 pieces exists when Steiner points are allowed.Comment: 32 pages, 24 figure

    Towards a theory of automated elliptic mesh generation

    Get PDF
    The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented

    Multi-Step Processing of Spatial Joins

    Get PDF
    Spatial joins are one of the most important operations for combining spatial objects of several relations. In this paper, spatial join processing is studied in detail for extended spatial objects in twodimensional data space. We present an approach for spatial join processing that is based on three steps. First, a spatial join is performed on the minimum bounding rectangles of the objects returning a set of candidates. Various approaches for accelerating this step of join processing have been examined at the last year’s conference [BKS 93a]. In this paper, we focus on the problem how to compute the answers from the set of candidates which is handled by the following two steps. First of all, sophisticated approximations are used to identify answers as well as to filter out false hits from the set of candidates. For this purpose, we investigate various types of conservative and progressive approximations. In the last step, the exact geometry of the remaining candidates has to be tested against the join predicate. The time required for computing spatial join predicates can essentially be reduced when objects are adequately organized in main memory. In our approach, objects are first decomposed into simple components which are exclusively organized by a main-memory resident spatial data structure. Overall, we present a complete approach of spatial join processing on complex spatial objects. The performance of the individual steps of our approach is evaluated with data sets from real cartographic applications. The results show that our approach reduces the total execution time of the spatial join by factors

    Hierarchical path-finding for Navigation Meshes (HNA*)

    Get PDF
    Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A¿ over the initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.Peer ReviewedPostprint (author's final draft

    Cutting Polygons into Small Pieces with Chords: Laser-Based Localization

    Get PDF
    Motivated by indoor localization by tripwire lasers, we study the problem of cutting a polygon into small-size pieces, using the chords of the polygon. Several versions are considered, depending on the definition of the "size" of a piece. In particular, we consider the area, the diameter, and the radius of the largest inscribed circle as a measure of the size of a piece. We also consider different objectives, either minimizing the maximum size of a piece for a given number of chords, or minimizing the number of chords that achieve a given size threshold for the pieces. We give hardness results for polygons with holes and approximation algorithms for multiple variants of the problem
    corecore